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Abstract

While deep learning methods have demonstrated performance comparable to human read-
ers in tasks such as computer-aided diagnosis, these models are difficult to interpret, do
not incorporate prior domain knowledge, and are often considered as a “black-box.” The
lack of model interpretability hinders them from being fully understood by end users such
as radiologists. In this paper, we present a novel interpretable deep hierarchical semantic
convolutional neural network (HSCNN) to predict whether a given pulmonary nodule ob-
served on a computed tomography (CT) scan is malignant. Our network provides two levels
of output: 1) low-level semantic features; and 2) a high-level prediction of nodule malig-
nancy. The low-level outputs reflect diagnostic features often reported by radiologists and
serve to explain how the model interprets the images in an expert-interpretable manner.
The information from these low-level outputs, along with the representations learned by the
convolutional layers, are then combined and used to infer the high-level output. This unified
architecture is trained by optimizing a global loss function including both low- and high-
level tasks, thereby learning all the parameters within a joint framework. Our experimental
results using the Lung Image Database Consortium (LIDC) show that the proposed method
not only produces interpretable lung cancer predictions but also achieves significantly better

results compared to common 3D CNN approaches.
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1. Introduction and Background

Lung cancer is the leading cause of cancer mortality worldwide (Torre et al., 2016; Shen
et al., 2017a). Computed tomography (CT) imaging is increasingly being used to detect
and characterize pulmonary nodules with the purpose of diagnosing lung cancer earlier. The
National Lung Screening Trial (NLST) (Team et al., 2011) in the United States demonstrated
a 20% lung cancer mortality reduction in high-risk subjects who underwent screening using
low-dose CT relative to plain chest radiography. Based on the findings of the NLST, the
United States Preventative Services Task Force (USPSTF) recommends low-dose CT lung
cancer screening for current and former smokers aged 55-80 with a smoking history of at least
30 pack-years, or former smokers having quit within the past 15 years (ten Haaf et al., 2017).
However, the potential consequences of implementing lung cancer screening is an increase
in false positive screens that result in unnecessary medical, economic, and psychological
costs. Indeed, some studies indicate that the false positive rate for low-dose CT is upwards
of 20%. Moreover, detection rates vary among less experienced radiologists, particularly in
subtle cases, as interpretation heavily relies on past experience (Zhao et al., 2013). Figure 1
illustrates examples of malignant (top row, R1) and benign (bottom row, R2) nodules. The
visual appearance of these nodules is highly varied with subtle differences in size, shape, and
texture, underscoring the challenge faced by radiologists in differentiating between the two
groups.

In response, computer-aided diagnosis (CADx) systems (Armato et al., 2003; Shen et al.,
2015a; Duggan et al., 2015; Firmino et al., 2016; Amir & Lehmann, 2016; Huang et al., 2017)
have been explored to help distinguish between malignant from benign nodules in small nod-
ules (Huang et al., 2017). While architectures may vary, contemporary lung nodule CADx
systems typically consist of modules that perform: 1) image reconstruction and enhancement
(image pre-processing); 2) identification and segmentation of nodule candidates (candidate

generation); 3) characterization and filtering of nodule candidates (false positive reduction);
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Figure 1: Hlustrations of malignant and benign nodules: R1 are malignant nodules; R2 are benign nodules.

and 4) classification of each candidate as benign or malignant (diagnosis). For example,
Armato et al. (Armato et al., 2003) segmented the lung nodule using multilevel threshold-
ing techniques; extracted morphological and gray-level features; and classified nodules as
benign or malignant using linear discriminant analysis. Zinovev et al. (Zinovev et al., 2011)
employed both texture and intensity features using belief decision trees and a multi-label
approach to perform lung nodule classification. Way et al. (Way et al., 2009) segmented
lung nodules using k-means clustering, combined nodule surface features together with tex-
ture and morphological features, and used linear discriminant analysis to diagnose malignant
lung cancers. However, these approaches achieve variable performance because: 1) nodules
are inherently difficult to segment due to the range of nodule morphology and potential
overlap with surrounding structures (e.g., chest wall, vessels) (Shen et al., 2015b); and 2)
extracted features vary due to differences in segmentation results and acquisition parameters
(Shen et al., 2017b; Piedra et al., 2016). Thus, using segmented regions may lead to inaccu-
rate features that are subsequently used as inputs into downstream classifiers (Shen et al.,
2017b). Another critical question raised by this type of CADx design is how to define the
“optimal” subset of features that can best encode characteristics of the lung nodule (Ciompi
et al., 2015). The optimal feature set is dependent on the characteristics of the dataset and
methods used to train the model, which lead to models that perform well on their training

dataset but not other datasets.



To overcome these issues, deep learning methods (Shen et al., 2015b, 2017b; Ciompi
et al., 2015; Kumar et al., 2015; Hua et al., 2015), particularly convolutional neural networks
(CNNs), have recently been used for lung nodule classification, with promising results. These
deep learning models adaptively learn the optimal representation in a fully data-driven way,
taking raw image data as input without relying on a priori nodule segmentation masks
or handcrafted features. For instance, Kumar et al. (Kumar et al., 2015) first trained
an unsupervised deep autoencoder to extract latent features from 2D CT patches. These
extracted deep features were then used together with decision trees to predict lung cancer.
Similarly, Hua et al. (Hua et al., 2015) employed supervised techniques with a deep belief
network and CNN, outperforming methods that use scale-invariant feature transform (SIFT)
features and local binary patterns (LBP) (Farag et al., 2011); and using fractal analysis (Lin
et al., 2013). Ciompi et al. (Ciompi et al., 2015) used pre-trained CNN models to classify
candidates as peri-fissural nodules (PFNs) or non-PFNs. Deep features were extracted from
the pre-trained model for three 2D image patches in axial, coronal, and sagittal views.
An ensemble of the deep features and bag-of-frequency features were then used to train
supervised binary classifiers for the PFN classification task. Shen et. al. (Shen et al.,
2015b) designed a multi-scale CNN using 3D nodule patches at three different resolutions
to perform the lung cancer diagnosis task. This work is further extended in (Shen et al.,
2017b) by adding a multi-crop pooling strategy to improve model performance. Markedly,
these cited works use deep learning as a “black-box” and do not attempt to explain what
representations have been learned or why the model generates a given prediction. This
low degree of interpretability arguably hinders target end users, such as radiologists, from
understanding how the models work and ultimately impedes model adoption for clinical
usage. As discussed in (Jorritsma et al., 2015), interpretability is critical in facilitating
radiologist-CADx interactions by providing transparent and trustworthy predictions.

A number of radiologist-interpreted features derived from CT scans have been considered
influential when assessing the malignancy of a lung nodule (Kim et al., 2015; Erasmus et al.,
2000). These features are referred to as semantic features in this study. Examples of such
semantic features include nodule spiculation, lobulation, consistency (texture), and shape.

Although qualitative in nature, studies have shown that these semantic features can be char-



acterized numerically using low-level image features (Kaya & Can, 2015). Hancock et al.
(Hancock & Magnan, 2016) demonstrated that machine learning can achieve high prediction
accuracy for lung cancer malignancy using only semantic features as inputs. In addition,
semantic features are intuitive to radiologists and are moderately robust against perturba-
tions in image resolution and reconstruction kernel. An opportunity exists to incorporate
these semantic features into the design of deep learning models, combining the advantages
of both.

In this study, we propose a novel interpretable hierarchical semantic convolutional neural
network (HSCNN) to predict whether a nodule is malignant in CT images. The HSCNN takes
the raw CT image cubes centered at nodules as input and generates two levels of outputs. The
first predictive level provides intermediate outputs in terms of diagnostic semantic features,
while the second level represents the final lung nodule malignancy prediction score. Jump
connections are employed to feed the information learned from the first level semantic features
to the final malignancy prediction. As such, our first level outputs provide explanations
about what the HSCNN model has learned from the raw image data and correlates semantic
features with the specific malignancy prediction; it also provides additional information to
improve the final malignancy prediction task through the jump connections. This entire
model is trained by minimizing a global cost function, where both first- and second-level
task losses are included.

The contributions of this paper are threefold:

1. We describe an approach to build a radiologist-interpretable deep convolution neu-
ral network. The intermediate outputs from the model give predictions of diagnostic
semantic features associated with the final classification, helping to explain the predic-
tion. To the best of our knowledge, this is the first example of a network architecture

emphasizing the interpretability of the results.

2. We provide a hierarchical design that integrates both semantic features and deep fea-
tures to predict malignancy. Shared convolution modules in the HSCNN are used to
learn generalizable features across tasks. The information learned for each specific

low-level semantic feature is then fed into the final high-level malignancy prediction



task.

3. We present a new global cost function to train the whole model jointly, taking both
first- and second-level outputs into consideration simultaneously. The new objective

function concurrently handles data imbalance issues for both tasks.

The remainder of this paper is organized as follows. In Section 2, we describe the dataset
used in this study and the proposed HSCNN model. In Section 3, we present results and
compare the proposed method with a traditional 3D CNN. In Sections 4 & 5, we discuss the

findings and limitations of the work.

2. Materials and Methods

2.1. Lung Image Database Consortium Dataset

The Lung Image Database Consortium image collection (LIDC-IDRI) (Armato et al.,
2011) is a publicly available dataset, which we used to train and test our proposed meth-
ods. LIDC-IDRI contains both screening and diagnostic CT scans collected from 7 academic
centers and 8 medical imaging companies. Inclusion criteria for CT scans were: 1) having
a collimation and reconstruction interval no greater than 3 mm; and 2) each scan approxi-
mately containing no more than 6 lung nodules with the longest dimension ranging from 3-30
mm, as determined by a cursory review during case selection at the originating institution
(Armato et al., 2011). For the whole dataset, the slice thicknesses varied from 0.6 to 5 mm,
and the in-plane pixel size varied from 0.461 to 0.977 mm. LIDC-IDRI contains 1,018 cases
(representing 1,010 different patients, 8 patients having 2 distinct scans); each case consists
of at least one CT scan and associated eXtensible Markup Language (XML) file, containing
nodule annotations made by up to four human readers following a two-phase image anno-
tation process. Pixel-level 3D contour segmentations, assessment of nodule likelihood for
malignancy, and interpretation of eight nodule characteristics were provided for nodules >
3 mm. We considered the following eight nodule characteristics as semantic features: cal-
cification, subtlety, lobulation, sphericity, internal structure, margin, texture, spiculation,
and malignancy. Each feature was rated from 1 to 5 or 6 by each reader. Table 1 lists the

description and definitions for each of the labels from (McNitt-Gray et al., 2007).



Table 1: Detailed nodule characteristics labels in LIDC dataset.

Semantic Feature Description Ratings

1. Highly unlikely
. Moderately unlikely
Malignancy Likelihood of malignancy . Indeterminate

2
3
4. Moderately suspicious
5. Highly suspicious

—_

Poorly defined

Margin How well defined the margins are

ok N

Sharp

—_

Linear

Sphericity Three dimensional shape in terms of Ovoid

roundness

oLk N

Round

—_

Extremely subtle

Moderately subtle

Subtlety Difficulty of detection relative to Fairly subtle

surround Moderately obvious

oL N

Obvious

—_

Marked

Spiculation Degree of exhibition of spicules

AR

None




Semantic Feature Description Ratings

1. Non-solid
2
Radiographic solid- Internal texture (consistency) of 3. Part Solid
ity (texture) nodule 4.
5. Solid
1. Popcorn
2. Laminated
Calcification Presence and pattern of calcification 8. Solid
4. Non-central
5. Central
6. Absent
1. Soft tissue
2. Fluid
Internal structure Expected internal composition of 3. Fat
the nodule 4.
5. Air
1. Marked
2.
Lobulation The presence and degree of lobula- 3.
tion of the nodule margin 4.
5. None
2.2. Our Usage of the LIDC dataset
Reader
Slice thickness agreements
<3mm >3 | 4252

1018 CT scans ——— | 897 CT scans

annotations

Figure 2: Lung nodule inclusion criteria.

A nodule could be associated with up to 4 annotations, depending on how many of the



readers demarcated the nodule.We used a list provided in (A. P. Reeves, A. M. Biancardi,
2011) to determine which annotations referred to the same nodule. Only nodules identified
by at least three radiologists were included in this study. CT scans with slice thickness
larger than or equal to 3 mm were also excluded. Figure 2 summarizes the inclusion criteria
for this study, resulting in the inclusion of 4,252 nodule annotations. Each annotation was
considered independently (e.g., an object marked by all four radiologists as a nodule was
considered as four independent nodules) to maximize the use of available annotations and to
follow the convention used in prior studies (Clark et al., 2013; Hancock & Magnan, 2016; Froz
et al., 2017). Uniform labels for each feature were assigned to all annotations that referred
to the same nodule. As shown in Table 1, the LIDC annotation process employed one
ordinal feature (likelihood of malignancy) and four semantic features (margin, sphericity,
nodule subtlety, and texture (consistency)). Scores for these five nodule characteristics

were binarized by averaging the scores for each nodule as in (Shen et al., 2015b) and then

Table 2: Summary of generating binary labels from LIDC rating scales for nodule characteristics.

Nodule characteristics Label 0 Label 1
Scale 1 - 3 Scale 4 - 5
Malignancy
Benign Malignant
o Scale 1 - 3 Scale 4 - 5
Sphericity
Lesser roundness High degree of roundness
) Scale 1 - 3 Scale 4 - 5
Margin
Poorly defined margin Sharp margin
Scale 1 - 3 Scale 4 - 5
Subtlety Poor contrast between nodule | High contrast between nodule
and surroundings and surroundings
Scale 1 - 3 Scale 4 - 5
Texture
Non-solid internal density Solid internal density
Scale 1 -5 Scale 6
Calcification
Present of calcification Absent of calcification




Table 3: Label counts for nodule characteristics.

Nodule characteristics | Label 0 (#) Label 1 (#) Total (#)
Malignancy 3212 1040 4252
Sphericity 2304 1948 4252

Margin 1640 2612 4252
Subtlety 1570 2682 4252
Texture 018 3734 4252
Calcification 496 3756 4252

binarizing each feature: average scores between 1-3 were assigned Label 0 while 4-5 were
assigned Label 1. Label 0 typically indicated a benign nodule, poorly defined margin, lesser
roundness, poor conspicuity between nodule and surroundings, and a non-solid (ground-
glass-like) consistency. Conversely, Label 1 more typically denoted a malignant nodule,
sharp margins, higher sphericity, high conspicuity between nodule and surroundings, and
solid consistency. Calcification was handled differently: annotations were made using a
categorical scale from 1 to 6. Here, nodules with averaged ratings of 6 were labeled as absent
of calcification pattern (Label 1); all other ratings represented the presence of calcification
(Label 0).

The feature ”internal structure” was overwhelmingly annotated as soft tissue, thus pro-
vided little discriminative information (Hancock & Magnan, 2016) and was excluded from
our analysis. Moreover, the Cancer Imaging Archive (TCIA) reported that an indeterminate
subset of cases in the dataset were inconsistently annotated with respect to spiculation and
lobulation (The Cancer Imaging Archive, 2017). As such, we did not consider these two
features in our model. Finally, it should be noted that biopsy-confirmed diagnoses of the
nodules are not known. For the purposes of this work, the likelihood of malignancy served
as the proxy for truth. Table 2 summarizes the generation of the binary labels from LIDC
rating scales as described above. Table 3 lists the data counts for each label of the nodule

characteristics.
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2.3. Data Preprocessing

The LIDC dataset contains a heterogeneous set of scans obtained using various acqui-
sition and reconstruction parameters. To normalize pixel values, all CT scans were first
transformed to Hounsfield (HU) scales using the information in the DICOM (Digital Imag-
ing and Communication in Medicine) series header and converted to a range of (0,1) from
(-1000, 500 HU). A 3D patch sized 40 x 40 x 40 mm were extracted for each candidate.
Each patch was centered around the candidate. 40 mm was chosen so that all candidates
would be fully contained in the patch as the largest nodules in our subset were 30 mm in
diameter. We then rescaled each patch to a fixed size of pixels in all three dimensions, result-
ing in isotropic cubes for all cases. During preprocessing, we retained the original relative
nodule size information within each patch with the belief that nodule size is informative in

subsequent prediction tasks.

2.4. Hierarchical Semantic Convolutional Neural Network

0
t

High-Level Task Malignancy
Task Batch-Norm main_1

1
1
R

0

s

1
t
Task Margin

0 1

Batch-Norm 1_2 Batch-Norm 5_2
towicwel | [TTSOR |

Task

Dropout 5_1

Dropout 1_1
- - Batch-Norm 5_1

Batch-Norm 1_1

3D Conv Module 2

3D Max Pooling 1

Batch-Norm 2
Feature
Learning

3D Convolution 2
Batch-Norm 1
3D Convolution 1

Figure 3: Model architecture of the hierarchical semantic convolutional neural network.

The proposed HSCNN utilizes a 3D patch capturing the lung nodule as input and outputs
two levels of predictions, as shown in Figure 3. This architecture comprises three parts: 1)
a feature learning module; 2) a low-level task module; and 3) a high-level task module. The
feature learning module adaptively learns the image features that are generalizable across
different tasks. The low-level task predicts five semantic diagnostic features: margin, texture,

sphericity, subtlety, and calcification. The high-level task incorporates information from both
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the generalizable image features and the low-level tasks to produce an overall prediction of
lung nodule malignancy.

The feature learning module (Figure 3, feature learning) consists of two convolution
module blocks where each block shares the same structure and contains two stacked 3D
convolution layers followed by batch normalization and one 3D average pooling layer. Each
convolution layer has a kernel size of 3 x3 x 3. These layers perform the convolution operation
on input feature maps along all three dimensions of the input cube to produce an output

feature map defined by:

fr=2 v (1)
i

where f7 and f? are the j'* output feature map and *" input feature map, respectively. And
¢ is the j%" convolution kernel and * represents the 3D convolution operation between the
convolution kernel and input feature map. ¥ is the j'* bias corresponding to the j** convolu-
tion kernel. After convolution, batch normalization is applied to all output feature maps to
accelerate the training process and reduce the internal covariate shift by normalizing the fea-
ture maps (loffe & Szegedy, 2015). Rectified linear units (ReLUs) (Krizhevsky et al., 2012)
are used as the nonlinear activation functions to take the output from batch normalization.
16 feature maps are used for both convolution layers in the first convolution module, and 32
feature maps are adopted for both convolution layers in the second convolution module. A
3D max pooling layer is used in the end for each convolution module block to progressively
reduce the spatial size of the feature maps to reduce the number of parameters and control

for overfitting. This layer is defined as:

fé,y,z = max{f;/y,z,; ¥ € x-Sy, T8y +dp — 1],
y’e[y-sy,y-sy—i-dy—l], (2)

Zelz-s,, 28, +d, — 1]}
where x (the row index), y (the column index), and z (the depth index) start from zero.

Here, s is the stride size (downscale factor) and d is the size of the max pooling window.

We employ a pooling window size of d = (2,2, 2) and stride size of s = (2,2,2). This design
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downsamples the input feature maps by a factor of 2 across all three cube dimensions. This
pooling layer has no learnable parameters.

After the last convolutional module, output features are fed simultaneously into the low-
and high-level task modules. The low-level task module (Figure 3, low-level task) consists
of five branches, each with the same architecture, representing a distinct semantic feature
(i.e., texture, margin, sphericity, subtlety, or calcification). A fully-connected layer (densely-
connected) is the major basic building block for each of these branches. One fully-connected
layer connects each input unit to each output unit, designed to capture correlations from all
input feature units to the output. Batch normalization and dropout techniques are both used
to control model overfitting. The dropout method randomly removes connections between
input and output units during network training to prevent units from co-adapting too much
(Srivastava et al., 2014). Two fully-connected layers are employed before the final binary
prediction with 256 neurons and 64 neurons for the first and second layer, respectively.

The high-level task module (Figure 3, high-level task) predicts whether the nodule is
malignant. This module combines the output features from the feature learning module and
each of the low-level task branches as its input. As shown in Figure 3, the output feature
maps from the last convolution module are used, along with the output from the last second
fully-connected layer of each subtask branch. This design makes the final prediction utilize
the basic features learned from the shared convolution modules and forces the convolution
blocks to extract representations that are generalizable across all tasks. It also makes use
of the information learned from each related semantic subtask to ultimately infer nodule
malignancy. The last fully-connected layer in each subtask branch is trained to extract
representations more specific to the corresponding subtask compared to the second to last
fully-connected layer. Thus, the second to last layer of the subtask branch is chosen to
provide less specific but salient information for the final malignancy prediction task. The
concatenated features are inputted into a fully-connected layer with 256 neurons, followed
by a batch normalization operation before the final malignancy prediction.

To jointly optimize the HSCNN during network training, a global loss function is proposed
to maximize the probability of predicting the correct label for each task by:

13



N 5
1
Lgiobal = N E (E ANj - Lji+ L) (3)
i=1 j=1

where N is the total number of training samples and 4 indicates the i* training sample. j is
the j' subtask and j € [1,5]. ), is the weighting hyperparameter for the j** subtask. L;;
represents the loss for sample ¢ and task j. Ly, is the loss for the malignancy prediction

task for the ¥ sample. Each loss component is defined as weighted cross entropy loss by:

Lj; = —log (efvs )Y " efmi) . w, ; (4)

where y; is true label for the i'® sample (z;,9;). Here, y; equals 0 or 1. fy:; 1s the pre-
diction score of the true class y; for task j and f,, ; represents a prediction score for class
Yn. We use wy, ; to represent the weight of class y; for task j. The use of w,,; is im-
portant because the labels are imbalanced in all the tasks and w,, ; is helpful in reducing
the training bias introduced by such data imbalance. Specifically, w,, ; weights each class
loss proportional to the reciprocal of the class counts in the training data. For instance,
wWyi=0j = Nyi=1,/(Ny=05 + Ny=1,5) and wy.—1; = Ny=0,;/(Ny,=0 + Ny;=1,5). Ny;=1,; repre-
sents the total count of samples in the training data for task j, where the true class label
equals 1. The global loss function is minimized during the training process by iteratively
computing the gradient of Ly, over the learnable parameters and updates the parameters
through back-propagation. During training, model learnable parameters are initialized using
the Xavier algorithm (Glorot & Bengio, 2010) and are updated using the Adam stochastic
optimization algorithom (Kingma & Ba, 2014).

2.5. Training

We performed model training, validation, and testing using 897 LIDC cases, selected as
described in Section 2.2. A 4-fold cross validation study design was employed to obtain
the final assessment of the model performance. Within each fold, we split these cases into
four subsets, where each subset had a similar number of nodules. 2 subsets are used for
training, 1 subset for validation, and 1 subset for holdout testing. The validation set is used

to tune the hyperparameters and test set is employed as external holdout to report the final
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model performance. Each subset is used as the test set once during the cross validation. This
design ensures that the test set is independent of model training and parameter optimization
and should reflect the true model performance without information leakage. We note that
earlier studies in (Shen et al., 2015b, 2017b; Kumar et al., 2015; Hua et al., 2015) only use
training and validation splits during the cross validation process, without consideration for
holdout test sets. Such designs arguably have information leakage and may overestimate
model performance.

To better control for model overfitting, 3D data augmentation was applied during the
training process. Data augmentation artificially inflates the dataset by using label-preserving
transforms to generate more data examples and is considered as a model regularization
scheme (Krizhevsky et al., 2012). One or more random operations were applied on each
training dataset to generate artificial samples. The spatial affine operations used in this
study included translating the position of the nodule within 4 mm or flipping the 3D nodule
cube along one of the three axes. The translation limit was set to 4 mm to ensure that the

boundaries of the largest nodules were captured properly in the 3D cube (40 x 40 x 40 mm).

3. Experimental Results

This section first describes how we trained the models. We compare our model to a
traditional 3D CNN model and other state-of-art methods. We also evaluate the accuracy

of semantic feature predictions, providing illustrations of correct and incorrect predictions.

3.1. Model Training

Models were trained for 300 epochs during each fold of cross-validation. After 100 epochs
of training, the model loss on the validation set became stable. The best model for each
fold was chosen to be the one that achieved the lowest malignancy prediction loss on the
validation dataset. Only the independent test dataset was used to calculate end model per-
formance. An online augmentation scheme was employed during model training: during each
training epoch, additional artificially created training samples were generated by randomly
picking one or multiple augmentation operations, as described in Section 2.5. The same

augmentation process was also applied to the validation dataset. To capture a majority of
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nodule morphology while reducing the input data dimensions, the input nodule cube size
was set to be 52 x 52 x 52 voxels. The learning rate was set to be 0.001. The convolution
kernel size, number of feature maps, pooling window size, downscale factor, and number
of neurons for each fully-connected layer were reported in Section 3. The choices of these
parameters have been commonly used, as shown in (Krizhevsky et al., 2012; Simonyan &
Zisserman, 2014). The hyperparameters presented in Equation 3 were chosen by using a
randomized coarse-to-fine grid search with the validation dataset in the first 20 epochs of
each fold (Bergstra & Bengio, 2012).

The proposed HSCNN model was implemented in Python 2.7 with TensorFlow (Abadi
et al., 2016) and the Keras toolkit (Chollet et al., 2015). All experiments were performed on
a server with 6-core Intel Xeon E5-2630 processor, 32GB memory, and one NVIDIA TITAN
Xp GPU (12GB on-board memory). The training of one HSCNN model took about 5 hours
for 300 epochs.

3.2. Malignancy Prediction Results

0 1 0 1

Task Malignancy Task Malignancy

Batch-Norm main_1 Batch-Norm main_1

Task Margin

Batch-Norm 5_2

Dense 5_2

0 1 0 1
1t
Task Texture
Batch-Norm 1_2 -

Dropout 1_1

Batch-Norm 1_1

Dense 1_1

Dropout 5_1

Batch-Norm 5_1

Dense 5_1

3D Conv Module 2

3D Conv Module 2

3D Conv Module 1 3D Conv Module 1
(b)

(a)

Figure 4: Framework comparison between proposed HSCNN and baseline 3D CNN. (a) The proposed HSCNN
architecture; (b) a baseline 3D CNN architecture. The baseline model has the same structure as the HSCNN

but without the low-level semantic task component.

To evaluate and compare the HSCNN performance on lung nodule malignancy prediction,
a 3D convolutional neural network (3D_CNN) was implemented as a baseline model, shown
in Figure 4b. This 3D CNN uses the same feature learning and high-level task modules
as the HSCNN but do not include the low-level subtask module. The baseline model was
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Receiver operating characteristic
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Figure 5: Receiver operating characteristic curve comparison: HSCNN versus 3D CNN. The AUC of 3D
HSCNN is significantly higher than 3D CNN according to a paired T-test as shown in Table 5.

Table 4: Results comparison: HSCNN versus 3D CNN.

Model | AUC (SD) Accuracy (SD) Sensitivity (SD) Specificity (SD)
3D CNN | 0.847 (0.024) 0.834 (0.022) 0.668 (0.040) 0.889 (0.022)
HSCNN | 0.856 (0.026) 0.842 (0.025) 0.705 (0.045) 0.889 (0.022)

trained and evaluated using the same 4-fold cross validation process and with the same data
splitting for each fold (using the same randomization seed).

Figure 5 shows the receiver operating characteristic (ROC) curve plots comparing HSCNN
versus 3D CNN performance. These plots represent the intuitive trade-off between sensitiv-
ity and specificity. By visual inspection of the ROC curves, HSCNN performs better than
the traditional 3D CNN model. The area under the ROC curve (AUC) quantitatively com-
pares the overall performance of a classification model and is frequently used as a metric to
access performance in nodule classification (Shen et al., 2017b; Ciompi et al., 2015; Hancock
& Magnan, 2016; Clark et al., 2013; Froz et al., 2017). Table 5 summarizes the mean AUC

score, accuracy, sensitivity, and specificity for both models. The HSCNN model achieved a
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Table 5: Paired T-Test summarizes for AUC scores between HSCNN and 3D CNN model on test set of each

fold. CI represents for confidence interval.

HSCNN 3D CNN AUC Difference

Test Fold Paired T-Test
AUC AUC (HSCNN - 3D_CNN)

Fold 1 0.878 0.869 0.009
P-value=0.005,

Fold 2 0.813 0.807 0.006

Mean_difference=0.009,
Fold 3 0.874 0.862 0.012
CI = [0.0051, 0.0129]
Fold 4 0.860 0.851 0.009

mean AUC 0.856, mean accuracy 0.842, mean sensitivity 0.705 and mean specificity 0.889;
while the 3D CNN model achieved a mean AUC 0.847, mean accuracy 0.834, mean sensitiv-
ity 0.668 and mean specificity 0.889. Both ROC plots and metric assessments show that the
proposed HSCNN achieved better performance for malignancy prediction compared with the
conventional 3D CNN approach.

To assess the statistical significance of model performance improvements, we conducted
a paired sample t-test to evaluate the mean differences in AUC scores between the HSCNN
and 3D CNN model. Group 1 consists of the AUC score of the HSCNN model for each
holdout test fold during the cross validation. Group 2 consists of the corresponding AUC
score for the 3D CNN for the same fold. The null hypothesis is that the mean difference of
AUC score between these two models equals 0. Table 5 summarizes the AUC scores for these
groups and results of a paired t-test. The test obtained a p-value of 0.005 and confidence
interval of [0.0051, 0.0129], thus rejecting the null hypothesis and indicating that the HSCNN
model achieved a statistically significantly better AUC relative to the 3D CNN. The mean
improvement of the AUC score was 0.009. This finding demonstrates that adding a low-level
task component on an existing CNN structure may improve the prediction of malignancy in
a lung nodule.

We also compared our results with other deep learning models for lung nodule malignancy
prediction that utilized the LIDC dataset reported in literature to date in Table 6. Kumar
et al. (Kumar et al., 2015) developed a deep autoencoder-based model with 4,323 nodules
of the LIDC dataset, achieving model accuracy of 0.7501. Hua et al. (Hua et al., 2015)
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Table 6: Comparison with other current deep learning models.

Hold-out
Method Sensitivity | Specificity | Accuracy | AUC
Nodules Test
Deep Auto-encoder
4,323 No - - 0.7501
(Kumar et al., 2015)
CNN
2,545 No 0.737 0.787 -
(Hua et al., 2015)
DBN
2,545 No 0.734 0.822 -
(Hua et al., 2015)
Multi-scale CNN
1,375 No - - 0.84
(Shen et al., 2015Db)
Multi-crop CNN
1,375 No - - 0.8714
(Shen et al., 2017b)
Proposed 4,252 No 0.705 0.889 0.842 0.856

presented a CNN model and deep belief network (DBN) model. Both models were trained
and validated using 2,545 lung nodule samples from LIDC. The CNN model had specificity of
0.787 and sensitivity 0.737; and the DBN model obtained specificity of 0.822 and sensitivity
0.734. In (Shen et al., 2015b), Shen et al. used a model based on multi-scale 3D CNN.
Developed with 1,375 LIDC nodule samples, the average accuracy is reported above 0.84
with different configurations. In (Shen et al., 2017b), Shen et al. extended this multi-scale
model using a multi-crop approach and achieved accuracy of 0.839, 0.8636, and 0.8714 with
340, 1030 and 1375 nodules of LIDC, respectively. All of these previously reported methods
were evaluated with only training and validation data splits without an independent holdout
test dataset as discussed in Section 2.5. Generally, our model achieved better or similar
performances compared with these reported methods. However, direct comparison of these

models is difficult given that each model was trained and tested on different subsets of the

LIDC dataset.
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Table 7: Classification performance for semantic feature predictions.

Semantic
Accuracy (SD) AUC (SD) Specificity (SD) Sensitivity (SD)

Features
Calcification | 0.908 (0.050)  0.930 (0.034)  0.763 (0.092) 0.930 (0.067)
Margin 0.725 (0.049)  0.776 (0.033) 0.632 (0.109) 0.758 (0.091)
Subtlety 0.719 (0.019)  0.803 (0.015)  0.796 (0.045) 0.673 (0.044)
Texture 0.834 (0.086)  0.850 (0.042)  0.636 (0.199) 0.855 (0.108)
Sphericity 0.552 (0.027)  0.568 (0.015) 0.554 (0.076) 0.552 (0.095)

3.3. Semantic Feature Prediction Results and Model Interpretability

Table 7 presents the classification performance for each of the low-level tasks (i.e., seman-
tic features). We achieved mean accuracy of 0.908, 0.725, 0.719, 0.834 and 0.552; mean AUC
score of 0.930, 0.776, 0.803, 0.850 and 0.568; mean sensitivity of 0.930, 0.758, 0.673, 0.855
and 0.552; and mean specificity of 0.763, 0.632, 0.796, 0.636 and 0.554 for calcification, mar-
gin, subtlety, texture, and sphericity, respectively. These results suggest that the HSCNN
model is able to learn feature representations that are predictive of semantic features while
simultaneously achieving high performance in predicting nodule malignancy.

Figure 6 demonstrates the interpretability of the HSCNN model by visualizing the central
slices of the 3D nodule patches in axial, coronal, and sagittal projections while presenting
the predicted interpretable semantic labels along with the malignancy classification results.
Figure 6a-R1 shows that the HSCNN model classifies the lung nodule as benign (the true
label is also benign). This decision correlated to predictions of this nodule as having no
calcification, sharp margins, roundness, obvious contrast between nodule and surroundings,
and solid consistency. The predictions of these five semantic characteristics are the same as
the true label and corresponds to our knowledge about benign lung nodules. Compared to
a 3D CNN malignancy prediction model, the HSCNN provides more insight for interpreting
its predictions. Similarly, in Figure 6b-R3, the proposed model predicts the lung nodule
as malignant (true label is also malignant). Different from the benign case, the HSCNN
model predicts this nodule having poorly defined margins, ground glass consistency, and non-

round shape. This partly explains why the HSCNN makes a malignancy classification with
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Axial View Sagittal View Coronal View

True Label Prediction
Calcification 1 1
Margin 1 1
Texture 1 1
Sphericity 1 1
Subtlety 1 1
Malignancy 0 0
. True Label Prediction
Calcification 1 1
Margin 1 1
Texture 1 1
Sphericity 1 1
Subtlety 1 1
Malignancy 0 0
(a)
Axial View Sagittal View Coronal View
i True Label Prediction
Calcification 1 1
Margin 0 0
Texture 0 0
Sphericity 1 0
Subtlety 1 1
Malignancy 1 1
True Label Prediction
Calcification 1 1
Margin 0 0
Texture 0 0
Sphericity 0 0
i Subtlety 1 1
i Malignancy 1 1
(b)

Figure 6: Illustrating the HSCNN model interpretability: lung nodule central slices, interpretable semantic
feature prediction and malignancy prediction. R1, R2, R3 and R4 are four different nodules. (a) Central slices
of axial, coronal and sagittal view of two benign nodule samples; true and predicted labels for interpretable
semantic features and malignancy. (b) Central slices of axial, coronal and sagittal view of two malignant

nodule samples; true and predicted labels for interpretable semantic features and malignancy.

such nodule characteristics corresponding to our expert knowledge about typical malignant

nodules. We note that the sphericity predictions made by the model are different from the
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Axial View Sagittal View Coronal View

True Label Prediction
;,Ff Calcification 1 1
P Margin 1 0
R1 Texture 0 1
Sphericity 0 1
Subtlety 1 0
Malignancy 0 0

True Label Prediction
‘ Calcification 1 1
Margin 1
R2 Texture 1
\ l Sphericity 0
Subtlety 1
Malignancy 0

Figure 7: Example cases where the HSCNN model incorrectly predicts semantic features or cancer malig-

RrlRr|o|kr|kr

nancy. R1 and R2 are two different nodules. R1: This case has four incorrect semantic feature predictions
yet a correct malignancy prediction. R2: This case has all correct semantic predictions yet an incorrect

malignancy prediction.

true label. This result is explained by the fact that while the nodule has a more regular
round shape in axial view, the shape is actually more elongated in the two other projections,
as shown in Figure 6b-R3.

Figure 7 shows two representative cases where the HSCNN fails to predict either one or
more semantic features or cancer malignancy. Figure 7-R1 shows that the HSCNN model
classifies the lung nodule correctly as benign but incorrectly for four semantic features of
this nodule (margin, texture, sphericity and subtlety). In Figure 7-R2, the HSCNN model
incorrectly classifies the lung nodule as malignant (the true label is benign). However, all
semantic features of this nodule are predicted correctly. These two cases present the situation
where the correctness are inconsistent between the malignancy and semantic predictions.
Section 4 provides further discussion about how the HSCNN model can be augmented with

more semantic features.
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4. Discussion

We present a HSCNN model that incorporates domain knowledge into the model archi-
tecture design, predicting semantic nodule characteristics along with the primary task of
nodule malignancy diagnosis. Five semantic features were considered: calcification, margin,
subtlety, texture, and sphericity. Our results in Section 3.3 suggest that the HSCNN model
is capable of providing accurate predictions of semantic descriptors while simultaneously
classifying nodule malignancy. The semantic labels are useful in interpreting the model’s
predictions. Moreover, Section 3.2 shows that our HSCNN architecture improves model
performance over a 3D CNN architecture.

There are some limitations to this study. Our semantic labels did not include those of
known higher association with malignancy, such as nodule size, margin spiculation, lobula-
tion, and anatomic location, which have previously been reported as informative (McWilliams
et al., 2013; Swensen et al., 1997). In the case of lobulation and spiculation, known labeling
errors in the LIDC dataset made them unsuitable for our use. Additionally, semantic labels
are subject to moderate inter-reader variability; performance might be enhanced by limiting
semantic labels to those on which there is high reader agreement. Third, the malignancy
labels provided in the LIDC dataset do not reflect pathological diagnosis but rather, suspi-
cion levels of the interpreting radiologists. Finally, the original semantic features have scales
of 5 or 6; binarizing the labels may lose some of the semantic information. Changing the
threshold for binary classification would also affect results. Our rationale for binary labels in
this case was to overcome data sparsity, where the number of cases labeled for certain scales
might be very small compared with the other scales (e.g., only 11 cases are labeled as linear
for sphericity out of total 4252 cases). Moreover, analysis shows that inter-reader agreement
is much lower for 5 or 6 scales compared with the proposed binary labels. Thus, binary
labeling helps to reduce labeling noise caused by inter-reader variability. These limitations
may be circumvented by training on large datasets that have been systematically annotated
using a shared lexicon that includes discriminating features.

Several improvements can be investigated as part of future work. First, further optimiza-
tion of the network architecture to achieve higher prediction performance can be performed.

For instance, densely connected designs (Huang et al., 2016) and residual designs (He et al.,
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2016) could be used to potentially improve model performance. Given limitations in com-
putational power, not all designs were optimally searched; we will investigate these as part
of future work. Second, as our HSCNN model facilitates interpretation of the utility of each
semantic feature in predicitng malignancy, the model can be fine-tuned by domain experts by
weighting more discriminating features in difficult cases. Third, exploration of more granular
or continuous labels for semantic features could be performed. Information of each semantic
label’s distributions could be incorporated into the model’s design to boost performance.
Fourth, our HSCNN architecture could be easily extended to incorporate additional seman-
tic features. However, too many low-level subtasks (e.g., more than 20) would make model
convergence more difficult. Thus, improving the model scalability should be studied in future
works. Not all combinations of semantic labels may co-occur. Therefore, this observation
could be employed to improve model design. Finally, the inputs of current models were the
3D cubes centered at each nodule with all background pixel intensities. Background objects
such as the lung walls of the juxtapleural nodules, might prevent the model from learning
useful information for the classification task. A possible future work is to explore feeding the
deep learning model with nodule versus perinodular (background) regions as two distinct

separated inputs for each input data.

5. Conclusion

In this paper, we have developed a novel radiologist-interpretable HSCNN model for
predicting lung cancer in CT-detected indeterminate nodules. This model is able to simul-
taneously predict nodule malignancy while classifying five nodule semantic characteristics,
including calcification, margin, subtlety, texture, and sphericity of nodules. These diagnostic
semantic features predictions are intermediate outputs associated with the final malignancy
prediction, and are useful to explain the diagnosis prediction. Information from each low-
level semantic feature prediction is incorporated into the malignancy prediction task by
employing jump connections. This framework is able to enforce the shared basic convolution
modules in the HSCNN to learn features that are generalizable across tasks. This unified
model is trained by minimizing a joint global loss function, where the losses of both malig-

nancy and semantic feature prediction tasks are incorporated. Extensive experiments and
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statistical tests show that the proposed HSCNN model is able to significantly improve the
classification performance for nodule malignancy prediction and the semantic characteristics
predictions have improved the model interpretability. This trained model could also serve

as a lung nodule semantic feature generator.
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