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Efficient Energy Harvesting
Using Piezoelectric Compliant
Mechanisms: Theory and
Experiment
Piezoelectric energy harvesters typically perform poorly in the low frequency, low ampli-
tude, and intermittent excitation environment of human movement. In this paper, a piezo-
electric compliant mechanism (PCM) energy harvester is designed that consists of a
polyvinylidene diflouoride (PVDF) unimorph clamped at the base and attached to a com-
pliant mechanism at the tip. The compliant mechanism has two flexures that amplify the
tip displacement to produce large motion of a proof mass and a low frequency first mode
with an efficient (nearly quadratic) shape. The compliant mechanism is fabricated as a
separate, relatively rigid frame with flexure hinges, simplifying the fabrication process,
and surrounding and protecting the piezoelectric unimorph. The bridge structure of the
PCM also self-limits the response to large amplitude impacts, improving the device
robustness. Experiments show that the compliant hinge stiffness can be carefully tuned to
approach the theoretical high power output and mode shape efficiency.
[DOI: 10.1115/1.4032178]

1 Introduction

Wireless electronic devices are widely used in civilian and mili-
tary applications with batteries providing the requisite power. Bat-
teries have well-known disadvantages in low power devices,
especially those used in the human body, such as limited lifetime,
environmental pollution, and inconvenient maintenance. Captur-
ing energy from the ambient environment using piezoelectric
energy harvesters has the potential to overcome these limitations
[1–5]. Body-based energy harvesting using piezoelectric materials
has two main barriers: the low frequency and intermittent nature
of human movements. Researchers have found that the dominant
motion frequencies for common activities, such as running, walk-
ing, and relaxing, are mostly below 10 Hz [6,7].

The most common configuration for a piezoelectric energy har-
vester is the proof mass cantilever design shown in Fig. 1. An
experimental prototype of the device is shown in Fig. 2. It is diffi-
cult to make the small, low frequency cantilever energy harvesters
designed for human movements. In addition, the strain distribu-
tion in the first mode decreases from the base to the tip, reducing
the efficiency. Maximum power (100% mode shape efficiency) is
achieved when the piezoelectric layer is uniformly strained to its
limit along the entire length of the beam [8]. Researchers used a
lead zirconate titanate (PZT) unimorph with [9,10] or without [11]
a tip mass and bimorph cantilever configurations with series and
parallel connections of piezoceramic layers that can enhance
power output [12–14]. In order to amplify the electrical power
output and improve the effective bandwidth of the harvester,

researchers used a spring-mass system at the base of a conven-
tional bimorph cantilever beam to increase power output [15].

Researchers also investigated a clamped unimorph piezoelectric
plate structure [16,17]. This device, however, has very high natural
frequencies and relatively inefficient strain distributions. Devices
that up-convert ambient vibration frequency to a higher frequency
achieve better electromechanical coupling and efficiency. Buckled
slender bridges [18], clamped–clamped spiral beams [19], magneti-
cally actuated piezoelectric beams [20–22], and impact-driven,
coupled beams [23,24] have used up-conversion. Frequency up-
conversion devices can harvest energy from low frequency excita-
tions, but they can be difficult to build and analyze.

Some researchers focused on improving the strain distribution
in the piezoelectric layer to maximize power and energy harvest-
ing efficiency. For example, an initially curved piezoceramic
unimorph was designed to generate more charge [25]. Modifying
the beam geometry was shown to provide more uniform strain,
such as using a trapezoid beam [26]. None of these designs, how-
ever, provide 100% mode shape efficiency.

In this paper, we propose a PCM energy harvester that can op-
erate at low frequency without a large proof mass and provide uni-
form strain for high mode shape efficiency. First, we introduce the
PCM design and fabrication process and derive its frequency do-
main model. Then, the PCM quadratic boundary condition is
derived to ensure a highly efficient mode shape. Impedance
matching for maximum power determines the optimal load resist-
ance. Finally, experiments are performed to validate the PCM
energy harvester model predictions.

2 PCM Design

Figure 3 shows the design and model of the PCM energy har-
vester. The unimorph beam consists of top and bottom electroded
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PVDF bonded to a substrate layer, the same as in the cantilever in
Fig. 1. One end of the beam is clamped to a rigid frame and the
other end is connected to the middle of a U-shaped rigid link by a
compliant hinge with torsional spring stiffness K1. The other two
compliant hinges, which connect the frame and the U-shaped link,
have torsional spring stiffness K2. We assume the U-shaped link is
rigid and massless and the proof mass is attached at the tip of the
link. The compliant mechanism at the tip can amplify the tip dis-
placement to produce large motion of the proof mass. The external
electrical circuit consists of a resistive load that is electrically in
parallel with the internal capacitance of the PVDF layer.

We use a PVDF unimorph from Measurement Specialties, Inc.
(LDT1-028 K) to build the PCM device and a frame to simplify
the PCM fabrication process. As shown in Fig. 3(a) and the exper-
imental prototype in Fig. 4, the PCM energy harvester consists of
two parts: the piezoelectric beam and the plastic frame around the
beam. The frame has base and tip rigid parts connected by low
stiffness hinges. The frame is a sandwich structure of rigid plastic
bonded on top and bottom of a flexible plastic film. One end of
the piezoelectric beam is glued between two plastic frames to
form the clamped boundary condition and provide a reliable con-
nection for the dual wire leads. The other end is connected via a
hinge of tunable stiffness (formed from layers of Kapton tape) to

the U-shaped link. The thin polyester film between the two plastic
frames provides the compliant hinges with stiffness K2. For the
compliant hinge connecting the beam and the U-shaped link, we
obtain the required torsional stiffness K1 by adjusting the number
of Kapton tape layers. Finally, the required proof mass can be
glued onto the tip of the U-shaped link.

3 PCM Model

The equivalent proof mass

Meq ¼ M
l1 þ l2

l1

! "2

þ J
1

l1

! "2

(1)

where, as shown in Fig. 3, l1 is the distance from the frame hinge
to the beam tip and l2 is the distance from the beam tip to the cen-
ter of the proof mass. The proof mass and rotary inertia are

M ¼ qmLmbmhm (2)

J ¼ 1

12
M L2

m þ h2
m

# $
(3)

Fig. 3 PCM (a) design and (b) model

Fig. 2 Photograph of a proof mass cantilever prototype

Fig. 4 Photograph of a PCM prototype

Fig. 1 Proof mass cantilever (a) design and (b) model
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respectively, where qm, Lm, bm, and hm are the density, length,
width, and thickness of the proof mass, respectively. The trans-
verse deflection of the beam

wðx; tÞ ¼ wrelðx; tÞ þ wbðtÞ (4)

where wrelðx; tÞ is the transverse deflection of the beam relative to
its base, wbðtÞ is the base excitation, x is the position along the
beam longitudinal axis, and t is the time.

The motion of the beam and proof mass contribute to the
kinetic energy

T ¼ 1

2

ðL

0

m _w x; tð Þ2dx

þ 1

2
M _wb tð Þ þ l1 þ l2

l1
_wrel L; tð Þ

& '2

þ 1

2
J

1

l1
_wrel L; tð Þ

& '2

(5)

where L is the length of the beam and dots and primes indicate
partial differentiation with respect to t and x, respectively. For the
composite unimorph beam, the mass per unit length

m ¼ bwðqshs þ qphpÞ; (6)

where bw is the beam width, qs, hs are the substrate density and
thickness, respectively, and qp, hp are the PVDF density and thick-
ness, respectively.

The potential energy V comes from the beam bending stiffness
EI and the two compliant hinges with torsional spring stiffness K1

and K2

V ¼ 1

2

ðL

0

EIw00rel x; tð Þ2dx

þ 1

2
K1

1

l1
wrel L; tð Þ % w0rel L; tð Þ

& '2

þ 1

2
K2

1

l1
wrel L; tð Þ

& '2

(7)

The PCM bridge structure supports the unimorph and introduces
an axial tensioning nonlinearity. In this paper, we focus on the lin-
ear response under relatively small base excitation and ignore the
nonlinear stretching strain in the potential energy. The stiffness
for constant rectangular cross section flexure hinge is

K ¼ Ehbhh3
h

12Lh
(8)

where Eh, bh, hh, and Lh are the Young’s modulus, width, thick-
ness, and length of the compliant hinge, respectively [27]. The
bending stiffness of the composite unimorph beam

EI ¼ 1

3
bw Es h3

b % h3
a

# $
þ Ep h3

c % h3
b

# $( )
(9)

where Es and Ep are the Young’s moduli of the substrate and
PVDF layers, respectively [11]. The parameters ha, hb, and hc are
listed in Table 1 and depend on the thicknesses and Young’s mod-
uli of the substrate and PVDF layers.

The virtual work includes the effects of viscous air damping,
strain rate damping, and the electrical work of the external circuit
on the beam

dW ¼%
ðL

0

ca _wðx; tÞdwðx; tÞdx

%
ðL

0

csI _w0 0relðx; tÞdw0 0relðx; tÞdx

þMVðtÞdw0relð0; tÞ %MVðtÞdw0relðL; tÞ (10)

where ca and cs are the viscous air and strain rate damping coeffi-
cients, respectively, and I is the equivalent area moment of inertia.
Viscous air damping and strain rate damping are related to the me-
chanical damping ratio

fr ¼
csIxr

2EI
þ ca

2mxr
(11)

where xr is the undamped natural frequency of the rth mode
[11,28]. The moment term

MVðtÞ ¼ #VðtÞ (12)

where #¼%Ep*bw*hpc*d31 and d31 is the piezoelectric constant
[11].

Hamilton’s principle d
Ð t

0ðT % V þWÞdt ¼ 0 is applied to pro-
duce the field equation

EIw0000relðx; tÞ þ m €wrel ðx; tÞ þ csI _w 0000relðx; tÞ þ ca _wrelðx; tÞ

¼ %m €wbðtÞ % ca _wbðtÞ (13)

and four boundary conditions

wrelð0; tÞ ¼ 0 (14)

w0relð0; tÞ ¼ 0 (15)

Table 1 Transformed cross section parameters

Parameter Description Expression

n Ratio of Young’s moduli of the substrate and PVDF layers Es

Ep

hpa Distance from the top of the PVDF layer to the neutral axis h2
p þ 2nhphs þ nh2

s

2 hp þ nhsð Þ
hsa Distance from the bottom of the substrate layer to the neutral axis h2

p þ 2hphs þ nh2
s

2 hp þ nhsð Þ
hpc Distance from the center of the PVDF layer to the neutral axis nhsðhp þ hsÞ

2 hp þ nhsð Þ
ha Position of the bottom of the substrate layer from the neutral axis %hsa

hb Position of the bottom of the PVDF layer from the neutral axis hpa % hp

hc Position of the top of the PVDF layer from the neutral axis hpa
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EIw0 0rel L; tð Þ % K1
1

l1
wrel L; tð Þ % w0rel L; tð Þ

& '

þ csI _w00rel L; tð Þ þMV tð Þ ¼ 0 (16)

EIw000rel L; tð Þ %M
l1 þ l2

l1
€wb tð Þ þ l1 þ l2

l1
€wrel L; tð Þ

& '

% J
1

l2
1

€wrel L; tð Þ % K1
1

l1

1

l1
wrel L; tð Þ % w0rel L; tð Þ

& '

%K2
1

l2
1

wrel L; tð Þ þ csI _w 000rel L; tð Þ ¼ 0 (17)

From piezoelectric constitutive laws, we obtain the electrical
circuit equation with mechanical coupling

Cp _V tð Þ þ 1

Rl
V tð Þ ¼

ðL

0

Epbwd31 S1

:
x; tð Þdx: (18)

Here, Rl is the load resistance in the external electrical circuit and
Cp ¼ ðLbweS

33=hpÞ is the parallel plate capacitance of the PVDF
layer, where eS

33 is the permittivity at constant strain. The average
bending strain at position x and time t occurs at the center of the
PVDF layer

S1ðx; tÞ ¼ %hpcw00relðx; tÞ (19)

Substituting Eq. (19) into Eq. (18), we obtain the electrical circuit
equation

Cp
_V tð Þ þ 1

Rl
V tð Þ ¼ %Epbwhpcd31 _w0rel L; tð Þ (20)

To develop a frequency domain model, we take the Laplace
transform of Eq. (13), which has a general solution

Wrelðx; sÞ ¼ C1ðsÞebðsÞx þ C2ðsÞe%bðsÞx

þC3ðsÞejbðsÞx þ C4ðsÞe%jbðsÞx %WbðsÞ (21)

where bðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%½ðms2 þ casÞ=ðEIþ csIsÞ'4

p
. Taking the Laplace

transform of Eqs. (14)–(17) and (20) and substituting the general
solution in Eq. (21) generate five equations in the five unknowns
C1ðsÞ; C2ðsÞ; C3ðsÞ; C4ðsÞ, and VðsÞ. Thus, we can solve for
the transcendental transfer functions ½Wðx; sÞ=WbðsÞ' and
½VðsÞ=WbðsÞ'.

Using the transcendental transfer function ½Wðx; sÞ=WbðsÞ', we
obtain the transfer function from base acceleration to tip
displacement

GWL sð Þ ¼
W L; sð Þ
s2Wb sð Þ

(22)

The maximum bending strain at position x occurs at the top of the
PVDF layer

Smaxðx; tÞ ¼ %hpaw00relðx; tÞ (23)

so the transfer function from base acceleration to maximum
strain is

GS x; sð Þ ¼
%hpaW00rel x; sð Þ

s2Wb sð Þ
¼
%hpaW00 x; sð Þ

s2Wb sð Þ
(24)

Similarly, using the transcendental transfer function
½VðsÞ=WbðsÞ', we obtain the transfer function from base accelera-
tion to voltage

GV sð Þ ¼
V sð Þ

s2Wb sð Þ
(25)

The external circuit is a resistive load Rl, so the amplitude of the
power transfer function is

jGP jxð Þj ¼
jGV jxð Þj2

Rl
(26)

4 PCM Quadratic Boundary Condition

For high mode shape efficiency, we adjust the flexure stiffness
K1 to maximize the strain distribution uniformity along the length
of the beam. Equation (19) shows that the bending strain is pro-
portional to the curvature of the beam, so uniform strain means
constant curvature and, for small displacement, a quadratic mode
shape. A quadratic mode shape will not satisfy Eq. (13) unless the
frequency is zero. We can approach this result if the proof mass is
large compared to the unimorph mass so the unimorph bends like
a static spring. We can approach a quadratic mode shape under
these conditions if the shear force is zero but moment is nonzero
at the position x¼L.

The general solution to the separable eigenvalue problem asso-
ciated with Eq. (13) is

WrelðxÞ ¼ C1ebx þ C2e%bx þ C3ejbx þ C4e%jbx (27)

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx2=EIÞ4

p
. We can solve for the unknowns C1, C2,

C3, and C4 using the clamped boundary condition at x¼ 0 and
zero shear force boundary condition at x¼L to produce

WrelðxÞ ¼C5½eð1þ2jÞLb þ jeLb þ ð1þ jÞejLb'ebx

þC5½eLb þ jeð1þ2jÞLb þ ð1þ jÞeð2þjÞLb'e%bx

%C5½ejLb þ jeð2þjÞLb þ ð1þ jÞeLb'ejbx

%C5½eð2þjÞLb þ jejLb þ ð1þ jÞeð1þ2jÞLb'e%jbx (28)

where C5 is an arbitrary scale factor.
Taking the Laplace transform of Eqs. (16) and (17), substituting

s ¼ jx, and neglecting the moment term MVðtÞ, we obtain

EIW0 0rel Lð Þ % K1
1

l1
Wrel Lð Þ %W0rel Lð Þ

& '
þ jcsIxW00rel Lð Þ ¼ 0 (29)

Meqx2Wrel Lð Þ % K1
1

l1

1

l1
Wrel Lð Þ %W0rel Lð Þ

& '
% K2

1

l2
1

Wrel Lð Þ

þ jcsIxW000rel Lð Þ ¼ 0 (30)

Substituting Eq. (28) into Eqs. (29) and (30), we find the quadratic
boundary condition

K1 ¼

ffiffiffi
2
p

l1b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csIxð Þ2 þ EI2

q
jr1j

j 1þ jð Þr2 % 2l1b jþ e2Lb % e2jLb % je2 1þjð ÞLb
# $

j
(31)

Meq ¼

,,,,
ffiffiffi
2
p

l1b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csIxð Þ2 þ EI2

q
jr1jþ 1þ jð ÞK2r2

,,,,
ffiffiffi
2
p

x2l21jr2j
(32)

where

r1 ¼ eLb þ ejLbð Þ2 þ 1þ eð1þjÞLb
# $2

r2 ¼ eLb þ ejLbð Þ2 % 1þ eð1þjÞLb
# $2

The ideal value of K2 is zero and Meq can be simplified based
on this assumption. However, the compliant hinges connecting the
frame and U-shaped link cannot be built to have zero torsional
spring stiffness and we need to find the value of K2 via experiment
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to determine Meq. Given the PCM parameters and vibration fre-
quency x, we can calculate the spring stiffness K1 and equivalent
proof mass Meq that result in a nearly quadratic mode shape.

5 Maximum Power Analysis

If the maximum strain in the PVDF reaches its limit Slim, the
energy harvester has maximum power Pmax. However, the theoret-
ical maximum power Pmax;theory is obtained when the entire vol-
ume of the PVDF is sinusoidally strained to its limit Slim at a
given frequency x. We define the mode shape efficiency

g ¼ Pmax

Pmax;theory
(33)

To calculate the theoretical maximum power, we start with the
electrical circuit equation given by Eq. (18) and assume that the
entire volume of the PVDF is sinusoidally strained to its limit Slim

at a given frequency x. S1ðx; tÞ is no longer a function of position
x and Eq. (18) becomes

LbweS
33

hp

_V tð Þ þ 1

Rl
V tð Þ ¼ EpLbwd31

_S1 tð Þ (34)

From Eq. (34), the transfer function from strain input to voltage
output is

G sð Þ ¼
V sð Þ
S1 sð Þ

¼ EpLbwhpd31Rls

LbweS
33Rlsþ hp

(35)

To determine the amplitude of voltage response to
S1ðtÞ ¼ Slim sin ðxtÞ, we substitute s ¼ jx into Eq. (35) and calcu-
late its magnitude

V ¼ SlimjG jxð Þj ¼
SlimEpLbwhpd31Rlxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LbweS
33Rlx

# $2 þ h2
p

q (36)

From Eq. (36), we calculate the output power amplitude

P ¼ V2

Rl
¼

SlimEpLbwhpd31xð Þ2Rl

LbweS
33Rlx

# $2 þ h2
p

(37)

To determine the theoretical maximum power, we differentiate
Eq. (37) with respect to Rl and equate to zero to find the optimal,
impedance-matched load resistance

Ropt ¼
hp

LbweS
33x
¼ 1

Cpx
(38)

From Eq. (38), we know that the theoretical maximum power is
achieved when the resistance in the external electrical circuit is
matched to the parallel plate capacitance of the PVDF. Substitut-
ing Eq. (38) into Eq. (37), we obtain the amplitude of theoretical
maximum power

Pmax;theory ¼
SlimEpd31ð Þ2Lbwhpx

2eS
33

(39)

6 Experimental Validation

6.1 Experimental Setup. Figure 5 shows the experimental
setup used to measure the frequency responses from base acceler-
ation to tip displacement and voltage. One end of the PCM energy
harvester is clamped to the stinger of an electrodynamic shaker.
The shaker is placed horizontally and provides a sine sweep exci-
tation from 0 to 20 Hz. A laser vibrometer measures the tip and
base displacements of the PCM under the excitation. We also

measure the base acceleration using the laser vibrometer. A resist-
ance box is connected in parallel with the piezoelectric layer and
adjusted from 10 X to 21 MX for impedance matching. The dis-
placement signals from the laser vibrometer and voltage drop
across the resistor are processed by a LABVIEW data acquisition sys-
tem, which also performs A/D and D/A conversion, amplification,
and FFT analysis.

6.2 Experimental Validation of the PCM Energy
Harvester. To provide a baseline for comparison, we analyze the
proof mass cantilever and PCM devices side-by-side. Both devi-
ces use the same LDT1-028 K laminated PVDF film unimorph
from Measurement Specialties, Inc. The PVDF layer is laminated
to a sheet of polyester (Mylar) and the dual wire leads attach the
harvester to the resistive load. As with the proof mass cantilever
design, one end of the PCM is clamped, providing a low stress
connection point for the output wires. The material properties of
the PVDF unimorph [29] are listed in Table 2. Both devices are
designed to have a 5 Hz natural frequency, which is within the
bandwidth of human motion. Using Eqs. (38) and (39), we calcu-
late the optimal load resistance and theoretical maximum power
at resonance with the same in-plane strain limit in the PVDF. The
first mode damping ratio f1 is obtained from experimental modal
analysis.

Using Eqs. (22), (25), and (26), we plot the frequency (f)
responses of tip displacement, voltage, and power at optimal re-
sistance for both the proof mass cantilever and PCM, shown as
blue dashed lines in Fig. 6 and black dashed lines Fig. 7, respec-
tively (see online figures for color). The experimental results for
the cantilever are plotted as blue solid lines in Fig. 6 and they
match very well with the theory. The optimal stiffness for the
compliant hinge K1 of the PCM is achieved by adjusting Kapton
tape thickness to maximize the output power at the first resonance.
Figure 7(a) shows the tip displacement frequency response for

Fig. 5 Experimental setup: (a) laser vibrometer and shaker and
(b) data acquisition system
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optimal stiffness. The first mode peak around 5 Hz is clearly visi-
ble and the experiment matches very well with the model except
for some noise around 10 Hz. The tip displacement sensitivity dsen

in Table 3 can be read from the resonance peak in Fig. 7(a). As
can be seen in Figs. 7(b) and 7(d), the voltage and power fre-
quency responses also match well with the model. Figures 7(c)
and 7(e) provide enlarged views of the voltage and power fre-
quency responses between 4 Hz and 6 Hz. Lower stiffness (red
solid lines) and higher stiffness (green solid lines) for the compli-
ant hinge K1 produce less power than the optimal stiffness (black
solid lines; see online figure for color). If Kapton tape is removed

from optimal stiffness flexure, the compliant hinge stiffness K1

and resonance frequency decrease. The compliant hinge stiffness
K1 and resonance frequency increase with the addition of Kapton
tape layers. From Figs. 7(c) and 7(e), we determine the voltage
sensitivity Vsen and power sensitivity Psen for the optimal stiffness
case and they reach 84.4% and 71.3% of those from the theory,
respectively.

Figure 8(a) plots the normalized experimental first mode shapes
for the proof mass cantilever and PCM. The squares, circles, and
triangles represent the experimental displacement data collected

Table 2 Model parameters

Parameter Description Proof mass cantilever PCM Units

L Beam length 30 mm
bw Beam width 12.2 mm
hs Substrate (Mylar) thickness 125 lm
hp PVDF thickness 28 lm
qs Substrate (Mylar) density 1390 kg=m3

qp PVDF density 1780 kg=m3

qm Proof mass (brass) density 8600 kg=m3

Es Substrate (Mylar) Young’s modulus 5 GPa
Ep PVDF Young’s modulus 3 GPa
d31 Piezoelectric constant 23 pm/V
eS

33 Permittivity at constant strain 106 pF/m
ry PVDF yield strength 55 MPa
Lm Proof mass length 6.35 6.35 mm
bm Proof mass width 12 12.5 mm
hm Proof mass thickness 9 9 mm
f1 First mode damping ratio 2.37% 3.26%
l1 PCM base link length 15 mm
l2 PCM proof mass link length 8 mm
K1 PCM beam tip hinge torsional spring stiffness 0.243 N(m=rad
K2 PCM frame hinge torsional spring stiffness 0.0045 N(m=rad

Fig. 6 Proof mass cantilever frequency responses from theory
(blue dashed line) and experiment (blue solid line): (a) tip dis-
placement, (b) voltage, (c) enlarged view of voltage, (d) power,
and (e) enlarged view of power (see online figure for color)

Fig. 7 PCM frequency responses from theory (black dashed line)
and experiment (optimal stiffness: black solid line, lower stiffness:
red solid line, and higher stiffness: green solid line): (a) tip dis-
placement, (b) voltage, (c) enlarged view of voltage, (d) power, and
(e) enlarged view of power (see online figure for color)
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along the piezoelectric beams and the lines are third-order polyno-
mial fits. The theoretical first mode shape of the PCM energy har-
vester is parabolic, shown as the black dashed line in Fig. 8(a). As
can be seen, the experimental PCM optimal stiffness mode shape
(black solid line) is much closer to a parabola than the lower

stiffness case (red solid line), higher stiffness case (green solid
line), and the cantilever (blue solid line; see online figure for
color), indicating that the optimal stiffness case has the highest
mode shape efficiency. The spatial second derivative of the beam
displacement is used to calculate the maximum strain based on
Eq. (23) and normalized by base acceleration to obtain the maxi-
mum strain distribution shown in Fig. 8(b). Theoretical maximum
strain distribution for the cantilever and PCM are also plotted
using Eq. (24) and compare well with the experiment. For the
PCM optimal stiffness case, the strain distribution is almost uni-
form, resulting in a high experimental efficiency of 77.4%. The
strain in the proof mass cantilever, however, is maximum at the
base and decreases linearly along the length, resulting in a rela-
tively small efficiency of 20.2%.

6.3 Strain Limit and Fatigue Analysis. Inertial and electro-
mechanical coupling, mechanical strain/fatigue, and electrical energy
extraction limit the power generation of piezoelectric energy harvest-
ers [30]. For harvesters having a mechanical quality factor greater
than 5, mechanical fatigue and strain limitations dominate [31]. The
energy harvesters in this paper have first mode damping ratios less
than 5%, corresponding to quality factors larger than ten, so mechani-
cal fatigue and strain concerns limit the power density. If the piezo-
electric material exceeds its strain limit, micro cracks will occur,
disconnecting active material and lowering the piezoelectric
response. The design process should therefore evaluate the maximum
strain and apply a design constraint to prevent mechanical failure.

In practice, the maximum strain must be limited to ensure an in-
finite fatigue life of the device. To allow for a reasonable safety
margin for practical application, design uses a safety factor k to
determine the practically safe tensile strength limit

rlim ¼
ry

k
(40)

where ry is the yield strength of the piezoelectric material
[30,32,33]. From Eq. (40), the resulting strain limit

Slim ¼
rlim

Ep
¼ ry

kEp
(41)

Substituting PVDF properties from Table 2 into Eq. (41), we
obtain the strain limit Slim of 0.183% for both devices with a
safety factor of ten.

The tip displacement sensitivity dsen and maximum strain sensi-
tivity Ssen of the cantilever are over two and three times larger
than those of the PCM, respectively, indicating that if these two
devices are used under the same excitation, the piezoelectric ma-
terial in the proof mass cantilever suffers from larger strain cycles
and degrades and fails in less time. The PCM bridge structure can
self-limit the response to large amplitude impacts, improving the

Table 3 Performance comparison

Proof mass cantilever PCM

Theory Experiment Theory Experiment Units

First resonance frequency, fre 5.22 5.28 5.02 5.13 Hz
Strain limit, Slim 0.183% 0.183%
Optimal load resistance, Ropt 22.0 22.9 MX
Theoretical maximum power Pmax;theory at Slim 21.0 20.2 lW
Load resistance, Rl 5.31 5.25 5.36 5.25 MX
Tip displacement sensitivity, dsen 0.185 0.175 0.0867 0.0812 m/g
Voltage sensitivity, Vsen 103 90.7 59.0 49.8 V/g
Power sensitivity, Psen 2.03 1.57 0.662 0.472 mW=g2

Maximum strain sensitivity, Ssen 3.37% 3.52% 1.05% 1.01% 1=g
Maximum voltage Vmax at Slim 5.62 4.72 10.3 9.06 V
Maximum power Pmax at Slim 6.02 4.24 20.2 15.6 lW
Mode shape efficiency, g 28.6% 20.2% 99.9% 77.4%

Fig. 8 (a) Normalized mode shapes and (b) maximum strain
distributions for the proof mass cantilever theory (blue dashed
line) and experiment (blue solid line with circles), PCM theory
(black dashed line) and experiment (optimal stiffness: black
solid line with squares, lower stiffness: red solid line with
downward-pointing triangles, and higher stiffness: green solid
line with upward-pointing triangles; see online figure for color)
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robustness of the device. This advantage also results in the compa-
rably smaller voltage sensitivity Vsen of the PCM. The same base
excitation generates larger tip displacement and voltage output for
the cantilever compared to the PCM. Figure 9 shows the maxi-
mum voltage and power that can be generated at the strain limit
Slim for both the cantilever and PCM. The PCM outperforms proof
mass cantilever at the same strain limit, generating twice the volt-
age and four times the power of the proof mass cantilever at the
resonance frequency (see Table 3).

Despite the lower voltage and power sensitivity of the PCM, it
will produce more power than the proof mass cantilever in real
applications, where the device must have a long fatigue life. For
example, the authors have recently designed devices to be worn
on a human wrist during running, jogging, and walking [8]. For
these two designs, the tip displacement response to the running
input (most aggressive) reaches but does not exceed the maximum
allowed tip displacement corresponding to 0.1% strain. If the
structure is too soft, the tip displacement will exceed the maxi-
mum allowed value, overstraining the PZT. If the structure is too
stiff, then the device will not generate enough power during walk-
ing. The piezoelectric beams on the two devices have the same
area but different geometries to satisfy this design criterion.
Results show that the average power produced by the PCM is over
six, five, and three times larger than that of the proof mass cantile-
ver during running, jogging, and walking activities, respectively.

7 Conclusions

A PCM energy harvester is designed and fabricated to provide
a resonance frequency of 5 Hz for energy harvesting from human

movement. Careful stiffness tuning enforces a PCM quadratic
boundary condition, making the first mode shape close to a parab-
ola and efficient. The PCM generates twice the voltage and four
times the power of a proof mass cantilever under the same strain
limit. The PCM design also limits the beam displacement, reduc-
ing high stress that can degrade and reduce the life of the har-
vester. Future work will focus on the nonlinear modeling and high
amplitude testing to explain this phenomenon.
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