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Abstract

The research in the field of ionic liquids has exploded in the last two decades enabled
by the availability of a large number of cations, anions, and pendant groups on the ions.
In recent years, mixing of two ionic liquids constituted either by two anions or cations
has been gaining momentum as this is a simple yet powerful approach to generating
new ionic liquids with tailor-made properties. In this article, we review publications

from 2017 and 2018 reporting molecular simulations of binary ionic liquids.



Introduction

Ionic liquids can be thought of as non-aqueous electrolytes composed entirely of low charge-
density cations and anions. Low vapor pressure and considerable freedom to select the type
of cations and anions to modulate the properties of the resulting ionic liquids have been

major drivers for extensive research in this field. Recently, the approach of mixing two ionic
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liquids to manipulate thermophysica physicochemica phase equilibria, and
mechanical?® properties of ionic liquids has gained considerable attention. For a thorough
review of ionic liquid mixtures, the reader is referred to the articles by Rogers and co-
workers?® and Welton and co-worikers.?” In this mini-review, we highlight papers published
in this domain during the last few years with a particular focus on molecular simulation
methodology to investigate such mixtures. A listing of the molecular simulations studies

conducted prior to 2017 is also included in the bibliography.2®49



Bulk Properties and Structure of Binary Ionic Liquids

Kapoor and Shah carried out molecular dynamics (MD) simulations on two ionic liquid mix-
tures containing the common cation 1-n-butyl-3-methylimidazolium [Cymim]*. One mixture
was formed by pairing chloride (Cl™) and methylsulfate [MeSO,4|~ while the second mixture
contained Cl~ and bis(trifluoromethanesulfonyl)imide [NTfy]~.4'The primary objective of
the study was to assess the influence of mixing two anions with different hydrogen bonding
ability on thermophysical and structural properties of the ionic liquid mixtures. The authors
reported that the combination of a weakly hydrogen bonding anion such as [NTfy]~ with a
strongly interacting anion Cl~ leads to the appearance of structural arrangements not found
in the pure ionic liquids. For example, [NTf,]~ is displaced from the plane of the imdiazolium
ring by Cl~. Such dramatic rearrangements were not noted for the mixture composed of C1~
and [MeSOy4|~ (Figure 1). Kapoor and Shah conducted MD simulations of 11 ionic liquid
mixtures: [Cymim]Cl combined with [Cymim]| acetate [CH3;COO]~, [Cymim] trifluoroacetate
[CF3COO0]~, and [Cymim]| trifluoromethanesulfonate [CF3SO3]~, [C4mim|[CH3CO0] and
[C4mim][CF3COO0], [Cymim]|[CH3CO0] and [C4mim][CF3S0s3], 1-ethyl-3-methylimidazolium
[Comim]™ in combination with C1~ and [MeSO4]|~, [Comim]Cl and [Comim]|[NTf], 1-n-
hexyl-3-methylimidazolium [Cgmim|" in mixed with Cl~ and [MeSOy]~, [Cemim]Cl and
[Cemim|[NTty], 1-n-octyl-3-methylimidazolium [Cgsmim|*™ with the anions Cl1~ and [MeSO4],
[Csmim]Cl and [Cgmim][NTf,]. The primary conclusion of the study was that these ionic
liquid mixtures exhibited nearly ideal mixing behavior (linear combining rule) for properties
such as the molar volume, self-diffusion coefficient, and ionic conductivity with the exception
of a few ionic liquid mixtures.*? In a study involving the ionic liquid mixtures [C4mim]Cl and
[C4mim][CF3S03] for [C4mim]Cl mole fractions of 0.000, 0.192, 0.303, and 0.402,%3 Kirchner
and co-workers noted that the height of the first peak in the radial distribution functions
(RDF's) between the most acidic hydrogen H2 and either O or Cl decrease as the concentra-
tion of Cl~ increases. It was also observed that the number of [CF3S03]~ anions decreased

more rapidly than the corresponding increase in the Cl~ coordination number in line with



the other studies reporting that the stronger hydrogen bonding ability anion preferentially
interacts with the H2 position displacing the weaker hydrogen bonding anion. The authors
also analyzed the dynamics in these mixtures using the reactive flux method, which enabled
them to extract the lifetime data data for the dissociation and association of the cations and
anions. The lifetimes were found to increase as Cl~ is added to [Cymim]|[CF3SO3] except at
the lowest Cl™ concentration. The observation is puzzling as the experimentally determined

viscosity of these mixtures increase over the entire composition range.

Lepre et al. carried out experimental and molecular dynamics investigations of the ionic
liquid mixture [C4mim|[CH3COO] and [Cymim] tricyanomethanide [C(CN)3]. Similar to the
studies reported above, the authors concluded, from spatial distribution function analysis,
that the strong hydrogen capability anion ([CH3COO] ™) preferentially occupied the position
in the plane of the imidazolium ring, while [C(CN)3]~ tended to be more diffuse with posi-

tions located below and above the ring.**

Voroshylova, Pereira, Cordeiro, and co-workers applied MD simulations at 303 K to eluci-
date structures of binary ionic liquid mixtures comprised of the common cation [C4mim]*.*5*
Three anion pairs were considered: [NTfy]~ and hexafluorophosphate [PFg]~, [NTfy]~ and
tris(perfluoroethyl)trifluorphosphate [eFAP]~, [NTfy]~ and [eFAP]~. The findings indicated,
as before, that the anion with lower charge density is outcompeted from associating with
the acidic hydrogen sites on the cation. The excess molar volumes for the ionic liquid
mixture [Cymim|[PFg] + [Cymim|[NTfy] were found to be positive but small (less than 1
cc/mol). On the other hand, the other two mixtures displayed rather large and negative
deviation (maximum deviation -4 cc/mol for [Cymim|[PFg] 4+ [Cymim][eFAP] and -7 cc/mol
for [Cymim][eFAP| + [Cymim][NTfy]) from ideality. The self-diffusion coefficients in these

mixtures point to an interesting behavior. In the mixture Cymim|[PFg] + [Cymim|[eFAP],

the diffusion of smaller [PF4]™ is lower than that of the bulkier [eFAP]~ when [PFg]~ is the



Figure 1: Spatial distribution functions (SDFs) of anions (Cl~, [MeSOy4|~, and [NTf,]~
around the cation [Cymim]|*. Isosurface density is 2.5 times the bulk density. (Legends
- Cl : MeSO4/NTfy :: 10 : 90). Color coding: Cl™ in yellow and [MeSOy]~ in red and
[NTf5]~ in green. Atoms: C in cyan, N in blue, and H in white. It is clear that hydrogens
attached to the imidazolium rings are the most favorable binding sites. Reprinted with
permission from Kapoor, U. and Shah, J. K. “Preferential Ionic Interactions and Microscopic
Structural Changes Drive Nonideality in Binary lonic Liquid Mixtures as Revealed from
Molecular Simulations”, Industrial and Engineering Chemistry Research, 55, 13132-13146
(2016). Copyright 2016 American Chemical Society.



lean component. The trend reverses at high [PFg]~ concentrations. Similar results were
reported for the [Cymim|[eFAP] 4+ [Cymim][NTfy] mixtures. The authors attributed the

findings to the formation of nano-segregated domains by [eFAP]~.

Docampo-Alvarez et al.*® studied mixture of alkylammonium protic ionic liquids and alkylim-
idazolium aprotic ionic liquid by means of MD simulations at 298 K and 1 atm over the entire
composition range. The authors investigated mixtures of [Comim]|[BF,] with ethyl-, propyl-,
and butylammonium nitrate ([EAN], [PAN[, [BAN], respectively) in addition to the mixture
of [C4mim]|[BF,] and [EAN]. Experiments and MD results indicated that the excess molar
volumes were close to those predicted using ideal mixing. For the excess enthalpy, the ionic
liquid mixtures [Comim][BF4] + [EAN] and [Cymim]|[BF,] + [EAN] displayed small negative
deviation from ideality with minimum occurring in the vicinity of equimolar composition.
Contrarily, the other two mixtures showed larger deviation from ideality with minimum lo-
cated near the pure protic ionic liquid composition, indicating substantial changes in the
structure of [PAN] and [BAN] upon the addition of [Comim][BF,]. Through structural anal-
yses, the authors concluded that the different behavior for protic ionic liquids with longer
alkyl chains is due to [BF,]~ occupying the positions near the tail of the protic alkyl chains

disrupting ionic coordination in the pure ionic liquids and inducing structural changes.

Herrera et al.*” performed MD simulations on ionic liquid mixtures formed by mixing
[Comim]| glycine [GLY] + [Comim] alanine [ALA] | [Comim|[GLY] + [Comim]| serine [SER],
[Comim|[GLY] + [Comim] phenylalanine [PALA]. The authors also considered more com-
plex mixtures: tetraanionic [Comim|[GLY]o25[ALA]25[SER]g25[PALA]o25 and tricationic
[Camim] 33 cholinium [CH]g 33 methylpiperazinium [MP]g 33[GLY], [Comim]g 33[CH]o.33 [MP]o.33[ALA],
Comiml]g 33[CH]g 33 [MP]o33[SER], and Comim]g 33[CH]o.33 [MP]g33[PALA]. The excess molar
volumes computed for the binary mixtures displayed small deviations from ideality. The

structural features of all the ionic liquid mixtures were analyzed in terms of RDF's between



the center-of-mass of the cation and anion, which revealed that there is no preferential co-
ordination of either the anions around the cations for mixtures with more than one anion or
those containing multiple cations. The authors concluded that the near ideal behavior for
these mixtures arises due to the preservation of the primary interaction involving the anion

carboxylate group and the hydrogen bonding sites in the cation.

Thus far, molecular simulations of binary ionic liquid mixtures have been conducted keeping
the charge of the constituting ions fixed, either 4+ 1 or some fraction of the unity, typically
+ 0.8. Recently, Licence and co-workers*®4 have shown, on the basis of that the electronic
environment of the ions in binary ionic liquid mixtures can be tuned by varying the compo-
sition of such mixtures. To capture this effect, Balasubramanian and co-workers generated
snapshots of binary ionic liquid mixtures consisting of [Cymim|Cl and [Cymim]| tetrafluo-
roborate [BFy4|, from which the authors derived atomic site charges using DFT calculations.
The authors concluded that the average charge of the cation in this mixture follows a linear
trend with the anion composition. It was also reported in this study that the average charge
of the cation is inversely related to the fraction of the more basis anions present in the first

coordination shell. %%

Interfacial Structure of Binary Ionic Liquid Mixtures

Very few studies have appeared in literature that probe the interfacial behavior of ionic
liquid mixtures using MD simulation.?' 3 Zhang et al.’** performed angle-resolved X-ray
photoemission spectroscopy measurements and molecular simulations to study the interface
of the binary ionic liquid mixture [Comim][CH3COO] and [Comim|[NTf,] at a volumetric ra-
tio of 9:1. Remarkable agreement between the experiments and molecular simulation results
was obtained in that it was revealed that there is a significant enhancement of [NTf,]™ at

the interface relative to its overall composition. On the contrary, there was a depletion in



concentration of the anion [CH3COO|~. As expected the alkyl groups from the ionic lig-
uid [Comim][CH3COO] were found to point toward the vacuum. Similarly, the -CF3 groups
belonging to [NTf,]~ were observed to occupy the outer layer while the nitrogen atom was
located deeper in the liquid. Bruce et al.,?® on the other hand, carried out a detailed inves-
tigation of the bulk and ionic liquid-vacuum interface of ionic liquid mixtures formed from

T combined with

different cations: [Comim]™ and 1-n-dodecyl-3-methylimidazolium [Cyomim]
[NTf,]~ as the anion over the whole composition range using a variety of experimental (small-
angle X-ray, neutron scattering, reactive atom scattering-laser-induced fluorescence) and MD
simulations. Physical properties such as viscosity, conductivity, and density measurements
provided the first clue of the non-ideal mixing in these mixtures hinting at a strong coupling
between the structure and dynamics with the composition. Results from the MD simulations
suggested that [Ciomim]|™ exists as small aggregates due to the nanosegregation of the long
non-plolar chain from the polar domain dispersed in the [Comim|[NTf,]. With the rise in
the [Ciomim]|™ concentration, the size of the aggregates increases until the alkyl chain of the
larger cation percolates through the system resulting in the formation of a bicontinous mor-
phology. The ionic liquid-vacuum interface was found to be enhanced by the more non-polar

[C1omim|™ cation even when its concentration is low similar to the observation reported in

the Zhang et al. work.5*

Binary Ionic Liquid Mixtures with a Solute

In addition to various binary ionic liquid mixtures, ternary mixtures composed of two ionic
liquids and another species have also recently appeared in the literature. One example is that
of a recent MD study employing free energy calculations® in which Kapoor and Shah inves-
tigated the influence of the non-native structures in the ionic liquid mixtures of [Cymim]|Cl
+ [Cymim][NTf,] and native structures for [Cymim]Cl + [Cymim|[MeSOy] on the Henry’s

constant of CO5 and mechanism of CO, absorption in the ionic liquid mixtures. It was re-



vealed that the CO5 Henry’s constants could be determined using the ideal mixing behavior;
however, the mechanism of CO, solubility is different from that in the corresponding pure
ionic liquids ([C4mim]Cl and [Cymim]|[NTf,]); the increased interaction of [NTfy]~ with CO,,
due to the rearrangement of [NTfy|~, was the primary reason for the solubility of COy in
the [Cymim]Cl 4 [Cymim]|[NTf,] ionic liquid mixtures. On the other hand, the absence of
non-native structures in [C4mim|Cl + [Cymim][MeSOy] ionic liquid mixtures resulted in no

such preferential interactions of COy with the anion (Figures 2 and 3).

Padua, Gomes, and co-workers carried out CO4 absorption measurements in the ionic liquid
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Figure 2: Spatial distribution functions of COy around the [MeSOy4]~ anion in [Cymim|Cl +
[Cymim]|[MeSO,4] mixture system. Isosurface density is 1.7 times the bulk density. The top
row, zc, represents the Cl1- concentration. Color coding: COs in purple. Atoms: S yellow,
O red and C cyan. Reprinted with permission from Kapoor, U. and Shah, J. K. “Molecular
Origins of Apparent Ideal CO5 Solubilities in Binary Ionic Liquid Mixtures”, Journal of
Physical Chemistry B, 122, 9763-9774 (2018). Copyright 2016 American Chemical Society.

mixture [Cymim|[CH3;COO] and [Cymim][C(CN);] along with the determination of Henry’s
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Figure 3: Spatial distribution functions of COs molecules around the [NTfy]~ anion in
[Cymim]Cl + [Cymim|NTfy| mixture system. Isosurface density is 2.0 times the bulk den-
sity. The top row, x¢, represents the Cl~ concentration. Color coding: COs in purple.
Atoms: S yellow, O red, N blue and CF3 orange.Reprinted with permission from Kapoor,
U. and Shah, J. K. “Molecular Origins of Apparent Ideal CO4y Solubilities in Binary lonic
Liquid Mixtures”, Journal of Physical Chemistry B, 122, 9763-9774 (2018). Copyright 2016
American Chemical Society.
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constants of CO, using molecular simulations.®® The authors also reported structural fea-
tures as deduced from RDFs and spatial distribution functions. It was observed that the
underlying ionic liquid structure resembles those observed for pure ionic liquids. It was also
found that COy interacts preferentially with the oxygen atoms in [CH3COO]~ and nitrogen
atoms in [C(CN)3]~; the cation is increasingly involved in binding with CO, as the concen-
tration of [C(CN)3]~ increases. The computed Henry’s constants revealed that the physical
absorption of COs increases with increase in the concentrations of the [C(CN)3]~ anion, the
observation was used by the authors to explain the increase in self-diffusion coefficients upon
CO, absorption. Another example is that of Lit solvation in the 1:9 volumetric mixture
of n-methyl-n-propylpyrrolidinium [PYR13][NTf;] and [Comim]| dicyanamide [DCA] studied
with Raman spectroscopy and MD simulations by Maginn, Gurkan, and co-workers.?” Both
experiment and simulations suggest that the first solvation shell of Li™ is primarily occupied
by the smaller and more abundant [DCA]~, which binds Li™ predominately through either
of the terminal nitrogen atoms. Whereas, [NTf;]~ coordinates Li™ ion in monodentate or
bindendate mode and is capable of bridging multiple Li* ions. The findings underscore that
the solvation structure of Li* can be manipulated by using anions differing in their coordi-

nating ability.

Maginn, Shiflett, and co-workers examined the ability of water to induce phase separation
in equimolar mixtures of ionic liquids [Comim][NTf;] 4+ [Comim]Cl and [Comim][CH3COO)]
+ [Comim]Cl at varying concentrations of water.®® The results from experiments and MD
simulations were consistent that the ionic liquid mixture [Comim][CH3COO] + [Comim]|Cl
comprised of two hydrophilic anions remained as a homogeneous phase at all water concentra-
tions. On the other hand, phase separation could be induced in the mixture [Comim]|[NTf,] +
[Comim]Cl containing anions with widely different hydrophilicity with [Comim]Cl and water
forming the water-rich phase while water-lean phase was comprised of mostly [Comim]|[NTf,].

Additionally, experimentally observed color change from pale green to amber in the [Comim|[CH3COO)]
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+ [Comim]Cl mixture at a certain water concentration was correlated to a dramatic change
in the spatial distribution of C1~ from predominantly around to less acidic hydrogen atoms
to the most acidic hydrogen atom as the water concentration increases. Macchieraldo et al.
performed ab initio MD of the binary ionic liquid mixture constituted by [C,mim]Cl and
[Cymim]|[BF,] in the molar ratio 10:22 and the same mixture containing 36 wt% water. 5
The choice of AIMD approach over the classical simulation methodology was motivated in
order to account for the charge transfer and polarization. The RDF analysis indicated that
the mole fraction of the anions surrounding a cation reflects the corresponding bulk molar
ratio. The presence of water, however, tilts this balance in favor of the [BF4]~ anion such
that its mole fraction is enhanced in the first coordination sphere of a cation. Thus, the
addition of water leads to “solubilization” of the Cl~ anion, while the ionic liquid network

is preserved through the coordination of the cation with [BF4]~
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Outlook

A number of research articles have appeared in the literature over the last couple of years
investigating binary ionic liquid mixtures by means of molecular simulations. Almost exclu-
sively, these studies have been carried out using atomistic molecular dynamics simulation
methods with the primary objective of elucidating the structure and dynamics of ionic liquid-
ionic liquid mixtures and computing thermodynamic properties such as excess molar volumes,
which can be compared with experimental observations. A trend is emerging with respect
to the structure of imidazolium-based binary ionic liquid mixtures formed by combining two
anions that the stronger hydrogen bonding anion preferentially participates in the hydrogen
bonding with the most acidic hydrogen in the imidazolium ring displacing the weakly coor-
dinating anion to the positions above and below the plane of the imidazolium ring. On the
other hand, when the hydrogen bonding ability of the anions are similar, the distribution of
anions around a cation resembles those observed for the pure ionic liquids. Only one study
has probed the impact of such (non)ideality in the local structure on the phase equilbria
properties of solutes. We urge the research community to contribute to this unexplored field
in the binary ionic liquid mixture domain. Monte Carlo simulation techniques implemented
in the open-source software packages such as Cassandra,% and RASPAY! are ideally suited
to perform such calculations. We also note that the imidazolium-based ionic liquids continue
to dominate the binary ionic liquid mixture simulations. It is likely that highly nonideal sys-
tems will be encountered when properties of the ions being blended are vastly different such
as hydrogen bonding ability, van der Waals interactions, m-7 interactions of lack thereof.
Thus, the mixtures consisting of cations from different classes of ionic liquids need to be
scrutinized. There is also a considerable room to delve into reciprocal ionic liquid mixtures

obtained by two ionic liquids not sharing any either the cation or the anion.

We believe that the force field development for binary ionic liquid mixtures will continue

to play a significant role as the coordination shells of ions contain multiple ions with differ-
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ing degrees of charge transfer ability. With the continuous rise in the computational power
and accessibility of software packages supporting implementation of polarizable models, we
expect researchers to embrace this crucial aspect in accurately modeling ionic liquid mix-
tures. Our mini-review of the status of the molecular simulations of binary ionic liquid
mixtures clearly suggests to us that there are a number of opportunities for the simulation
community to contribute to exploiting this simple yet very powerful approach to expand the
range of ionic liquids and further tailor properties of ionic liquids for a given application and
we hope and expect that the simulation community, in collaboration with experimentalists,

will exploit these opportunities and further the ionic liquid research in the coming years.
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