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We present measurements of azimuthal correlations of charged hadron pairs in 5, = 200 GeV
Au+Au collisions for the trigger and associated particle transverse-momentum ranges of 1 < ph <
10 GeV/c and 05 < p7 < 10 GeV/c. After subtraction of an underlying event using a model
that includes higher-order azimuthal anisotropy wve, vs, and v4, the away-side yield of the highest
trigger-pr (plr > 4 GeV/c) correlations is suppressed compared to that of correlations measured in
p+p collisions. At the lowest associated particle pr (05 < p7 < 1 GeV/c), the away-side shape
and yield are modi ed relative to those in p+p collisions. These observations are consistent with
the scenario of radiative-jet energy loss. For the low-pr trigger correlations (2 < p% < 4 GeV/c),
a nite away-side yield exists and we explore the dependence of the shape of the away-side within
the context of an underlying-event model. Correlations are also studied di erentially versus event-
plane angle 5 and 3. The angular correlations show an asymmetry when selecting the sign of the
di erence between the trigger-particle azimuthal angle and the 2 event plane. This asymmetry and
the measured suppression of the pair yield out of plane is consistent with a path-length-dependent
energy loss. No 3 dependence can be resolved within experimental uncertainties.

I. INTRODUCTION invariant yields in central A+A collisions [6 12] pro-
vide a baseline measurement of jet quenching. Mea-

Energy loss of hard-scattered partons (jet quenching §urem§nts of correla'tions' betweep two partilees and/or
[1]) resulting from the interaction of a colored parton  Jets give more 'detaﬂed 1nfqrmatlon of the jet quenc.h-
in the quark gluon plasma (QGP) formed in relativistic ~ ing process inside the medium [13, 14]. The rst jet
heavy ion collisions at the Relativistic Heavy Ion Col- suppression e ect observed in azimuthal correlations was
lider (RHIC) [2 5] has been observed in several di er- an attenuation of the away-side yields in high-transverse

ent ways. Suppression of single-particle and single-jet ~ momenta (pr) correlations in the most central Au+Au
collisions at s, = 200 GeV [15]. The centrality de-

pendence of high-pr %-hadron correlations [16] shows
a monotonic attenuation of the away-side yields with
* Deceased increasing propagation length of partons through the
T PHENIX Spokesperson: akiba@rcf.rhic.bnl.gov medium. In addition to away-side yield suppression,



direct photon-hadron correlations [17 19], two-particle
correlations [20 22], and jet-hadron correlations [23 20]
show that low-momentum particles correlated with high-
pr jets are enhanced in yield, especially at large angles
with respect to the jet axis. This may be attributable to
the radiation from the parent parton or other lost energy
absorbed by the surrounding medium. Thus, two-particle
angular correlations have provided much of the experi-
mental information we have about jet energy loss [16, 27
31].

It is important to understand the interactions of par-
tons with the QGP at all scales from the hard-scattering
scale to the thermal scale. Below Eje¢ 10 GeV, full jet
reconstruction is much more di cult due the underlying
event subtraction. Two-particle correlations are impor-
tant because they can probe lower jet (or parton) ener-
gies. However, observations of energy loss e ects men-
tioned above, especially for lower jet and particle mo-
menta in two-particle correlations, have been obscured
due to the much larger contribution from the underlying
event at these momenta.

The underlying event modulations are attributed to
hydrodynamic collective ow patterns where the impor-
tance of higher-order ow harmonics was established
more recently [32 37]. These patterns are thought to
result from the hydrodynamic response of the QGP to

uctuating initial geometrical shapes of the overlap re-
gion of the colliding nuclei. Many hydrodynamic models
have been developed which capture these e ects [38, 39],
but to date, important details of these models are still un-
der development, and their full implementation requires
involved calculations. This motivates the use of a simpler
data-driven model, which will be explored in this work.

The shape of the collective ow in the transverse plane
is parameterized [40 42] by a Fourier expansion with

Un  m = cosn( m) (1)

where v,, is the n'"-order anisotropic ow coe cient,
is the azimuthal angle of emitted particles, and ,, is
the event plane angle de ned by the m!*-harmonic num-
ber. For the rst decade of RHIC operations, only the
even harmonics and frequently only the n = 2 term, were
considered. The shapes of two-particle correlations after
subtraction of the n = 2-only background motivated the
introduction of the other harmonics, most importantly
n = 3 [32, 34 36, 43]. Under the two-source ( ow +
jet) model assumption [44], this underlying event is di-
rectly subtracted to obtain the jet contributions. In our
previous measurements and most RHIC A+ A results, the
subtracted ow modulations of the underlying event were
limited to contributions of v and the fourth-order har-
monic component with respect to the second-order event
plane vy o [15, 16, 20, 23, 28, 44 48]. Only the recent
STAR measurement [49] took into account contributions
from v3 and the fourth-order harmonic component un-
correlated to the second-order event-plane in addition to
V4 2 .

At low to intermediate pr in two-particle correla-

tions, intricate features appear such as the near-side long-
range rapidity correlations called the ridge [45, 50] and
the away-side double-humped structures [28, 44, 46
49, 51, 52]. Across the large rapidity ranges available
at the Large Hadron Collider, the rapidity-independence
and hence the likely geometrical origin of most of these
structures have been established. Experiments have
shown that the ridge and the double-hump structures
in the two-particle azimuthal correlations for > 1
for ALICE and > 2 for ATLAS and CMS measured
in p+p, p+Pb, and Pb+Pb collisions at s, = 276
and 5 TeV [34, 36, 53] are the same in shape and size
at much larger rapidity di erences. Both the ridge and
double-hump are successfully explained by the higher-
order harmonics. However the mechanism for how the
jet correlations combine with the ow correlations, espe-
cially at small | to yield the total two-particle correla-
tion has not been clari ed. In particular, the correlations
left after subtracting a ow-based model at small have
not been analyzed in detail.

In this work, we assume a two-source model where
the total pair yield is a sum of a jet-like component
and an underlying-event component. The underlying-
event components is modeled using the ow harmonics
vp(n = 2 3 4), event plane resolutions, and the most
important event plane correlations between o and 4.
We assume that the v,, measured through the event plane
method are the the same as those in the correlation func-
tions. Event-by-event v,, uctuations [54], v, v, cor-
relations between di erent orders [55], normalized sym-
metric cumulants (v2 2 correlations) [56], and rapid-
ity dependent event plane decorrelations [57] are not in-
cluded in this background model. To take into account
the v, v, and v2 02, correlations in this background
model, measurements of their original two-dimensional
probability distributions are necessitated for ne pr se-
lections. To evaluate a possible e ect from the v, v,
and v2 02, correlations, we performed a toy Monte Carlo
simulation with the same framework reported in this ar-
ticle, assuming a two-dimensional Gaussian with a cor-
relation term between v,  v,,. The changes expected
are less than the systematic uncertainty for v,. Mea-
surements of the rapidity-odd component of the directed

ow v994 using the event plane method [58 61] generally
yield v999 0 at = 0 integrated over all pr. Finite
values of pr di erential measurements of v$%(pr) [60]
include momentum conservation and jet (mini-jet) ef-
fects which are considered signal in this two-particle cor-
relation analysis. The rapidity-even component of the
directed ow v{¥*" is considered to result from collec-
tive expansion of the medium. Measurements of v{""
with respect to the spectator event plane with the scalar
product method [62] show its magnitude about 40 times
smaller than that with respect to the participant event
plane obtained with the Fourier ts to the two-particle
correlations [34, 53]. These observations indicate that
v{¥°" has di erent sensitivity to the spectator and partic-
ipant event planes and warrant further validation of the



momentum conservation model in the Fourier ts to the
two-particle correlations. There is currently no concrete
vV to subtract as background. With this reason we do
not include contributions from vy | and event plane
correlations involving 1 in the background model. For
the inclusive trigger correlations, we estimated a poten-
tial impact of vs modulation using an empirical relation
vs 05 vy found in ATLAS v,, measurements [34].
After subtracting the underlying event with the model,
we study the structures observed at high pr where the
ow backgrounds are negligible. Because the jet signal-
to- ow background is signi cantly reduced in the low to
intermediate pr region, studying the correlations there
provides a more stringent test of such a background
model. Any features left in the residuals can be used
to reveal jet energy-loss e ects at low and intermediate
pr. However, because of our simple model, only substan-
tially signi cant correlations can be attributable to the
medium e ect on jets (i.e. broadening or suppression) or
the medium response (i.e. yields at large angles from the
jet).
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FIG. 1. Two possible gluons (Gluon 1 and Gluon 2) radi-
ated opposite to particles detected from Jet A with di erent
medium path lengths. The di erence in energy loss could lead
to asymmetric correlated particle yields in the hemisphere to
the left of Jet A compared to the right of Jet A.
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FIG. 2. Schematic picture of a trigger particle selection with
respect to event-planes and pairing a trigger particle with an
associate particle.

An important goal of jet quenching studies has been
to determine the density and path-length dependence
of energy loss [16]. Perturbative models of radiative
jet quenching and strongly coupled jet quenching mod-
els predict a di erent path-length dependence for the
quenching [63]. Varying the path length by selecting az-
imuthal orientations relative to the second-order event
plane has been explored for single-particle or single-jet

observables at high-pr [11, 64]. Potentially more dif-
ferential information can be obtained from two-particle
observables coupled with the event-plane. Figure 1 il-
lustrates the trigger (Jet A) being emitted to one side
of the in-plane direction and the away-side jet (Parton
B) radiating two gluons (Gluon 1) and (Gluon 2). We,
therefore, also study two-particle correlations measured
di erentially with respect to o and 3 event planes as
depicted in Fig. 2. Such di erential correlations probe
the path-length and geometrical dependence of energy
loss with more event-by-event sensitivity and also extend
similar studies of high-py correlations [16] down to lower-
pr. We use a new method of distinguishing left/right
asymmetry in the ,, correlations, which provides more
information on the background dominated low and in-
termediate pp regions by probing possible asymmetric
parton energy loss because of medium geometry.

In this article: Section II describes the detector set-
up of the PHENIX Experiment. Sections III A, TII B,
and IIIC describe the analysis methodology of particle
selections, higher-order ow harmonics, and two-particle
correlations, respectively. Section IV presents analysis
results and discusses their interpretations. This section

rst starts with the highest pr trigger selections, pr =
4 GeV/e, and makes connections to known energy-loss
e ects. Next, lower trigger correlations down to 1 GeV /¢
are presented. Finally the event-plane dependence of the
intermediate pr selections are investigated. Section V
summarizes this article.

II. PHENIX DETECTOR

The PHENIX detector [65] was designed to measure
charged hadrons, leptons, and photons to study the na-
ture of the QGP formed in ultra-relativistic heavy ion
collisions. Figure 3 shows the beam view and side view
of the PHENIX detector including all subsystems for this
data taking period.

The global detectors, which include the beam-beam
counters (BBC), the zero-degree calorimeters (ZDC), and
the reaction-plane detector (RXN), were used to deter-
mine event characterizing parameters such as the colli-
sion vertex, collision centrality, and event-plane orien-
tation. They are located on both the south and north
side of the PHENIX detectors. The BBC is located at

144 em (3 < < 39) from the beam interaction
point and surrounds the beam pipe with full =2
azimuthal acceptance. Each BBC module comprises 64
quartz Cerenkov radiators equipped with a photomulti-
plier tube (PMT) and measures the total charge (which
is proportional to the number of particles) deposited in
its acceptance. The BBC determines the beam collision
time, beam collision position along the beam axis direc-
tion, and collision centrality. The ZDCs [66], located at
18 m away from the nominal interaction point, detect
the energy deposited by spectator neutrons of the two
colliding nuclei. The PHENIX minimum-bias trigger is
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provided by the combination of hit information in the
ZDC and BBC, which requires at least one hit in both
the ZDC modules and two hits in the BBC modules.

The orientation of higher-order event planes is deter-
mined by the BBC and the RXN [67], which have dif-
ferent acceptance. The RXNs are located at 38 cm
from the beam interaction point and have two rings in
each module; RXN-inner and RXN-outer are installed to
cover 15 < < 28and 1 < < 15, respectively.
Each ring has 12 scintillators in its azimuthal angle ac-
ceptance =2 .

Charged hadron tracks are reconstructed in the
PHENIX central arm spectrometer (CNT), which is com-
prised of two separate arms, east and west. Each arm
covers < 035 and = 2.

The PHENIX tracking system is composed of the drift
chamber (DC) in addition to two layers of pad chambers
(PC1 and PC3) in the east arm and three layers of pad
chambers (PC1, PC2, and PC3) in the west arm. Mo-
mentum is determined by measuring the track curvature
through the magnetic eld by means of a Hough trans-
form with hit information from the DC and PC1 with
a momentum resolution of p p = 13% 12%p [68].
Additional track position information is provided by the

outer layers of the pad chambers and the electromagnetic
calorimeter (EMCal), which are Lead Glass (PbGl) and
Lead Scintillator (PbSc).

The ring imaging Cerenkov counter (RICH) and the
EMCal identify and exclude electron tracks from the
analysis. The RICH produces a light yield for electrons
with pr >30 MeV and for pions with pr >5 GeV, mean-
ing that a signal in the RICH can be used to separate
electrons and pions below 5 GeV. Above 5 GeV where
this is no longer possible, the energy deposited in the
EMCal can be used for this separation. Electrons will
deposit much more of their total energy than pions will,
so that the ratio of deposited energy to track momentum
is signi cantly higher for electrons than for pions.

III. ANALYSIS METHODOLOGY

The results presented are based on an analysis of
4.38 billion minimum-bias events for Au+Au collisions
at 5,y = 200 GeV recorded by the PHENIX detector
at RHIC in 2007.

A. Particle Selection

Charged hadrons are selected from candidate tracks
using cuts similar to previous correlation analyses [20].
One important cut to reject fake tracks, especially de-
cays in the central magnetic eld before the drift cham-
ber, is an association cut to outer CNT detectors. The
track trajectories are projected onto outer CNT detec-
tors. The nearest hits in the PC3 and the EMCal from
the projections are identi ed as hits for the track. The
distributions of the distance in the azimuthal ( ) and
beam (zpeqr, ) directions between the hits in the PC3 and
the EMCal and the extrapolated line are tted with a
double-Gaussian. One Gaussian arises from background
and the other from the signal. Hadron tracks are re-
quired to be within 2 of the signal Gaussian mean in
both the and zpeen directions in both the PC3 and
the EMCal. To veto conversion electrons, tracks with pp
<5 GeV/c having one or more Cerenkov photons in the
RICH are excluded from this analysis. For pr >5 GeV /¢,
we require Fryoal > 0340 2¢ pr GeV [47, 69], where
FErmcar is the cluster energy associated with the track.

B. Higher-Order Flow Harmonics v,
1. Event-plane and Resolution

Each event plane ,, is determined event-by-event for
di erent harmonic numbers n using the RXN and BBC
detectors. The RXN detectors are used to measure the
nominal values of v, while the BBC detectors provide



systematic checks to the extracted v, values. The ob-
served event-plane WSS is reconstructed as

1, 1 /(@n
Pobs — ~pan ! [ MY ),
=Ly (Qm) )

Here Qn o and Q4 are the flow vector components

Qnz = Z w; cos(ngy)/ Z w; (3)
Qn,y = Z w; Siﬂ(nﬁbs)/ Z w; (4)

where ¢; is the azimuthal angle of the i-th segment in
the event-plane detector and w; is the weight propor-
tional to multiplicity in the i-th segment. We apply the
re-centering and the flattening corrections [42, 70] sepa-
rately for each sub-event event-plane.

The k x n th-order resolution of n th-order event plane
is defined as Res{kn,¥,} = (coskn(¥3™ — ¥,)) and
can be expressed as [42]

Res{kn, ¥,} = Q—@Xne_%m

c[rig (%) +1p ()] @

where x, = v, vV2M, M is the multiplicity used to deter-
mine the event-plane ¥,,, and I is the modified Bessel
function of the first kind.

Because the north (N) and south (S) modules of a
given event-plane detector have the same pseudorapid-
ity coverage and see the same multiplicity and energy
for symmetric nucleus-nucleus collisions, the north and
south modules should have identical resolution in case
of no detector biases. We obtain the event-plane resolu-
tion of an event-plane detector using the two subevent

method [42].
Res{kn, ¥, } = (coskn(T0™ — ¥,))

= \/<cos kn(On " — ‘I’g’c’bs)) (6)

The north+south combined event-plane resolution is de-
termined from Eq. (5) with x, = v2xY>°. The factor
of v/2 accounts for twice the multiplicity in north+south
compared to north or south. Figure 4 shows the the
north+south combined event-plane resolution for both

RXN and BBC.

2. wvn measurements

Higher-order flow harmonics vy, [32, 40, 42] are mea-
sured by the event-plane method [42]. Charged hadron
tracks with azimuthal angle ¢ are measured with respect
to the event plane angle ¥oP. The flow coefficients vy,
are measured as an event-average and track-average and
correcting by the event plane resolution.

Ven{¥n} = (coskn(¢ — ¥o®)) /Res{kn, ¥,}. (7)
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FIG. 4. Event-plane resolutions Res{2, ¥}, Res{3, T3},

Res{4, ¥4}, and Res{4, ¥2} obtained by the combination of
the north and south modules of RXN and BBC.

Four different observables are studied:  wa{Ws},
v3{WU3}, vy {¥4}, and v4{¥5}. The flow harmon-
ics are measured by the nine possible combina-
tions of RXN modules: south-inner, south-outer,
south-inner+outer, north-inner, north-outer, north-
inner+outer, south+north-inner, south+north-outer,
and south—+north-inner+outer. The v, reported is an
average over the nine different possible RXN combina-
tions, v, = Z? vﬁf)/g, where vs) is the flow harmonic in
one of the nine RXN module combinations.

8. Systematic uncertainties and vy, results

The systematic uncertainties in v,, measurements are
from the following sources:
e differences among RXN modules,
e matching cut width for CNT hadron tracks,

e rapidity-separation dependence between event-
planes and CNT tracks.

The systematic uncertainties in the RXN detector
orxn are defined by the standard deviation of v,

9
ORXN = Z(US") — vy)2/9. (8)

As an example, v, in 20%-30% central collisions mea-
sured by different RXN event-planes are shown in Fig. 5
(a, d, g, j). The (blue) band indicates opxn.



To evaluate the systematic uncertainty due to track
matching, the matching cut was varied by 05 from
the nominal 2 window. We calculated the uncertainty

mat as the average deviation between the v, with the
nominal cut and the varied cut
+ o5 w2 )2 (9)

n

mat — ( ’U7215 U’I?L
The variation due to the track matching cut is illustrated
in Fig. 5 (b, e, h, k) by showing the v,, in 20% 30% central
collisions measured with tracks having a matching cut of
1.5 ,2 and 2.5 . The di erences between the nominal
2 and both 15 and 25 are also shown and scatter
around zero indicating the size of 1 a¢.

The systematic uncertainties associated with the ra-
pidity gap between particles and the event-plane ), are
de ned by the absolute di erence between v,, determined
by the RXN average and v,, determined by the BBC.

i (1)

The v,, measured with the RXN, the BBC, and their dif-
ference are shown in Fig. 5 (c, f, i, 1). Except in the case
of vy, this systematic uncertainty is much less than the
uncertainty due to the RXN module variation. The small
variation in the rapidity gap indicates that the contami-
nation from non ow correlations does not dominate the
uncertainty on the extraction of v,.

The total systematic uncertainties ,, are the quadra-
ture sum of these individual systematic uncertainties

Un T %{XN + I?rlat + gap (11)

These total systematic uncertainties are conservatively
assigned symmetrically. In nearly all pr and centrality
classes, the RXN systematic uncertainty dominates the
total uncertainty.

The v,, results are shown in Fig. 6 and compared with
previous PHENIX v,, measurements Ref. [35]. They are
consistent within uncertainties where they overlap. For
the two-particle correlations, we calculate v,, in four large
pr bins as indicated in Table I.

C. Two-Particle Correlations
1.  Pair Selections

Selected tracks are paired for correlations. Two tracks
cannot be reconstructed arbitrarily close together. The
tracking algorithm would split or merge the tracks.
Therefore, there is an acceptance di erence for pairs
in real and mixed events. These e ects are estimated
from the distributions of the distances (rad) and

Zbeam (cm) between hits in the PC1 and the PC3, where

(rad) is the relative azimuthal angle and  zpeq, (cm)
is the relative length between two track hits in both real
and mixed events. The ratios of the real-to-mixed event
distributions are shown in Fig. 7. The ratio is normalized
to arbitrary units. The dip and spike structures starting

from = Zpearn = 0 indicate ine cient and over-
e cient regions, respectively. The dashed lines indicate
the cuts used to remove these ine cient and over-e cient
regions:

( pe1 004 +( Zbeam po1 90)° < 1

( PC1 0 08)2 + ( Zbeam PC1 8 0)2 <1 (12)

( pes 007)° +( Zpeam po3 25)° < 1

2. Inclusive Trigger Correlations

Two-particle correlations are calculated as

Nreal d Nmixed
C( ) = NmiXC(E( )) d Nreal(( )) (13)

where = ¢ t is the relative azimuthal angle be-

tween trigger and associated hadrons and N*2/( ) and
Nmixed( ) are pair distributions in the real and mixed
events, respectively. N*a( ) re ects the physical cor-
relation among trigger and associated hadrons from jets
and from the underlying event as well as the dihadron
detector acceptance e ects. N™X( ) is obtained by
pairing trigger and associated hadrons from randomly se-
lected pairs of events that have similar collision vertices
and centralities so that it re ects only the dihadron ac-
ceptance e ects. The collision centrality is divided into
10% steps and the collision vertex in the range of 30 cm
is divided into 10 bins for this event-mixing. Taking the
ratio between the real and mixed distributions corrects
for the nonuniform azimuthal acceptance for dihadrons
so that C( ) contains only physical e ects.

Within the two-source model [44], the correlation func-
tion C'( ) is composed of a jet-like term J( ) and
an underlying-event term that includes modulations from

ow F( ). We use the following model for the under-
lying event [42]
4
F( )=1+4+  2viv%cosn (14)
n=2

The jet-like correlation is then obtained by subtracting
F( ) fromC( )as

JO)=C( ) bayamF( ) (15)

The scaling factor b4, is determined with the zero yield
at minimum (ZYAM) method [44, 71, 72]. In the ZYAM
assumption, F'( ) is scaled such that J( ) has a min-
imum of exactly zero. This therefore gives the lower
boundary of possible jet-like correlations. The ZYAM
scaling factor b.yqm is determined by tting the correla-
tion function C( ) with Fourier series for 5 < <
37 and identifying the single point where this t and
F( ) have the contact point and J( ) is zero. The
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FIG. 5. Higher-order flow harmonics for charged hadrons at midrapidity in Au+Au collisions at /s, , = 200 GeV and their
systematics: vo (a-c), vz (d-f), vs (g-i), and va{ P2} (j-1). The source of systematic uncertainties are difference among RXN
event-planes (a, d, g, j), matching cut width for CNT hadron tracks (b, e, h, k), and difference between v, measured with RXN
and BBC event planes (c, f, i, 1). Systematic uncertainties are shown as a shaded band in (a, d, g, j) and as an open marker in

(b, e, h, k) and (¢, f, i, 1).

statistical uncertainty e.yem of the A¢ bin containing
the ZYAM point is used to scale F(A¢@) to estimate the
systematic uncertainty due to ZYAM

G'zyam(A‘i’) = ezyamF(Aé)-

An example of the ZYAM determination is shown in
Fig. 8.

The jet-like correlations J(Ag@) are scaled to the per-
trigger yield Y (A¢)

1 dN*  [dA¢N ™ (Ag)
Nt dA¢ 2wea N't
where N' is the number of trigger hadrons, N*® is the

number of pairs, and €® is the single-hadron tracking effi-
ciency in the associated hadron pr range. The efficiency

(16)

Y (Ag) = J(Ag), (17)

is estimated via detector simulations for acceptance and
occupancy effects as discussed in Ref. [7, 16, 28, 47]. The
tracking efficiency of a trigger particle is canceled by the

ratio of [ dApN™!/N*.

8.  Ewvent Plane-Dependent Correlations

Event plane-dependent two-particle correlations

C(A¢, ¢s) are defined as

N real A!“f), ‘i’s
C(Ap, pe) = W

[ AASdENm=S(AS 5,)
J TAAGdp N (AG, &)

(18)



TABLE 1. Data table for va, vs, v4 and vg 2

(%) in Au+Au collisions at

10

Sy~ = 200 GeV. The rst uncertainties are

statistical while the second uncertainties are total systematic. In all instances the statistical error is not identically zero but it

is much smaller than the systematic uncertainty.

Centrality pr GeV/c v2 (%) v3(%) v (%) va 2 (%)
0% 10% 0.5 1.0 267 000 014 145 000 009 064 001 016 0109 0004 0052
1.0 2.0 492 000 021 367 000 018 219 001 022 0396 0005 0058
2.0 4.0 739 000 034 696 001 029 512 001 023 090 001 010
4.0 10 646 000 067 661 001 041 50 00 11 07 00 14
10% 20% 0.5 1.0 509 000 019 194 000 016 104 001 030 0270 0003 0033
1.0 2.0 903 000 026 459 000 030 295 001 060 082 000 010
2.0 4.0 134 00 004 828 001 051 62 00 17 174 000 024
4.0 10 122 00 004 75 00 10 67 00 13 154 001 050
20% 30% 0.5 1.0 726 000 020 229 000 022 144 001 051 0481 0003 0046
1.0 2.0 125 00 03 517 001 040 36 00 10 133 000 011
2.0 4.0 179 00 04 893 001 061 72 00 20 269 000 018
4.0 10 161 00 05 798 001 076 73 00 24 234 001 028
30% 40% 0.5 1.0 883 000 022 249 001 031 179 002 064 0682 0004 0050
1.0 2.0 149 00 04 552 001 053 43 00 13 184 000 012
2.0 4.0 207 00 05 913 001 088 81 00 30 349 001 021
4.0 10 184 00 05 74 00 11 77T 00 34 301 001 096
40% 50% 0.5 1.0 976 000 025 256 001 035 211 004 070 0823 0006 0052
1.0 2.0 163 00 04 562 001 068 52 00 18 219 001 014
2.0 4.0 219 00 07 88 00 10 93 01 42 399 001 043
4.0 10 198 00 16 56 00 19 104 01 80 41 00 12
where = ! and Nreal( s) and The event plane-dependent jet-like correlations are
NmE( s) are the event plane-dependent pair converted into event plane-dependent per-trigger yield as

distributions in real and mixed events, respectively.
We use the event-plane determined by the entire RXN
acceptance providing the best event-plane resolution
among PHENIX subsystems i.e. the best sensitivity
for this event-plane dependence study. Other event
planes were not used because those planes have worse
resolution.

Similar to inclusive correlations, event plane-
dependent jet-like correlations J( s) are obtained by
subtracting the event plane-dependent ow background
term F( s) from C( s) with a ZYAM scale
factor as

J( s) - C( s) bzyamF( 5)

We use the same b.yqm as determined from the inclu-
sive correlations from the same trigger, associated and
centrality selection. An analytical formula for F'( s)
including the n = 2 event plane dependence exists [73],
however, it is not easily applied with nite correlations
between the n = 2 and n = 4 event planes. For this rea-
son, a Monte Carlo simulation is employed to estimate
F( s). This is described in Sec. IITC4 below.

(19)

1 dN"™
S)_NTd

d Nreal( g)

- 5 oyt L s)

Y(

(20)

where N* is the number of trigger hadrons and Nt“ i
the number of pairs in the trigger event-plane bin.

4. Flow Background Model Including Event Plane
Dependence

With the assumption that the measured v, from the
event plane method are purely from collective dynam-
ics of the medium, ow-like azimuthal distributions of
single hadrons can be generated by performing a Monte
Carlo simulation inputting the experimentally measured
vy, the resolution of the event planes, and the strength
of correlation among di erent order event planes. The
single-hadron azimuthal distributions due to collective
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FIG. 6. Higher-order flow harmonics for charged hadrons at midrapidity in Au+Au collisions at
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Snn = 200 GeV. Coefficients

are determined using the event-plane method for vz ((a)-(e)), va ((f)-(j)), v4 ((k)-(0)), and va{W¥2} ((p)-(t)). The columns
represent centrality bins 0%-10% (a,fk,p), 10%-20% (b,g,1,q), 20%-30% (c,h,m,r), 30%-40% (d,i,n,s), and 40%-50% (e,j,o0,t).
Coefficients obtained in this analysis are shown by blue points and those measured in Ref. [35] are shown by magenta points.
Shaded bands and magenta lines indicate systematic uncertainties of those measurements.

flow can be described by a superposition of v, as

dN

do

where ¢ is the azimuthal angle of the emitted hadrons
and YU is a true nth-order event plane defined over
[-7/n,m/n]. Separate distributions using vy, for each pr
ranges of trigger and associated particles are used in the
simulation. The trigger and associated distributions in
real events share a common ¥,, while those in mixed
events do not.

The experimental event plane resolution is
troduced through a dispersion term AW, where
wobs — ytrue 4 AP, We calculate AV, as

X3

4
1+ 2v,cosn(¢— TH™), (21)
n=2

n-

1: [1 + zp /1 + erf(zn)]ezi] (22)

where z, = xn/V2cos(nAV,) and erf(z,) is the error
function [42, 74]. This equation can be solved for AV, by
using the experimentally-determined y, from the mea-
sured event plane resolutions using Eq. (5).

Because a weak correlation between W™® and W§™©
exists [35], the directions of W™ and W.™ are gener-

€

AT,

ated independently. The direction of Wie is generated
assuming a correlation with Wirue yirue — pirue 4 A,
We estimate AW,5 assuming the correlation between the
two event planes follow similar functional forms as the
dispersion of event planes due to the resolution. That is,

wWe assume,
2
Xaz

e "2

AWy = [1 + zgoV/7[1 + erf{zm)]eziz] (23)
where 240 = x42/V2cos4AWU 5. The parameter y4o is
assumed to be similar to Eq. (5)

VT

2v2

() ()] o

where (cos(4AWU )} = v4{Us}/vy [75]. The functional
shape of Eq. (23) is verified by event plane correlation
studies using the BBCs and the RXNs following the
method described in Ref. [76]. The correlation strength
between U§Ue and UYUe (cos6(Vs — U3)), is measured
to be consistent with zero within large statistical uncer-
tainties. Potential impacts of (cos6(Vs — ¥3)) to the

(cos(4AT ) = Yape Xiz/4
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FIG. 7. The ratio of the real-event to mixed-event distribu-
tions of distances Azpeam-A¢ between hits in a pair of tracks
in (a) PC1 and (b) PC3 after the PC1 cut. The region en-
circled by dashed (magenta) curves are excluded from this
analysis.

event plane dependent correlations are estimated using
the value of (cos6(¥y — U3)) reported in Ref. [76] by the
ATLAS Experiment. The impact of (cos6(¥y — ¥3)) is
within the systematic uncertainties described later.

We use the averaged x40 value between
2<pr<4 GeV/c and 1 < pr < 2 GeV/e for
event plane-dependent correlations of (2 < pL <
9 1 <p} < 2), 2 <pr < ® (2 < pt < 4),
and (4 < p% < 10)® (2 < p} < 4) GeV/c because
(cos(4AW 45)) would contain auto-correlations from jets
at high pr.

The event plane-dependent background shapes are de-
termined by generated particles in this simulation using
Eq. (18). Figure 9 shows event plane-dependent corre-
lations and backgrounds with a selection of the abso-
lute trigger azimuthal angle relative to the event-planes
|¢* — U,,|. The backgrounds agree with the experimen-
tal correlations except at A¢ = 0,7 where contributions
from jets are expected. Figure 10 shows event plane-
dependent correlations and backgrounds with a selec-
tion of trigger azimuthal angle relative to event planes
¢ — W, < 0. Agreement between the experimental cor-
relations and the background except at A¢ = 0, 7 is also
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FIG. 8. Example of ZYAM extraction where the correlation
function C(A¢) (open circle) is fitted (dashed line). The nor-
malization of the underlying event model (red solid line) is
adjusted to match the minimum value of the fit. The (blue)
band indicates the uncertainty on the ZYAM extraction de-
termined by the statistical uncertainty of C(A¢) near the
minimum.

observed here. Other event-plane dependent correlations
and backgrounds with a selection of trigger azimuthal
angle relative to event-planes ¢* — ¥,, < 0 for different
collision centralities and pgia selections are shown in the
Appendix.

D. Unfolding of Event Plane-Dependent
Correlations

In this analysis, ¢, is divided into 8 bins. The width of
the ¢ bins is /8 and 7 /12 when correlating with ¥5 and
W3, respectively. The event plane-dependent per-trigger
yields Y(A¢, ¢;) are smeared across neighboring event
plane bins due to limited experimental resolution of the
event planes. We unfold the smearing to obtain the true
event-plane dependence of the correlations. Two different
methods are used to check the unfolding procedure: (I)
iterative Bayesian unfolding, Yuifl"f, and (II) correcting the
event plane-dependence of the per-trigger yield based on

. . ﬁt
a Fourier analysis, Y%

1. Iterative Bayesian Unfolding

The Iterative Bayesian Unfolding Method presented in
Ref. [77, 78] is applied to this analysis with the following
formulation

(s, A) = Y Myn®(s 5, Ad) (25)
j

M;; = P(“bs‘,j |¢s,u‘)n(¢s,i, Aqf’) (26)

€i 2oy P(¢ejlbs)n(de1, Ag)’
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Ad = 60" [rad]

where 7(¢s, A@) is the unfolded distribution,
n°P(¢pe, Ap) is the experimentally observed distri-
bution, n(@,, A¢) is the prior distribution, P(¢, ;|¢s ;)
is the conditional probability matrix where ¢g; is
measured to be ¢, ;, and €; = Z;‘ P(¢s, j|dei) is the
efficiency. In the iterative calculation, n(¢s, A¢) also
serves as the prior distribution of the next loop. We
perform this unfolding separately for every A¢ bin.

We define the experimentally observed distribution as

0855 g g g

n°% (g, Ap) = 1 + Y (¢s, Ad) using the measured event
plane-dependent per-trigger yield. The offset is to pre-
vent a divergence in the iteration due to small yields near
the ZYAM point. In the initial loop of the iteration, we
define the prior distribution as n(¢s, Ad) = n°"(pe, Ad).

The probability distribution of the relative azimuthal
angle between the true event plane ¥,, and the measured
event plane WP can be translated into the difference



between real and observed ¢, as
W, — W = (8 — W) — (¢ — B,) = 62— 6,.(27)

With this probability distribution of ¢S — ¢, the prob-
ability matrix P(¢, ;|¢, ;) is determined by the degree of
the contamination by neighboring ¢, bin as

(30 51 82 83 S4 S5 Sg S?\
St Sp S1 S2 53 84 S5 Sg
S St Sp S1 S2 S3 S4 S5

S5 S St S0 S1 S2 S3 54

P(¢q,jls,i) = (28)

S4 S5 Sg ST S0 S1 S2 83
§3 5S4 S5 Sg St S0 S1 S2
§2 S3 S84 S5 S St S0 S1

\ $1 S2 S3 S1 S5 S St Su)

where s, (n # 0) is the contamination fraction from the
n-th ¢, bin away from a selected ¢, bin, and s is the
fraction of the true signal in the selected ¢, bin. A
study in previous identified particle vo measurements of
the PHENIX experiment [68] using the same data sam-
ple as this analysis showed that the tracking efficiency is
independent of ¢,. Thus, we normalize the probability
as Y sp = 1, i.e. € = 1. Due to the cyclic boundary
condition in the azimuthal angle direction, symmetric el-
ements of P(¢, j|ds i) are identical i.e. s5 = s3, s¢ = 59,
and sy = s1. The matrix P(¢, j|¢s ;) depends only on the
order of event-planes and centrality. An example of cor-
rections based on this iterative method at — 77 < A¢ <0
for (2 <ph <4) ® (1 <p <2)GeV/cin 20%—30% cen-
tral collisions is shown in Fig. 11 together with an ex-
ample of the Fourier analysis method introduced in Sec-

tion IIID 2.

2.  Fourer Oscillation Correction of the Event
Plane-Dependence of Correlations

The second method to correct the event plane-
dependence of the per-trigger yield is a Fourier analysis.
Y (Ao, ¢.) is offset by 1 to prevent divergences in the cor-
rection due to small values due to the ZYAM subtraction
of the background. A Fourier series should be able to fit
the event plane-dependence of 1 + Y (Ag, ¢:), and the fit
function to the Uy-dependent case at a given A¢ can be
written as

FY (A, ¢s) =ao [1+ Y 2ancosn(p. + Ag)| (29)
n=2,4
and similarly the U3-dependent case can be written as
F¥(A¢, ¢s) = ao [1 + 2a3cos 3(¢s + Ag)]  (30)

where ag is a normalization and as, a3, and a4 are the
azimuthal anisotropies of 1+ Y (¢s, A¢). In the fitting
functions FY (A¢, ¢), the phase shift A¢ is necessary
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in 1+Y(¢,, Ap) because the associated yields are at
¢% — U, = ¢; + A¢ (see Figure 2).

With the assumption that the coefficients determined
from the fits are diluted by the event plane resolutions,
the effects can be corrected in a manner analogous to the
single-particle azimuthal anisotropy v, as performed in
Ref. [16]. For the Us-dependent case, the correction is
given as

Y,cor = aq 2aﬂ- mn(és - Ad))
F¥e(Ag, ¢ps) = ag ll + n;;l Res{n, Uy}

(31)
and for the W3-dependent case it is given as

2a3 cos 3(¢s + Ag)
Res{3, U3} - (32)
The correction coefficient to 14+ Y “°T is then given by the

ratio FY°°"(¢,)/FY (¢,), which then fixes the corrected
per-trigger yield as

FY" (A, 65) = a0 [1 +

FY:" (¢s, Ad)

14 Y (¢, A) = x (1+Y (s, A)).

FY (¢s,A¢)
(33)
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FIG. 11. The raw event plane-dependent per-trigger yields
offset by 1, 1 4+ Y (¢s,A¢ = —m/24) (black circles). The re-
sulting corrected per-trigger yields using iterative Bayesian
unfolding (blue filled squares) and from Fourier fitting (red
open squares).

E. Systematic Uncertainties for Per-Trigger Yields
1. Efficiency

Systematic uncertainties in tracking efliciency are es-
timated to be approximately 10% for pr < 4 GeV/e
and 13% for pr > 4 GeV/c independent of central-
ity [7, 16, 28, 4T7].



2. Inclusive Per-Trigger Yields

Systematic uncertainties on the yields from the match-
ing cut and from the v,, measurements are determined by
the variations on the parameters discussed below. The
systematic uncertainty from the matching cut . af-
ter ow subtraction is derived in similar manner as in
previous publications [47] as

it = Ymat:2 5 ( ) Ymat:l 5 ( ) 2 (34)
The systematic uncertainties from v, are evaluated by
taking the quadrature sum of residuals from the 1- un-
certainties on the v,, for all orders of n used in the sub-
traction. Formally the calculation is given by

Y Y 2
k=234l= 1

where the second Y ( ) refers to the yields resulting
from the default set of measured v,, values. The total
systematic uncertainties ;, in the inclusive trigger yields
are given by

n= ot fa (36)

We studied the inclusion of a vs term assuming vs =
05 w4 consistent with the ATLAS measurements [34].
The results were completely consistent with the quoted
uncertainties. Uncertainties due to ZYAM will be dis-
cussed later.

3. Event Plane-Dependent Per-Trigger Yields

In addition to systematic uncertainties considered in
the inclusive per-trigger yields, systematic uncertainties
due to the cos4( 4 o) correlation strength are also
taken into account before the unfolding of event plane
resolution e ects. The value of 49 is determined with
vy 4 andwy o , and the systematic uncertainties of

42 are propagated from those of vy o . Systematic
uncertainties on the yield due to 49 are given by

_ Y 5‘2( s) Y a2 s) 2
42 T o 9 (37)

The systematic uncertainties before unfolding are

bef = 12; + r2nat + 242 (38)

For the event plane-dependent per-trigger yields, the
systematic uncertainty due to the impact of the nite
event plane resolution on the correlations has contribu-

tions from the method and the number of iterations in the
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Bayesian method. The uncertainty due to the method is
given by
Yine (39)

_ t
Met — Yunf u

where YU is the result using the iterative Baysean
method and Y, % is the result using the Fourier tting
method. The uncertainty due to the number of inter-
actions using for unfolding is given by the di erence be-
tween the number of iterations (Nit) for n = 5 and n = 10

Nie= Yo Yo (40)
These unfolding uncertainties are added in quadrature to
the uncertainties before unfolding

bet? +  Met? +  Nit? (41)

In event plane-dependent per-trigger yields, we also un-
folded the upper and lower boundaries of ZYAM uncer-
tainties propagated from statistical uncertainties from
the data. The systematic uncertainties associated with
ZYAM are not included into the total systematic uncer-
tainties (o¢. These variations are discussed below.

tot —

IV. RESULTS AND DISCUSSION

A. Inclusive Per-Trigger Yields I: High-pr Trigger
Particles

We rst present the highest trigger pr correlations.
The jet-like correlations should be dominated by 2 2
scattering. Pairs of particles with = 0, the near side,
are from both particles fragmenting from a single jet.
Pairs of hadrons around = , the away side, occur
when each particle fragments from back-to-back jets. In
high-pp correlations the jet momentum fraction for the
associated particle is approximated by

ar =P} Pr (42)

Per-trigger yields with trigger particles from 4 < ph. <
10 GeV/c paired with associated particles from 05 <
p% < 10 GeV/c are shown in Fig. 12. The band around
zero indicates the systematic uncertainty due the ZYAM
assumption. The band around the data points is the sys-
tematic uncertainty from all other sources. Systematic
uncertainties from the associated tracking e ciency and
matching and the ZYAM normalization are fully corre-
lated point-to-point. The underlying event subtraction
is correlated point-to-point and can a ect the shape. For
the highest trigger pr correlations, the dominant system-
atic is not the underlying event subtraction.

The near-side yield is centrality independent (Fig. 12).
This is consistent with measurements of the two-particle
correlation that indicated the near-side yields are not
modi ed [21, 27, 30, 45]. The lack of centrality depen-
dence is also consistent with the picture that trigger-
ing on high-pr particles biases the origin of the hard-
scattering toward the surface of the QGP such that the
leading parton loses little to no energy.
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FIG. 12. Per-trigger yields Y (A¢) of dihadrons pairs measured in Au+-Au collisions at /5, = 200 GeV after subtracting
the underlying event model with several pr selections: (a)—(e) (4 < pf < 10) ® (4 < p§ < 10) GeV/e, (H)-(j) (4 < pr <
10) ® (2 < p% < 4) GeV/e, (k)—(0) (4 < ph < 10) @ (1 < p% < 2) GeV/e, and (p)—(t) (4 < p < 10) ® (0.5 < p} < 1) GeV/c.
The columns represent centrality bins 0%-10% (a,fk,p), 10%-20% (b,g,1,q), 20%-30% (c,h,m,r), 30%—40% (d,i,n,s), 40%-50%
(e,j,0,t). Systematic uncertainties due to track matching and the v, are shown by blue bands around the points. Uncertainties

from ZYAM are shown by the purple bands around zero yield.

The away-side peak is evident in several p7. and cen-
trality selections. The evolution of the away shape and
yield with centrality and p%. is similar to previous mea-
surements where only vs is assumed to contribute to the
underlying event [29, 46, 47]. The away-side peak be-
comes sharper and more pronounced as p7. increases or
the centrality selection becomes more peripheral. In more
central collisions and lower p} when the away-side struc-
ture is present, it is broader than in the highest p7. and
peripheral centrality selection. The trends are consistent
with a picture where the associated parton opposite the
trigger loses energy and scatters in the medium. At the
lowest p7. a very wide plateau-like away-side structure is
observed with similar shape and magnitude in all cen-
tralities. Similar low-momentum and large-angle yields
have been observed in prior measurements [20, 23-25].

Figure 13 shows the comparison between the highest
ph correlations for each centrality with the same dis-
tributions measured in p+p collisions from a previous
analysis [47]. In that paper the lowest p% bin was 0.4-
1.0 GeV /e compared to 0.5-1.0 GeV/c in this analysis.
Therefore, the lowest p%. bin from p+p was modified by
a A¢-dependent correction determined from PYTHIA 6
[79]. The correction, which has negligible uncertainties
compared to those from other sources, was determined

from the ratio of fits to the PYTHIA dihadron A¢ per-
trigger yield distributions with 0.5 < p7 < 1.0 GeV/e
and 0.4 < p§ < 1.0 GeV/e.

Previous correlation analyses that relied on wve-only
subtraction indicated the near-side yield was enhanced in
Au+Au compared to p+p, the so-called “ridge” [45, 47].
Our updated underlying event model has reduced the
near-side yield as expected [32]. In fact, the yields
are slightly suppressed relative to p+p. The integrated
away-side yields show modification relative to p+p. Fig-
ures 13(b) and (d) show the comparisons of the per-
trigger yields for the lowest p%. The away-side shapes
of the Au+Au distributions are different than p+p. The
large-angle enhancement of the per-trigger yield at low
associated particle momentum is qualitatively consis-
tent with measurements of direct photon-hadron and jet-
hadron correlations with fully reconstructed jets[20, 23—
25].

To explore these features quantitatively, we calculate
the ratio (I 44) of the away-side yields in Au+Au to those
in p+p

_ YAu—i—Au(A‘i’)
Ypip(A0)
Figure 14(b) shows I44 vs. centrality when integrating

Iqa (43)
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FIG. 13. Comparison per-trigger yields between Au+Au and
p+p collisions at /5, = 200 GeV from 4-10 GeV /c triggers
correlated with associated particles 4-10 GeV/c (a,c) and 0.5—
1 GeV/c (b,d) in 10%-20% (a,b) and 40%-50% (c,d) collisions
after subtraction of the underlying-event model. In the high-
est associated pr correlations an away-side suppression is ob-
served. In the lowest associated pr correlations an enhanced
yield at angles far from A¢ = w is observed. The background
normalization (ZYAM) uncertainty shown in the purple band
around zero on Figure 12 is included in the blue band around
the points in this figure.

the away side 0 < |A¢ — 7| < /2 for 4-10 GeV/c
hadrons paired with 0.5-1.0 GeV/c hadrons. [I4a is
unity within uncertainties indicating that yield suppres-
sion is disfavored. Figure 14(a) shows I4 4 for two dif-
ferent angular regions of integration and p§. selections.
First, for p%. from 4-10 GeV/c (high 2r) and integrating
0 < |A¢ —m| < w/4, the jet peak region, I 44 is less than
unity indicating the pair yields are suppressed relative to
those in p+p. This is consistent with previous measure-
ments of strong suppression of high p$. [20, 28]. When
integrating /4 < |A¢ — 7| < w/2 for p% from 0.5-1.0
GeV/e (low zr), T44 ~ 1 within systematic uncertain-
ties. This would indicate that the yield in Au+Au is sim-
ilar to p+p. However, it is more instructive to compare
the I44 for a fixed p%., which approximately fixes the jet
energy. Figure 14(a) shows that the low-zr fragments at
large angles from A¢ = 7 are significantly enhanced com-
pared to the suppressed level of high-z fragments within
the jet region. Both the high-z7 suppression relative to
p+p and the enhanced level of low-z7 fragments at large
angles are consistent with a radiative energy loss model
where the away-side jet traverses the medium, loses en-
ergy, and the energy gets redistributed to larger angles.
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FIG. 14. Isa: Ratio of away-side yields in Au+Au to p+p
from Fig. 13 in various A¢ integration regions for the high
and low zr = p%/pY-. Away-side yields show the well-known
suppression at high zr, most pronounced for the small angle
region around the usual away-side peak center |A¢—mn| < 7/4.
At low zp, the large angle integration region, |A¢ — x| > w/4,
show an enhancement in I 4 4 which is significantly higher than
the high 27 suppressed values, and generally enhanced above
unity The full away-side integration region at low zr is also
higher than the suppressed level with at least 1o significance
for most centrality bins.

B. Inclusive Per-Trigger Yields II: Intermediate-pr
Trigger Particles

Given the success of reproducing prior correlation re-
sults at high p%., we study lower p% correlations to at-
tempt to measure jet-like correlations at lower momen-
tum transfer Q2. Per-trigger yields with trigger particles
of 1 < pf < 2 and 2 < pf < 4 GeV/c paired with as-
sociated particles of 0.5 GeV/c < p} < p% in several
centrality selections are shown in Fig. 15. As in Fig. 12,
the ZYAM uncertainties are shown as a band around
zero while v, uncertainties are combined as the band
around the data points. At these p%. the jet-like signal-
to-underlying-event background is reduced making the
contribution of the v, uncertainties dominant. Because
the v, uncertainties are point-to-point correlated, it is
important to recognize that the yields and shape change
due to that correlation. For example, if the v9 subtracted
is too large, the effect on the away side is a reduced peak
and an enhanced large-angle yield. If the vy subtracted
is too small, the away-side becomes more peaked. In
the discussion that follows we only make statements that
have a significant variation over the systematic uncer-
tainties.

The away-side yield and shape varies with both p7. and
centrality. In these pr selections and in the most central
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FIG. 15. Per-trigger yields Y (A¢) of dihadron pairs measured in Au+Au collisions after subtracting the underlying event-model

with several pr selections of the trigger and associated particles (

pr%): ((a)-(e)) (2 < pT < 4) ® (2 < pF < 4) GeV/e, (()-(1))

2<ph<4)®(1<pd <2 GeV/e, (k)-(0)) (2 < pr <4) @ (0.5 < pF < 1) GeV/e, ((p)-(t) (1 <pr <2) @ (1 < pf <
2) GeV/e, and ((u)-(y)) (1 < p% < 2) ® (0.5 < p < 1) GeV/c. The columns represent centrality bins 0%-10% (a,fk,p,u),
10%-20% (b,g,1,q,v), 20%—-30% (c,h,m,r,w), 30%—40% (d,i,n,s,x), 40%-50% (e,j,0,t,y). Systematic uncertainties are shown by
(blue) bands around the points. Uncertainties from ZYAM are shown by (purple) bands around zero yield.

collisions, the away-side seems to completely disappear.
If our background model represents all nonjet correla-
tions, the disappearance is presumably due to jet quench-
ing. Compared to vo-only subtraction [47], the very large
displaced away-side peaks are reduced primarily due to
the subtraction of v3 in the underlying event [32]. Both
the flat away-side and the near-side peak shape, seems
relatively centrality independent.

To better assess the systematic significance of the cor-
relation features at the lower p7. selections, Figure 16
shows a further breakdown of the uncertainty contribu-
tions from different orders of the v, subtraction. The
lines and bands show the 1o and 20 variation of each of
the v, components independently. Here the ZYAM level
is recalculated for every v, variation. These uncertain-
ties are point-to-point correlated where a reduction at
A¢ = w leads to an increase at angles away from w. The
v4 dominates the uncertainty in the away-side shape. The
location of any double-peak structure in the away-side is
also strongly dependent on the underlying event back-
ground subtraction. The peak in the uncertainties from
v, vz and vy are all at slightly different places. There-
fore, a robust and well-motivated background model is
necessary to extract detailed shape information at these
pp. With our quoted systematic uncertainties, we can-

not distinguish between a single broad away-side peak
structure or a double-hump structure.

C. Event Plane-Dependent Correlations

Figure 17 shows Us-dependent per-trigger yields of
trigger particles from 2 < p%. < 4 GeV/c with associ-
ated particles from 1 < p7. < 2 GeV/c in 10%-20% and
30%-40% central collisions. In Figs. 17 (b) and (d), the
trigger is selected to be either in-plane 0 < |¢¢| < 7/8 or
out-of-plane 37/8 < |¢,| < 7/2, respectively. Similar to
the inclusive per-trigger yields, we observe a broad away-
side structure in both cases. The use of a common ZYAM
point results in a slight over-subtraction in the out-of-
plane bins. The over subtraction can be corrected by
determining a ZYAM point for each ¢, selection, which
however makes event-plane dependent correlations inte-
grated over the ¢, bins different from inclusive correla-
tions. This would result in moving all yield points up and
does not affect the discussion of the shape that follows.

In Figs. 17 (a) and (c), we chose the trigger to have a
particular sign of ¢,. That is, we choose —7/8 < ¢, < 0
and —7/2 < ¢, < —3w/8 for the in-plane and out-of-
plane, respectively. Choosing the sign of ¢, to be neg-



0.15 Fa _ 410<1-2GeVicif(b) . Au+Au200GeV]

0.1 g 3040% |f 40-50% )

0.05 |
0 » :
Fle)  2-4x2-4 GeVic ]
002 ¢ PHENIX
= n ]
=] N ]
> 0.01 ]
0 e

0.1 L[l 24x12Gevic IE(H |:|Iv41.I00' ]

r uls @Vvs200 ]

0.05 L AT ]

0 _'I : 3 .___ I = ‘-_
-10123 4

101234
Ad = ¢*-o'[rad]

FIG. 16. Per-trigger yields Y (A¢) of dihadron pairs mea-
sured in Au+Au collisions after subtracting the underlying
event-model with several pr selections: ((a)-(b)) (4 < p% <
10) ® (1 < p% <2) GeV/e, ((e)-(d) 2 <ph <4) ® (2 <
p < 4) GeV/e, and ((e)-(f)) 2 < phr < 4) ® (1 < pF <
2) GeV/e. The columns represent centrality bins 30%—40%
(a,c,e) and 40%-50% (b,d,f). The lines and bands further
break down of the uncertainty contributions from each differ-
ent order of the v, subtraction. The systematic uncertain-
ties are point-to-point correlated. If the yield at A¢ = w is
reduced, the away-side yield outside the region A¢ = w is
increased.

ative results in always choosing the trigger to be “be-
low” the event plane, if the event plane is the horizontal.
When sign-selecting ¢, an asymmetry around Ag¢ ~ 0
and A¢ ~ 7 is observed. Such an asymmetry does not
exist when choosing both signs of ¢,. In the in-plane trig-
ger case, there is a preference for the associated particle
to be emitted toward the in-plane direction i.e. the thin-
ner side of the overlap region. Referring back to Fig. 1,
our data suggests that Gluon 1 is more likely to be mea-
sured than Gluon 2. Other U, dependent per-trigger
yields with a selection of trigger azimuthal angle relative
to event-planes ¢' — U,, < 0 for different collision cen-
tralities and pgia selections are shown in the Appendix.

The integrated per-trigger yields are shown in Fig. 18
as a function of associated particle angle with respect to
U,. Figure 18 shows data for all centralities and all four
orientations with respect to the event plane. We note
that the use of a single ZYAM level for all event plane
bins can result in negative yields for certain Adg.

In Figs. 18 (a)-(e), the yields have been integrated for
the near side |A¢| =< w/4. For all trigger/associated
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combinations there is weak to no dependence of the yield
on event plane orientation. This trend persists for all
centrality selections.

In Figs. 18 (f)-(j), the yields have been integrated for
the away side |A¢ — w| < w/4. For the event plane se-
lections in the range —1.2 < ¢% — ¥y < —0.5, no signif-
icant yields are generally observed for both the highest
and lowest trigger pr. In the most central collisions,
for (2 < pt < 4) ® (1 < p% < 2) GeV/e, the largest
yield is out of plane. The difference between the in-plane
and out-of-plane yields is approximately 1 sigma. This
trend is opposite in the most peripheral collision selection
where the largest yield is in plane. In 10%-40% central
collisions similar yields are observed in-plane versus out
of plane. For (2 < pk. <4) ® (1 < p% < 2) GeV/c, there
is a possible trend with centrality that out-of-plane yield
is reduced from central to peripheral collisions whereas
in-plane yield increases from central to peripheral colli-
sions. The significance of this possible trend is approxi-
mately 1 sigma.

Correlations selecting the trigger within a certain az-
imuthal angles from the ¥4 plane are shown in Figure 19.
The triangular shape of the third Fourier component re-
stricts the range: —7/3 < U3 < m/3. The out-of-plane
direction is at +m/3 radians relative to 3. In Figs. 19
(b) and (d), we do not select the sign for ¢;. Similar
to the inclusive distributions, there is a broad away-side
structure that has a small yield. In Figs. 19 (a) and (c),
we select for ¢, < 0. No discernible asymmetry is ob-
served. It is possible that unfolding with the smaller U4
event plane resolution could obscure any effect. Other
U3 dependent per-trigger yields with a selection of trig-
ger azimuthal angle relative to event-planes ¢* — U, <0
for different collision centralities and p;ia selections are
shown in the Appendix.

Similar to the ¥5-dependent correlations, we also in-
tegrate the per-trigger yields. This is shown in Fig. 20
for each centrality and associated particle azimuthal an-
gle with respect to ¥3. Figures 20 (a)-(e) show the near
side integral. Figures 20 (f)-(j) show the away side inte-
gral. In all cases, no event plane-dependent or centrality
dependent trends are observed within uncertainties.
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V. SUMMARY

In summary, we reported the two-particle azimuthal
dihadron correlation measurements at < 07 in
Au+Au collisions at 5, = 200 GeV with and without
subtraction of an underlying event. The underlying event
model includes modulations from higher-order ow coef-

cients v, (n = 2 3 4) that assumes only the expected
correlation of 2nd and 4th order event planes.

We tested this two-source model by studying high-pr
(> 4 GeV/c) triggers. We observe suppression of high-
zr jet fragments as well as enchantment of low-zp jet
fragments o the away-side jet axis. These results are
consistent with previous dihadron and -hadron correla-
tions and jet analyses [6 11].

At lower trigger pr 2 < ph < 4 GeV/c, the near-side
distribution is not enhanced compared to p+p, which tra-
ditionally is associated with the ridge. When a signi -
cant away-side yield exists, the double-hump structure
that had been observed when subtracting a ve-only un-
derlying event is signi cantly reduced. Given our model
assumptions and the systematic uncertainties on v,,, we
cannot precisely determine if the away-side distribution
is a single broadened peak or has further structure that
may peak away from =

We also present dihadron correlations selecting on g,
the angle of the trigger with respect to the event plane.
When requiring s to chose one side of the overlap region,
the away-side developed an asymmetry in the distri-
bution where the away-side yield is largest on the same
side of the event plane. Such an asymmetry is qualita-
tively consistent with path length-dependent energy loss
where the away-side jet would have less medium to tra-
verse when emerging from the same side of the overlap
than being exactly back-to-back or through the opposite
side. The observed asymmetry when the sign of the trig-
ger with respect to the event plane is selected should set
additional constraints on models of parton energy loss,
and/or models of the underlying event.
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APPENDIX

Inclusive correlations before subtracting the underly-
ing event-model are shown in Figs. 21 22. Event plane-
dependent correlations and simulated- ow distributions
are shown in Figs. 23 28. Event-plane-dependent per-
trigger Yields are shown in Figs. 29 34.
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FIG. 21. Correlations C'(Ag¢) of dihadrons pairs measured in Au+-Au collisions at /5, = 200 GeV before subtracting the
underlying event model with several pr selections: (a)—(e) (4 < pr < 10) ® (4 < p} < 10) GeV/e, (£)-(j) (4 < pr < 10) ® (2 <
p% < 4) GeV/e, (k)—(0) (4 < pr < 10) @ (1 < p% < 2) GeV/e, and (p)—(t) (4 < p& < 10) @ (0.5 < p3 < 1) GeV/e.
The columns represent centrality bins 0%—-10% (a,fk,p), 10%—20% (b,g,1,q), 20%-30% (c,h,m,r), 30%—40% (d,i,n,s), 40%-50%

(e,j,o0,t). Systematic uncertainties due to track matching are shown by blue bands around the points.
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FIG. 22. Correlations C(A¢) of dihadron pairs measured in Au+Au collisions before subtracting the underlying event-model
with several pr selections of the trigger and associated particles (p5%): ((a)-(e)) (2 < p% < 4) ® (2 < p} < 4) GeV/e, (()-(3))
2<ph <4 ® (1 <pF <2 GeV/e, ((k)-(0) (2<ph <4) @ (0.5 <ph < 1) GeV/e, ((p)-(t) (1 <phr <2) @ (1 <pt <
2) GeV/e, and ((u)-(y)) (1 < p% < 2) ® (0.5 < p$ < 1) GeV/c. The columns represent centrality bins 0%-10% (a,fk,p,u),
10%-20% (b,g,1,q,v), 20%-30% (c,h,m,r,w), 30%—40% (d,i,n,s,x), 40%-50% (e,j,0,t,y). Systematic uncertainties due to track
matching are shown by blue bands around the points.
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FIG. 23. Wa-dependent correlations C(Ag¢, ¢s) and flow backgrounds F(Ag¢,¢s) for (2 < ph < 4) @ (1 < p} < 2) GeV/e.
Trigger particle azimuthal angle relative to the event plane ¢s = ¢* — W5 is selected out of plane (left) to in plane (right).
Centrality is 0%-10% (top) to 40%-50% (bottom).
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FIG. 24. Wa-dependent correlations C(Ag¢, ¢s) and flow backgrounds F(A¢,¢s) for (2 < pb < 4) @ (2 < pF < 4) GeV/e.
Trigger particle azimuthal angle relative to the event plane ¢s = ¢* — W5 is selected out of plane (left) to in plane (right).
Centrality is 0%-10% (top) to 40%-50% (bottom).
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FIG. 25. Wa-dependent correlations C'(A¢, ¢s) and flow backgrounds F(Ag, ¢s) for (4 < ph < 10) ® (2 < pF < 4) GeV/e.
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FIG. 26. Ws-dependent correlations C(Ag¢, ¢s) and flow backgrounds F(A¢, ¢s) for (2 < pb < 4) @ (1 < p% < 2) GeV/e.
Trigger particle azimuthal angle relative to the event plane ¢s = ¢* — W3 is selected out of plane (left) to in plane (right).
Centrality is 0%-10% (top) to 40%-50% (bottom).
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