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Abstract

Inference in a high-dimensional situation may involve regularization of a certain form to treat overpa-
rameterization, imposing challenges to inference. The common practice of inference uses either a regularized
model, as in inference after model selection, or bias-reduction known as “debias”. While the first ignores
statistical uncertainty inherent in regularization, the second reduces the bias inbred in regularization at
the expense of increased variance. In this paper, we propose a constrained maximum likelihood method for
hypothesis testing involving unspecific nuisance parameters, with a focus of alleviating the impact of regular-
ization on inference. Particularly, for general composite hypotheses, we unregularize hypothesized parameters
whereas regularizing nuisance parameters through a Lg-constraint controlling the degree of sparseness. This
approach is analogous to semiparametric likelihood inference in a high-dimensional situation. On this ground,
for the Gaussian graphical model and linear regression, we derive conditions under which the asymptotic dis-
tribution of the constrained likelihood ratio is established, permitting parameter dimension increasing with
the sample size. Interestingly, the corresponding limiting distribution is the chi-square or normal, depending
on if the co-dimension of a test is finite or increases with the sample size, leading to asymptotic similar
tests. This goes beyond the classical Wilks phenomenon. Numerically, we demonstrate that the proposed
method performs well against it competitors in various scenarios. Finally, we apply the proposed method to
infer linkages in brain network analysis based on MRI data, to contrast Alzheimer’s disease patients against
healthy subjects.
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1 Introduction

High-dimensional analysis has become increasingly important in modern statistics, where a
model’s size may greatly exceed the sample size. For instance, in studying the brain ac-
tivity, a brain network is often examined, which consists of structurally and functionally
interconnected regions at many scales. At the macroscopic level, networks can be studied
noninvasively in healthy and disease subjects with functional MRI (fMRI) and other modali-
ties such as MEG and EEG. In such a situation, inferring the structure of a network becomes
critically important, which is one kind of high-dimensional inference. Yet, high-dimensional
inference remains largely under-studied. In this paper, we develop a full likelihood inferential
method, particularly for a Gaussian graphical model and high-dimensional linear regression.

In the literature, a great deal of effort has been devoted to estimation. For the linear
model, many methods focus on estimation with sparsity-inducing convex and nonconvex reg-
ularization such as Lasso, SCAD, MCP, and TLP [23, 7, 27, 21], among others. For the Gaus-
sian graphical model, methods include the regularized likelihood approach [19, 8, 26, 6, 21]
and the nodewise regression approach [16], and their extensions such as conditional Gaussian
graphical [13, 25] and multiple Gaussian graphical models [31, 14]. Despite progress, there
is a paucity of inferential methods for high-dimensional models, although some have been
recently proposed in [28, 24, 12, 11], where confidence intervals are constructed based on
a bias-reduction method called “debias” [28]. One potential issue of this kind of approach
is not asymptotically similar with its null distribution depending on unknown nuisance pa-
rameters to be estimated, and most critically the variance is likely to increase after debias,
resulting in an increased length of a confidence interval.

In this article, we propose a maximum likelihood method subject to certain constraints for
hypothesis testing involving unspecific nuisance parameters, referred to as the constrained

maximum likelihood ratio (CMLR) test, which regularizes the degree of sparsity of un-



hypothesized parameters in a high-dimensional model, whereas hypothesized parameters are
not regularized. This is an analogy of semiparametric inference with respect to the paramet-
ric component, which enables to alleviate the inherited bias problem due to regularization.
For computation, we employ a surrogate of the Ly-function, a truncated L;-function, for the
constraints. On this ground, we develop the CMLR test, which is asymptotically similar
with its null distribution independent of unspecific nuisance parameters. Moreover, we de-
rive the asymptotic distributions of the test in the presence of growing parameter dimensions
for the Gaussian graphical model and linear model. Most importantly, the corresponding
distribution for the CMLR test statistic converges to the chi-square distribution when the
co-dimension, or the difference in dimensionality between the full and null spaces, is finite,
and converges to normal (after proper centering and scaling) when the co-dimension tends
to infinity. This occurs in a situation roughly when W'ﬂ% — 0 and M — 0
respectively in the Gaussian graphical model and linear regression, where |B| and |A°| are
the numbers of the hypothesized parameters and the nonzero unhypothesized parameters.
Such a critical assumption is in contrast to a requirement of 10% — 0 for sparse feature se-
lection [22], which has been used in [18] for the maximum likelihood estimation in a different
context. Empirically, the asymptotic approximation becomes inadequate when departure
from this assumption occurs in a less sparse situation. To our knowledge, our result is the
first of this kind, providing a multivariate likelihood test in the presence of high-dimensional
nuisance parameters. This is in contrast to a univariate debias test [28, 24, 12, 11]. When
specializing the CMLR test to a single parameter in the Gaussian graphical model and linear
regression, we show that it has asymptotic power that is no less than that of the debias test,
c.f., Theorem 3. This is anticipated since the debias test does not capture all the informa-
tion contained in the likelihood, whereas the full likelihood takes into account component
to component dependencies. This aspect is illustrated by our second numerical example in

which a null hypothesis involves a row (column) of offdiagonals of the precision matrix. Of



course, a multivariate likelihood test as ours may require stronger conditions than a uni-
variate non-likelihood test, which is analogous to the classical situation of the maximum
likelihood versus the method of moments in inference. Throughout this article, we shall fo-
cus our attention to the CMLR test as opposed to the corresponding Wald test based on the
constrained maximum likelihood, which not asymptotically similar, given that it is rather
challenging to invert a high-dimensional Fisher information matrix.

Computationally, we relax the nonconvex minimization using an Ly-surrogate function
by solving a sequence of convex relaxations as in [21]. For each convex relaxation, we
employ the alternating direction method of multipliers algorithm [3], permitting a treatment
of problems of medium to large size. Moreover, we study the operating characteristics of
the proposed inference method and compare against the debias methods through numerical
examples. In simulations, we demonstrate that the proposed method performs well under
various scenarios, and compares favorably against its competitors. Finally, we apply the
proposed method to confirm that a reduced level of connectivity is observed in certain brain
regions in the default mode network but an increased level in others for Alzheimer’s disease
(AD) patients as compared to healthy subjects.

The rest of the article is organized as follows. Section 2 proposes a constrained likeli-
hood ratio test, and gives specific conditions under which the asymptotic approximation of
the sampling distribution of the test is valid for the Gaussian graphical model and linear
regression. Section 3 performs the power analysis for the CMLR test. Section 4 discusses
computational strategies for the proposed test. Section 5 performs numerical studies, fol-
lowed by an application of the tests to detect the structural changes in brain network analysis
for Alzheimer’s disease subjects versus healthy subjects in Section 6. Section 7 is devoted to

technical proofs.



2 Constrained likelihood ratios

Given an iid sample Xy,..., X, from a probability distribution with density pg, consider
a testing problem Hy : 6; = 0;¢ € B versus H, : 6; # 0 for some ¢ € B, with unspecific
nuisance parameters 6; for j € B¢, possibly high-dimensional, where 8 = (0y,--- ,0,) € R?,
and B C {1,...,d}. Here we allow the dimension of 6 and size of |B| to grow as a function
of the sample size n. For a problem of this type, we construct a constrained likelihood ratio

with a sparsity constraint on nuisance parameters @g.. Specifically, define

6 = arg max L,(0) subj to: Zp7(|9i|) <K and 85=0 (1)
0 i¢B
6" = arg max L,(0) subj to: Zp7(|9i|) <K, (2)
0
i¢B

where L, (0) = >""_ log pe(X;) is the log-likelihood, p,(z) = min(z/7, 1) is the truncated L;-
function [21] as a surrogate of the Lo-function, and (K, 7) are nonnegative tuning parameters.
In this situation, without the sparsity constraint, 8© and ) in (1) and (2) are exactly the
maximum likelihood estimates under Hy and H,, respectively. Now we define the constrained
likelihood ratio as: A,(B) = 2 (Ln (60 — L, (5(0))). In what is to follow, we derive the
asymptotic distribution of A,,(B) in a high-dimensional situation for the Gaussian graphical
model and linear regression. On this ground, an asymptotically similar test is derived, whose
null distribution is independent of nuisance parameters.

Tuning parameters K and 7 in (1) and (2) are estimated using a cross-validation (CV)
criterion based on the full model (1). Choosing the same values of (K, 7) in (1) and (2)
ensures the nestedness property of A, (B) > 0 because the constrained set in (1) is a subset
of that in (2). With K = oo, the test statistic A,,(B) reduces to the classical likelihood ratio

test statistic.



2.1 Asymptotic distribution of A, (B) in graphical models

This subsection is devoted to a Gaussian graphical model, where X, --- , X,, follow from
a p-dimensional normal distribution N(0,Q27!), with Q a precision matrix, or the inverse
of the covariance matrix ¥. In this case, 8 = Q. The log-likelihood is L,(0) = L,(2) =
Zlog det(2) — 2tr(2S), where S =n~' 3" | X; X, is the sample covariance matrix, and
tr(-) denotes the trace of a matrix.

In the foregoing testing framework, the null and alternative hypotheses can be written as:
Hy : Qp = 0 versus H, : Q2 # 0 for some prespecified index set B. Then the constrained
log-likelihood ratio becomes A, (B) = 2(Ln(ﬁ(1)) - Ln(ﬁ(o))), where Q© and QO are the
constrained maximum likelihood estimates (CMLE)s based on the null and full spaces of the
test.

To establish the asymptotic distribution of A, (B), we first introduce some notations to
be used. For any symmetric matrix M, let Apax(M) and Apin (M) be the maximum and
minimum eigenvalues of M, and || M ||r be the Frobenius norm of M. Let \ and |- | denote
the set difference and the size of a set. For any vector @ € R™, let ||lally = /a3 + ... + d2,.
Denote by QY p = argmin Q5 0:2 4 2y0=0 K(Q° Q) an approximating point in a space {€2 :
Q - 0,Quup) = 0} to the true Q°, where K(Q°, Q) = 1(tr(2X°) + log det(€) _ p) is

det(2)
the Kullback-Leibler information. Let ||Q° — Q| = ||[VE2(2 — Q°)VX0||r be the Fisher-

norm between QY and Q [20]. Moreover, let A% = {i : ) # 0} be the support of true

parameter 0% kg = Apax (2°)/Amin(2°) be the condition number of Q°, and x; = /\233“—&’3()),

where j\max = maXA:\A|§|A0\,AﬂB=@ )\max<ﬁgluB>- Let 5\min = minA:|A|§\AO|,AﬂB=@ Amin(quB)-
Let Ymin = ming j)eao |w?j| be the minimum nonzero offdiagonals of Q°, representing the
signal strength. The following technical conditions are made.

Assumption 1 (Degree of separation) ~
(1192° — Q01
min
A%\ A

0
1) 3 oy AL B

n

Coin = min
A:A#AD | |A|=|A0|, ANB=0

where C] > 0 is a constant.



Assumption 1 requires that the degree of separation Cl,;, exceeds a certain threshold

(A°|+]B]) logp

m , which measures the level of difficulty of the task of removing zero

level, roughly
components of the nuisance (un-hypothesized) parameters of €2 by the constrained likelihood
with the Lo-constraint. To better understand (3) of Assumption 1, we consider a sufficient
condition of (3) as follows:

Note that [[2° = Q%5 = Auin(ZOIIR° — % 5lr = Ak (2°) i /TATY AL, Conse-
quently, a simpler but stronger condition of (3) in terms of Yy, is

(14° + |B]) log p
n

(4)

Min(Yomin ; Amax(2°)) > CQ’foj\max\/

for some constant Cy > 0.

Assumption 2 (Dimension restriction for A, (B)). Assume that
ko(|B] + |A%) log p

NG

Assumption 2 restricts the size p for an asymptotic approximation of the sampling dis-

— 0, as n — oo.

tribution of the likelihood ratio tests, which is closely related to that in [18] for a different
problem. Note that if |A°| = O(p) and |B| = O(p) then Assumption 2 roughly requires that
plogp/v/n — 0.

Theorem 1 gives the asymptotic distribution of A, (B) when |B| is either fixed or grows

with n, referred to as Wilks phenomenon and generalized Wilks phenomenon, respectively.

Theorem 1 (Asymptotic sampling distribution of A, (B)) Under Assumptions 1-2, there

exists optimal tuning parameters (K, 1) with K = |A°| and 7 < Aonin 00/ Corins o) g0y that

12]A0]

under Hy
(i) Wilks phenomenon: If wy; = 0 for (i,7) € B with |B| fized, then
A, (B) N X‘QB‘ asn — 0o.
(i1) Generalized Wilks phenomenon: If w); = 0 for (i,j) € B with |B| — oo, then
2|B|) Y3 (Au(B) — |B|) -% N(0,1) as n — .

Concerning Assumptions 1 and 2, we remark that the degree of separation assumption (3)

or (4) is necessary for the result of Theorem 1. Without Assumption 1, the result may break
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down, as suggested by a counter example in Lemma 1 for a parallel condition—Assumption 3
in linear regression in Section 2.2. This is expected because when the constrained likelihood
can not be over-selection consistency when Assumption 1 breaks down in view of the result
of [21]. That means that any under-selected component yields a bias of order k’%. As a
result, the foregoing results are not generally expected to hold. Moreover, Assumption 2 is
intended for joint inference of multiple parameters, for instance, testing zero offdiagonals of
one row or column of €2 as in the second simulation example of Section 4. These assumptions,
as we believe, are needed for multivariate tests based on a full likelihood although we have
not proved so, which appear stronger than those required for a univariate debias test based
on a pseudo likelihood [11]. This is primarily due to the full likelihood approach estimating
component to component dependencies in lieu of a marginal approach without them, leading
to higher efficiency when possible. This is evident from Corollary 1 that the CMLR gives
more precise inference than the debias test under these conditions.

The result of Theorem 1 depends on the optimal tuning parameter K = K° and 7, both
of which are unknown in practice. Therefore, K is estimated by cross-validation through
tuning, and the exact knowledge of the value K is not necessary, whereas 7 is usually set to

be a small number, say 1072, in practice.

2.2 Asymptotic distribution of A, (B) in linear regression

In linear regression, a random sample (Y;, x;)"; follows
}/;:/BT:B@_’_EM ezNN(0702)a 7’:17 » 10, (5)

where 8 = (81, ,8,)"7 and @; = (z;1,--- ,x;)" are p-dimensional vectors of regression
coefficients and predictors, and ; is independent of random error ¢;. In (5), it is known

priori that 3 is sparse in that 8; = 0,5 ¢ A” and 8; # 0,5 € A°, where A° C {1,2,...,p}.



In this case, 8 = (3,0). Our focus is to test Hy : B = 0 versus H, : B # 0 for some
index set B. The log-likelihood is L,(0) = L,(B,0) = —5=||Y — XB||3 — nlog(v/2mo),
and the constrained log-likelihood ratio is accordingly defined as A, (B) = 2(Ln(3(1), W) —
L.(B©,5©)), where 8® and 81 are the CMLE based on the null and full spaces of the
test.

A parallel condition of Assumption 1 is made in Assumption 3.

Assumption 3 (Degree of separation condition [22])

in f | XB° — XauBausll3

> C
A:A|<|AO| and A£A0 S n|A%\ A| =g

log p
2
= (6

for some absolute constant Cj that may depend on the design matrix X.

A parallel result of Theorem 1 is established for linear regression.

Theorem 2 (Sampling distribution of A, (B)) Assume that M — 0. Under As-

sumptions 3, there exists optimal tuning parameters (K,7) with K = |A° and 0 < 7 <

0\/(n+2)p>\7,6m1(XTX) such that under H,
(i) Wilks phenomenon: If 3; = 0 fori € B with |B| fized, then
A, (B) N X‘QB‘ asn — 0o.
(i1) Generalized Wilks phenomenon: If 5; =0 for i € B with |B| — oo, then
(2|B)"2(An(B) — | B]) = N(0,1) as n — oc.
VIBI(A%+|B])

— 0 in linear regression appears
n

Note of worthy is that the requirement
weaker than that W'Z‘l% — 0 in the Gaussian graphical model. This is primarily
because the error for the likelihood ratio approximation in the former is smaller in magnitude.

Next we provide a counter example to show that the result in Theorem 2 breaks down

when Assumption 3 is violated in the absence of a strong signal strength. In other words,

such an assumption is necessary for such a full likelihood approach to gain the test efficiency,



which is in contrast to a pseudo-likelihood approach.

Lemma 1 (A counter example) In (5), we write y = o + B'x, where x = (z1,...,7,)
are independently distributed from N(p;, 1) with py = 0 and p; = 1; 2 < j < p, and €
is N(0,1 — n™Y), independent of . Assume that fy = 0 and B = (n="/2,0,...,0), or,
y = n~'2x,4+¢e. Then Assumption 3 is violated. Now consider a hypothesis test of Hy : o = 0

versus Hy : By # 0. [flo% — 0 asn,p — 00, then A, (B) 2 0o asn,p — oo, with B = {0}.

3 Power analysis

This section analyzes the local limiting power function of the CMLR test and compare it with
that of the debias test of [11] in Gaussian graphical model. To that end, we first establish
the asymptotic distribution of §B under the null Hy for fixed index set B for the Gaussian
graphical model and linear model. Then, we use those results to carry out a local power

analysis for both models.

3.1 Asymptotic normality

We first introduce some notations before presenting the asymptotic normality results for

Gaussian graphical model. Let vecp(C) = (/1 +1(i # j)cij)(i (i) or Gaye 1S & sub-vector
of vec(C) excluding components with indices not in B, vec(C) = (/1 +1(i # j)cij),.. €

i<j
#5 s a scaled vectorization of a p X p symmetric matrix C' [1] and I(-) is the indica-

tor. For the Fisher information, we need the symmetric Kronecker product [1] for a p x p
symmetric matrix C to treat derivatives of the log-likelihood with respect to a matrix. De-

plp+1)  plp+1l)
2

fine the symmetric Kronecker product of C C @, C € R™ 2 as (C ®s C)vec(A) =
vec (CAC) for any symmetric matrix A, and define the Fisher information matrix for the
@-dimensional vector vec(Q2) as I = V2 (—1logdet Q) = 13° ®, 3X°, c.f., Lemma 2.

Given an index set B, we define a |B| x |B| submatrix Ip g as Ipp = (I(i,j),(kl))(ij) (hD)eB’

10



extracting the corresponding | B| X | B| submatrix from I. Theorem 1 below gives the asymp-

totic distribution of vecy(Q2M).

Proposition 1 (Asymptotic distribution of CMLE QW for Gaussian graphical model) Un-

der Assumptions 1-2, if |B| is fized, there exists a pair of tuning parameters (K, 1) with

K =A% and 7 < Am"minl(g‘sg"””’cgm") such that QO satisfies:

Viveep(QV — Q%) <5 N (O’ (IXOlUB,AOUB>B B) ’ )

-1 . -1
where (IAOUB’AOUB)BB extracts a |B| x |B| submatriz from Ijo g so.,p-

)

For linear regression, a similar asymptotic result can be derived.

Proposition 2 (Asymptotic distribution of CMLE) Assume that X ;o X aoup is inevitable.

Under Assumptions 3, if |B| is fized, there exists a pair of tuning parameters (K, T) with

K =|A% and 7 < 0\/(n+2)p/\f“(XTX) such that 8% satisfies:
. J ~ -
Va(BE =B <5 N (0. (07 X JoupXann) ™) ) ®)

where Mp g extracts a |B| X |B| submatriz from a matriz M.

3.2 Local power analysis

Consider a local alternative H, 0 = 69 + (6,);; ¢ € B with (8,)pe = 0, for any g,

with [|d,]l2 = \/Lﬁ if |B] is fixed, ||0,]2 = }L'B—\/'%M if |B] — oo, for some constant h. Let
0" = (07, -+ ,0M)T. Subsequently, we study the behavior of the local limiting power function

for the proposed CMLR test mrr(h,0pe) = liminf, o0 P, (An(B) > X2 p)) if |B] is fixed
and liminf, , Py, ((2|B])"Y?A,(B) — |B|) > z,) if |B| — oo. Let the corresponding
Tdebias (N, Ope) of the debias test in [11] in the Gaussian graphical model as a result for

linear regression is similar.

11



Theorem 3 If for any 0™ = Q" the Assumptions 1-2 for the Gaussian graphical model are

met and further assume that |B[>/?/n — 0, then for any nuisance parameters Qpe,

P <\|Z+n1/2J§’1B/25nH§ > XZ,IB|> when |B| is fized,
WLR(h,QBc) —

ndl J5'50n
P Z+TE|2ZQ when |B| — oo,

where oo > 0 is the level of significance, Z ~ N (0, Ip|x|p|) is a multivariate normal random
variable, Z ~ N(0,1), and Jp g is the asymptotic variance of vee(QW) in (7). In partic-
ular, limy, oo mrr(h, Qpe) = 1. Moreover, in the one-dimensional situation with |B| =1, for
any h and Qpge,

(b, Qpe) > Taepias(h, Qpe). (9)

Theorem 3 suggests that the proposed CMLR test has the desirable power properties,
which dominates the corresponding debias tests, which is attributed to optimality of the
corresponding CMLE and likelihood ratio, as suggested by Theorem 1. Note that the debias
test requires Assumption 2.

Next we compare the asymptotic variance of our estimator to that of [11] for the one-
dimensional case with |B| = 1. As indicated by Corollary 1 below, our estimator has

asymptotic variance that is no larger than that of its debias counterpart.

Corollary 1 (Comparison of asymptotic variances) Under the assumption of Theorem 1,

the asymptotic covariance matrixz of [\/ﬁ(@” — w?j)} 18 upper bounded by the matriz

(4,7)€B

0 0 0 0
[wiwiy + wijwi]

(1.4)eB.( )€ B’ where W;; is the ijth element of the CMLE Q. When spe-

cralizing the above result to the one-dimensional case, it implies that the asymptotic variance
of Vn(@;; — w?j) 1s no larger than [w%f + w%w?j, the asymptotic variance of the regression

estimator in [11].

A parallel result of Theorem 3 is established for linear regression.

12



Theorem 4 If for any 0" = " the Assumptions 1-2 for the linear regression model are met.

Then

P <HZ +n'2AX 36,2 > XZ,|B|> if | B| is fived;

WLR(}L, ﬁBc) — (10)

n||AXpdn |3 ‘
IP(Z—|— /a5] Zza) if |B| = oo .
where A € R™ Bl with columns being the eigenvalues of Pyoup — Pao, Z ~ N(0,1), and

Z is a |B| dimensional normal random vector. Hence, for any nuisance parameters [pe,

limy, o0 Trr(N, Bpe) = 1.

4 Computation

To compute the CMLEs under the null and full spaces in (1) and (2), we approximately
solve constrained nonconvex optimization through difference convex (DC) programming.
Particularly, we follow the DC approach of [21] to approximate the nonconvex constraint
by a sequence of convex constraints based on a difference convex decomposition iteratively.
This leads to an iterative method for solving a sequence of relaxed convex problems. The
reader may consult [21] for convergence of the method.

For (1) and (2), at the m-th iteration, we solve

maxg  L,(0)

subj to Sy, w108 < 7) < 7 (K = Sy, 108 > 7)), 04, = 0,
to yield 8+ where A; = B and Ay = () for (1) and Ay = Ay = B for (2). Iteration

(11)

continues until two adjacent iterates are equal. To solve (11), we employ the alternating
direction method of multipliers algorithm [3], which amounts to the following iterative up-

dating scheme

"+ — argmin (—Ln(B) +(p/2) - |0 — 6™ + ’y[k]”z) : (12)
0
6(k+1) _ P]:[m] (e[k—i-l] + ,Y[k:]) ’ ,.Y[k—l—l] _ ,Y[k] + 0[k+1] . 5[!9—‘,—1]7 (13)
where ol — IS o I(of < 1) < 7(K — 3 16" > 7)), 04, =0},
ig Ay (1,4) ¢ A1

13



P () denotes the projection onto the set FI™ and p > 0 is fixed or can be adaptively
updated using a strategy in [30]. Note that in both cases, the #-update (12) can be solved
using an analytic formula involving a singular value decomposition for the Gaussian graphical
model (cf. Section 6.5 of [3]) and solving a linear system for the linear model, while (13) is
performed using the L;-projection algorithm of [15] whose complexity is almost linear in a
problem’s size. Specifically, consider a generic problem of projection onto a weighted L;-ball
subject to equality constraint:
Min,ega 5[z — y|3 subj to 3o, cilwi| <z and z; = 0,i € A,

where ¢; > 0;i = 1,--- ,d and A is a subset of {1,---,d}. The solution of this problem is
v =0if i € Ay af =y if 370 4 ailys| < 25 27 = sgn(y;) max (Jy;| — ¢;A*, 0) otherwise, where
A*is a Toot of f(A) = > 4, cimax (|y;| — ¢;A,0) — 2. This root-finding problem is solved

efficiently by bisection.

5 Numerical examples

This section investigates operating characteristics of the proposed CMLR test with regard to
the size and power of a test through simulations and compare with several strong competitors
in the literature.

For the Gaussian graphical model, we examine three different types of graphs— a chain
graph, a hub graph, and a random graph, as displayed in Figure 1. For a given graph
G = (V,€), Q is generated based on connectivity of the graph, that is, w;; # 0 iff there
exists a connection between nodes ¢ and j for ¢ # j. Moreover, we set w;; = .3 if ¢ and j
are connected and diagonals equal to .3 + ¢ with ¢ chosen so that the smallest eigenvalue of
the resulting matrix equals to .2. Finally, a random sample of size n = 200 is drawn from
N(0,27h).

In what follows, we consider two hypothesis testing problems concerning conditional

14



independence of components of a Gaussian random vector X = (Xj,---,X,). The first
concerns null hypothesis Hy : wj,;, = 0 versus its alternative H, : w;y;, # 0; i0 # Jo, for
testing conditional independence between X, and Xj,. The second deals with Hy : w;,; = 0;
1 <7 #ip < pversus H, : w;; # 0 for some j # 1y, for testing conditional independence
of component ig with the rest. In either case, we apply the proposed CMLR test in Section
2 and compare it with the univariate debias test of [11] in terms of the empirical size and
power only in the first problem. To our knowledge, no competing methods are available for
the second problem in the present situation.

For the size of a test, we calculate its empirical size as the percentage of times rejecting
Hy out of 1000 simulations when Hj is true. For the power of a test, we consider four
different alternatives: H, : w;; = wg) for (i,7) # (do,J0) and w%)jo = w’%“”, I =1,---,4.
Under each alternative, we compute the power as the percentage of times rejecting Hy out
of 1000 simulations when H, is true.

With regard to tuning, we fix 7 = .001 and propose to use a vanilla cross-validation to
choose the optimal tuning parameter K for our test by minimizing a prediction criterion
using a five-fold CV. Specifically, we divide the dataset into five roughly equal parts denoted
by Dy, - - ,Ds. Define il and i_l respectively as the sample covariance matrices calculated
based on samples in D; and {Dy,--- , D5} \ D;; | = 1,---,5. Similarly, define ﬁ,l(K) to
be the precision matrix calculated based on sample covariance matrix f]_l; l=1,---,5.
The five-fold CV criterion is CV(K) = 57137 (— log det (Q_Z(K)) + tr [f)lﬁ_l(K)] —p).
Then the optimal tuning parameter is obtained by minimizing CV(K') over a set of grids in
the domain of K. Finally, K* = argmin , CV(K) is used to compute the final estimator
based on the original data.

For the first testing problem, the nominal size of a test is set to 0.05 for our CMLR
test and the univariate debias test of [11], denoted as CMLR-chi-square and JG, where

the confidence interval in [11] is converted to a two-sided test. For each graph type, three
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different graph sizes p = 50,100, 200 are examined. As indicated in Table 1, the empirical
size of the CMLR test is under or close to the nominal size 0.05. Moreover, as suggested in
Table 1, the power of the likelihood ratio test is uniformly higher across all the 12 scenarios
with four alternatives and three different dimensions, where the largest improvements are
seen for the hub graph, particularly with p = 100, 200 for an amount of improvement of 50%
or more. This result is anticipated because the likelihood method is more efficient than a
regression approach.

To study operating characteristics of the constrained likelihood test, we focus on the
validity of asymptotic approximations based on the chi-square or normal distribution under
Hy. For the first problem, Figure 2 indicates that the chi-square approximation on one degree
of freedom is adequate for the likelihood ratio test. Similarly, for the second testing problem
involving a column/row of €2, Figure 3 confirms that the normal approximation is again
adequate for the CMLR test. Overall, the asymptotic approximations appear adequate.

For the linear model, we perform a parallel simulation study to compare the CMLR
test with the debiased lasso test [28, 24] and the method of [29]. In (5), we examine
(n,p) = (100, 50), (100,200), (100, 500), (100, 1000), in which predictors z;; and the error
¢; are generated independently from N(0, 1), where 3° = (1,2,3,8%,0) and ||Bz|> = {/10;
1 =0,1,...,4. Now consider a hypothesis test with null hypothesis Hy : fp = 0 versus its
alternative H, : Sp # 0, where we let |B| = 1,5,10. With regard to size, power, and tuning,
we follow the same scheme as in the Gaussian graphical model.

As indicated in Table 2, the empirical size of CMLR-chi-square and CMLR-~normal
are close to the target size 0.05, while the former does better than the latter for |B| is small
and worse for large |B|, which corroborates with the result of Theorem 2. Moreover, the
power of CMLR-chi-square is uniformly higher across all the three scenarios with four
alternatives compared to the other two competing methods. Interestingly, when |B]| is large,

the method of [29] seems to control the size closer to the nominal level than the CMLR
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test, but the situation is just the opposite when |B| is not large. Additional simulations also
suggest that similar results are obtained with additional correlation among covariates, which
are not displayed in here.

Concerning sensitivity of the choice of tuning parameters (K, 7) for the proposed method,
as illustrated in Figure 7, the choice of 7 is much less sensitive than that of K. Moreover,
when K > K°, both the size and power become less sensitive to a change of K. With regard
to the estimated K by cross-validation, the estimator K is close to K° = 3 in the linear
regression example, as suggested by Table 2,

In summary, our simulation results suggest that the proposed method achieves high power
compared to its competitors [11, 28, 24, 29]. Moreover, the asymptotic approximation seems

adequate in all the examples.

Figures 1-7 and Tables 1-2 about here

6 Brain network analysis

Alzheimer’s disease (AD) is the most common dementia without cure, while the prevalence
is projected to continuously increase with an estimated 11% of the US senior population in
2015 to 16% in 2050, costing over 1.1 trillion in 2050 [2]. AD is now widely believed to be a
disease with disrupted brain networks, and cortical networks based in structural MRI have
been constructed to contrast with that of normal/healthy controls [10]. Using the ADNI-1
baseline data (adni.loni.usc.edu), we extracted the cortical thicknesses for p = 68 regions of
interest (ROIs) based on the Desikan-Killany atlas [5]. Since previous studies (e.g., [9, 17])
have identified the default mode network (DMN) to be associated with AD, we will pay
particular attention to this subnetwork, which includes 12 ROIs in our dataset. As in [10],
we first regress the cortical thickness on five covariates (gender, handedness, education, age
and intercranial volume measured at baseline), then use the residuals to estimate precision

matrices, for 145 AD patients and 182 normal controls (CNs) respectively. Our approach
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here differs from previous studies [10, 17] not only in estimating precision matrices, instead
of covariance matrices, but also in rigorous inference.

For this data, we consider a hypothesis test of Hy : w;; = 0 versus H, : w;; # 0;
1 <i# j < 12. For each estimated network for the two groups, significant edges under the
overall error rate o = 0.05, after Bonferroni correction, are reported for the proposed CMLR
test and the debias test of [11] or JG. As indicated in Figure 7, the CMLR test yields 28
and 33 significant edges for the two groups of CN and AD, which is in contrast to 29 and 28
significant edges by the JG test. In other words, the CMLR test detects slightly more edges
than the JG test, which is in agreement of the simulation results in Table 1.

In what follows, we will focus on scientific interpretations of the statistical findings by
the CMLR test. As shown in [17], it is confirmed that for the AD patients, as compared
to the normal controls, there seems to be reduced connectivity within DMN, but increased
connectivity for some other ROIs, that is, the salience network and the executive network
reported in [17]. Moreover, it seems that connectivity between the left and right brain within
DMN somewhat deteriorates for the AD patients. To further explore the latter point, we then
separately test the independence between each node in DMN and the other nodes outside
DMN using the proposed CMLR test with the standard normal approximation. Specifically,
for node ¢ in DMN, we test Hp : w;; = 0 for all j ¢ DMN versus H, : w;; # 0 for some
7 € DMN, where DMN denotes the set of 12 nodes in DMN. This amounts to 2 x 12 = 24
tests, with 12 tests for each group. Specifically, it is confirmed that for the group AD,
only L-parahippocampal (left side) is independent of all the other nodes outside DMN; in
contrast, for the CN group, in addition to L-parahippocampal, three other ROIs in DMN,
L-medial prefrontal cortex, R-parahippocampal, and R-precuneus are independent of all the

other nodes outside DMN.
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7 Appendix

The following lemmas provide some key results to be used subsequently. Detailed proofs of
Lemmas 2-8 are provided in a online supplementary materials due to space limit. Before
proceeding, we introduce some notations. Given an index set A C {(7,7) : 1 <i < j < p},
define CMLE Q4 as Q4 = arg max q. g g ,.—o Ln(£2), with = indicating positive definiteness
of a matrix. Worthy of note is that Q4 becomes the oracle estimator when A = AY. where
AY = {(i,7) : 1 < j,w% # 0} is the index set including all the indices corresponding to

nonzero entries of the true precision matrix Q° = (wy;)pxp

Lemma 2 For any symmetric matrices Cy and Cy, vec(Cy) " vec(Cy) = tr(C,Cy). More-

over, for any positive definite matriz C > 0,

V (logdet C) = —vec(C™1), V*(—logdetQ’)=C',C!, (14)
I=1x0g, 50, (15)

Var (vec(X X ")) =4I with X ~ N(0,X°), (16)
vec(C) I vec(C) = 1 tr (£°CX°C) . (17)

Lemma 3 For any symmetric matric T and v > 0
P(|tr ((S—X)T)|>v) < 2exp (—nW) , (18)
where ||T||*> = 2 Var (tr (S — X°)T')). Furthermore, forTy,--- Tk such that | T;|| < co; k =

1,---, K with ¢cg > 0 and any v > 0, we have that
2
_y0 > < v
P (1%22)% |tr((S — X°)Ty)| > V) < 2exp < ngcg o +logK> , (19)

which implies that max;<p<x [tr((S — X°)T})| = O, | coy/ bgTK . Particularly, for anyv > 0

and any index set B,

2
P (|| vecg (S — ZO)HOo > 1/) < 2exp (—

1%
"N (39) 1 SuAan(20)

maxr

+log|B|) : (20)

n

implying that || vecg(S — )|l = O, ()\mm(go) /longI)

Lemma 4 (The Kullback-Leibler divergence and Fisher-norm) For a positive definite matriz

Q € RP*P, q connection between the Kullback-Leibler divergence K(Q°, Q) and the Fisher-
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norm [|2° — Q|| can be established:

1 K(Q0 Q
KQ,Q) > min RVESCLELUR RV (21)
164/2 26
1 Q0 -0
KQ°.Q) > min( | H)HQO—QH- (22)
164/2 24

Lemma 5 (Rate of convergence of constrained MLE) Let A D A° be an index set. For QA,

we have that
190 - Q) < 121, vee(S — S)]a. (23)
on the event that {HI,;A/Q vec (X0 — 8|2 < ﬁ} Moreover, if ‘A“# — 0, then

~ Allo
16— Q0 =0, [ /! Aloer (24)

n

Lemma 6 (Selection consistency) If K =|A°], 7 < Ammminl(mjglmcim), then

s (P (80 £ 80) P (8 % Bus))

- Omin -
< 2exp (n— + 2logp) + exp <_n + A% logp>

2560 x 512 2560

2
i min(Cynin/512 ,3/32) 0
i (\/ 48)2,,,(|AY+[BJ) s Amaa( 2 ))

+2exp | —n 1SAZ_(50) +2logp | — 0 (25)

max

as n — 0o under Assumptions 1-2, where QO QW and Cyin are as defined in (1)—(3).

Lemma 7 Let v, = (Vk1, - Yem) € R™; k= 1,--- ,n be iid random vectors with Var(v,) =
I, xm. If m is fixed, then

n D ells < s asn - o (26)
k=1 .
Otherwise, if max (m, mom/n, ms/n, mym®?/n?) — 0, where m; = max;<;<m Evi; =23,
n 2
then |2y Yellz — LN N(0,1), asn — oo. (27)
nyv2m

Lemma 8 Let X ~ N(0,X°) andy = tr(X X" —X°)T) with T a symmetric matriz. Then

E(*™) < (2m =112 (E(v*))" for any integer m > 1. (28)
Lemma 9 (Asymptotic distribution for log-likelihood ratios) The log-likelihood ratio statistic
Lr = 2(Ln(ﬁﬁ) — L(Q0)), where ﬁg is the MLE over index set A with A D A°. Denote

by Ko the condition number of 3X°. If %\/%ng — 0 with p > 2, then,
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Lr — |B|

VoI5

where B = A \ A% W g follows a chi-square distribution X% on |B| degrees of freedom and

Lr 2 Wig|, if |B| is a constant; Lo, Z, if |B| = oo,

Z ~ N(0,1), respectively.

Proof of Theorem 1: By Lemma 6, P (ﬁ(o) = (AZA0> — ;P (ﬁ(l) = ﬁAoUB> — 1, as
n — oo under Assumptions 1-2. Then, the asymptotic distribution of the likelihood ratio
follows immediately from Lemma 9.

Proof of Proposition 1: Let A = A°U B. By Lemma 6, P (ﬁ(l) = ﬁAouB> — 1, as

n — o0o0. Asymptotic normality of vecp <(AZ AoUB) follows from an expansion of the score

) -

A
33) of the online

equation. Specifically, note that

Vnvecg (ﬁAOUB - QO> = \/?ﬁ [IE;] B <V6CA (A) — vecy (R(&
B.

where R(AA) =X 222(—1)"(3A20)i. Let J = I;A be as defined in (

supplementary material. Multiplying J 5713/2 on both sides of this identity, we obtain

Vindg i veey (ﬁAoUB - 90> - ng}EfQJB’ B (vec 1 (A) = vecy (R(B A))) . (29)

Next we show that the first term tends to N(0, I|p|x|p|) in distribution and the second term
tends to 0 in probability. For the second term, following similar calculations as in (B.34) of

2
the online supplementary material, we have that HJBTIE?QJB A:BH =z'Jr—x' I, oz <
b ) 2 )

x'Jz < 22 (2|2 for any & € R4, This, together with (B.37) of the online supple-

mentary material, implies that

H ST Y2 T, svecs (R(A L))

<. YV2vec; (R(A; H
, S 5\/ﬁHJ VecA<R(AA)) )

—“O'A’bgp> = o,(1) (30

< .MAm%n(zO)HR(&A)stﬁmouzﬁguizop( T

under Assumption 2. For the first term, note that
1. 1 __
Cov <§JB}B/2JB, Jveca(XXT -5, §J37g2J37 avec (XX — 20))
_ 1 1 _
= JB7IB/2JB7ACOV (5 vecy (XX T — %%, 3 vecj( XX — ZO)) JA,BJB,IB/Q

—1/2 —1/2
= JB,B JB,AIA,AJA,BJB,B = Iipjx|p) -

where the second last equality uses the property of exponential family [4]. Hence, by the
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central limit theorem, vec;(A) AN (O, [I -1 Finally, by Slutsky’s Theorem, we

obtain that \/n vecp (ﬁAOUB — QO> AN (O, I! ]B ) This Completes the proof.
Proof of Proposition 2: By Theorem 3 of [22], P ({,@ Blos ) — 1, as n,p — oc.

Hence, with probability tending to 1,

5g> = vecp (X JoupXaoun) " X jo,5Y) = vees ((X o,z Xa008) ' X Joup(Xa0usB%p + €))

= B% + vecp ((XXOUBXAOUB)_IXXOUBG) :

Simple moment generating function calculations show that when |B| is fixed,
veer (X JoupXaoom) " XJoup€) ~ N (0, [(XToupXaoun) " 55)

Hence, \/ﬁ(,ég) - 3%) AN <0, [(n_lXXOUBXAouB)_l]BB). This completes the proof.
Proof of Corollary 1: Let A = A° U B. The result follows directly from Theorem 1.
Specifically, we bound the asymptotic covariance matrix of [v/n(@; — w?j)] (J)eB for any

B of fixed size. Note that the asymptotic covariance matrix of \/ﬁvecB(ﬁ i — Q° can be

bounded: [IE}A]BB = [T pp = 2[Q°®, Q% 5. Moreover, for any (i,j),(/,j') € B,

2[Q° @, Q°); ;) (.1 can be written as

¢1+H<z’#i>2¢1+ﬂ<i’”') tr ((ee] +ese)00eve] + el 2)
= V11 #)VI+HIE #J) (wpwpy + o) -

Using vecp(C) = (1/1 +1(i # j)cij).jen, the asymptotic variance of [v/n(@;; — w?j)}(i’j)eB

is upper bounded by a |B| x |B| matrix [w)w? )+ w) ,wg}

it i Wi Particularly, when

(1.5)€B,(#".j)€B’
B = {(i,4)}, this reduces to an upper bound on the asymptotic variance [w?j]Q + wowy;.
This completes the proof.

Proof of Theorem 2: By Theorem 3 of [22], P ({B( AOUB} n{B® }) — 1, as

n,p — 0o, by Assumption 1, where ,@fj is the least square estimate over A. Hence, in what
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follows, we focus our attention to event {,3(1) = B% 5 N {,3
Easily, after profiling out o, we have A,,(B) = n <log(]|y — XB©® H%) —log(||ly — Xﬁ(l)H%)).

Then an application of Taylor’s expansion of log(1 — z) yields that

n (log(ly — XBIE) —log(ly - XB°)) = —n3 ZEXKOZIXOS gy

— il el|3’
where § = B — 3°. Moreover, on the event {ﬁ(l) = ,BA ot N{BY =351,
BY = B° + (X houpXaous) "X oup€ and B9 = 8% + (X [, X 0) ' X e, (32)

implying that X (8% — 8°) = Pu_ge and X(B(O) — %) = Pye. Consequently, replacing
5 = BW — 3% the right-hand of (31) reduces to

6 PAO Be n > ETPAO B(—Zi
”Z znenu I (JPA““B”Z—(- o)

= ill€lls

= €T € ‘
Similarly, replacing & by 8" — 3°, (31) becomes —# (eTPAoe + >, (F—fw%) Taking
2 1||€ 2

neT(PA

0up=Pa0)e | R(€), where R(e) is

the difference leads to that A, (B) = Tk

— TPAOG

€ (Pyup — Pyo)e (Z; %(e PAouBE) (eTPAoe)Fﬁl)
5 .

i : PAOUBG i— 1) i

i=2 ille H2 i=2 7JH6H2

Note that Pjo,p — Pyo is idempotent with the rank |B|. Moreover, €' Pyoe < €' Pjo_pe.

Thus, R(€) is no greater than

. (€ " Py, e
€ (Paos — Pa)ey (ﬁ
2

1=2

-1
€' Py g€ (1 eTPAouBe)

lell3 €13

i1
) :€T<PAOU3—PAO)€
on the event that {e” Py ge < |€]|2}. This, together with the facts that n/||e||2 = 1 and
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|A°| /n — 0, implies that A,(B) % x2(|B|) when |B| is fixed, and 22Z=IBl % (0 1) when

|B| — oo and VB

NP

|A%+|B))

~ — 0, because

R(e)/\/ﬁ < €' (Pjoyup — Pyo)e €' Pyope (1 B eTPAoUBe)_l L

VBl lell3 le€ll3

0
provided that —V‘Bm:IHBD — 0 and |B| — oo. This completes the proof.
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Figure 1: Three types of graphs used in our simulations.
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Figure 3: Empirical null distribution of our likelihood ratio test based on the normal ap-

proximation for the second testing problem involving a single column/row.
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Figure 4: Sensitivity study of power as a function of tuning parameters 7 and K when
n = 100, p = 100, and Ky = 3 in the linear regression problem based on 1000 simulations.

Dotted and black lines represent empirical power and sizes of the proposed method, while

red lines serve as a reference of the nominal size a = .05.
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Figure 5: Estimated networks by the proposed method (first row) and the method [11]

(second row) for the CN (Left) and AD (right) groups, where reported edges are significant

under a p-value of .05 after Bonferroni correction. Nodes with square shape belong to DMN.

The solid edges denote those that are shared by the two groups, whereas the dashed edges

denote those that are only present within one group.
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CMLR-chi-square JG

Graph  (n,p) Size Power Size Power

band (200 50)  .054 (.27, .78, .98, 1.0) 043 (.24, .77, .99, 1.0)
(200,100) 055 (.30,.79, .98, 1.0)  .042 (.24, .75, .99, 1.0)
(200,200) .048 (.29, .80, .99, 1.0)  .036 (.23, .74, .98, 1.0)

hub (200,50) 019 (.10, .36, .74, .95) 005 (.06, .27, .66, .92)
(200,100) .028 (.12, .43, .81,.96)  .005 (.02, .17, .54, .86)
(200,200) 031 (.16, .55, .86,.98)  .001 (.02, .15, .50, .86)

random  (200,50) 034 (.15, 51, .86, .98)  .025 (.14, .49, .83, .98)
(200,100) .041 (.21, .68,.94,1.0)  .018 (.11, .53, .92, .99)
(200,200) 049 (.15, .47, .81,.96)  .034 (.14, .41, .78, .95)

Table 1: Empirical size and power comparisons of the proposed CMLR test and test of
[11], denoted by CMLR-chi-square and JG, in the first testing problem for the Gaussian
graphical model based on 1000 simulations.
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B] n p  Method Size  Power K

1 100 50 CMLR-chi-square 0.057 (0.165,0.489,0.837,0.972)  3.36 (1.08)
CMLR-normal 0.061 (0.17,0.495,0.84,0.972) NA
Zhang & Cheng  0.039 (0.109,0.262,0.579,0.788) NA
DL 0.033 (0.132, 0.404, 0.724, 0.917) NA

(
(
(
(
200 CMLR-chi-square 0.055 (0.17,0.524,0.829,0.974)  3.191 (0.591)
(
(
(
(

CMLR-normal 0.058 (0.176,0.532,0.834,0.975) NA
Zhang & Cheng  0.013 (0.042,0.116,0.306,0.476)  NA
DL 0.052  (0.144, 0.358, 0.694, 0.888) NA

500 CMLR-chi-square 0.051 (0.175,0.509,0.838,0.963)  3.159 (0.583)
CMLR-normal 0.051 (0.179,0.513,0.84,0.963) NA
Zhang & Cheng NA NA NA
DL NA NA NA

1000  CMLR-chi-square 0.056 (0.165,0.512,0.828,0.962)  3.115 (0.371)
CMLR-normal 0.058 (0.17,0.522,0.83,0.964) NA
Zhang & Cheng NA NA NA
DL NA NA NA
100 50 CMLR-chi-square 0.058 (0.11,0.328,0.63,0.865) 3.33 (0.94)
CMLR-normal 0.052 (0.109,0.322,0.619,0.862) NA
Zhang & Cheng 0.05  (0.063,0.115,0.226,0.346) NA
DL NA NA NA

200 CMLR-chi-square 0.066 (0.114,0.297,0.601,0.878)  3.188 (0.606)
CMLR-normal 0.063 (0.112,0.289,0.592,0.878) NA
Zhang & Cheng 0.037 (0.052,0.111,0.153,0.253) NA
DL NA NA NA

500 CMLR-chi-square 0.064 (0.124,0.321,0.625,0.895)  3.153 (0.56)
CMLR-normal 0.061 (0.118,0.315,0.618,0.893) NA
Zhang & Cheng NA NA NA
DL NA NA NA

1000 CMLR-chi-square 0.059 (0.118,0.304,0.612,0.872)  3.11 (0.355)
CMLR-normal 0.057 (0.112,0.3,0.604,0.869) NA
Zhang & Cheng NA  NA NA
DL NA NA NA

10 100 50 CMLR-chi-square 0.068 (0.094,0.252,0.528,0.794) 3.41 (1.20)
CMLR-normal 0.059 (0.085,0.233,0.503,0.775) NA
Zhang & Cheng  0.054 (0.055,0.085,0.146,0.21)  NA
DL NA NA NA

200 CMLR-chi-square 0.086 (0.115,0.253,0.514,0.786)  3.193 (0.618)
CMLR-normal 0.079 (0.104,0.238,0.487,0.767) NA
Zhang & Cheng 0.049 (0.055,0.089,0.106,0.152) NA
DL NA NA NA

500 CMLR-chi-square 0.093 (0.123,0.286,0.54,0.773) 3.159 (0.585)
CMLR-normal 0.078 (0.113,0.262,0.516,0.76) NA
Zhang & Cheng NA NA NA
DL NA NA NA

1000 CMLR-chi-square 0.073 (0.123,0.252,0.526,0.779)  3.11 (0.355)
CMLR-normal 0.066 (0.112,0.23,0.497,0.766) NA
Zhang & Cheng NA NA NA
DL NA NA NA

ot

Table 2: Empirical size and power comparisons in linear regression as well as estimated tun-
ing parameter K by a 5-fold cross-validation over 1000 simulations. Here “CMLR-chi-square”,
“CMLR-~normal”, “DL”, and “Zhang & Cheng” denote the proposed test based on a chi-square
approximation, a normal approximation, the debias method of [28], and the method of [29]. Note
that the nominal size is 0.05, DL is a test converted from a confidence interval, and NA means that
a result is not applicable or the code fail to return a result after a code’s runtime exceeds one week.
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Appendix for “On high-dimensional constrained
maximum likelihood inference”

A Technical details of the counter example

Lemma 1 (A counter example) In (5) in the main text, we write y = By + B x, where x =
(21,...,2p) are independently distributed from N (p;, 1) with py =0 and p; =1; 2 < j <p,
and € is N(0,1 —n~"), independent of x. Assume that By = 0 and B = n~'/2,0,...,0),
or, y = n~ 2z, + €. Then Assumption 3 is violated. Now consider a hypothesis test of
Hy : By = 0 versus Hy : By # 0. ]flo% — 0 as n,p — oo, then Ap(B) 2 0o asn,p — oo,

with B = {0}.
Proof of Lemma 1. Under the linear model, we have that
yi=Bo+B m+ei=1...n, (A1)

where 3 = ($1,0,---,0) and By = 0, &; = (i1, ..., Tip) ~ N(p, Lxp), and ¢ ~ N(0,1 — 5?)

and is independent of «;. Then, the constrained MLE for (3, is

n

A1 . - Sy
ﬁé )= argmin z:(yZ — By — B x;)? =G — cor(wje, y) —Tjr (A.2)
P 1(Bi0)<1 ] Sz
where z.; denotes a n-dimensional vector (14, ...,2,;), cor denotes the sample correlation

between two vectors, T and s, denote the sample mean and sample covariance of a vector z,



respectively, and

J* = argmax cor(z.;,y) (A.3)
1<j<p

denotes the index of which feature has the largest sample correlation between y. For each

observation (y;, @;), it is easy to write out its joint distribution

1 B 0 -+ 0

B 1 0 -+ 0

(yiaxilw"axip) ~ N (Blulvub'"nup)—r? 0 O 1 --- 0 . (A4)
0 0 0 1

Hence, the conditional distribution of @x; given y; is

1— 42 0 0
. 0 1 --- 0

xily ~ N | (Br(ys — Bupa) + g, o, - - ;,up) ) ) o _ (A.5)
0 0 - 1

from which we can easily see that components of x; are conditionally independent given v;.

Note that

ot (x.j,y) = S ACAE Vi S T (A.6)

and Var(y) = Var(x;;) = 1. Hence,

_ d
vneor(z.g,y)|ly = Z; + 0,(1), (A.7)
where Z; = 2":(;?—{)(3;—@)’ j=1,...,p, and Z;’s are independent and normally distributed



conditioned on y. By (A.5), we have that

A NN(ﬂlsy,l—@f) and Z; ~ N(0,1) for j =2,...,p. (A.8)

Consequently, conditioned on y,

A _— C _ - T.ix — Lhix o .
B8 = §— ot (., y)s—yf-j* = §— B + Brjun — cor (x4, y)SyJS—MJ — Cor(2.j+, y) SMJ
x‘j* a:_j* x4j*
Now, we let iy = 0 and pg = --- = p, = 1. Moreover, note that
_ 1 j?j* — [hj* 53] — My logp
_ — i — < — | < . .
y— P =0, <\/ﬁ> and 5. = 112?%; 5e, <0 o (A.9)
Hence, if 10% < O(1), then
B =~ s, 22+ 0, (=) - (A10)
J

Now we choose (; to be small number so that with nonzero probability {j* # 1}, that is,
we need P(Z; < minyg<j<, Z;) to be nonzero, which is easy to achieve when f; is chosen to

be close to 0. Under the event {j* > 2}

A1 1 _ s 1
B = —coi(we,y)s ~ 0 <%> = —2lgja§300f($-j7y)i +0, (%)
logp 1
- (/" ) ()
because maxs< <, €or(z = 0, <\/ logp ) and s, — 1 in probability and s, , — 1 in

probability. Hence, n (50 ) — o0 if p = o0 as n — oo. Next, we show that under this

model, the log-likelihood ratio test statistic is of the same order as nt under the null model.



Toward this end, denote by f(80) = supygj,<1,0>0 n~'L,(Bo,3,0). By definition of B(()l),

it must maximizes f(fp) as a function of 5y and hence must satisfies f’ (Bél)) = 0. Moreover,

we note that the log-likelihood ratio can be rewritten in terms of f(-)

An(B) = 2n(f(B5") — f(0)) (A.11)

Applying a Taylor expansion around 381)7 we obtain

Au(B) = —n(BM)2F"(67) (A.12)

where £* is some number between 0 and Bél). Under log p/n — 0, it is easy to show that B((]l)

is consistent, hence converges to 0 in probability. Hence, A, (B) = —n(8")2(f7(0)+0,(1)) =

0o, which completes the proof.

B Proofs of Lemmas 2-9

This section provides detailed proofs of Lemmas 2-9 to be used in “On high-dimensional

constrained maximum likelihood inference”.

Lemma 2 For any symmetric matrices Cy and Cy, vec(Cy) " vec(Cy) = tr(C,Cy). More-

over, for any positive definite matriz C > 0,

V (logdet C) = —vec(C™1), V?(—logdet Q) =C ', C™, (B.1)
I=3:3"@,%° (B.2)

Var (vec(X X ")) =4I with X ~ N(0,%9), (B.3)
vee(C) I vec(C) = 5 tr (2°CX°C) . (B.4)



Proof of Lemma 2: By the definition, (B.1) follows from an identity:
vec(Cy) " vec(Co) = > (L+1(i # 5))S1(i, ) Sa(i,j) = Y _ Si(i,§)Sa(i, j) = tr(81.S5) .
i<j 2%

Moreover, it follows from Taylor’s expansion of the logdet function that

log det(C + A) ~log det(C) = tr(C™'A) — L tr ((CTA)) + of|C 2 ACT )
1
= vec(C™H " vec(A) — 5 vec(A)T vec(CTTAC™) + O(||C_1/2AC_1/2||%)

1
= vec(C™HT vec(A) — 3 vec(A)T (C7' @, C7) vee(A) + o(|[CTH2ACT2)3),

where the definition of ®, and (B.1) have been used. This yields (B.2).
For (B.3), the log-likelihood for X ~ N (0, %) is —3 vec(Q°) " vec(X X T)+4 log det(Q2°).
Using properties of the exponential family [2], Var (3 vec(X X ")) = V? (=1 logdet Q°) =1,

implying (B.3). Finally, for any symmetric matrix C, note that

1

vec(C) "I vec(C) = 5 vec(C)' (2° @, 2°) vec(C)
1 1
= §vec((3’)T vec(X'CXY) = étr(CEOCEO),

leading to (B.4). This completes the proof.

Lemma 3 For any symmetric matriz T and v > 0

P(|tr (S — ZOT)| > v) < 2exp (—ngprpor ) (B.5)

v
n
I T*+8v[IT||

where | T||* = & Var (tr (S — X°)T)). Furthermore, for Ty, - -- , Tk such that | Ty|| < co; k =



1, , K with ¢co > 0 and any v > 0, we have that

2
-0 > < SR
P (12}2&( tr((S — =T)| > V) < 2exp ( n90(2) = + log K) : (B.6)
which implies that max;<p<x |tr((S — X)T})| = O, (cm / %) . Particularly, for anyv > 0

and any index set B,

V2

(329) + 8V 4 (20)

"oz

max

P (|| vecs(S — X°)||o > ) < 2exp (— + log |B|) : (B.7)

implying that || vecg(S — )|l = O, ()\max(zo) logIBl)'

n

Proof of Lemma 3: By Markov’s inequality, for any v > 0,

o () ey (5 5m)

< exp <logEeXp (#tr ((S- EO)T)) - fhéﬁy) )

P(tr ((S-%0T) >v)

IN

(.

v~

I

. Moy/n o
where 7 is chosen such that v € [0, VTV, @HF} for some constant 0 < M, < 1, which is to

be determined later. Moreover, after some calculations, we have that

Eexp (@ w((S-39T)) = (Eexp (%ﬁ tr (XXT - ZO)T)> )
— exp (—% tr(EOT)> det (I - %EOT) _n/2(,B.8)

where X ~ N(0,X°) and the last equality requires that v/nQ2° = T, which is ensured by

Mov/n AL
the fact that v < VST, < VSTV Consequently,

—n/2
log E exp (Vgﬁ tr ((S — EO)T)> — log det (I - %EOT) - 7? tr(S°T).  (B.9)
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An expansion of the logdet function gives

fy

log det(I — —=X01")""/2
n

- %ﬁ tr(20T) + - te(B°T)) + 5 D1 e (o)), (B.10)

l
For I, note that I < 2 3. 1-! (%) < | TIP s . Similarly, 1, < M2 T2 -
Vv 3—Mo

5, Where M; = M) Minimizing this upper bound of I; as a function of v over the

interval [0, %ﬂ , we obtain that

2

L < _;I_A;"(I)I (l/ - MHTD otherwise.
A combination of these two cases yields that I; < nMou? Set My = 47", and

 AMo (ML) T +2v|[T]

then M; = 11/9, we obtain the desired results

2

P(tr ((S — EO)T) > 1/) < exp ( - n9||T||2 :_ 8VHTH) ,

for any v > 0. The other direction follows exactly the same argument, and thus is omitted.
Finally, (B.7) follows by letting {T},--- ,T}} = {(e]e; + ejTei)/Q}(ij)eB then applying
an inequality ||VX%(e/ e; + e €;)VE?/2||% < Anax(E°) and a union bound. This completes

the proof.

Lemma 4 (The Kullback-Leibler divergence and Fisher-norm) For a positive definite matriz



Q the following connection holds:

1 K(Q0 Q
K@,9) > min| L YVEED) 0 o0 (B.11)
16v/2 26
1 Q-—Qo
K(Q°,Q) > min( i ”) 12— Q. (B.12)
16v2 24

Proof of Lemma 4: Let A = Q — Q" and Aj,--- , A\, be the eigenvalues of vV0AV/30.
Then A\; > —1; j =1,--- ,p, because Iy, + VEAVIEL = /30030 is positive definite.

Moreover, let By = 7 | NI()\; < 1/3), By MNI(N\; > 1/3), and By = Y 7 NI(A; >

i=1""
1/3). Easily, |2 — Q% = v/B; + Bs. Using the inequality = — log(1 + z) > 6 '2?I(z <
1/3) + 87 'zl(z > 1/3) for & > —1, we have that

K(Q°,Q) = (VEIAVED) — logdet(Ipo—i-@A@))

5 (i
_ %2 ;1og(1+/\)

p
1270 CNI(A < 1/3) + 1671 ) NN > 1/3) = 127" By + 167" B .

i=1 i=1

v

Next we examine two cases. First, if By < Bs, then féf_’;ﬁf > 1271\%::]2;133 = 16\/3?2 = 16{/5
because B2 > Bs. If B; > By, then

K(Q° Q) < 127'B, + 1671 By < B < B+ B, > VB1 + B HQ QOH
|2 — Q0| — VB + By T 12¢/B1+ By T 24VB1 + B 24 24

Similarly,

K(Q° Q) \/12 'Bi+167'By \/24 (Bi+Bs)  K(Q°,Q)
7 > /K QO /K (Q — ’ )
12— Qo = VB + B, - (¥ VB1 + By 21/6

This leads to (B.12) and (B.11).



Lemma 5 (Rate of convergence of constrained MLE) Let A D A° be an index set. For ﬁjp
we have that

192 — Q° < 12|17 tll? vec(20 — )]s (B.13)

on the event that {HI~1~/2 vec;(2% = S)|2 < g5} Moreover, if ‘A“# — 0, then

~ Allo
9 -2 =0, (/152 (B.14)

Proof of Lemma 5: By definition of the CMLE, Ln((AZA) — L,(Q2°) >0, or —log det SAIA +

~

logdet Q° < —tr((25; — QY)S). By the Cauchy-Schwarz inequality, this inequality becomes

~

2K(Q°,9;) < (25— Q)(E° - 8)) < [VEA(Q; — Q)WE 5[ T;7 vec (=0 = S)|»
= Q4 — Q1T 7 vee; (30 = S)|l2 (B.15)
On the other hand, by (B.12) ”én—?w”) > min <ﬁ§ Hﬁf‘;lm“) which, together with (B.15),
implies that min (ﬁi’ ”QAI_QQ ”> <||I; ~1~/2 vec ;(2°—8)||o. If ”Q ﬂ I < Wi’ then it follows
immediately that ||€; — Q°|| < 12|]I~1~/2vecA( S)|. fw > L=, then ;Lo <

11 ; ~1~/2 vec(X? — S)||, which does not happen on the event {||I~1~/2 vec ;1 (X0 = 9)|2 < Wi}'

Moreover, by property of exponential family [2], Var(vec;(3° — S)) = 4n~'I; ;. Thus,

Var(I~ Pyec; (20— 8)) = 4n~'1, 5, z- This, combined with Lemma 3, implies that

- 1 Allo
11572 vee (20 = 8)[l> < /|1 vees (320 = S)[low = O, | |/ | |n ep (B.16)

on the event that {||I~1~/2 vec;(X° — 9)2 < ﬁi} This event, on the other hand, happens

with probability tending to 1 by the assumption that l‘i“% — 0. This completes the proof.



Lemma 6 (Selection consistency) If K = |A°], 7 < "”"m‘“l(z'mg'l“" Cin) , then

max (P ((AZ(O) # ﬁAo> P (ﬁ(l) + ﬁA°uB)>

nCi -n
< 2 21 2560 <512 T 14!
exp ( 0 T ogp) + exp (2560 e T4 ng)
2
. mln( mm/512 73/32) 0
min (\/ 5 0 7)\maz(2 ))
+2 eXp n 48Amaz(‘A |+|B|) _.I_ QIng — 0 (Bl?)

18X2(320)

max

as n — 0o under Assumptions 1-2, where Q©, QW and Coip are as defined in (1)~(3).

Proof of Lemma 6: Let A = {(i, ) : ]w )| > 7,(i,j) ¢ B}. By definition, |A] < |A°),
ANB =0 and ;0405 105 < (1A% — |A]). Hence, if A = A°, then QO = Q05.
Suppose A # A% On event {A = A}; with fixed A # A° |A| < |4°), and AN B = 0,
we bound the Fisher-norm between AUB and an approximating point of Q° QY , =
argming.q, , , .—o K (2%, Q). Let %05 = (% 5) ! By the Karush-Kuhn-Tucker condi-
tions, vecaup(X9,5) = vecaun(X°). Moreover, let Apax = MAX A:| A|< K, ANB=0 Amax (2% ,5)

and Ay, = min 4 A< K, ANB=0 Amin (2% 5). We also define

g = S — 3% < min — » Amax (2° ,
15> T \/48Aﬁmw g )
where
~ K(9°,Q0 K290, Q0
= min min max (K (2°, Q) p), K2(Q°, Q245)) 1) (B.18)
A:A£AC, | A|=|A0|, ANB=0 | A0\ Al

By definition of the CMLE, L,(QM) — L, (2% 5) > 0, or — log det QM +log det 9, <
—tr((Q® — Q% 5)8). Now let A = Q) . — Q0 , and & = QU — Q) .. where ||®]|;, =

(i) AuB |A(1 | < (JA°| — | A|)7. By the Cauchy-Schwarz inequality, the forgoing inequality

10



becomes

—logdet(Ipy, + /Z%0p(A + @)1 /2%5) + tr(y/Z9 5 (A + @)1 /29 p)

< (A + 8)(S — 5)) = vees(B) vees (S — ) + tr(@(5, — 5)
= (Lip.aum vecaun(A) Il aup vecaus (B — S) + tr(@(S% 5 — S))
< | VR BYE|| T3 vocnin(Zhs - 8)], + l14° - LADIES s - S
< |VEBYELS| Al s VAT B - 51
2 E°) + e (E0) 7K
< AmaV/[ATU B H\/EAUBA\/EAUB IS0 — S|lee + 3A-L 7K (B.19)

on the event G, where Tyup avs = [Z%0up.aus @s 29up.Aus) On the other hand, by

AUB,AUB"
Lemma 4,

—logdet(Ipxp + 4 Soup(A + ®)\/X0up) + tr(y/ Z0s( (A +®) )\ Zhus)
> ||VEAUB A+'1) \/EDAUBHF ||\/2,04UB A—i—CI) \/E%UBHF
> H\/EAUBA\/Z UBHF ||\/2AUBA\/2?4UBHF

(A = 1 AD A (Bp)T (14°] — AN ()T

8v/2 ’ 12

>

IVELsAVE L slr IIVEYWsAVE Y 5% D (Bh0p) KT
8v/2 ’ 24 8

where the last two inequalities use that | My +M, |3 > 27| My ||| Ma| %, V29,5V E0 sl <

M (B20p) |21 < M (Bhup) 12117 < A (Bhu) (14°] = |A])?7?, and min(a — b, ¢ —d) =

max max max

11



min(a, ¢) — max(b, d). Combining this with (B.19), we obtain

||ZO S||OO+4)\m1n K

Anaxt/TATU B HV 20 pA

> min H\/EAUBA\/Z UBHF ”\/ZAUBA\/E%UBH%
- 8\/§ b 24 )

which implies that

Vs
F

on the event {A = A} NG. Next, note that

< Udnax v/ [AYU BJ[|S — X% + 44/ 65, 7K,

% (Ln QW) — QO)) 2 (L(2°) — L(Q9,5))
= 2 (@) = (@) + 1 (9 — Dp)(S — )
= 2 (LEOD) ~ L@5)) + (S — £p) (@0 — %)) +r (97— ) (S — 2)

< tr((S = 29 p) QY — QY ) + tr((S — )R — p))

+1tr ((Q° — Q%,5)(S — =) (B.20)

Amin mln( len Cmm 0 Chin
For the first two terms, using 7 < > o0 and ||§ — X% </ g MrEy e

max

have that on the event G

(S — 2R — Q%)) + (S — =% (QV - Q4 )

V=i,
man/AOUB S — X,
< 24min< 2 AU B||S - X% | I | )

IA

N s vecasn(s = 3+ 7RIS = Sl

16v/2

ALK
+£ + 3)\ K

4 mll’l

< 2UK(Q0,Q0,,) + 27 K (0,90 5)) = LIQ7) - L(QY,,).

12



which, together with (B.20), implies that for any A # A% |A| < K, AN B = (), we have that

{2a(@0) = L,(0%) 2 0 A = 4,6} € {1 ((9° - D5,5)(S — %) > L(9°) - L(Qu)}

Hence,
P <§(1> ] QAOUB> < 3 P (Ln(ﬁ(l)) — L(Q°) > 0; A = 4; g) +P(G°)
A:A£A | A|<K,ANB=0
< Y PR - Qhp)(S - 20) 2 L(Q) - L) + B,

A:A£A0 | A|<K,ANB=0

where the first probability can be further bounded by applying Lemmas 3 and 4.

S P ((9° - Q)8 - 2) > LQ°) - L(Qp))
A:A#£A0 |A|<K,ANB=0
_ -12(00 OO
S
AALAO (A=K ANB=0 12005 — QO + K(Q2°, Q0 5) 125 —
—nmin (12871, K(92°,Q% 5))
= > exp ( 20
A:A£A0 |A|<K, ANB=0
—nK(Q()’ Q%UB)
<
= 2 ) P < 2560
A:A#AO | A|<K,ANB=0,K (20,00 ,)<1
—nNn
+ 2 ] P (2560)
A:A#£AY | A[<K,ANB=0,K (20,09 5)>1
|A| |A%|—j
<

|A°1\ (p — |A°] —1§ Cruin —n 0
—Jmin 4141
jzl Zl ( j i) Tase0 ) TP\ g5g0 T4 osp
49| =
—nJCluin . -n 0
— W min 4 941 — A1
< 550 T2 ogp) + exp (2560 + A7 ng)

- émin -
n +2logp> + exp (—n+|AO|10gp) —0

I

Il \g
(@}
Z

2560 2560

VAN
)
o
ks
o]
N

as n — oo, provided that Wl% < 30007 and Ciyn > 3000°22.

13



C 3 J— 3 1 Cmin 0
To bound P(G°), we apply Lemma 3 with v = min (16\/§Amax\/A0|+B o 3z UE » Amax (2 ))

and get

y2

"IN (30) © 81Aman(20)

max

P(g%) < P<||s—20||oozu>szexp( +210gp)

1/2
S 26Xp< 18)\2—(20)%—210gp)—>0,

max

provided that Ciyn > 2000/\2 "‘(‘}’; )(|AO‘+|fl)logp and ’\?“(35 )(‘Aomf‘)logp < 18000. Combining,

min min

we obtain

N . -n
p (Q(l) # QAouB) < exp ( 2560 -+ 210gp> +exp (% + 147 logp)
(G /52 2
. min( Cpin ,3/32
o ( I8N, e (| A0 1) ’Amax<20)>
+exp | —n 82 (3) +2logp

For P ( ) £ Q Ao), we let B = () and a similar bound can be established. Moreover, by
Lemma 4, it is easy to see that max(K(£2°,Q), K?(Q° Q)) > HQ05+29”2 for any Q. Conse-

quently, Cin > =2 Cm“’ Thus, the bound in (B.17) is established. This completes the proof.

Lemma 7 Let Ty = (Y1, Vem) € R"; k= 1,--+  n be iid random vectors with Var(7y,) =
L, wm. If m is fived, then

n

_ d
n Y Sl =5 X3, asn = oo (B.21)
k=1

Otherwise, if max (m, mom/n, ms/n, m3m3/2/n2) — 0, where m; = maxj<ij<m Evlgij;j =23,

then

1> ey Yell3 — nm
nv 2m

LN N(0,1), asn — co. (B.22)

14



Proof of Lemma 7: If m is fixed, then (B.21) follows from the central limit theorem and
the continuous mapping theorem.
For (B.22), let T'y, = Zle v;; k =1,--- ,n beapartial sum of k iid m-dimensional vectors

~v,’s. Next we apply Theorem 18.1 of [1] to show that ”i’:”ﬂ — N(0,1) for triangular

V2m
arrays of martingale differences {7, = HF;@H%—JI\I/“%H\%—m = ”Wll%_:j%’jrk‘l}. Towards this
end, we verify that
P
ZE(ni,k PERE ,’)’k—l) — 1, ZE|77n,k|3 — 0. (B.23)
k=1 k=1

For the first condition of (B.23), we compute E and Var of E(ngk |1, ,'yk_l). Note that
Y1, »Ym are iid vectors with Var(v,,) = Inxm, EL,_1 = 0, and E||Ty_4]]2 = (k — 1)m.

Then, for each k=1,--- ,n, EE(nik |y, ,’yk_l) becomes

_ 2 T
(2mn?) " (E(lyll3 = m)°* + 4B (w3 = m)7) "ET4 o + 4BE (3] Ty 1) 171, 951))

— (2mn) "} (Var(||vl) + 4B [3) = (2mn2) 7 (Var(lwl3) + 4(k = 1)m),

which, after summing over k = 1,--- ,n, leads to

n

ZM§E<iE(nZ,k|7h'”>7k—1)>Smmz‘l‘ M;

n? 2n n?
k=1 k=1 k=1

E(ZZ:HE(WZ,H%’”' a7k—1)> — 1‘ <

24 mn Let a = E((|]|3 — m)y1). Similarly, using an inequality (a; + as + a3)* <

where Var(||vx|l2) < m?*mg; k= 1,--- ,n. Consequently,

15



3(a? + a3 + a%) for real numbers a;; 7 =1,---,3.

n 4 n
Var (Z]E(nrzz,k |'717 e 77k—1)) = m Var ( (a,T]:‘k_1 + ||I‘k—1||§>>

k=1 k=1

- o Var (Zm =) (a e Iml) +2 3 (0 — (V) W)

m2n4
k=1 <k

Var (Z(n - k)aT'yk> + Var (Z(n - k)||7k||§>

12

m2n4

k=1 k=1

+ Var (Z(n —(kV k’))v,jw)

12
k<k’

For Ti, note that a3 < S0, EX (Il — m)vie) < Xy E((ll3 — m)?)Es2, < méme.
Then

n

Var (Z(n - k)aT'yk> = Z(n — k)’E (a,T'yk)2 = Z(n —k)? Z a?Efy,gj
= ’%H (n—1Dn2n —1) < n*m*my .

NN

For Ty, note that Var (3, (n — k)||7l3) < Yop_i(n—k)*m*ms = ¢(n — 1)n(2n — 1)m?m.
To bound Tj, note that, for k # & and j # j', E(v vy v5) =1({j, i’} = {k, K })E ('y,;r'yk/)Q =

I({7,7'} = {k,k'})m, yielding that

Var (Z(n —(kV k/))’j’]j"}’k/> = Z(n — (kVEK))’E ('y,}ykr)2 <n'm.

k<K’ k<E’

Combining (B.24) with the bounds of T} — T3, we obtain

n

12 (n3m3ma + n®m2msy + ntm)
Var <ZE<U721,I€|717 77]6—1)) < m2nA .
k=1

Hence the first condition of (B.23) is implied by the assumption that mmsy/n — 0 and

16



m — oo.
For the second condition of (B.23), note that E|n,x|* = E (‘ lvll3 — m + 2'7,;rFk,1‘3) is
bounded by

AE <\ vell5 — m|3> + 16E (|7}2—Fk—1|3> <E ([lvll$) + \/E(('y,;rl"k_l)ﬁ)

< mims + \/(k —1)3m3ms + (k — 1)?2m3mams + (k — 1)m3m3

< m3ms + k3/2m3/2m§/2 + km3/2m$/2m§/2 + kY2 m3 P ms.

. it EUIvel3—m2y, Tra?)
Summing over k, == ( S ) is upper bounded by

<nm3m3 + n5/2m3/2m§/2 + n2m3/2m§/2m?1)/2 + n3/2m3/2m3>

n3m3/2
1/2 /2. 1/2
m>3/?ms N my/ N my*ms/ PRI
n2 /2 n 372 )

provided that max (mom/n, ms/n, mgm®?/n*) — 0. Thus the second condition in (B.23) is
met. As a consequence of Theorem 18.1 of [1], the desired asymptotic normality is estab-

lished. This completes the proof.

Lemma 8 Let X ~ N(0,X°) and vy = tr(X X" —X°)T) with T a symmetric matriz. Then
E(v*™) < (2m —1)12""" (E(y*)" for any integer m > 1. (B.25)

Proof of Lemma 8: As in (B.8) and (B.10), we expand the moment generating func-
tion of v: M,(\) = Eexp (\y) = N2[|VEITVIO|Z + (1/2) 320, 17 M tr [(2T%°)'] for any
Al < |[VEOTV/X0||p/2. Direct computation of high-order derivatives of M,()\) in A yields
that E(y*™) = (2m — 1)122" L ¢r <(T20)2m> for any integer m > 1. An application of
tr ((T20)2m> < |[VEITVE2" yields that E(y2™) < (2m — 1)1 22m=1||y/S0T/S0|| 2 =
(2m — 1)!12m~1 (E(4?))™. This completes the proof.
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Proof of Lemma 9: Let 3;1 = (AZA — QO for any A D A°. Applying Lemma 5 to 34 and
A 40, we have that both HAAH and ||A 40| tend to zero in probability as n goes to infinity.
Hence, we could assume throughout the proof that max <||3 ills A 4o ||> < 1/2 holds with
probability tending to one. Note that ° = (297, and logdet(Q;) = logdet(I,y, +
3420) + log det(€2°). Then

log det(I,x, + 31420)

= logdet(Zyx, + [Z°] /2 A4[E]"%) = tr(log(Lxy + [Z) /2 A4[E"]%)

= tr (fj(—l)i+1 ([EO]I/ZA.A[EO]W)l) :

- 2
=1

= tr(A;%) - %tr (A;=°A ;%% + Ri(Aj), (B.26)

A (cyi

where Ry(A ;) = > 2, ——tr ((3A20>i> and the expansion is valid since ||£A|| <1/2<

1. As a result,
7t (La(@2) = La(2"))
1 ~ 0 1 S~ 0R w0 1~ 1 ~
= §t1" (AAZ ) — Z_Ltr (AAE AAE ) — §tr(AAS) —|— ERl(AA)
1 1

= S (Bi0 - 8) — A4+ 5B (B.27)

A
Moreover, using the property of the CMLE, A ; satisfies a score equation: [—(3 A+ Q9+
S]; = 0. This, in turn, yields that
[EOAAEO]A — [RQ(AA) + 30— SL, (B.28)
where (AA—i—QO)_l = EO_EOAAEO—i_RQ(&A) is used, and RQ(AA) =30 ZiQ(—l)i(AAEO)i.

By the definition of ® and (B.2), (B.28) can be rewritten in a vector form as

215 4 VGCA(AA) = vec (RQ(AA) + 30— S> . (B.29)
Moreover, after taking the inner product with A ; for both sides of (B.28), we obtain
tr (342031520) = tr <3AR2(£Z\)> + tr <3A(A)> s (B30)

where A = X — S. Hence, combining (B.29) and (B.30) with (B.27) yields that

18



tr (AAA) — —tr (AAR (3 )) + Rl(ﬁA)

~

= %(VGCA(A))TVGCA (A Ry(A

= lvecA (A -+ RQ(EA))TI_l vec 4 (A - R2(34)> + Ri(A )

—

= = VecA(A)TI;l’lA vec j(A) —

S

Similarly,
o (Ln(ﬁAo) . Ln(QO))
_ 1 Tr-1 _ 1 A -1 A A
= 1 VeC 4o (A) IAO,AO Vec 4o (A) 1 Vvec 4o (RQ(AAO))IAO’AO Vec 4o (RQ(AAO)) + Rl(AAO).
Combining, we obtain that
2 (Ln(ﬁ 1) - Ln(ﬁAo)) — %vec 1 (M) 15 vee; (A)
—gvecAo (A) I 40,40 VEC A0 (A) + R(A;, Ay) (B.31)
~ n ~ NT
R(A 4, Ax) = nRi(A;) — 7 veea (RQ(AA)) A;VGCA (RQ(AA))
~ n ~ ~
_TLR1<AA0) + Z VEC g0 (RQ(AAO))TIIZO{AO vec 4o (RQ(AAO)) (B32)
is the remainder to be bounded subsequently. For now, we focus on the leading term in the
likelihood ratio expansion. Let A = \/nvec; (£° — S). Now write IZA as

JO 0 JO
L= | T (B.33)

Jpao  Jpp
Note that Lo a0 = [J a0 a0 = (Jao a0 — Jao pJ 55T a0) . Thus,

Svees (&) I3 vee (A) = 5 veew (A) I3 4o veen (A)
1
= ZA}I;&AA— A Iy oA

1
= ALIA; - ZAAO (0,00 = Tao 5T 5157540 ) Ao

1
= —(JBAO)\AO + ']A\AO,B\Ao)‘B) JA\le B(JA\AO,A‘))‘AO -+ JB\AO,BAB)
2

1__

4 A
This, together with (B.31), 1mphes that

~ ~ 1 -
2 <Ln(QA) — Ln(QA0)> = HEJB,IJB/2JB,A nVGCA(A)

2
2 ~ ~
+R(A;, A), (B.35)

2
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Recall from (B.47) that Var( JB%QJBA nvecA(A)> = Ip|x|p|, thus by Lemma 7 and
Lemma 8, if |B| is a fixed constant, 2<Ln(ﬁg) - Ln(ﬁAo)> ELN W, i\ 40, provided that
R(B 4. Bow) = 0,(1): i |4\ A -5 o0, (2JAN A 2(2( Ly (65) — Lo (@) — | A1 A7) T
N(0,1) provided that R(&A, AAO)/\/E = 0,(1). Next it remains to prove that the remain-
der term R(& s A 40) satisfies the aforementioned conditions. Toward this end, we bound
Ri(A 3)—Ri(A o) and vee (Ro(A 3)) I vees (Ra(A 5)) —vecan (Ra(B o)) T30 40 veco (Ra(A o))
respectively.

For vec; (RQ(A ))I L vec ; (RQ(AA)), recursively applying |[|C1Csa||r < ||Cy||r||CallF
and using the fact that HC’lCQHF < Anax(C2)[|Ch || and [|C1Ca]lp < Amax(C1)||Co||F, we

obtain
vecs (zo (&;EOY) < H\/EO (VEIA,;VED) Vs
2 F
< Nl 2) [VEA V| = M (V1A (B36)

Summing over ¢ yields that

Jrecs (23, < 3

Vec (EO <3A20>i)

2

=2
< Amax(E7) ZHAAH < 2max(Z)[| A 4. (B.37)
=2
Consequently,
- - 2
vecp (RQ(A ))IBBvecA (RQ(A )) < ||IBlBH . |[vecs (RQ(AA"))Hz
2 "
< NL(E)||vees (BB ) || < 4ndlIA A" (B.38)
Similarly, vec 4o (RQ(A 0)) L 1o 4o vecao (Ra (3A0)) < 42| A 4o||*. Hence,
1 - A 1 ) _
7 Veea (RQ(AA))IAZ vec (RQ(AA)) 7 veea (RQ(AAO))IAQI’AO Vec 40 (RQ(AAO))
< Rl A+ RSBl (B.39)

For RI(AA) - Rl(BAo), by Cauchy-Schwartz inequality, we have that tr((&AEO)i) <

|VEIA VS 0||FH (VEPR VN < A5 0 =2 Hence
\Z (a0 < Z A < %sln&sn‘*. (B.40)
Y 41— [|Ag]) ~ 2
Similarly, ‘ZZ 4¢ tr((A X0’ | < 2HAA0||4. Combining, we have that
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R R r (A2)") =t (Ba=))| AL+ A

Let fi(vec;(A)) = tr ((AZO)3> with vecse(A) = 0. A Taylor expansion of f;(vec;(A))

at vec40(A)) yields that
L ((Br20)”) — o (Bam)”)| = 5 (veea(B) —vees(Bae)) Vi(vecs(A7))
_ (Vec (A — AAO))T vec g (20(3*20)2) _ (20(& - AAO)@OA*)?)

RO TN max(w_ SIA 0 VIO, [VEIA VE ) (B.42)

where A* is some convex combination of A ; i and A 4o and the last equality uses (B.36).

< v

Lastly, we bound H\/ A~ - AAo W H = HIl/2 veCA(AA—EAo) By (B.29), we

2
have that

-~

I;/i veCA(BA - 3,4 ) = I;/j (VeCA(QA — Q% — VeCA(ﬁAo _ QO))

—1 N

1 1/2 ~ 1 1/2 IAOAOVGCAO(A+R2(AAO>>
= I YPveci(A+ Ry(Aj)) — =TY2 | 4%

o AA 9" A4 0

B . vec 0 (A + Ra(A )
- 2IA1/<2 vec (A + Ra(Az)) — ! o
IB’AOI 0 A0 VeCAO(A+R2(AA0))

B %IA}/Q VecAo(Rg(A) RQ(AAO)) | (B.A3)

VeCB(A + RQ(AA)) — IB,AOI 0,40 VEC A0 (A + RQ(AAO))

where A = 30— S. Let J = I;A. An application of an inequality ]|I~1~/2w\|§ =z Jzx <

23:10 J 40 40 g0 + QmEJ&B:I;B yields that

vec 0 (Ra(A ;) — Ro(A )

2

VeCB(A—FRQ(BA)) —IB’AOI 0,40 VeCAo(A+R2(AAo)) .

~

2
s 2 HJE@ (VeCB\AO(A + Ro(A3)) = IpaoI 33 o vecao(A + Ro(A, ))> H2

+2 H A0 AO VeCAO(R2(3A) - R2<AA0)>H2 : (B.44)

Moreover, Jg’lBJBAo + IB,AoIAO a0 = = 0. Using this, we have that
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2

|45, (veen(A) = T a0 I3t 4o veen(A))

2
2 2
= HJélB/2 (JB,B VeCB(A) + JB,AO VeCAO(A))H = HngBmJBAVQCA(A)H . (B45)
’ 2 ’ ’ 2
This, together with (B.43) and (B.44), implies that
~ ~ 2
H\/EU(AA - AAO)\/EOH
F

L1y ~ PN TE A TR 2
< 5HJAvoVeCAO(Rz(AA)—Rz(AAO))HZ—i-§HJRB JB7BvecB(A)H2. (B.46)

By (B.3), the covariance matrix of J];leJB,B vec ;(A) is

Var (5T veen(A) ) = n™ " 20 Var (Vi vee s (A) T T
I () T = T T 0 = an T (BT
1y 2 172 > _ |B1og|B| ~
Jp g Ipaveci(A)|| < |B|||Jgh Jgiveca(A)|| = O, (T) Using

’ 2 ’ ’ )

2 Bllog|B
o, (1Bkel8)
F n

i) Lo, (\Bllzng!)
< st (&1 130 17) +0, (1B,
Let A = max (||&A||, HaAoH) Then combining the above bound with (B.42), we obtain
sl (Bam7) = ((Ba2)’)
< 2| VEUA;— Auo)VE| max (B2 [184)

< 4A®max (3;@0A2,Op (\/ —‘B’ log |B‘)> )
n

This together with (B.39) and (B.41) implies that the remainder term R(A ;, A 40) defined
in (B.32) is bounded by nA% max (K%AQ , O, (\ / BIOTgB)) up to some positive constants.

By Lemma 5, we have that A? = O, <M“%>. This together with (B.39) and (B.41) yields

AL A sl A log’(p+1) | 5 Bllog|B
R(A4, Ayp) =0, (max(mo‘ | OS v ),|A|10g(p+1) | ’(;Lg| |)>

Hence, if | B is fixed, R(AA, Ap) = 0p(1), provided that %}ogzp — 0; and if | A\ A°] — oo,

By Lemma 3,

this and (B.37), we bound (B.46) as follows:
~ N 2 ~ ~
H\/EO(AA - AAO)\/EOHF <271\-2 (%0) HRQ(AA) ~ Ro(A0)

min

< 22 Ro(A o)

min

2
’
F

(%) max (HR2(3 A)

that
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R(A 1, A 40)/+/|B| = 0,(1), provided that ”3|A‘21°g2p10g(|3|) — 0. This completes the proof.

C Proofs of Theorem 3 and 4

Proof of Theorem 3. Let A,(B) be the likelihood ratio test statistic defined in Theorem

1. A measure change from Pg» to Pgo yields that for any u > 0,

Po (An(B) > u) = EguI(Au(B) > u)

.
= Ego (H(An(B) > u) exp(v/nvecs(8,) Z, — nvecs(0n) Ip.p vecs(dn)

2

+Rn<eo,5n>>) |

where Py~ is the probability measure under H,, Z,, = n

_1/2%(:0), I is the Fisher information

matrix, and Rn(e(J,(;n)) _ Ln<9") _ Ln(e()) _ \/ﬁVeCB((Sn)TZn + nveCB(én)TIQB,BVeCB(Csn)‘ We

will verify later that

Pyo

Ra(6°,5,)) ~ 0 (C.1)

in the Gaussian graphical model and linear regression model.
For the Gaussian graphical model, we first verify (C.1). Now let h,, = y/nvecp(d,) with

hnlla = h. Then Z, = n~/22l8 = /nvecy((2°)~! — §) = y/nvec(A). It follows from

the Taylor expansion of log det(-) that

L,(0") — L,(0°) = n (log det(Q") — tr(Q"S) — log det(Q°) + tr(Q2°S9))
= h Vnvecp((2°)™' = 8) — /nh vecp((2°)7!) + n(log det(2") — log det(22%))

1
h!Z, — §h§IB,Bhn +7(Q"),
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where we have used (B.26) and

[T e
)= -1 C.2
@) =n3 o : ©2)
By similar calculations as in (B.40), we have that
. Ly ¢
5 S (R Tshn) (22) i |B] = oc
) < T (%) (C.3)

2y (b Ipgh,)"? (\%)l if |B| is fixed.
Hence, when | B| is fixed and n is large enough, we have that [r(Q")| < (k] I ph,)**n=Y2 —
0. When |B] - oo but [B[¥2/n - 0, we have that [r(€7)] < (k] I sh, 2250 0,

nl/z

Therefore,
1
R,(6°6,) = L,(0") — L,(68°) —h'Z, + ih;IB,Bhn =r(Q") = 0. (C.4)

By (B.35), we have that, with probability tending to 1 under Pyo,

2
+ R(A 4, A o). (C.5)

1 __
Mn(B) = 37520, sivees )
2

Note that Var(vec;(A)) = 4I. Hence, by Lemmas 7 and 8,

1__ 1 T g2
(‘JB,lB/QJB,A nVeCA(A),E\/ﬁvecB(A)) N (Z1,Z5) ~ N | 0, |B|x|B| “B,B 7

’ Tp Ins
(C.6)
where J = I"!. Therefore,
—1/2 -1
Zi~ N(O, Iippaip) and Zy | Zy = 21 ~ N (I P20 I aoDid jodaos)  (C7)
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where the fact that Jp g = (Ipp — Ip a0l 4 AOIAo p) ! is used. Hence, for any 6;; j € B,

1
Py, (Ay(B) >u) = E <]I(||Zl||§ > u)exp(h,, Za — §hIIBBhn)>
h, Ip sh, )E21 [ 20113 > w)Ez,z, (exp(h, Z2)]

i Tgha ) B (12113 = w)esp (27 7,14°h,)

= EBal(1Z+ Tkl = w) = P (12 + T34 > )

where we have used the fact that ngB = Ipp — IB,Aoon AOIAQB. Hence, we must have
An(B) % || Zy + b5 5 Ry |3 with Zy ~ N(0, Ijpxp)) when |B| is fixed. When |B| — oo,
for any vector v with ||v||, = ¢|/B|'/* for some constant ¢, we have that

7 2_|B Zl2 - |B W'z 2
1Z +vll5— | |: 1Z]]3 — | |Jr [v]l2 ( v _ H?f|1!24> gN<C_,1), (C.8)
V2|B] V2[B] V2Bt \ vl B4 |BJY V2

because the first term converges to N(0,1) by CLT, and the second term converges ¢?/+/2
to since W — 0 in probability.

Consequently, the local limiting power functions for the proposed CMLR test is

P <||Z+ J];l]fhn”% > Xi,|B|> when |B| is fixed,
Trr(h, Ope) =

P (Z 4 hiTpphn when |B| — oo
/_Q\B\ Z ca )

where o > 0 is the level of significance, Z ~ N (0, Ip|«|p|) is a multivariate normal random
variable, and Jp p is the asymptotic variance of vecy(Q2®).
To make a comparison between the debiased lasso test proposed in [3], we consider the

case when |B| = 1. Assume that B = {(¢,7)}. In this case, the local limiting power functions
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for the proposed method is

hl\? h
mrr(h,0p) =P <<Z+ u) > Xg) =P (‘Z+ 2]
JOLR g

where o7 is the asymptotic variance of d)fjl U contrast, The local limiting power functions

> za/g) (C.9)

for the debiased lasso test proposed in [3] is

h
71-debias(hy QBC) =P A + # > za/2 (ClO)

2
A /(J.Jij + WiiWjj

where Z ~ N(0,1) is a standard normal random variable. By applying Corollary 1, we have
that o < wfj + wj;w;;j, which implies that our 7y g(h, Ope) > Taepias(h, Oe). This completes
the proof.

Proof of Theorem 4. The proof is similar to that of Theorem 3. Again, we first verify
that (C.1) is satisfied for linear regression. Toward that end, let h,, = y/nvecp(d,) with
Ryl = k. Notice that L, (0) = L,(8,0) = nlog(1/v/2n0) — (202) |y — X B]|2.

_ L 120Ln(B%) _ _ipp s T A0 — o, —1/2 —2 T
Zn=mn o n~ 20 vecy (X' (y — XB°) =n""?0 2 vecpg(X '€), (C.11)
B

where € ~ N(0,0%I,,x,). Moreover, we have that

L (0") — Ln(6°) = (20%) " (lly = XB°115 = lly — X (B8° + 8,)|2)
= Vnvecp(6,) 'n 20 2 veep(X T (y — XB°) — (202) " veey(8,) T (X T X) p.p vecs(5,)

1
= h'Z,— ihZIBBhn

where I = (no?)"1X " X. Hence (C.1) is satisfied with the remaining term to be exactly 0.

P
By similar arguments used in Theorem 2 and the fact that ||¢||3/n —% 0, we have that
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the likelihood ratio test statistic is

An(B) = € (Pjoup — Pyo)e + R(e)

(C.12)

P
where R(€) —% 0. Moreover, since the matrix P — Po is idempotent and has rank | B|,

there must exist ay, ..., a|p such that Pjo,p — Py = Zlszll ara;, and
|B|
An(B) =) (afe)* + R(e)
k=1

Note that, under Pgo, we have that

Iipixjp  AXp
((a/e, ... a‘;‘e),vecB(XTe)) = (Z1,Z5) ~ N | 0, g

XJAT X[ X;

where A = (ay,...,ap)" € RIB*"

Therefore,

Zy ~ N(0,Iipjxp)) and Zy | Zy = 21 ~ N (XL A 21, X[ (Lnxn — AT A) X5)
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(C.14)

(C.15)



Hence, for any 3;; j € B and any u > 0,

PHa<An(B) > U)

1
- E (H(||Z1||§ > u)exp(h, Z, — §hIX;XBhn)

= oxp (= 3hIX] Xah) ) Ex (112118 > 0z (exp(h] 2)

1

2

1 1
= exp <—§h;XgXBhn) Eg, [JI(HZng > u) exp (ZlTAXBhn + 5hp(g([m - ATA)XBhnﬂ
( 1
= exp|—=

Qh; XgATAXBhn) Ez [I(||Z1]3 > w) exp (2 AXph,)]

Hence, we must have A, (B) = ||Z + AXgh,||2 with Z ~ N(0, I|/x|5) when |B]| is fixed.
When |B| — o0, a similar argument used in Theorem 3 can be applied.

Consequently, the local limiting power functions for the proposed CMLR test is

i (||Z + AXph, |2 > xiw\) if |B] is fixed,

mLr(h, Bpe) = (C.16)

P (Zl + 1AXphally > za) if |B| — oo

Ve

where o > 0 is the level of significance, Z ~ N(0, I||x|p|) is a multivariate normal random
variable, and Z; ~ N(0, 1) is a standard normal random variable.

Since AXp has full rank |B|, it is easy to see that when ||h,|s — oo and |B| is finite,
then mpg(h, Bp:) — 1; and when ||h,||3/y/|B] = oo and |B| — oo, then wyg(h, Bg:) — 1.

This completes the proof.
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