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Abstract 

This study introduces the statistical theory of using the Standardized Root Mean Squared Error 

(SRMR) to test close fit in ordinal factor analysis. We also compare the accuracy of confidence 

intervals (CIs) and tests of close fit based on the Standardized Root Mean Squared Error 

(SRMR) with those obtained based on the Root Mean Squared Error of Approximation 

(RMSEA). We use Unweighted Least Squares (ULS) estimation with a mean and variance 

corrected test statistic. The current (biased) implementation for the RMSEA never rejects that a 

model fits closely when data are binary and almost invariably rejects the model in large samples 

if data consist of five categories. The unbiased RMSEA produces better rejection rates, but it is 

only accurate enough when the number of variables is small (e.g., p = 10) and the degree of 

misfit is small. In contrast, across all simulated conditions, the tests of close fit based on the 

SRMR yield acceptable type I error rates. SRMR tests of close fit are also more powerful than 

those using the unbiased RMSEA. 
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Assessing Close Fit in Ordinal Factor Analysis Models: SRMR vs. RMSEA 

When fitting a structural equations model (SEM), most often the model is to some degree 

incorrect or misspecified (Box, 1979; MacCallum, 2003). Effect sizes of model misfit are 

population parameters that quantify the extent of a model misfit  (Maydeu-Olivares, 2017). 

When a model fits poorly, incorrect substantive inferences are likely to be drawn (Maydeu-

Olivares, 2017; Saris, Satorra, & van der Veld, 2009). Consequently, either using practical 

experience (Browne & Cudeck, 1993) or carefully designed population studies (Dexin Shi, 

Maydeu-Olivares, & DiStefano, 2018), reference (aka cutoff) values for effect sizes of model 

misfit have been offered to distinguish between misspecified models that are actionable (aka 

close fitting models) and models that should be discarded. As for any parameter, it is important 

to convey the accuracy with which the size of model misfit is estimated. This is accomplished by 

providing its confidence interval. Also, when using the reference (aka cutoff) population values 

of close fit that have been provided, researchers may be interested in obtaining a p-value that the 

estimated effect size of model misfit does not exceed the recommended cutoff.  

The Root Mean Squared Error of Approximation (RMSEA: Steiger & Lind, 1980) is 

currently the most widely used effect size1 of model misfit (Kenny, Kaniskan & McCoach, 2015; 

Savalei, 2012), and it is routinely reported in papers that apply SEM models (Hancock, 

Stapleton, & Mueller, 2018; McDonald & Ho, 2002). Asymptotic statistical theory is available 

for constructing confidence intervals for the RMSEA (Browne & Cudeck, 1993; Steiger, 1989, 

1990), as well as tests of close fit of the type 0 :H RMSEA c , where c is a cutoff population 
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value. In practice, the most commonly used cut-off values for the RMSEA is based on the 

recommendations put forth by Browne and Cudeck (1993, p. 144), who stated that “practical 

experience had made us feel that a value of the RMSEA of about 0.05 or less would indicate a 

close fit of the model in relation to the degrees of freedom”. However, the RMSEA is an 

unstandardized effect size of model misfit (Maydeu-Olivares, 2017). As a result, any population 

value (say 0.05) has a different meaning depending on the structure and size of the model (Chen, 

Curran, Bollen, Kirby, & Paxton, 2008; Savalei, 2012; Shi, Lee, & Maydeu-Olivares, 2018). For 

instance, suppose the population model has two factors with an interfactor correlation of 0.95, 

most researchers would consider a one-factor model to be a close-fitting model. However, 

because the population RMSEA is an unstandardized parameter, it may exceed the recommended 

reference value of .05 or not, depending on the number of indicators per factor, holding any other 

determinant constant (Maydeu-Olivares, 2017).   

To overcome problems associated with interpreting the magnitude of the unstandardized 

effect sizes of misfit, Maydeu-Olivares (2017) advocated the use of standardized effect sizes of 

model misfit such as the Standardized Root Mean Squared Error (SRMR). Unlike the RMSEA, 

the population SRMR is easy to interpret: it can be crudely interpreted as the average 

standardized residual covariance. Maydeu-Olivares (2017) also derived the unbiased estimate of 

the population SRMR and provided the asymptotic statistical theory to obtain confidence 

intervals as well as to perform close fit tests. In this respect, the SRMR is comparable to the 

RMSEA. 

Previous studies have shed some light in understanding the performance of the RMSEA 

and SRMR in assessing model misfit. A number of simulation studies has examined the 

performance of point estimates, confidence intervals and tests of close fit using the RMSEA 
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(Curran, Bollen, Chen, Paxton, & Kirby, 2003; Fan, Thompson, & Wang, 1999; Hu & Bentler, 

1998; Kenny, Kaniskan, & McCoach, 2015; Kenny & McCoach, 2003; Nasser & Wisenbaker, 

2003; Nevitt & Hancock, 2000). In general, under the conditions studied, the RMSEA yields 

relatively accurate point estimates and CIs when the sample size is large enough (e.g., N ≥ 200). 

Maydeu-Olivares (2017) investigated the accuracy of point estimates, CIs and p-values for tests 

of close fit for the SRMR in small models with normal data, and showed that the performance of 

SRMR was adequate, except for conditions where the level of model misspecification was small 

(population SRMR = .025) and the sample size was small (N ≤ 100). Recently, using a more 

comprehensive simulation design with both normal and non-normal data, Maydeu-Olivares, Shi 

and Rosseel (2018) compared the performance of RMSEA and SRMR in assessing close fit in 

factor analysis models. Results showed that compared to the RMSEA, the SRMR generally 

yields more accurate empirical rejection rates for tests of close fit and better coverage for its 

population value, especially when the number of observed variables (p) is large. CIs and tests of 

close fit based on the RMSEA were only accurate in the smallest models considered (i.e., p = 

10). 

Although suggestive, the findings and recommendations from previous studies are 

limited. This is because virtually all previous studies focused on factor analysis models for 

continuous outcome variables using maximum likelihood estimation. However, it would be fair 

to say that most data in the social sciences are ordinal (e.g., responses to survey items, 

educational tests, psychological questionnaires) and therefore, in principle, it should be treated as 

discrete. Strictly speaking, fitting a common factor analysis model to ordinal data introduces 

model misspecification, as the relationship between a discrete outcome and a continuous factor 

cannot be linear (Maydeu-Olivares, 2005; Maydeu-Olivares, Cai, & Hernández, 2011). To take 
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into account the ordinal nature of the data, under the SEM framework, a better approach is to fit 

an ordinal factor analysis model, especially if the data have fewer than five ordered categories 

(DiStefano & Morgan, 2014; Muthén & Kaplan, 1992; Rhemtulla, Brosseau-Liard, & Savalei, 

2012).  

When fitting ordinal factor analysis models, sequential estimators involving tetrachoric or 

polychoric correlations are generally recommended. More specifically, assuming that the 

observed ordinal data is the result of categorizing underlying normal variates, polychoric 

correlations2 can be estimated to measure the association between the underlying normal variates 

before categorization (see Olsson, 1979). Let Ρdenotes the unknown population polychoric 

correlation matrix, and let 0 ( )  Ρ  be correlation structure implied by the fitted model, which 

depends on a vector of q parameters θ  to be estimated from the data. When an ordinal factor 

analysis model does not involve constraints on the threshold structure3, it can be estimated by 

minimizing  

    0 0 0
ˆ( , )F   R Ρ r ρ W r ρ  (1) 

where r and 0ρ  are the vectors of the sample and model-implied polychoric correlation matrices 

(i.e., elements below the diagonal of the matrix R and 0Ρ ), and ˆ
p

W W , a fixed weight matrix. 

Different choices of the weight matrix Ŵ  lead to different estimators. In Unweighted Least 

Squares (ULS: Muthén, 1993), the weight matrix is an identity matrix. In Diagonally Weighted 

Least Squares (DWLS: Jöreskog & Sörbom, 1988; Muthén, du Toit, & Spisic, 1997), the weight 

matrix is 1ˆ ˆ( ( ))diag W Γ , where Γ  is the asymptotic covariance matrix of the estimated 

polychoric correlations. Finally, in Weighted Least Squares (WLS: Muthén, 1978, 1984), the 

weight matrix is
1ˆ ˆ W Γ . WLS is seldom used as it requires very large samples (Muthén & 
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Kaplan, 1992). Consequently, ULS and DWLS have emerged in the literature as recommended 

options (Bandalos, 2014; Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009; Savalei & 

Rhemtulla, 2013). For WLS, the estimated minimum of the fit function (see Eq. 1) multiplied by 

sample size follows a chi-square distribution in large samples. This is the so-called chi-square 

test of model fit. However, when ULS or DWLS estimation is employed, the test of exact fit of 

the model is obtained by applying a mean or a mean and variance correction to the test statistic 

(Muthén, 1993). ULS and DWLS estimation with mean and variance corrected test statistics are 

denoted as ULSMV and WLSMV respectively in the popular SEM software program Mplus 

(Muthén & Muthén, 2017); DWLS estimation with a mean corrected statistic is denoted as 

WLSM, and parameter estimates and standard errors for WLSM and WLSMV are identical. 

Several studies have shown that ULSMV generally provides more accurate parameter estimates,  

standard errors, and chi-square test statistics than WLSMV  (Forero et al., 2009; Savalei & 

Rhemtulla, 2013; Shi, DiStefano, McDaniel, & Jiang, 2018). Therefore, in this study, we focus 

on the ULS estimator with a mean and variance corrected chi-square statistic. 

Although ordinal factor models are widely applied across various disciplines in the 

behavioral and social sciences, the accuracy with which close fit assessment can be performed in 

these models has not been systematically examined. When mean and variance-adjusted chi-

square test statistics are used (as in ULS or DWLS estimation), current implementations of the 

RMSEA in most SEM software programs (e.g., Mplus) provides an inconsistent estimate of the 

parameter (see Brosseau-Liard & Savalei, 2014; Brosseau-Liard, Savalei, & Li, 2012). We will 

return to this point later in the paper.  

The correct procedure to estimate the population RMSEA and obtain its CI with mean 

and variance- adjusted test statistics has been provided by Savalei (2018) in the context of 
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models for continuous outcomes. Xia (2016) applied Savalei’s formula in ordinal factor analysis 

models and showed that the sample estimates of RMSEA under ULSMV were generally 

consistent, especially when the sample size was large (N ≥ 500). However, no results were 

provided in terms of accuracy of confidence intervals, nor tests of close fit. Additionally, 

statistical theory for obtaining confidence intervals and tests of close fit of ordinal factor analysis 

models using the SRMR is needed.  

In the current study, we expand Maydeu-Olivares (2017)’s work and introduce statistical 

theory that enables using the SRMR to test close fit in ordinal factor analysis models. In addition, 

we aim to investigate and compare the accuracy of statistical procedures to obtain confidence 

intervals and tests of close fit between the SRMR and the RMSEA. To this end, we also discuss 

how to compute point estimates and confidence intervals (CIs) for the RMSEA in these models. 

Next, we report a simulation study using ULS estimation. We close our presentation by offering 

a numeric example and providing suggestions to applied researchers.  

Statistical Theory for the SRMR 

 Let p denote the number of observed variables. For covariance structure models, the 

population Standardized Root Mean Squared Residual (SRMR) is defined as  (Maydeu-Olivares, 

2017) 

 
 

2
0

1



  


 


ij ij

i j ii jj

SRMR
t

, (2) 

where ij denotes the population covariance between variables i and j (or variance if i = j) and 

0ij  denotes the population covariance (or variance) under the fitted model, and ( 1) / 2t p p  . 

In ordinal factor analysis a correlation structure is fitted. As a result, in these models 
ij ij   , 
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 the population polychoric correlation between variables i and j , 1ij   if i = j, and 
0 0ρij ij   

denote the polychoric correlation under the fitted ordinal factor analysis model. As a result, in 

correlation structure models such as those fitted in ordinal factor analysis, the population SRMR 

simplifies to   

  
2

01
ρ ρr r

p ij ij

i j

SRMR
t t 


  

 
 (3) 

Here, r is the (t – p) dimensional vector of population residual correlations and the population 

SRMR (2) can be crudely interpreted as the average population residual correlation. Notice the 

division by t in Equation (3) for consistency with the definition of Equation (2). 

 In finite samples, let rij be the sample estimated polychoric correlation, ˆ
ij  denote the 

model implied polychoric correlation, ˆ
r  be the (t – p) vector of the residual correlations with 

elements ˆ
ij ijr   , and r  represent the asymptotic covariance matrix of ˆ

r . When fitting ordinal 

factor analysis model under ULS estimation, with 
1( )     H , r is computed as  

 1( ) ( )r N     I H I H  (4) 

Here,  denotes the asymptotic covariance matrix of Nr , and  is the Jacobian matrix  

0

 
   





.  

Maydeu-Olivares (2017) showed that regardless of the discrepancy function used, an 

asymptotically unbiased estimate of the population SRMR of Equation 2 is  

 
 

1

ˆˆ ˆmax tr( ),0
ˆ

r rr r

uSRMR k
t
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2
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ˆ ˆ4
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. (5)  
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 Currently, for ordinal factor analysis models, most SEM software programs compute a 

sample counterpart of the population SRMR in (1)  

  
2ˆ ˆ 1

ˆr rr
b ij ij

i j

SRMR r
t t

 




    . (6) 

However, in finite samples, the sample SRMR of Equation 5 is a biased estimate of the 

population SRMR. In large samples, its expected value under parameter drift assumptions is 

(Shi, Maydeu-Olivares, and DiStefano, 2018) 

 
2

2

tr( ) 8[tr( ) ] 2 tr( ) 4
[ ]

8[tr( ) ]

r r r s r r r r r r
b

r r r

E SRMR
t

     




         

  
, (7) 

and therefore the bias of the sample SRMRb is [ ]p bSRMR E SRMR . 

Confidence intervals for the SRMR and tests of close fit can be obtained using the 

unbiased estimate and a reference normal distribution. Specifically, in large samples, a (100 – 

)% confidence interval for the SRMR can be obtained using  

  Pr ( ) ( ) 1u u u uSRMRSRMR z SE SRMR SRMR z SE SRMR       , (8) 

where SE () denotes asymptotic standard error, which is given as (Maydeu-Olivares, 2017):  

 
2

2 ˆ ˆtr( ) 2
SE( )

ˆ ˆ2

r rr r r
u

r r

SRMR k
t

   

 







. (9)  

In addition, a statistical test of the close fit of a model, of the type

0 1:  vs. :H HSRMR c SRMR c  , where 0c   is a reference cut-off value for close fit can be 

conducted. P-values are obtained using 1 ( )p z  , where ()  denotes a standard normal 

distribution function and 
( )

u

u

SRMR c
z

SE SRMR


 . 

Statistical Theory for the RMSEA 
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The population Root Mean Squared Error of approximation (RMSEA: Browne & 

Cudeck, 1993; Steiger, 1989, 1990) is defined as  

 0F
RMSEA

df
  (10) 

where 
0F denotes the discrepancy between the population and model-implied covariance (or 

correlation) matrices. Thus, the RMSEA adjusts the discrepancy by the degrees of freedom of the 

model. It is noted that the definition of the RMSEA depends on the discrepancy used to estimate 

the model. There is not a unique population RMSEA. Rather, there are as many population 

RMSEA parameters as discrepancies can be used to estimate the model. When fitting an ordinal 

factor analysis model using WLS the population RMSEA is 
1

r r
WLSRMSEA

df

  
 ; when using 

DWLS the population RMSEA is 
1( ( ))r r

DWLS

diag
RMSEA

df

 


Γ
; whereas for the ULS fitting 

function the population RMSEA is  

  
2

01
ρ ρr r

ULS ij ij

i j

RMSEA
df df

 




   . (11) 

The sample RMSEA computed in many SEM programs (e.g., Mplus) is 

  

2

max ,0b

X df
RMSEA

N df

 
  

 
. (12) 

Where 2X  denotes the chi-square test statistic of model fit. Confidence intervals are then 

computed using  

 
ˆ ˆ

max ,0 ; max ,0
L U

N df N df

    
    
      

 (13) 
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where L̂  and Û are the solution to 

  2

2 ˆ; , 1 αF X df L


  , and  2

2 ˆ; , αF X df U


  (14) 

respectively, and  2 ; ,F df


   is the non-central chi-square distribution function with df degrees 

of freedom and non-centrality parameter . Finally, p-values for the test of close fit are computed 

using 

  2

2 21 ; ,p F X df N df c


    . (15) 

 These formulae can be used to estimate the population RMSEAWLS, but should not be 

used to estimate RMSEADWLS or RMSEAULS, as it does not consistently estimate these 

population RMSEA parameters, they estimate different parameters (Brosseau-Liard & Savalei, 

2014; Brosseau-Liard, Savalei, & Li, 2012). Since in this paper we focus on the ULS estimator 

with a mean and variance corrected chi-square statistic, and therefore on the estimation of the 

RMSEAULS, we refer to the formula (12) to (15) as “biased” formula (for this RMSEA).  

 More specifically, under ULS estimation,  ˆ
ULSNF  does not follow a chi-square 

distribution. To assess the exact fit of the model, ˆ
ULSNF  is adjusted by its asymptotic mean or by 

its mean and variance (Muthén, 1993; Satorra & Bentler, 1994). The mean and variance adjusted 

chi-square ( 2

ULSMVX ) used in this paper is (Asparouhov & Muthén, 2010) 

 
2 1 ˆˆ

ˆ
ULSMV ULS ULS

ULS

X NF b
a

   (16) 

where ˆ
ULSa and ˆ

ULSb  are the scaling correction factor and the shift parameter. Recently, Savalei 

(2018) has provided the correct formula to estimate the population RMSEA and obtained its 

confidence interval when a mean and variance adjusted test statistic is used. The ULS population 

RMSEA (11) should be estimated using  
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2ˆ( )
max ,0ULSMV

u

a X df
RMSEA

N df

 
  

 
. (17) 

Provided that 2

ULSMVX  can be well approximated in large samples using a non-central chi-

square distribution under parameter drift assumptions, a (100 – )% confidence interval (CI) for 

the RMSEA is given by  

 
ˆ ˆˆ ˆ

max ,0 ; max ,0
a L a U

N df N df

     
    
      

 (18) 

where L̂  and Û are the solution to 

  2

2 ˆ; , 1 αULSMVF X df L


  , and  2

2 ˆ; , αULSMVF X df U


  (19) 

Respectively. Alternatively, researchers may be interested in testing the close fit of an ordinal 

factor analysis model using a hypothesis of the type: 0 1:  vs. :H RMSEA c H RMSEA c  , where 

c is an arbitrary value of the population RMSEA. In this case, the asymptotic p-value for the test 

of close fit is  

  2

2 2 ˆ1 ; , /ULSMVp F X df N df c a


     (20) 

Simulation Study 

We conducted a simulation study to evaluate the accuracy of the point estimates, 

confidence intervals (CIs), and tests of close fit using the SRMR and the RMSEA under ULS 

estimation of ordinal factor analysis models. We first generated multivariate normal data with 

mean zero and a correlation structure conforming to an independent cluster model with two 

correlated factors. Each factor was specified to have the same number of indicators. To create 

ordinal outcomes, we then discretized the continuous data into categories using thresholds. We 

set the population values for all factor loadings to 0.70 and all error variances to 
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21 0.70 0.51  . For both factors, the factor variances were set one. The model misspecification 

was introduced by ignoring the multidimensional structure (i.e., fitting a one-factor model to 

two-factor data). The levels of model misspecification were manipulated by altering the 

population values of the inter-factor correlations. Given that the estimated model was 

unidimensional, a smaller inter-factor correlation indicated a greater level of misspecification. 

The detailed simulation conditions are described below. 

Simulation Conditions 

 The simulation conditions were obtained by manipulating four variables:  

Sample size. Sample sizes included 100, 200, 500, and 1,000.  

Model size. The model size was indicated by the total number of observed variables (p; 

Shi, Lee, & Terry, 2015; 2018), including small (p = 10), medium (p = 20), and large (p = 30) 

models.  

Number of categories. The observed data were categorized to be either binary (k = 2) or 

polytomous (k = 5) by altering threshold values. Specifically, when the data were binary, the 

thresholds used led to expected probabilities of 60% and 40%. For data with five categories, 

thresholds used led to expected probabilities of 10%, 20%, 40%, 20%, and 10% for ordered 

categories 0 through 4, respectively. The threshold values used were based on previous 

simulation studies in ordinal factor analysis (Forero et al., 2009).  

Levels of Model Misspecification. Five levels of model misspecification were obtained by 

manipulating the inter-factor correlation in the population model. The population inter-factor 

correlations ranged from 0.50 to 0.90, in increments of .10. As a representation of the different 

situations of model misfit that might occur in real data analysis, we considered various levels of 

model misspecification. For example, when the population model is a two factor model with an 
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interfactor correlation of 0.90 and a one-factor model is fitted to the data, most researchers would 

consider the model misfit to be substantively ignorable. On the other hand, when the true model 

is a two dimensional model with an interfactor correlation of 0.50, a unidimensional structure 

would fit the data poorly and thereby should be rejected.  

For every possible condition, the population values of SRMR and RMSEA were 

computed using the known population polychoric correlation matrices. As shown in Table 1, 

across the conditions considered in the current study, the population SRMR values ranged from 

.022 to .118; whereas the population RMSEA ranged from .028 to .138. It is noted that the 

population RMSEA tended to be slightly larger than the population SRMR obtained from the 

same simulation condition. In addition, for the same level of model misspecification, as the 

number of observed variable (p) increased, the population RMSEA decreased; however, the 

population SRMR slightly increased as more observed variables (p) were added to the model.  

In total, the simulation study consisted of a crossed design with 120 conditions (4 sample 

sizes × 3 model sizes × 2 number of categories × 5 levels of model misspecification). For each 

simulation condition, 1,000 replications were generated using simsem package in R 

(Pornprasertmanit, Miller, & Schoemann, 2013; R Development Core Team, 2015). 

Data Analysis 

 A one-factor model was fitted to each simulated dataset by unweighted least squares 

(ULS) estimation using the lavaan package in R (R Development Core Team, 2015; Rosseel, 

2012). Across replications, we computed the sample estimates and obtained the 90% CIs of both 

SRMR and RMSEA. In addition, we computed the p values of tests of close fit for the SRMR 

and RMSEA. First, we tested the hypothesis that the SRMR and RMSEA were less than or equal 

to its population value to examine empirical Type I errors of the tests of close fit. Second, to 
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examine the empirical power of the tests of close fit, we tested that the SRMR and RMSEA were 

less than or equal to fixed cutoff values (c), where the cut-offs (c) were defined as the 

corresponding population SRMR or RMSEA when fitting a one-factor model to two-factor data 

with inter-factor correlations ρ = .90. That is, for conditions where ρ < .90, the empirical 

rejection rate (i.e. p < .05) reveals the power of the test of close fit (to reject a model that does 

not fit closely). For the RMSEA, the sample estimates, along with the CIs and p values for the 

test of close fit were computed based on the mean- and variance adjusted chi-square test statistics 

(i.e., ULSMV) as described in equation (15) –as provided by current software, as well as using 

(20), the correct formula. 

Results 

 Table 1 summarizes the population values and the average sample estimates (based on 

both the biased and the unbiased formula) for the SRMR and RMSEA across all simulated 

conditions. The sample estimates that yielded a relative bias greater than 10% are highlighted in 

bold. In general, both the RMSEA and SRMR yield average estimates close to their population 

values, as long as the correct (unbiased) formula were used, Equation (5) for the SRMR and 

Equation (17) for the RMSEA, even when the sample size was small (e.g., N =100). In addition, 

in small samples (N =100), the population SRMR and RMSEA was more accurately estimated 

with five categories than with two. For example, when p = 10, ρ = .80, and N = 100, the average 

sample RMSEA was .047 for binary data and .050 for polytomous data, whereas the population 

value of RMSEA was .055. 

 On the other hand, when the biased formula was applied, Equation (6) for the SRMR and 

Equation (12) for the RMSEA, the average sample RMSEA and SRMR could be substantially 

biased from their population counterparts. To be more specific, using the biased (incorrect) 
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formula, the population RMSEA tended to be underestimated for binary data and overestimated 

for polytomous data. For the SRMR, the population values were consistently overestimated, 

suggesting that the model fits poorer than what it does. For the same condition as the previous 

example (p = 10, ρ = .80, and N = 100), the average (biased) sample RMSEA was .037 and .066 

for binary data and polytomous data, respectively. However, the population RMSEA was .055. 

The average (biased) sample SRMR was .096 (binary data) and .068 (polytomous data), whereas 

the population value for SRMR was .044. It is interesting to note that for the SRMR, the 

estimates based on the biased formula converged to its population value as N increased, as 

Equation (6) still estimates the correct population parameter asymptotically. However, this did 

not hold for the RMSEA. The biased formula for the RMSEA estimates a different parameter 

than Equation (11).   

Besides the accuracy of the point estimates, we also evaluated the performance of 

estimating the 90% CIs around the population SRMR and RMSEA. The coverage rates for the 

90% CIs are provided in Table 24. Coverage rates between 85% and 95% were considered 

acceptable. Cases with unacceptable coverage rates were highlighted in bold in Table 2. We see 

in this table that the CIs for the unbiased RMSEA could perform poorly, especially when fitting 

large models (e.g., p ≥ 20), or/and models with a high level of misspecification (e.g., ρ = .70). 

Under the conditions mentioned above, it was surprising to observe that the coverage rates for 

the RMSEA did not improve, and could even become worse as sample size (N) increased. For 

example, when p =10 and ρ = .60, for five response category data, the coverage rate for the 90% 

CI of RMSEA dropped from .70 (N = 100) to .61 (N = 1,000). CIs using the biased formula 

performed much worse, especially when the sample was large (e.g., N ≥ 500). For the same 

condition, as N increased from 100 to 1,000, the 90% CI using the biased formula dropped from 
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66% to 0%. Since the biased formula actually estimates a different parameter than the ULS based 

population RMSEA (defined in Eq. 11), it is not surprising to observe that the accuracy of the 

CIs of the biased RMSEA become worse as sample size increases. 

 On the other hand, CIs coverage rates for the SRMR were closer to the acceptable level 

across most of the simulation conditions. The performance of SRMR improved as the sample 

size increased and when the level of model misspecification increased. In addition, the SRMR 

CIs generally produced better coverage rates for data with five categories than those obtained 

from binary data. Note that the only situations where unbiased CIs of RMSEA seemed to 

perform better than of SRMR involved fitting models with very small levels of model 

misspecification (i.e., ρ = .90), especially in samples of N ≤ 500. 

 Table 3 depicts the 5% empirical rejection rates (type I error rates) of tests that RMSEA 

and SRMR are less than or equal to their population values. As reported above, the population 

values ranged from .028 to .138 for RMSEA and from .022 to .118 for SRMR. At the 

significance level of 5%, we considered empirical rejection rates between .01 and .10 acceptable. 

Cases with unacceptable empirical rejection rates were highlighted in bold in the table. It is noted 

that for the unbiased RMSEA, the empirical rejection rates were reasonably accurate only when 

the model size was small (e.g., p = 10) and the level of model misspecification was small (i.e., ρ 

= .90). For larger models with large specification error, the empirical rejection rates for RMSEA 

were larger than the nominal level (i.e., inflated type I error rates), even in large samples. For 

example, when p = 30, ρ = .70, and N = 1,000, the empirical rejection rates at α = 5% were 25% 

(c = 2) and 29% (c = 5). For the biased RMSEA, the null hypothesis is almost never rejected 

(i.e., rejection rates approach 0%) with binary data. However, when the number of response 

alternatives was five, severely inflated type I error rates were observed. For example, when ρ ≤ 
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.80, and N = 1,000, the null hypothesis is almost surely rejected (rejection rates approach 100%). 

Finally, for the SRMR, acceptable type I error rates were observed across all simulated 

conditions: empirical rejection rates at α = 5% ranged from 4% to 9 %.  

Table 4 summarizes the power of tests of close fit. More specifically, at a 5% 

significance level, this table depicts the empirical rejection rates of tests that the RMSEA and 

SRMR are less than or equal to fixed cutoffs (c). In this study, the cut-offs (c) were defined as 

the corresponding population SRMR or RMSEA when fitting a one-factor model to two-factor 

data with inter-factor correlations ρ = .90. When the level of model misspecification is severe 

(i.e., ρ = .60 or ρ = .50), the power rates approached 100% across most of the simulated 

conditions. Therefore, only results for ρ = .80 or ρ = .70 are shown in this table. For both the 

SRMR and RMSEA, power rates increase as the level of misspecification increased (i.e., smaller 

ρ), the sample size increased, and the number of response categories increased (from 2 to 5); the 

latter is consistent with recent research (Maydeu-Olivares, Fairchild, & Hall, 2017). In addition, 

compared to the unbiased RMSEA, the SRMR generally yielded higher rejection rates in small 

samples (i.e., N < 500). For example, when fitting a one-factor model to two-factor binary data 

with an inter-factor correlation of 0.8, p = 10 and N = 100, the power rate for the unbiased 

RMSEA was .12, whereas the power rate for SRMR was .25. It was also noted that when N 

reached 500, the difference between the power rates of RMSEA and SRMR became negligible. 

However, empirical rejection rates across different test statistics can only be compared if they 

have similar empirical Type I errors, which is not the case for all conditions examined. In 

particular, empirical rejection rates for the biased RMSEA cannot be compared to the other two 

statistics as the biased RMSEA has very different Type I errors.  
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A Numerical Example: Fitting Ordinal Factor Analysis Models to the Life Orientation Test 

 We offer a numeric example to demonstrate the process of obtaining the unbiased sample 

estimates and CIs for the SRMR and RMSEA. The R code and data used in this example are 

provided as supplementary materials to this article. In this example, we use data gathered from 

389 respondents by Chang, D’Zurilla, and Maydeu-Olivares (1994). The scale of interest is the 

Life Orientation Test (LOT: Scheier & Carver, 1985), which was designed to measure 

generalized outcome expectancies. Responses are on a five-point Likert-type scale ranging from 

zero (strongly disagree) to four (strongly agree). The scale consists of eight items, four of the 

items are positively worded, while the remaining four items are negatively worded. 

The LOT was designed to measure a unidimensional construct. Therefore, we first fitted a 

one-factor ordinal factor analysis model using ULSMV estimation to the data. We obtained an 

unbiased RMSEA of .138 with a 90% CI (.126, .151). Based on the simulation results, the 

confidence interval for RMSEA may not be trustworthy. It was also noted that when using the 

incorrect formula, which is currently implemented in many SEM software packages (e.g., 

Mplus), the sample RMSEA was .207, and the 90% CI was (.189, .226 ) which suggested that 

the model fits much worse. For the SRMR, the unbiased sample estimate was .103, and the 

corresponding 90% CI was (.090, .012). When using the biased formula, the sample SRMR was 

.105, which was negligibly larger than the unbiased estimate. We can see that a one-factor model 

does not fit well the data of this example. 

We also fitted a correlated two-factor model in which all positively worded items load on 

one factor and all negatively worded items load on another factor. Results indicated that the two-

factor model yielded a close fit to the data. The unbiased sample RMSEA was .036, and the 90% 

CI was (.020, .052); the biased sample RMSEA was .053 and the 90% CI was (.029, .076), again 
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the biased estimate suggesting that the model fits more poorly than what it does. The unbiased 

sample SRMR was .027 with a 90% CI (.016, .038). When using the biased formula, the sample 

SRMR was .034. The findings from this example were consistent with previous studies (Chang, 

D’Zurilla, & Maydeu-Olivares, 1994; Chang & McBride-Chang, 1996; Marshall, Wortman, 

Kusulas, Hervig, & Vickers, 1992; Robinson-Whelen, Kim, MacCallum, & Kiecolt-Glaser, 

1997; Scheier & Carver, 1985). That is, a one-factor model does not fit well. Instead, a correlated 

two-factor model in which all positively worded items load on one factor and all negatively 

worded items load on another factor provides a substantially better fit to the data. 

Discussion and Conclusions 

 Despite the fact that ordinal factor analysis models are widely applied in psychological 

and educational studies, little is known on how to assess the degree of model misfit in these 

models. In this study, we introduced statistical theory for using the SRMR to test close fit in 

ordinal factor analysis models. In addition, the performance of the SRMR was compared with 

that of the RMSEA in terms of the accuracy of the point estimates, confidence intervals (CIs), 

and tests of close fit when fitting ordinal factor analysis models using ULS estimation from 

tetrachoric and polychoric correlations.  

Our simulation results show that for both the SRMR and RMSEA, when the 

unbiased/correct formulae are being used, the average sample estimates are generally close to 

their population values, even in small samples (e.g., N = 100). For the SRMR, the p values for 

testing close fit (i.e.
pSRMR SRMR ) produce acceptable 5% empirical rejection rates across all 

simulation conditions; the 90% CIs also generally yield adequate coverage rates, particularly 

when the sample size is large enough (e.g., N ≥ 500). On the other hand, confidence intervals and 

tests of close fit based on the unbiased RMSEA can be inaccurate, especially when fitting large 
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models (e.g., p ≥ 20), or/and models with a high level of misspecification. Under these 

conditions, the coverage rates for the CIs are low, and the empirical rejection rates of the test of 

close fit are noticeably greater than the nominal level (i.e., inflated type I error rates), even in 

large samples (e.g., N = 1,000). The situation worsens considerably when the biased formula 

currently implemented in software is used to compute the sample RMSEA and the corresponding 

CIs. For binary data, the null hypothesis of close fit is almost never rejected, and for five 

category data, the null hypothesis of close fit is almost surely rejected in large samples (e.g., N = 

1,000). 

When comparing the performance of SRMR vs. RMSEA, the SRMR produced more 

accurate tests of close fit and confidence intervals across almost every condition tested. The 

confidence intervals for the unbiased RMSEA could only outperform those for the SRMR when 

the number of variables is small (e.g. p = 10), and the degree of misfit is small (e.g. a one-factor 

model is fitted to a model with two factors that correlate 0.9). In addition, the SRMR generally 

yields higher power rates to reject models that do not fit closely, especially in small samples (i.e., 

N ≤ 200). 

Why do the unbiased RMSEA produce relatively unbiased sample estimates, but fail to 

yield accurate confidence intervals and test of close fit? We think essentially our observations 

can be explained by findings in Shi, DiStefano, McDaniel and Jiang (2018): The robust test 

statistic with categorical data (e.g., ULSMVT ) is not well approximated by the reference chi-square 

distribution, especially as the number of observations (N) increases. Under correctly specified 

models, Shi et al. (2018) found that the empirical mean of ULSMVT was generally close to the 

theoretical value (df), but that the empirical variance of ULSMVT  severely underestimated the 

theoretical value (i.e. smaller than 2df). As a result, the point estimate of RMSEA based on 



Ordinal SRMR 23 

ULSMVT is generally close to its population value, but confidence intervals and statistical tests (p 

values) can be inaccurate.  

We also note that for the SRMR, the empirical rejection rates for testing close fit (i.e.

pSRMR SRMR ) were more accurate than the CI coverage rates. That is, the 5% empirical 

rejection rates are acceptable across all simulation conditions but the 90% CI yield inadequate 

coverage rates, particularly under conditions where N ≤ 500 and the degree of misfit is small 

(e.g.,  = .90). The reason is as follows. According to its definition, the SRMR is bounded below 

by zero. Since the empirical distribution of the SRMR is left-truncated, a normal distribution 

approximation may fail to represent the observations in the left tail, particularly when the degree 

of model misfit is small (i.e., producing more zeros). A demonstration of this pattern is shown in 

Figure 1, where we plotted two empirical distributions of the sample unbiased SRMR against its 

reference normal distribution under two different levels of model misspecification. In the right 

panel of Figure 1, we plotted the SRMR values in a condition where the level of model 

misspecification is relatively large (i.e.,  = 0.7, data with five categories, p = 20,  and N = 200, 

population SRMR = 0.078). When the population value of the SRMR is not close to zero, the 

empirical distribution of the sample SRMR can be well approximated by a normal distribution, 

even in small samples.  

On the other hand, as shown in the left panel of Figure 1, when the level of model 

misspecification is small and the sample size is small (i.e.,  = 0.9, data with five categories, p = 

20,  and N = 200, population SRMR = 0.026), the left tail of the distribution is truncated by the 

value of zero. As a result, in these conditions, the CI, which is constructed as two-sided, does not 

perform adequately. However, the p-value is computed using only the right tail (
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0 : pH SRMR SRMR ), and therefore, for the same condition, the 5% empirical rejection rate is 

still acceptable. 

In simulations reported in this article, only one type of model misspecification was 

considered (i.e., misspecified dimensionality). As a result, the conclusions are somewhat limited. 

To explore the generalizability of the findings to other types of misspecified models, we 

conducted additional simulations where the model misspecification was introduced by omitting 

cross-loadings. The additional simulations are reported as supplementary materials and the 

results are consistent with the findings presented earlier. Based on the findings, we conjecture 

that keeping other factors (i.e., the effect size of misfit, sample size, model size, and the number 

of response categories) constant, the accuracy of CIs for the SRMR and RMSEA does not 

depend on the types of model misspecifications. Additional studies are needed to further 

investigate this issue. In addition, we only studied ordinal data with two or five response 

categories with the same values of population thresholds for all items. The performance of using 

RMSEA and SRMR to test close fit under conditions in which the items have different 

population thresholds and different number of response categories should be examined in future 

work. 

The findings of the current research also offer implications for empirical studies. First, 

when reporting and interpreting the RMSEA and SRMR, researchers should be aware of the 

formula used by their software to compute the sample estimates. To produce relatively unbiased 

estimates, the unbiased (correct) formula should be applied. It is worth mentioning that in the 

current version of most SEM software (e.g., Mplus v8), the sample RMSEA from ordinal factor 

analysis under the “ULSMV” estimation does not consistently estimate the population RMSEA, 

and it estimates a different parameter. In addition, the sample SRMR computed based on Eq. 2 
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can be upwardly biased in small samples, therefore suggesting that the model fit more poorly 

than it actually does.  

Second, when fitting ordinal factor analysis (using ULSMV estimation), the confidence 

intervals and test of close fit for the RMSEA, are not accurate enough, except when the number 

of variables is small (e.g., p = 10), and the degree of misfit is small. In contrast, confidence 

intervals for the SRMR are generally accurate, especially when the sample size is large (N ≥ 

500). The close fit tests based on the SRMR also yield acceptable type I error rates across all 

simulated conditions in this study. In addition, compared to the RMSEA, the SRMR shows 

higher power to reject non-close fit models, especially in small samples (i.e., N ≤ 200). 

Therefore, the degree of misfit of an ordinal factor analysis model can be safely assessed using 

the SRMR. We hope that this paper provides useful information to assist applied researchers 

when conducting the difficult task of assessing the degree of misfit of a model. 
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Footnotes 

1. We distinguish between effect sizes of model misfit and goodness of fit indices. Effect sizes of 

model misfit are population parameters that capture the discrepancy between the fitted model 

and the data generating process for which statistical theory is available, thus enabling the 

construction of confidence intervals, and, if of interest, statistical tests (Maydeu-Olivares, 2017). 

We reserve the term goodness of fit index to refer to a sample statistic used to adjudge model fit 

disregarding its sampling variability and without referencing any population parameter. 

Overviews of the array of the goodness of fit indices that have been proposed in the literature are 

Bollen and Long (1993) and Marsh, Hau, and Grayson (2005). 

2. We recognize that under the special case that the observed variables are binary, the correlation 

between two unobserved continuous variables is referred to as tetrachoric correlation. In this 

paper, we use the more general term polychoric correlation for variables with any number of 

ordered categories.  

3. In this paper, we focus on correlation structure models in which the threshold structure is 

saturated. 

4. We also examined the behavior of 95% CIs. In this case, coverage rates between 90% to 99% 

were considered acceptable. For both the SRMR and RMSEA, similar patterns were observed 

across 90% and 95% CIs, though the 95% CIs seemed to produce acceptable coverage rates in 

slightly more conditions.  
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Table 1: Population RMSEA and SRMR and average of sample RMSEA and SRMR across 

replications 

 

`p  N 

RMSEA SRMR 

POP 
Sample. B Sample. U 

POP 
Sample. B Sample. U 

CAT=2 CAT=5 CAT=2 CAT=5 CAT=2 CAT=5 CAT=2 CAT=5 

10 

0.9 

100 0.028 0.024 0.033 0.028 0.024 0.022 0.087 0.055 0.024 0.020 

200 0.028 0.021 0.036 0.024 0.025 0.022 0.063 0.042 0.020 0.020 

500 0.028 0.023 0.041 0.025 0.027 0.022 0.044 0.031 0.020 0.022 

1000 0.028 0.024 0.042 0.026 0.027 0.022 0.035 0.027 0.021 0.022 

0.8 

100 0.055 0.037 0.066 0.047 0.050 0.044 0.096 0.068 0.039 0.041 

200 0.055 0.042 0.074 0.049 0.054 0.044 0.075 0.057 0.040 0.043 

500 0.055 0.047 0.079 0.054 0.055 0.044 0.058 0.050 0.043 0.044 

1000 0.055 0.048 0.080 0.054 0.055 0.044 0.052 0.047 0.044 0.044 

0.7 

100 0.083 0.058 0.099 0.075 0.079 0.066 0.110 0.085 0.062 0.064 

200 0.083 0.065 0.107 0.080 0.082 0.066 0.091 0.076 0.065 0.066 

500 0.083 0.069 0.111 0.082 0.083 0.066 0.077 0.070 0.066 0.066 

1000 0.083 0.070 0.113 0.083 0.083 0.066 0.072 0.068 0.066 0.066 

0.6 

100 0.110 0.078 0.128 0.104 0.107 0.088 0.126 0.103 0.085 0.087 

200 0.110 0.084 0.135 0.107 0.109 0.088 0.108 0.096 0.087 0.088 

500 0.110 0.089 0.139 0.110 0.110 0.088 0.097 0.091 0.088 0.088 

1000 0.110 0.090 0.141 0.110 0.110 0.088 0.093 0.090 0.088 0.088 

0.5 

100 0.138 0.094 0.154 0.129 0.135 0.110 0.142 0.123 0.105 0.109 

200 0.138 0.103 0.160 0.135 0.137 0.110 0.127 0.117 0.109 0.110 

500 0.138 0.106 0.164 0.136 0.138 0.110 0.117 0.113 0.110 0.110 

1000 0.138 0.108 0.165 0.137 0.138 0.110 0.114 0.112 0.110 0.110 

20 

0.9 

100 0.026 0.017 0.026 0.025 0.022 0.023 0.098 0.062 0.024 0.021 

200 0.026 0.018 0.032 0.024 0.024 0.023 0.071 0.046 0.022 0.022 

500 0.026 0.021 0.036 0.025 0.025 0.023 0.049 0.034 0.022 0.023 

1000 0.026 0.022 0.038 0.025 0.026 0.023 0.038 0.029 0.023 0.023 

0.8 

100 0.052 0.032 0.056 0.048 0.051 0.047 0.108 0.076 0.045 0.046 

200 0.052 0.036 0.062 0.050 0.051 0.047 0.083 0.062 0.045 0.046 

500 0.052 0.041 0.068 0.051 0.052 0.047 0.064 0.053 0.046 0.047 

1000 0.052 0.043 0.071 0.051 0.052 0.047 0.056 0.050 0.046 0.046 

0.7 

100 0.078 0.048 0.081 0.075 0.077 0.070 0.122 0.093 0.069 0.070 

200 0.078 0.054 0.088 0.076 0.077 0.070 0.099 0.082 0.069 0.069 

500 0.078 0.060 0.095 0.077 0.077 0.070 0.083 0.075 0.069 0.070 

1000 0.078 0.062 0.098 0.077 0.077 0.070 0.076 0.072 0.070 0.070 

0.6 

100 0.103 0.062 0.102 0.100 0.102 0.093 0.138 0.112 0.091 0.093 

200 0.103 0.069 0.109 0.101 0.102 0.093 0.117 0.103 0.092 0.093 

500 0.103 0.076 0.117 0.102 0.103 0.093 0.103 0.097 0.092 0.093 

1000 0.103 0.079 0.119 0.103 0.103 0.093 0.098 0.095 0.093 0.093 

0.5 

100 0.129 0.076 0.121 0.126 0.128 0.116 0.156 0.133 0.115 0.117 

200 0.129 0.084 0.128 0.127 0.128 0.116 0.137 0.124 0.115 0.116 

500 0.129 0.091 0.135 0.129 0.129 0.116 0.125 0.120 0.116 0.116 



Ordinal SRMR 35 

1000 0.129 0.094 0.137 0.129 0.129 0.116 0.121 0.118 0.116 0.116 

30 

0.9 

100 0.025 0.015 0.023 0.026 0.023 0.024 0.102 0.064 0.026 0.023 

200 0.025 0.016 0.028 0.024 0.025 0.024 0.074 0.048 0.023 0.023 

500 0.025 0.019 0.033 0.025 0.025 0.024 0.050 0.036 0.023 0.024 

1000 0.025 0.021 0.036 0.025 0.025 0.024 0.039 0.030 0.024 0.024 

0.8 

100 0.051 0.028 0.048 0.050 0.050 0.047 0.113 0.078 0.049 0.048 

200 0.051 0.032 0.055 0.050 0.051 0.047 0.086 0.064 0.048 0.048 

500 0.051 0.037 0.062 0.051 0.051 0.047 0.066 0.055 0.048 0.048 

1000 0.051 0.040 0.066 0.051 0.051 0.047 0.057 0.051 0.048 0.048 

0.7 

100 0.076 0.041 0.069 0.076 0.076 0.071 0.127 0.096 0.072 0.072 

200 0.076 0.047 0.077 0.076 0.076 0.071 0.103 0.084 0.071 0.071 

500 0.076 0.054 0.085 0.076 0.076 0.071 0.085 0.077 0.071 0.072 

1000 0.076 0.057 0.089 0.076 0.076 0.071 0.078 0.074 0.071 0.071 

0.6 

100 0.102 0.053 0.087 0.100 0.101 0.095 0.143 0.115 0.095 0.095 

200 0.102 0.060 0.095 0.101 0.101 0.095 0.121 0.106 0.095 0.095 

500 0.102 0.068 0.104 0.102 0.102 0.095 0.106 0.099 0.095 0.095 

1000 0.102 0.072 0.107 0.102 0.102 0.095 0.101 0.097 0.095 0.095 

0.5 

100 0.127 0.064 0.103 0.125 0.126 0.118 0.161 0.136 0.118 0.119 

200 0.127 0.072 0.111 0.126 0.127 0.118 0.141 0.128 0.118 0.119 

500 0.127 0.081 0.118 0.127 0.127 0.118 0.129 0.122 0.119 0.119 

1000 0.127 0.085 0.121 0.127 0.127 0.118 0.124 0.120 0.119 0.119 

 

Notes: p = # observed variables; N = sample size; pop. = population value; RMSEA B = biased 

RMSEA, as implemented in current software, RMSEA U = unbiased RMSEA; SRMR B = biased 

SRMR, as implemented in current software, SRMR U = unbiased SRMR.    
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Table 2: Coverage rates for 90% confidence intervals around the population RMSEA and SRMR 

 

p  N 
CAT = 2 CAT= 5 

RSMEA B RMSEA U SRMR RSMEA B RMSEA U SRMR 

10 

0.9 

100 0.98 0.98 0.91 0.93 0.95 0.78 

200 0.97 0.96 0.89 0.84 0.94 0.75 

500 0.96 0.95 0.74 0.57 0.85 0.84 

1000 0.88 0.89 0.85 0.26 0.81 0.86 

0.8 

100 0.99 0.97 0.71 0.81 0.87 0.80 

200 0.85 0.93 0.79 0.56 0.79 0.85 

500 0.73 0.81 0.85 0.18 0.74 0.87 

1000 0.64 0.79 0.86 0.02 0.71 0.88 

0.7 

100 0.80 0.92 0.82 0.72 0.76 0.83 

200 0.67 0.81 0.86 0.44 0.70 0.88 

500 0.51 0.76 0.88 0.08 0.70 0.89 

1000 0.35 0.75 0.89 0.01 0.63 0.88 

0.6 

100 0.59 0.81 0.82 0.66 0.70 0.85 

200 0.42 0.75 0.86 0.42 0.68 0.88 

500 0.24 0.71 0.88 0.08 0.64 0.89 

1000 0.07 0.72 0.88 0.00 0.61 0.88 

0.5 

100 0.37 0.76 0.84 0.64 0.65 0.85 

200 0.23 0.70 0.87 0.44 0.64 0.89 

500 0.05 0.67 0.87 0.13 0.62 0.89 

1000 0.01 0.66 0.90 0.01 0.58 0.89 

20 

0.9 

100 1.00 1.00 0.92 0.96 0.98 0.72 

200 1.00 0.99 0.74 0.84 0.92 0.80 

500 0.83 0.90 0.79 0.34 0.79 0.85 

1000 0.72 0.84 0.82 0.03 0.74 0.87 

0.8 

100 0.77 0.97 0.84 0.84 0.83 0.82 

200 0.46 0.88 0.83 0.54 0.72 0.86 

500 0.28 0.74 0.83 0.05 0.59 0.85 

1000 0.17 0.69 0.86 0.00 0.57 0.88 

0.7 

100 0.22 0.88 0.86 0.73 0.68 0.83 

200 0.08 0.77 0.86 0.47 0.58 0.86 

500 0.04 0.63 0.87 0.04 0.48 0.87 

1000 0.01 0.59 0.87 0.00 0.50 0.89 

0.6 

100 0.03 0.79 0.85 0.67 0.60 0.83 

200 0.00 0.62 0.86 0.54 0.50 0.87 

500 0.00 0.57 0.86 0.15 0.45 0.86 

1000 0.00 0.53 0.88 0.01 0.46 0.89 

0.5 
100 0.01 0.70 0.85 0.56 0.52 0.84 

200 0.00 0.59 0.88 0.59 0.45 0.88 
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500 0.00 0.51 0.87 0.49 0.42 0.87 

1000 0.00 0.50 0.89 0.20 0.42 0.89 

30 

0.9 

100 1.00 1.00 0.82 0.99 0.99 0.78 

200 0.90 0.99 0.77 0.88 0.91 0.81 

500 0.56 0.92 0.81 0.25 0.78 0.85 

1000 0.38 0.83 0.83 0.00 0.69 0.87 

0.8 

100 0.25 0.98 0.89 0.84 0.81 0.82 

200 0.07 0.88 0.85 0.66 0.64 0.83 

500 0.02 0.70 0.83 0.06 0.55 0.88 

1000 0.01 0.64 0.87 0.00 0.50 0.88 

0.7 

100 0.01 0.91 0.88 0.58 0.60 0.81 

200 0.00 0.71 0.84 0.61 0.52 0.83 

500 0.00 0.56 0.88 0.15 0.43 0.89 

1000 0.00 0.50 0.90 0.00 0.44 0.89 

0.6 

100 0.00 0.77 0.86 0.33 0.51 0.81 

200 0.00 0.61 0.85 0.42 0.42 0.86 

500 0.00 0.49 0.88 0.50 0.39 0.89 

1000 0.00 0.49 0.88 0.19 0.40 0.90 

0.5 

100 0.00 0.65 0.84 0.14 0.43 0.82 

200 0.00 0.53 0.85 0.15 0.38 0.86 

500 0.00 0.44 0.89 0.17 0.38 0.90 

1000 0.00 0.42 0.89 0.21 0.36 0.89 

 

Notes: p = # observed variables; CAT = # of response categories; N = sample size; pop. = 

population value; RMSEA B = biased RMSEA, as implemented in current software, RMSEA U = 

unbiased RMSEA; SRMR B = biased SRMR, as implemented in current software, SRMR U = 

unbiased SRMR.    
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Table 3: Test of close fit results. Empirical rejection rates at a 5% significance level of a test that 

the RMSEA and SRMR less or equal to their population values 

 

`p  N 
 RMSEA B RMSEA U SRMR 

POP CAT= 2 CAT= 5 CAT= 2 CAT= 5 POP CAT= 2 CAT = 5 

10 

0.9 

100 0.028 0.02 0.08 0.03 0.05 0.022 0.09 0.08 

200 0.028 0.03 0.16 0.05 0.06 0.022 0.09 0.07 

500 0.028 0.04 0.43 0.05 0.08 0.022 0.08 0.06 

1000 0.028 0.03 0.74 0.06 0.10 0.022 0.06 0.07 

0.8 

100 0.055 0.02 0.20 0.04 0.08 0.044 0.05 0.06 

200 0.055 0.02 0.44 0.07 0.10 0.044 0.05 0.04 

500 0.055 0.02 0.82 0.10 0.13 0.044 0.05 0.06 

1000 0.055 0.02 0.98 0.09 0.14 0.044 0.04 0.06 

0.7 

100 0.083 0.02 0.28 0.07 0.11 0.066 0.04 0.06 

200 0.083 0.01 0.57 0.10 0.15 0.066 0.04 0.04 

500 0.083 0.01 0.92 0.12 0.15 0.066 0.04 0.05 

1000 0.083 0.00 1.00 0.13 0.18 0.066 0.05 0.05 

0.6 

100 0.110 0.01 0.32 0.10 0.14 0.088 0.05 0.04 

200 0.110 0.00 0.58 0.11 0.14 0.088 0.04 0.04 

500 0.110 0.00 0.92 0.13 0.18 0.088 0.04 0.05 

1000 0.110 0.00 1.00 0.13 0.19 0.088 0.05 0.05 

0.5 

100 0.138 0.00 0.33 0.11 0.16 0.110 0.04 0.04 

200 0.138 0.00 0.56 0.13 0.17 0.110 0.04 0.04 

500 0.138 0.00 0.87 0.14 0.19 0.110 0.05 0.05 

1000 0.138 0.00 0.99 0.16 0.21 0.110 0.05 0.06 

20 

0.9 

100 0.026 0.00 0.04 0.00 0.02 0.023 0.08 0.08 

200 0.026 0.00 0.16 0.01 0.05 0.023 0.08 0.06 

500 0.026 0.01 0.66 0.05 0.10 0.023 0.07 0.05 

1000 0.026 0.02 0.97 0.09 0.13 0.023 0.07 0.04 

0.8 

100 0.052 0.00 0.15 0.03 0.10 0.047 0.05 0.06 

200 0.052 0.00 0.46 0.07 0.14 0.047 0.05 0.04 

500 0.052 0.00 0.95 0.12 0.20 0.047 0.06 0.06 

1000 0.052 0.00 1.00 0.14 0.21 0.047 0.05 0.05 

0.7 

100 0.078 0.00 0.20 0.08 0.15 0.070 0.05 0.05 

200 0.078 0.00 0.51 0.11 0.19 0.070 0.04 0.04 

500 0.078 0.00 0.96 0.17 0.24 0.070 0.05 0.06 

1000 0.078 0.00 1.00 0.19 0.23 0.070 0.05 0.04 

0.6 

100 0.103 0.00 0.15 0.10 0.18 0.093 0.04 0.06 

200 0.103 0.00 0.38 0.16 0.23 0.093 0.04 0.04 

500 0.103 0.00 0.85 0.19 0.26 0.093 0.05 0.06 

1000 0.103 0.00 0.99 0.21 0.25 0.093 0.04 0.05 

0.5 

100 0.129 0.00 0.11 0.14 0.23 0.116 0.04 0.05 

200 0.129 0.00 0.20 0.18 0.25 0.116 0.03 0.04 

500 0.129 0.00 0.47 0.23 0.27 0.116 0.05 0.05 

1000 0.129 0.00 0.79 0.23 0.27 0.116 0.04 0.04 

30 0.9 

100 0.025 0.00 0.01 0.00 0.01 0.024 0.07 0.07 

200 0.025 0.00 0.13 0.01 0.05 0.024 0.08 0.08 

500 0.025 0.00 0.75 0.05 0.12 0.024 0.07 0.07 

1000 0.025 0.01 1.00 0.10 0.15 0.024 0.08 0.06 
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0.8 

100 0.051 0.00 0.08 0.02 0.12 0.047 0.04 0.08 

200 0.051 0.00 0.30 0.08 0.18 0.047 0.07 0.07 

500 0.051 0.00 0.94 0.16 0.24 0.047 0.07 0.06 

1000 0.051 0.00 1.00 0.18 0.26 0.047 0.06 0.05 

0.7 

100 0.076 0.00 0.08 0.07 0.20 0.071 0.05 0.08 

200 0.076 0.00 0.22 0.15 0.24 0.071 0.07 0.07 

500 0.076 0.00 0.85 0.23 0.30 0.071 0.05 0.05 

1000 0.076 0.00 1.00 0.25 0.29 0.071 0.05 0.05 

0.6 

100 0.102 0.00 0.03 0.13 0.24 0.095 0.05 0.07 

200 0.102 0.00 0.09 0.19 0.28 0.095 0.05 0.05 

500 0.102 0.00 0.38 0.26 0.32 0.095 0.06 0.06 

1000 0.102 0.00 0.81 0.25 0.31 0.095 0.05 0.04 

0.5 

100 0.127 0.00 0.00 0.17 0.27 0.118 0.05 0.07 

200 0.127 0.00 0.01 0.22 0.30 0.118 0.05 0.05 

500 0.127 0.00 0.01 0.29 0.32 0.118 0.05 0.05 

1000 0.127 0.00 0.01 0.30 0.33 0.118 0.05 0.05 

 

Notes: p = # observed variables; CAT = # of response categories; N = sample size; pop. = 

population value; RMSEA B = biased RMSEA, as implemented in current software, RMSEA U = 

unbiased RMSEA; SRMR B = biased SRMR, as implemented in current software, SRMR U = 

unbiased SRMR.    
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Table 4: Power for Test of close fit. Empirical rejection rates at a 5% significance level of a test that the RMSEA and SRMR less or 

equal to a fixed cutoff (c) 

 

p  N 
RMSEA SRMR 

pop c 
Power B Power U 

pop c 
Power 

CAT=2 CAT=5 CAT=2 CAT=5 CAT=2 CAT=5 

10 

0.8 

100 0.055 0.028 0.10 0.44 0.12 0.36 0.044 0.022 0.25 0.44 

200 0.055 0.028 0.23 0.84 0.29 0.71 0.044 0.022 0.40 0.71 

500 0.055 0.028 0.63 1.00 0.74 0.98 0.044 0.022 0.75 0.97 

1000 0.055 0.028 0.91 1.00 0.95 1.00 0.044 0.022 0.95 1.00 

0.7 

100 0.083 0.028 0.31 0.85 0.35 0.81 0.066 0.022 0.55 0.85 

200 0.083 0.028 0.69 1.00 0.75 0.99 0.066 0.022 0.82 0.99 

500 0.083 0.028 0.99 1.00 0.99 1.00 0.066 0.022 0.99 1.00 

1000 0.083 0.028 1.00 1.00 1.00 1.00 0.066 0.022 1.00 1.00 

20 

0.8 

100 0.052 0.026 0.07 0.64 0.13 0.59 0.047 0.023 0.44 0.72 

200 0.052 0.026 0.32 0.98 0.51 0.95 0.047 0.023 0.70 0.95 

500 0.052 0.026 0.89 1.00 0.97 1.00 0.047 0.023 0.98 1.00 

1000 0.052 0.026 1.00 1.00 1.00 1.00 0.047 0.023 1.00 1.00 

0.7 

100 0.078 0.026 0.43 0.97 0.56 0.96 0.070 0.023 0.83 0.98 

200 0.078 0.026 0.91 1.00 0.96 1.00 0.070 0.023 0.99 1.00 

500 0.078 0.026 1.00 1.00 1.00 1.00 0.070 0.023 1.00 1.00 

1000 0.078 0.026 1.00 1.00 1.00 1.00 0.070 0.023 1.00 1.00 

30 

0.8 

100 0.051 0.025 0.04 0.67 0.14 0.69 0.047 0.024 0.54 0.84 

200 0.051 0.025 0.27 1.00 0.65 0.99 0.047 0.024 0.85 0.99 

500 0.051 0.025 0.93 1.00 1.00 1.00 0.047 0.024 1.00 1.00 

1000 0.051 0.025 1.00 1.00 1.00 1.00 0.047 0.024 1.00 1.00 

0.7 

100 0.076 0.025 0.41 0.98 0.65 0.99 0.071 0.024 0.92 1.00 

200 0.076 0.025 0.93 1.00 1.00 1.00 0.071 0.024 1.00 1.00 

500 0.076 0.025 1.00 1.00 1.00 1.00 0.071 0.024 1.00 1.00 

1000 0.076 0.025 1.00 1.00 1.00 1.00 0.071 0.024 1.00 1.00 

Notes: p = # observed variables; CAT = # of response categories; N = sample size; pop. = population value; RMSEA B = biased 

RMSEA, as implemented in current software, RMSEA U = unbiased RMSEA; SRMR B = biased SRMR, as implemented in current 

software, SRMR U = unbiased SRMR.      
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Figure 1: Empirical Distributions of the unbiased SRMR against its reference normal distribution 

  

  

a. Five categories, p = 20, N = 200, and  = 0.9 b. Five categories, p = 20, N = 200, and  = 0.7 

 

 

 

 


