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Abstract 

Recent research has provided formulae for estimating the maximum likelihood (ML) RMSEA 

when mean, or mean and variance, corrections for non-normality are applied to the likelihood 

ratio test statistic. We investigate by simulation which choice of corrections provides most 

accurate point RMSEA estimates, confidence intervals, and p-values for a test of close fit under 

normality, and in the presence of non-normality. We found that, overall, any robust corrections 

(choices MLM, MLMV, and MLR) provide better results than ML, which assumes normality. 

When they err, all choices tend to suggest that the model fits more poorly than it really does. 

Choice MLMV (mean and variance corrections) provided the most accurate RMSEA estimates 

and p-values for tests of close fit results but its performance decreases as the number of variables 

being modeled increases.  
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Estimating the Maximum Likelihood Root Mean Square Error of Approximation 

(RMSEA) with Non-normal Data: A Monte-Carlo Study 

 Structural equation modeling (SEM) is a comprehensive approach to fit theoretical 

models involving systems of equations with observed as well as latent variables (i.e., common 

factors). A critical step when fitting a model is to determine whether it fits the data at hand 

(Bearden, Sharma, & Teel, 1982; Bollen, 1989; Lomax & Schumacker, 2004). When no 

structure is imposed on the intercepts of the model (i.e., in covariance structure analysis), the null 

and alternative hypotheses of model fit can be written as 0 0:H    and 1 0:H   , where   

denotes the population covariance matrix, and 0 ( )    denotes the covariance matrix implied 

by the theoretical model under consideration, expressed as a function of the model parameters  .  

In this paper, we focus on models in which all dependent variables are treated as 

continuous1. In such instances, presently, maximum likelihood (ML) estimation is almost 

invariably used (Maydeu-Olivares, 2017b). Under normality assumptions, the null hypothesis of 

exact model fit can be assessed in large samples using 2 ˆ
ML MLX NF , where N denotes sample size 

and ˆ
MLF  denotes the minimum of the ML fitting function. 

2

MLX  is the likelihood ratio (LR) test 

statistic. In this setting, p-values for 
2

MLX  are obtained using a reference chi-square. However, 

when sample size is small, normality assumptions are violated, or a large number of variables is 

being modeled, p-values obtained in this fashion need not be accurate (Bentler & Bonett, 1980; 

Chou, Bentler, & Satorra, 1991; Curran, West, & Finch, 1996; Hoelter, 1983; Hu, Bentler, & 

Kano, 1992; Moshagen, 2012; Shi, Lee, & Terry, 2018). In particular, when the data are not 

normally distributed, 
2

MLX  does not follow an asymptotic chi-square distribution.  
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For non-normal data, the most widely used test statistic when ML estimation is employed 

involves using a mean correction, or a mean and variance correction, to 
2

MLX  and using a 

reference chi-square distribution to obtain p-values (Satorra & Bentler, 1994). In this article, we 

focus on the mean or mean and variance corrections implemented in the widely used SEM 

software Mplus (Muthén & Muthén, 2017). Also, we refer to them using the same nomenclature 

used in Mplus: 1) 
2

MLMX :  mean corrected LR statistic proposed by Satorra and Bentler (1994); 2) 

2

MLMVX : mean and variance corrected LR statistic described in Asparouhov and Muthén (2010) 2; 

and 3)  
2

MLRX :  mean corrected LR statistic as described in Asparouhov and Muthén (2005). 

These test statistics are related to the LR statistic as follows: 
2 2

MLM ML MLMX X c , 

2 2

MLMV ML MLMVX a X c  , and 
2 2

MLR ML MLRX X c . Somewhat confusingly, these test statistics are 

obtained in Mplus by invoking different “ESTIMATORS” (e.g., ML, MLM, MLMV, and MLR). 

In this paper we refer to them as ‘choices’ of ML estimation because all of them result in the 

same parameter estimates, ML estimates, but different standard errors for the parameter 

estimates, and different test statistics (i.e., different ‘chi-square tests’). In particular, choices 

MLM and MLMV result in the same standard errors as the same formula is used to compute 

them, but yield different chi-square and RMSEA statistics. Choice MLM adjusts the LR statistic 

by its asymptotic mean, whereas choice MLMV adjusts it by its asymptotic mean and variance. 

In both cases, the expected information matrix is used to obtain the standard errors of the 

parameter estimates. In choice MLR, the observed information matrix is used to obtain standard 

errors of the parameter estimates. As a result, standard errors for choices MLR and 

MLM/MLMV are different in finite samples. Like choice MLM, choice MLR adjusts the LR 

statistic by its asymptotic mean. As a result, asymptotically, choices MLR and MLM result in the 
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same chi-square statistic. However, in finite samples the chi-square statistics for choices MLR 

and MLM differ because the mean adjustment involves the information matrix, which is 

computed differently in choices MLM and MLR. See Maydeu-Olivares (2017b) for a detailed 

account of the differences between the various implementations of ML estimation for continuous 

outcomes. 

 Regardless of the outcome of the model fit test, it is necessary to assess the magnitude of 

model misfit, the discrepancy between the unknown data generating mechanism and the fitted 

model (Browne & Cudeck, 1993; Maydeu-Olivares, 2017a). The most popular (Jackson, 

Gillaspy, & Purc-Stephenson, 2009; McDonald & Ho, 2002) effect size of model misfit is the 

Root Mean Square Error of Approximation (RMSEA: Browne & Cudeck, 1993; Steiger, 1990; 

Steiger & Lind, 1980). To a large extent, the popularity of the RMSEA comes from Browne and 

Cudeck’s (1993) proposal of replacing the null hypothesis of model fit, which can be stated in 

terms of the RMSEA as 0 : 0H RMSEA  , by a more lenient null hypothesis of close fit, 

*

0 :H RMSEA k , where k is an arbitrary value of the RMSEA, typically .05. Testing for close fit 

instead of exact fit makes particular sense when sample size is very large (as any trivial model fit 

discrepancy will be detected by the chi-square test of exact fit), or when many variables are 

being modeled (as finding a well-fitting model is increasingly difficult as the number of variables 

to be modeled increases) (Maydeu-Olivares, 2017a). 

 Following Browne and Cudeck (1993; Cudeck & Henly, 1991), let 0Σ  be the best fit of 

the model to the population covariance matrix Σ  in terms of the fit function used to estimate the 

model,  0Σ,  ΣF . We note that both 0Σ,  Σ  are unknown fixed matrices. Then, the RMSEA is 

defined in the population as  (Browne & Cudeck, 1993) 



RMSEA with Non-normal Data 6 

 
 0Σ,  ΣF

RMSEA
df

   (1) 

where  0F F     denotes the minimum of the discrepancy between the population 

covariance matrix and the covariance matrix implied by the model. It is clear from (1) that the 

population RMSEA depends on the estimation method employed. When ML estimation is used 

the population RMSEA (i.e., RMSEAML) is   

 ML
ML

F
RMSEA

df
 ,  (2) 

and MLF  is obtained by minimizing 

  1

0 0ln ln trMLF p      ,  (3) 

where p denotes the number of observed variables. Given sample data, and assuming normality, 

this population parameter can be estimated as  

  
2

max ,0ML
ML

X df
RMSEA

N df

 
  

 
  (4) 

where N denotes sample size. A 90% confidence interval (CI) for RMSEAML can be obtained as 

 max 0,  ,  max 0, 
L U

N df N df

   
   

    
  (5) 

where L and U are the solutions to 

  2

2( ; , ) .95MLF X df L


 , and  2

2( ; , ) .05MLF X df U


 , (6) 

respectively, and 2 ( ; , )F df

   denotes the non-central chi-square distribution with df degrees of 

freedom and non-centrality parameter   (Browne & Cudeck, 1993). Finally, if a p-value for a 

test of close fit, 
*

0 :H RMSEA k , is desired, it can be obtained using  
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  2

221 ; ,MLF df N df kX


   . (7) 

 How to estimate the RMSEAML when data are non-normal? The most popular approach 

is to simply replace 
2

MLX  by 
2

MLMX  or 
2

MLMVX , respectively, in equations (4), (6) and (7). We 

refer to this approach as the naïve approach, and it is the approach implemented in most popular 

software programs (e.g., Mplus). However, the use of this naïve approach results in estimating a 

parameter value that is not the RMSEAML (2) leading to difficulty of interpretation (and 

comparison) of RMSEA values (Brosseau-Liard, Savalei, & Li, 2012; Savalei, 2018).  

 How can we obtain consistent3 estimates of the population parameter RMSEAML, 

regardless of whether data are normal or non-normal, and regardless of the choice of mean or 

mean and variance correction? By using  

  
 2

max ,0ML

c X df
RMSEA

N df

 
 
 
 

  (8) 

 max 0,  ,  max 0, 
cL cU

N df N df

   
   

    
  (9) 

  2

2 21 ; ,F X df N df k c


   , (10) 

instead of equations (4), (5), and (7) (Brosseau-Liard et al., 2012; Li & Bentler, 2006; Savalei, 

2018). We refer to the use of formula (8), (9), and (10) as the correct approach. In these formula, 

2X =
2

MLX , 
2

MLMX , 
2

MLRX , or
2

MLMVX , and c = MLc , MLMc , MLRc  or MLMVc  denotes its associated 

correction used. We provide in Table 1 formula for computing the constant c for different 

choices of corrections4 to the likelihood ratio test statistic. In particular, for 
2

MLX , suitable for 

normal outcomes,  c = 1, and the formula reduce to (4), (5), and (7). Furthermore, when MLM 

and MLMV are used, different chi-square statistics are obtained but under the correct approach 
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described above, the same RMSEA ML point estimates are obtained. However, different 

confidence intervals and p-values for tests of close fit are obtained for MLM and MLMV when 

the correct approach is used. For details see Savalei (2018). 

------------------------------ 

Insert Table 1 about here 

------------------------------ 

What choice of uncorrected, mean, or mean and variance corrected chi-square statistics 

(i.e., ML, MLM, MLMV, or MLR) leads to more accurate point estimates of the RMSEAML 

parameter, confidence intervals, and tests of close fit? This has not been investigated. To fill this 

gap in the literature, in this article we compare the performance of different procedures to 

estimate the RMSEAML  parameter using a Monte Carlo simulation study. In our simulation 

design, the performance of point estimates, CIs and tests of close fit were examined under 

various degrees of non-normality, model size, sample size, and degree of model 

misspecifications. We close our presentation by offering some practical guidance of estimating 

the RMSEA when data are non-normal. 

Simulation Study 

Method 

Given the popularity of confirmatory factor models in empirical studies, we used 

confirmatory factor models as data generating and fitted models. More specifically, the fitted 

model was a one-factor model in all cases; the data generating model was a two-factor model 

with the following characteristics. First, model size includes 16 or 32 items, which represented a 

small and a large population model, respectively. For a given population model, each item 

loaded on a single factor. Item loading values ranged from .5 to .8; true population loading 

values were repeated in sets of four (i.e., values of [.5 .6 .7 .8] repeated four times in the small 
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population model and eight times in the large population model). Uniquenesses values were 

specified so that the population covariance matrix was a correlation matrix. Second, three 

different skewness and kurtosis values were examined. The values were selected to parallel 

previous studies (e.g., West, Finch, & Curran, 1995): skewness = 0, kurtosis = 0 (i.e., normal); 

skewness = 1, kurtosis = 7; and skewness = 3, kurtosis = 21. Non-normal data were obtained by 

following the procedure described in Vale and Maurelli (1983). Third, sample sizes of 200, 500, 

and 1000 were included to examine sample size conditions encountered in applied settings  

(Wolf, Harrington, Clark, & Miller, 2013). Fourth, one correctly specified population model and 

two misspecified models were used. The different levels of misspecification were obtained by 

setting the inter-factor correlation,  to 1 (correctly specified), .8 (small misspecification), and .4 

(large misspecification). In all cases, the mean of the data were zero and the variances of the 

factors were set to one.  

Taken together, the simulation study consisted of a crossed design of 54 conditions: 2 

model sizes (16, 32) × 3 distributional conditions × 3 sample sizes (200, 500, 1000) × 3 levels of 

model misspecification. 

Data Analysis 

 For each of the 54 simulated conditions, 5,000 replications were obtained. Model 

estimation was performed using Mplus (Muthén & Muthén, 2017). Replications that showed 

convergence problems or improper solutions were noted and eliminated from further analysis. 

First, the sample RMSEA was estimated as described in Table 1 for ML, MLM, MLMV, and 

MLR, and averaged across replications. Second, the 90% CIs for the population RMSEAML were 

estimated as described in Table 1 and coverage rates (percentage of intervals that contain the true 

parameter) were obtained for each choice of test statistic. Third, empirical rejection rates at a 5% 
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significance level of a test that the RMSEAML is less than or equal to its population value were 

obtained. Note that we only offer results for the “correct” approach.  

Results 

 Table 2 shows the resulting population values in our simulation and the average of 

sample RMSEA across replications. We note that the results for MLM and MLMV are the same 

in this table because the formula for MLMV simplifies to that of MLM for RMSEA point 

estimates. We begin by briefly summarizing the results of the population values of RMSEA. 

First, the population values of RMSEA were equal to 0 for all properly specified models ( = 1) 

regardless of model size (p = 16 or 32). Second, consistent with prior studies (Chen, Curran, 

Bollen, Kirby, & Paxton, 2008; Fan, Thompson, & Wang, 1999; Hu & Bentler, 1999), 

population RMSEA increased as the degree of model misspecification increased. Third, in 

accordance with previous research (Breivik & Olsson, 2001; Kenny & McCoach, 2003; Savalei, 

2012; Shi, Lee, & Maydeu-Olivares, 2019), we found that the population values of the RMSEA 

tend to decrease as model size increases holding model misspecification constant.  

Next, we focus on the sample estimates of the RMSEA and their behavior under different 

conditions. When data were normally distributed, estimates close to population values were 

obtained regardless of the choice of test statistic. Though the results produced by ML (i.e., 

normality assumptions) were accurate overall when data were normal, we observed that the 

sample RMSEA tended to overestimate the population RMSEA when data were non-normal, and 

the bias increased with decreasing sample size, decreasing model misspecification, or increasing 

model size. For example, the average sample ML RMSEA is .084 using 
2

MLX  when the  

population ML RMSEA = 0 if kurtosis = 3, skewness = 21, N = 200,  = 1, and p = 32. 
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Robust methods (MLM/MLMV and MLR) provide similar results than choice ML when 

data are normal, but more accurate estimates when data are non-normal. For the condition above, 

MLM and MLMV yielded an average of .064 and MLR an average RMSEA of .075. In general, 

and across conditions, MLM/MLMV provided more accurate RMSEA point estimates than 

MLR. Finally, we note that all test statistics appear to converge to the population RMSEA 

values, i.e., bias decreases as sample size increases. 

------------------------------ 

Insert Table 2 about here 

------------------------------ 

 Table 3 shows the coverage rates (i.e., percentage of confidence intervals that include the 

true parameter) for 90% CIs around the population RMSEA. We have highlighted in Table 3 

conditions where acceptable coverage rates (between 85% and 95%) were obtained. As Table 3 

reveals, the coverage of the 90% CIs obtained under normality (i.e., choice ML) was generally 

poor. As was the case for point estimates, the coverage rates for ML CIs were strongly 

influenced by the degree of non-normality. Choice ML produced some acceptable CIs only when 

data were normal. In general, negligible differences were observed in terms of coverage of CIs 

between choices ML, MLM, MLMV, and MLR when data were normal. However, when data 

were not normal, coverage of CIs of robust methods (MLM, MLR and MLMV) was better than 

for choice ML. For example, when fitting models with non-normal data (kurtosis = 3, skewness = 

21) with p = 16 and  = .8, population RMSEA = .067 and N = 1000, coverage rate for 90% CIs 

under ML was .215, for MLM and MLR was .784 and .721, respectively, and for MLMV was 

.925. Among robust methods, choice MLMV negligibly outperformed choices that involved only 

a mean correction (MLM and MLR).  



RMSEA with Non-normal Data 12 

Furthermore, the coverage rates of the RMSEAs robust to non-normality (i.e., using 

choices MLM, MLR, MLMV) need not improve with increasing sample size. This is because the 

mean (or mean and variance) adjusted statistics do not follow asymptotically a chi-square 

distribution. They only agree in mean (or in mean and variance) with a reference a chi-square 

distribution. As a result, their empirical distribution need not converge to that of the reference 

distribution as sample increases. For instance, coverage for 90% CIs around the population 

RMSEA using MLMV when skewness = 1, kurtosis = 7,  = .8, p = 16, improves from N = 200 

to 500, but worsens from N = 500 to 1000: coverage rates are .925, .908, and .879, respectively.  

------------------------------ 

Insert Table 3 about here 

------------------------------ 

Table 4 shows the results for tests of close fit, more specifically, empirical rejection rates 

at a 5% significance level of tests of the RMSEA being less than or equal to its population value. 

We considered rejection rates between 0.03 and 0.08 as reasonably accurate and they are 

highlighted in Table 4. Empirical rejection rates for choice ML (i.e., under normality) were 

strongly influenced by the non-normality of the data. When data were not normal, no acceptable 

empirical rejection rates were obtained using choice ML regardless of model size, model 

misspecification or sample size. Empirical rejection rates were also strongly influenced by model 

size. In general, robust choices (MLMV, MLM and MLR) yield more accurate results than 

choice ML across conditions. However, the main finding that can be extracted from this table is 

that assessing close fit using the RMSEA in large models (p = 32) often fails.  

------------------------------ 

Insert Table 4 about here 

------------------------------ 
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A numerical example: Fitting a confirmatory factor analysis model to the short version of 

the SPSI-R 

 The Social Problem Solving Inventory-Revised (SPSI-R: D’Zurilla, Nezu, & Maydeu-

Olivares, 2002) is a 52 item questionnaire designed to measure the five dimensions of the social 

problem solving model of D’Zurilla and colleagues (D’Zurilla, Nezu, & Maydeu-Olivares, 2004; 

Maydeu-Olivares & D’Zurilla, 1996). Here, we report the results of fitting a five-factor 

confirmatory model to the 25 items of the short version of the questionnaire. The US normative 

young adult sample was used. Sample size is N = 1,020. Each item consists of a rating using five 

response alternatives from ‘very untrue of me’ to ‘very true of me’. Data appears quite normally 

distributed: skewness ranges from -.78 to .81 with an average of .18; excess kurtosis ranges from 

-1.03 to .04 with an average of -.59. We fitted the model with maximum likelihood choices ML, 

MLM, MLR, and MLMV. The first is suitable for normal outcomes; the others yield standard 

errors and X2 statistics robust to non-normality. Goodness of fit results are presented in Table 5. 

We include in this table the X2 statistics, and constant c computed using the formula in Table 1, 

naïve (incorrect) RMSEA results, and the correct RMSEA results (computed using the formula 

in Table 1). We see in Table 5 that regardless of the X2 statistic used, the hypothesis of exact 

model fit is to be rejected. This is not surprising since we are fitting a quite restrictive model 

(265 df) to 25 observed variables. We note, however, that the MLMV X2 is smallest and that the 

ML X2 is largest. This is consistent with simulation results by Maydeu-Olivares (2017b) who 

found that the ML X2 rejects too often in models of this size, even with normally distributed data; 

in contrast, the MLMV X2 maintained adequate rejection rates. 

 Now, the naïve RMSEA results are obtained by using formula (4) and (5) for all choices 

of test statistic implemented in the current version of Mplus; that is, if MLMV is used, by 
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replacing  
2

MLX  by 
2

MLMVX  in these equations. The correct RMSEA results are obtained using the 

formula in Table 1. We see in Table 5 that when the naïve approach is used, much lower 

RMSEA estimates are obtained when using robust methods (MLM, MLMV, or MLR) than when 

normality is assumed (choice ML). For instance, under ML the estimated RMSEA is .050, 

whereas when MLMV is used the estimate is .040. In fact, robust CIs for the RMSEA do not 

include the RMSEA estimate obtained using ML.  

 The correct robust RMSEA results (obtained using Lavaan, Rosseel, 2012) reveal a 

different picture: they are much more in line with those obtained under normality. For instance, 

the MLMV results suggest that the point estimate is .048. Given our simulation results, we 

conclude that the MLMV RMSEA results are likely to be the most accurate. We also note that in 

this example the effect of using the naïve approach to estimate RMSEA results is to 

underestimate the degree of model misfit, giving the impression that the model fits better than it 

does.  

Discussion 

Our findings are in line with previous research (Brosseau-Liard et al., 2012; Curran, 

Bollen, Chen, Paxton, & Kirby, 2003; Fan et al., 1999; Hu & Bentler, 1999). Sample size and 

model size influence the bias of RMSEA estimation because the RMSEA is a function of the X2 

statistic, whose performance is influenced, in turn, by both sample size and model size. Shi et al. 

(2019) found that the bias of the RMSEA increased as model size increased. This is in contrast to 

results by Kenny and McCoach (2003) who reported the opposite effect. Shi et al. (2019) 

speculated that this might be due to the size of the models considered in each study (4 to 25 

variables in Kenny and McCoach vs. 10 to 120 in Shi et al.). The present results support Shi et 

al.’s conclusions. Brosseau-Liard et al. (2012) have also suggested that the bias of the sample 
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RMSEA may increase with decreasing model size because it involves population RMSEA values 

close to zero.  

As reported in the literature, we found that RMSEA point estimates, CIs and tests of 

close fit obtained under normality (i.e., choice ML) were adversely affected by non-normality. 

ML estimation assumes multivariate normality, which is frequently violated in practice (Micceri, 

1989). Although the ML estimates are consistent when data are not normal, test statistics and 

standard errors are inflated when data are non-normal (Chou et al., 1991; Curran et al., 1996; 

Muthén & Kaplan, 1985). Repeatedly, research has also found inflated sample estimates of 

RMSEA (Brosseau-Liard et al., 2012; Curran, Bollen, Chen, Paxton, & Kirby, 2003; Fan et al., 

1999), poor coverage of CIs (Brosseau-Liard et al., 2012; Maydeu-Olivares, 2017b; Maydeu-

Olivares, Shi, & Rosseel, 2018), and inflated false positive error rate of tests of close fit 

(Maydeu-Olivares, 2017b; Maydeu-Olivares et al., 2018) due to non-normality. In other words, 

when data are not normal, inflated RMSEA estimates may be obtained, and models may be 

rejected by tests of close fit because of non-normality, not because of lack of fit proper. 

Brosseau-Liard et al. (2012) distinguished two approaches to estimate the RMSEAML in 

the presence of non-normal data. One is the naïve approach we have described which directly 

substitutes X2 with relevant robust statistic (which they refer to as the population-corrected 

robust RMSEA); the other is the correct approach examined in the current study (which they 

refer to as the sample-corrected robust RMSEA). They report that the correct formula used here 

yielded consistent estimates of the population RMSEA and did a good job at reducing bias due to 

non-normality. In contrast, the naïve approach results in a statistic that decreases with increasing 

non-normality. In fact, the RMSEA computed based on the naïve approach have population 

values change with the degree of non-normality (Brosseau-Liard et al., 2012; Curran et al., 1996; 
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Nevitt & Hancock, 2000; Savalei, 2018). Therefore, the authors recommended using the 

formulae presented in Table 1. However, MLM was the focus of Brosseau-Liard et al. (2012); 

few studies have addressed the estimation of the ML RMSEA based on MLMV and MLR. 

Recently, research provided insights on how to correctly compute the ML RMSEA and CI with 

MLM, MLMV, and MLR (Maydeu-Olivares et al., 2018; Savalei, 2018). 

In accordance with prior research (Brosseau-Liard et al., 2012), under non-normal data, 

the robust RMSEAML computed using the correct approach generally reduced the biases of 

uncorrected RMSEAML point estimates, CIs, and tests of close fit. However, when the data were 

normally distributed, comparison of the point estimates of different corrections revealed that the 

robust RMSEA did not change much of the biases. This finding indicated that the robust 

methodology corrects for non-normality but not biases from other causes, which is also in line 

with Brosseau-Liard et al. (2012). 

Our study revealed that MLMV consistently had a better performance than MLM, and 

MLR. For the point estimates of RMSEA, the numeric values of MLM are equal to MLMV (see 

Savalei, 2018 for a detailed explanation). The MLM could lead to a poor test statistic compared 

to MLMV because the MLM performs only a mean adjustment instead of a mean and variance 

adjustment in MLMV. Though MLM and MLR yield similar CIs and tests of close fit because 

both of them perform a mean adjustment, MLM and MLR are based on different test statistics 

because of different information function estimates (Asparouhov & Muthén, 2005; Yuan & 

Bentler, 2000). Studies have suggested that the test statistics based on Asparouhov and Muthén 

(2005) such as MLR could lead to under-rejection or over-rejection of models (Maydeu-

Olivares, 2017b; Savalei, 2010). 
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There are limitations with this study. As with many simulation studies, we used a single 

hypothesized model; also, factor loadings were kept constant across conditions. In addition, 

alternative types of model misspecifications could be included. Our study used omitted factor 

correlation; future studies could include omitted cross-loadings to provide a comprehensive 

picture of the behavior of the robust RMSEA. In addition, different data generation method 

might also influence the simulation results. One might wonder whether the results would differ 

for ordinal data modeled as if it were continuous. To test this possibility, we repeated our study 

using Muthén and Kaplan’s (1985) approach: Non-normal data were obtained by generating 

multivariate normal data and discretizing it into five categories according to a set of thresholds to 

obtain data with the desired skewness and kurtosis. This method has been used to generate non-

normal data in previous simulation studies (e.g, Forero & Maydeu-Olivares, 2009; Maydeu-

Olivares, Coffman, & Hartmann, 2007). Tables summarizing the results obtained are provided as 

supplementary materials. As can be seen in the supplementary materials, similar results were 

found: MLMV outperformed other choices of test statistics in tests of close fit. Interestingly, 

when using the Muthén and Kaplan (1985) approach to generate the data, MLMV confidence 

intervals and test of close fit results are much more accurate than using the Vale and Maurelli 

(1983) approach to generate data using similar values of skewness and kurtosis5. In other words, 

confidence intervals and tests of close fit appear to be more precise when fitting models to 

ordinal data (treating it as continuous, e.g., Rhemtulla, Brosseau-Liard, & Savalei, 2012), than 

when data are truly continuous. Maydeu-Olivares, Fairchild and Hall (2017) investigated the 

effect of the number of response alternatives (including truly continuous data) on the average 

sample RMSEAML estimates. They used the naïve approach to estimate the population parameter 

from for the mean and variance corrected statistic (i.e., MLMV) 6. Further research is clearly 
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needed to investigate the effect of the number of response alternatives (including truly 

continuous data) on coverage rates for the RMSEAML. 

In closing, the main goal of the current study was to compare the performances of 

different choices for estimating the RMSEAML with non-normal data. Results from our 

simulation study support that when the correct approach (formula) is applied, MLMV is the best 

choice by providing the most accurate point estimates, CIs and tests of close fit (type I error 

rates). However, its performance is unsatisfactorily when data are truly continuous in large 

models; its performance is better when data are ordinal treated as continuous. Though more 

studies are needed to replicate and extend the results to other situations, we hope this study could 

provide some insights for applied researchers to evaluate the extent of misfit in SEM models 

under non-normal data. 
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Footnotes 

1 Some exogenous variables can be dummy variables, as in regression. 

2 There are two versions of the mean and variance corrected statistic, one proposed by Satorra 

and Bentler (1994) and another proposed by Asparouhov and Muthén (2010). Here we use the 

latter, as it is simpler to describe. In practice, differences between both statistics are very small 

(Foldnes & Olsson, 2015).  

3 The sample RMSEA (4) is not an unbiased estimator of the population RMSEA (2) when data 

are normally distributed. It is a consistent estimator, in other words, it will converge to the 

population value as sample size increases. With non-normal data, the “naïve” approach results in 

a quantity that does not converge to the population RMSEA (2) as sample size increases; it 

converges to a different population quantity.  

4 For mean corrected statistics, the constant c is generally printed by software programs. For 

mean and variance corrections it is not currently printed by software programs. 

5 The results of this additional set of simulations is available from the authors upon request. 

6 The correct formula was not available at the time. 
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Table 1. Formula for estimating the scaling correction c for different choices of corrections for 

goodness-of-fit test statistics 

 

 

Choice Suitable for X2 statistic Scaling correction, c 

ML Normal outcomes likelihood ratio (LR) statistic 1 

MLM Non-normal 

outcomes 

Satorra and Bentler (1994) mean-adjusted LR 2

2

ML

MLM

X

X
 

MLMV Non-normal 

outcomes 

Asparouhov and Muthén (2010) mean- and variance-

adjusted LR 

2 2

2 2

ML MLM

MLM MLMV

X X df

X X df
 

MLR Non-normal 

outcomes 

Asparouhov and Muthén (2005) mean-adjusted LR 2

2

ML

MLR

X

X
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Table 2. Population RMSEA and Average of RMSEA estimates across Replications 

    p = 16  p = 32 

 N Skew.. Kurt.. Pop. ML 

MLM 

& 

MLMV 

MLR  Pop. ML 

MLM 

& 

MLMV 

MLR 

.4 200 3 21 .138 .151 .141 .147  .105 .125 .116 .122 

 500 3 21 .138 .144 .138 .140  .105 .114 .107 .110 

 1000 3 21 .138 .141 .137 .138  .105 .110 .105 .106 

.8 200 3 21 .067 .104 .084 .094  .054 .096 .081 .090 

 500 3 21 .067 .086 .071 .075  .054 .076 .063 .066 

 1000 3 21 .067 .077         .068 .070  .054 .067 .057 .059 

1 200 3 21 0 .085 .053 .069  0 .084 .064 .075 

 500 3 21 0 .058 .026 .035  0 .057 .034 .041 

 1000 3 21 0 .042 .014 .020  0 .042 .019 .024 

.4 200 1 7 .138 .140 .138 .140  .105 .110 .108 .110 

 500 1 7 .138 .139 .137 .138  .105 .107 .105 .106 

 1000 1 7 .138 .138 .137 .138  .105 .106 .105 .105 

.8 200 1 7 .067 .078 .072 .075  .054 .068 .064 .067 

 500 1 7 .067 .072 .068 .069  .054 .060 .056 .057 

 1000 1 7 .067 .069 .067 .067  .054 .058 .055 .055 

1 200 1 7 0 .041 .026 .034  0 .044 .034 .041 

 500 1 7 0 .027 .012 .016  0 .028 .015 .019 

 1000 1 7 0 .020 .007 .009  0 .020 .008 .010 

.4 200 0 0 .138 .136 .136 .138  .105 .105 .105 .106 

 500 0 0 .138 .137 .137 .138  .105 .105 .105 .105 

 1000 0 0 .138 .137 .137 .138  .105 .105 .105 .105 

.8 200 0 0 .067 .068 .068 .068  .054 .057 .058 .058 

 500 0 0 .067 .067 .067 .067  .054 .055 .055 .055 

 1000 0 0 .067 .067 .067 .067  .054 .054 .054 .054 

1 200 0 0 0 .014 .015 .015  0 .017 .018 .019 

 500 0 0 0 .008 .008 .008  0 .007 .007 .007 

 1000 0 0 0 .005 .005 .005  0 .004 .004 .004 

 

Notes: pop = population value; ML = likelihood ratio (LR) test statistic; MLM = Satorra-Bentler 

(1994) mean adjusted LR; MLMV = Asparouhov and Muthén (2010) mean and variance 

adjusted LR, MLR = Asparouhov and Muthén (2005) mean adjusted LR. 

 

  



RMSEA with Non-normal Data 29 

Table 3. Coverage Rates for 90% Confidence Intervals around the Population RMSEA 

     p = 16   p = 32 

 N Skew. Kurt. Pop. ML MLM MLMV MLR  Pop. ML MLM  MLMV MLR 

.4 200 3 21 .138 .425 .744 .924  .562  .105 .050 .341 .720 .143 

 500 3 21 .138 .509 .750 .903 .665  .105 .157 .569 .872 .436 

 1000 3 21 .138 .522 .763 .882 .678  .105 .233 .614 .861 .536 

.8 200 3 21 .067 .056 .564 .868 .287  .054 .000 .025 .338 .002 

 500 3 21 .067 .114 .752 .927 .608  .054 .000 .324 .792 .133 

 1000 3 21 .067 .215 .784 .925 .721  .054 .002 .568 .891 .407 

1 200 3 21 0 .001 .343 .833 .085  0 .000 .000 .135 .000 

 500 3 21 0 .000 .661 .955 .342  0 .000 .041 .719 .003 

 1000 3 21 0 .000 .805 .978 .586  0 .000 .256 .945 .065 

.4 200 1 7 .138 .723 .780 .891 .705  .105 .489 .612 .878 .478 

 500 1 7 .138 .716 .808 .889 .725  .105 .540 .643 .837 .581 

 1000 1 7 .138 .702 .785 .849 .714  .105 .568 .641 .788 .602 

.8 200 1 7 .067 .581 .778 .925 .666  .054 .123 .380 .824 .198 

 500 1 7 .067 .650 .809 .908 .779  .054 .256 .656 .901 .563 

 1000 1 7 .067 .688 .807 .879 .793  .054 .346 .707 .877 .672 

1 200 1 7 0 .281 .734 .954 .501  0 .006 .122 .790 .026 

 500 1 7 0 .235 .827 .973 .748  0 .005 .530 .965 .280 

 1000 1 7 0 .204 .912 .974 .856  0 .001 .755 .985 .595 

.4 200 0 0 .138 .764 .765 .828 .741  .105 .659 .656 .843 .622 

 500 0 0 .138 .755 .778 .805 .723  .105 .641 .642 .732 .615 

 1000 0 0 .138 .757 .777 .794 .714  .105 .634 .634 .686 .611 

.8 200 0 0 .067 .824 .819 .888 .817  .054 .714 .690 .903 .684 

 500 0 0 .067 .825 .827 .853 .825  .054 .738 .734 .842 .734 

 1000 0 0 .067 .817 .816 .830 .815  .054 .739 .740 .794 .738 

1 200 0 0 0 .914 .901 .956 .899  0 .708 .660 .960 .658 

 500 0 0 0 .936 .933 .954 .932  0 .884 .875 .963 .874 

 1000 0 0 0 .942 .941 .950 .941  0 .925 .920 .961 .920 

 

Notes: skew = skewness, kurt = excess kurtosis, pop = population value; ML = likelihood ratio 

(LR) test statistic; MLM = Satorra-Bentler (1994) mean adjusted LR; MLMV = Asparouhov and 

Muthén (2010) mean and variance adjusted LR, MLR = Asparouhov and Muthén (2005) mean 

adjusted LR. Shaded results indicate acceptable coverage (between .85 and .95). 
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Table 4. Test of close fit results. Empirical rejection rates at a 5% significance level of a test that 

the RMSEA is less than or equal to its population value 

     p = 16   p = 32 

 N Skew. Kurt. Pop. ML MLM MLMV MLR  Pop. ML MLM  MLMV MLR 

.4 200 3 21 .138 .550 .186 .060 .393  .105 .950 .659 .289 .861 

 500 3 21 .138 .432 .122 .047 .228  .105 .841 .331 .113 .508 

 1000 3 21 .138 .374 .094 .043 .187  .105 .737 .228 .083 .337 

.8 200 3 21 .067 .945 .431 .134 .717  .054 1.00 .977 .671 .998 

 500 3 21 .067 .887 .208 .067 .371  .054 1.00 .676 .212 .869 

 1000 3 21 .067 .780 .141 .054 .220  .054 .998 .405 .109 .582 

1 200 3 21 0 .999 .658 .171 .915  0 1.00 1.00 .870 1.00 

 500 3 21 0 1.00 .340 .045 .658  0 1.00 .959 .284 .997 

 1000 3 21 0 1.00 .196 .022 .414  0 1.00 .744 .055 .935 

.4 200 1 7 .138 .194 .113 .052 .210  .105 .480 .329 .116 .485 

 500 1 7 .138 .175 .065 .033 .152  .105 .366 .193 .087 .289 

 1000 1 7 .138 .174 .081 .053 .158  .105 .314 .170 .101 .230 

.8 200 1 7 .067 .413 .192 .072 .316  .054 .881 .625 .184 .807 

 500 1 7 .067 .324 .123 .061 .163  .054 .745 .306 .098 .418 

 1000 1 7 .067 .267 .102 .067 .118  .054 .646 .225 .100 .270 

1 200 1 7 0 .720 .268 .049 .501  0 .994 .879 .215 .974 

 500 1 7 0 .767 .129 .027 .253  0 .995 .471 .035 .722 

 1000 1 7 0 .798 .088 .027 .145  0 .999 .245 .015 .406 

.4 200 0 0 .138 .096 .099 .072 .138  .105 .198 .211 .100 .261 

 500 0 0 .138 .097 .079 .068 .140  .105 .158 .161 .119 .207 

 1000 0 0 .138 .100 .080 .074 .147  .105 .162 .163 .139 .202 

.8 200 0 0 .067 .115 .122 .084 .126  .054 .261 .293 .102 .298 

 500 0 0 .067 .092 .094 .080 .096  .054 .183 .189 .117 .192 

 1000 0 0 .067 .088 .090 .083 .091  .054 .172 .175 .139 .176 

1 200 0 0 0 .086 .101 .045 .103  0 .295 .343 .041 .345 

 500 0 0 0 .065 .067 .046 .068  0 .116 .127 .037 .126 

 1000 0 0 0 .058 .060 .050 .059  0 .075 .080 .039 .080 

 

Notes: pop = population value; ML = likelihood ratio (LR) test statistic; MLM = Satorra-Bentler 

(1994) mean adjusted LR; MLMV = Asparouhov and Muthén (2010) mean and variance 

adjusted LR, MLR = Asparouhov and Muthén (2005) mean adjusted LR. Shaded results indicate 

acceptable rejection rates (between .03 and .08). 
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Table 5. A five factor confirmatory factor analysis model fitted to the short version of the SPSI-

R: RMSEA parameter estimates, 90% confidence intervals, and p-values for a test that RMSEA  

.05 for different choices of overall test statistics with ML estimates 

 

    Naïve   Correct  

Estimator X2 c Est 90% CI p Est 90% CI p 

ML 933.527 1 na na na .050 (.046, .053) .544 

MLM 798.599 1.1690 .044 (.041, .048) .995 .048 (.044, .052) .796 

MLMV 692.512 1.4590 .040 (.036, .043) 1 .048 (.043, .052) .765 

MLR 799.497 1.1676 .044 (.041, .048) .995 .048 (.044, .052) .795 

 

Notes: N = 1,020; df = 265; na = not applicable. The naïve approach is currently implemented in 

most software packages, it uses Browne and Cudeck’s formula (4), (6) and (7) regardless of 

choice of test statistic. The correct results are obtained using formula (8), (9), and (10) –see also 

Table 1. 


