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Abstract
Recent research has provided formulae for estimating the maximum likelihood (ML) RMSEA
when mean, or mean and variance, corrections for non-normality are applied to the likelihood
ratio test statistic. We investigate by simulation which choice of corrections provides most
accurate point RMSEA estimates, confidence intervals, and p-values for a test of close fit under
normality, and in the presence of non-normality. We found that, overall, any robust corrections
(choices MLM, MLMV, and MLR) provide better results than ML, which assumes normality.
When they err, all choices tend to suggest that the model fits more poorly than it really does.
Choice MLMYV (mean and variance corrections) provided the most accurate RMSEA estimates
and p-values for tests of close fit results but its performance decreases as the number of variables

being modeled increases.

Keywords: Structural equation modeling (SEM), RMSEA, nonnormal data, fit index
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Estimating the Maximum Likelihood Root Mean Square Error of Approximation
(RMSEA) with Non-normal Data: A Monte-Carlo Study
Structural equation modeling (SEM) is a comprehensive approach to fit theoretical
models involving systems of equations with observed as well as latent variables (i.e., common
factors). A critical step when fitting a model is to determine whether it fits the data at hand
(Bearden, Sharma, & Teel, 1982; Bollen, 1989; Lomax & Schumacker, 2004). When no
structure is imposed on the intercepts of the model (i.e., in covariance structure analysis), the null

and alternative hypotheses of model fit can be written as H,: X =%, and H,:Z # X, where X
denotes the population covariance matrix, and X, = X(08) denotes the covariance matrix implied

by the theoretical model under consideration, expressed as a function of the model parameters 0.
In this paper, we focus on models in which all dependent variables are treated as
continuous'. In such instances, presently, maximum likelihood (ML) estimation is almost

invariably used (Maydeu-Olivares, 2017b). Under normality assumptions, the null hypothesis of

exact model fit can be assessed in large samples using X, = F,

" » Where N denotes sample size

and F,, denotes the minimum of the ML fitting function. X, is the likelihood ratio (LR) test

statistic. In this setting, p-values for X, are obtained using a reference chi-square. However,

when sample size is small, normality assumptions are violated, or a large number of variables is
being modeled, p-values obtained in this fashion need not be accurate (Bentler & Bonett, 1980;
Chou, Bentler, & Satorra, 1991; Curran, West, & Finch, 1996; Hoelter, 1983; Hu, Bentler, &

Kano, 1992; Moshagen, 2012; Shi, Lee, & Terry, 2018). In particular, when the data are not

normally distributed, X, does not follow an asymptotic chi-square distribution.
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For non-normal data, the most widely used test statistic when ML estimation is employed
involves using a mean correction, or a mean and variance correction, to X,, and using a

reference chi-square distribution to obtain p-values (Satorra & Bentler, 1994). In this article, we
focus on the mean or mean and variance corrections implemented in the widely used SEM

software Mplus (Muthén & Muthén, 2017). Also, we refer to them using the same nomenclature

used in Mplus: 1) X;,,,: mean corrected LR statistic proposed by Satorra and Bentler (1994); 2)

X, mean and variance corrected LR statistic described in Asparouhov and Muthén (2010)%;

and 3) X,,,: mean corrected LR statistic as described in Asparouhov and Muthén (2005).
These test statistics are related to the LR statistic as follows: X;,,, = X1, /Cour »

X, =a+X,, / Copny »and X1, .= X1, / ¢,z - Somewhat confusingly, these test statistics are
obtained in Mplus by invoking different “ESTIMATORS” (e.g., ML, MLM, MLMV, and MLR).
In this paper we refer to them as ‘choices’ of ML estimation because all of them result in the
same parameter estimates, ML estimates, but different standard errors for the parameter
estimates, and different test statistics (i.e., different ‘chi-square tests’). In particular, choices
MLM and MLMYV result in the same standard errors as the same formula is used to compute
them, but yield different chi-square and RMSEA statistics. Choice MLM adjusts the LR statistic
by its asymptotic mean, whereas choice MLMYV adjusts it by its asymptotic mean and variance.
In both cases, the expected information matrix is used to obtain the standard errors of the
parameter estimates. In choice MLR, the observed information matrix is used to obtain standard
errors of the parameter estimates. As a result, standard errors for choices MLR and

MLM/MLMYV are different in finite samples. Like choice MLM, choice MLR adjusts the LR

statistic by its asymptotic mean. As a result, asymptotically, choices MLR and MLM result in the
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same chi-square statistic. However, in finite samples the chi-square statistics for choices MLR
and MLM differ because the mean adjustment involves the information matrix, which is
computed differently in choices MLM and MLR. See Maydeu-Olivares (2017b) for a detailed
account of the differences between the various implementations of ML estimation for continuous
outcomes.

Regardless of the outcome of the model fit test, it is necessary to assess the magnitude of
model misfit, the discrepancy between the unknown data generating mechanism and the fitted
model (Browne & Cudeck, 1993; Maydeu-Olivares, 2017a). The most popular (Jackson,
Gillaspy, & Purc-Stephenson, 2009; McDonald & Ho, 2002) effect size of model misfit is the
Root Mean Square Error of Approximation (RMSEA: Browne & Cudeck, 1993; Steiger, 1990;
Steiger & Lind, 1980). To a large extent, the popularity of the RMSEA comes from Browne and
Cudeck’s (1993) proposal of replacing the null hypothesis of model fit, which can be stated in

terms of the RMSEA as H, : RMSEA =0, by a more lenient null hypothesis of close fit,

H, : RMSEA < k, where k is an arbitrary value of the RMSEA, typically .05. Testing for close fit

instead of exact fit makes particular sense when sample size is very large (as any trivial model fit
discrepancy will be detected by the chi-square test of exact fit), or when many variables are
being modeled (as finding a well-fitting model is increasingly difficult as the number of variables

to be modeled increases) (Maydeu-Olivares, 2017a).

Following Browne and Cudeck (1993; Cudeck & Henly, 1991), let | be the best fit of
the model to the population covariance matrix X in terms of the fit function used to estimate the

model, F(Z, %,). We note that both X, " are unknown fixed matrices. Then, the RMSEA is

defined in the population as (Browne & Cudeck, 1993)
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RMSEA =1/£ (D
df

where F (Z,IN denotes the minimum of the discrepancy between the population

covariance matrix and the covariance matrix implied by the model. It is clear from (1) that the
population RMSEA depends on the estimation method employed. When ML estimation is used

the population RMSEA (i.e., RMSEAwML) is

RMSEA,, = \[I— (2)
df

and I is obtained by minimizing
Fyp =[]~ In[g]+tr(22,') - p, (3)

where p denotes the number of observed variables. Given sample data, and assuming normality,

this population parameter can be estimated as

RMSEAu = \/max(M,Oj 4)
N xdf

where N denotes sample size. A 90% confidence interval (CI) for RMSEAML can be obtained as

\/max(o, L j,\/max(o, v ] (%)
N xdf N xdf

where L and U are the solutions to

F, (X,,;df,L)=.95, and F, (X;,;df,U)=.05, (6)
respectively, and F, (df,)) denotes the non-central chi-square distribution with df degrees of

freedom and non-centrality parameter A (Browne & Cudeck, 1993). Finally, if a p-value for a

test of close fit, H, ; : RMSEA <k, is desired, it can be obtained using



RMSEA with Non-normal Data 7

1= F. (X5:df N xdf xk°). (7)

How to estimate the RMSEAwmL when data are non-normal? The most popular approach
is to simply replace X, by X,,,, or X,,,,  respectively, in equations (4), (6) and (7). We
refer to this approach as the naive approach, and it is the approach implemented in most popular
software programs (e.g., Mplus). However, the use of this naive approach results in estimating a
parameter value that is not the RMSEAML (2) leading to difficulty of interpretation (and
comparison) of RMSEA values (Brosseau-Liard, Savalei, & Li, 2012; Savalei, 2018).

How can we obtain consistent® estimates of the population parameter RMSEAwL,

regardless of whether data are normal or non-normal, and regardless of the choice of mean or

mean and variance correction? By using

RMSEAu; = max(M,O] )
N xdf
\/max(o, cL j,\/max(o, U ] 9)
N xdf N xdf
1= F . (X*df N xdf xk*[c), (10)

instead of equations (4), (5), and (7) (Brosseau-Liard et al., 2012; Li & Bentler, 2006; Savalei,

2018). We refer to the use of formula (8), (9), and (10) as the correct approach. In these formula,

2
or X

2 2
XMLM H XMLR H MLMV >

X2:X2

L andc=c,;, Cyyu > Conr OF Cyypuy denotes its associated

correction used. We provide in Table 1 formula for computing the constant ¢ for different
choices of corrections* to the likelihood ratio test statistic. In particular, for X}, , suitable for

normal outcomes, ¢ = 1, and the formula reduce to (4), (5), and (7). Furthermore, when MLM

and MLMV are used, different chi-square statistics are obtained but under the correct approach
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described above, the same RMSEA ML point estimates are obtained. However, different
confidence intervals and p-values for tests of close fit are obtained for MLM and MLMV when

the correct approach is used. For details see Savalei (2018).

Insert Table 1 about here

What choice of uncorrected, mean, or mean and variance corrected chi-square statistics
(i.e., ML, MLM, MLMV, or MLR) leads to more accurate point estimates of the RMSEAmL
parameter, confidence intervals, and tests of close fit? This has not been investigated. To fill this
gap in the literature, in this article we compare the performance of different procedures to
estimate the RMSEAML parameter using a Monte Carlo simulation study. In our simulation
design, the performance of point estimates, CIs and tests of close fit were examined under
various degrees of non-normality, model size, sample size, and degree of model
misspecifications. We close our presentation by offering some practical guidance of estimating
the RMSEA when data are non-normal.

Simulation Study

Method

Given the popularity of confirmatory factor models in empirical studies, we used
confirmatory factor models as data generating and fitted models. More specifically, the fitted
model was a one-factor model in all cases; the data generating model was a two-factor model
with the following characteristics. First, model size includes 16 or 32 items, which represented a
small and a large population model, respectively. For a given population model, each item
loaded on a single factor. Item loading values ranged from .5 to .8; true population loading

values were repeated in sets of four (i.e., values of [.5 .6 .7 .8] repeated four times in the small



RMSEA with Non-normal Data 9

population model and eight times in the large population model). Uniquenesses values were
specified so that the population covariance matrix was a correlation matrix. Second, three
different skewness and kurtosis values were examined. The values were selected to parallel
previous studies (e.g., West, Finch, & Curran, 1995): skewness = 0, kurtosis = 0 (i.e., normal);
skewness = 1, kurtosis = 7; and skewness = 3, kurtosis = 21. Non-normal data were obtained by
following the procedure described in Vale and Maurelli (1983). Third, sample sizes of 200, 500,
and 1000 were included to examine sample size conditions encountered in applied settings
(Wolf, Harrington, Clark, & Miller, 2013). Fourth, one correctly specified population model and
two misspecified models were used. The different levels of misspecification were obtained by
setting the inter-factor correlation, p to 1 (correctly specified), .8 (small misspecification), and .4
(large misspecification). In all cases, the mean of the data were zero and the variances of the
factors were set to one.

Taken together, the simulation study consisted of a crossed design of 54 conditions: 2
model sizes (16, 32) x 3 distributional conditions % 3 sample sizes (200, 500, 1000) x 3 levels of
model misspecification.

Data Analysis

For each of the 54 simulated conditions, 5,000 replications were obtained. Model
estimation was performed using Mplus (Muthén & Muthén, 2017). Replications that showed
convergence problems or improper solutions were noted and eliminated from further analysis.
First, the sample RMSEA was estimated as described in Table 1 for ML, MLM, MLMV, and
MLR, and averaged across replications. Second, the 90% ClIs for the population RMSEAwmL were
estimated as described in Table 1 and coverage rates (percentage of intervals that contain the true

parameter) were obtained for each choice of test statistic. Third, empirical rejection rates at a 5%
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significance level of a test that the RMSEAML is less than or equal to its population value were
obtained. Note that we only offer results for the “correct” approach.
Results

Table 2 shows the resulting population values in our simulation and the average of
sample RMSEA across replications. We note that the results for MLM and MLMYV are the same
in this table because the formula for MLMV simplifies to that of MLM for RMSEA point
estimates. We begin by briefly summarizing the results of the population values of RMSEA.
First, the population values of RMSEA were equal to 0 for all properly specified models (p = 1)
regardless of model size (p = 16 or 32). Second, consistent with prior studies (Chen, Curran,
Bollen, Kirby, & Paxton, 2008; Fan, Thompson, & Wang, 1999; Hu & Bentler, 1999),
population RMSEA increased as the degree of model misspecification increased. Third, in
accordance with previous research (Breivik & Olsson, 2001; Kenny & McCoach, 2003; Savalei,
2012; Shi, Lee, & Maydeu-Olivares, 2019), we found that the population values of the RMSEA
tend to decrease as model size increases holding model misspecification constant.

Next, we focus on the sample estimates of the RMSEA and their behavior under different
conditions. When data were normally distributed, estimates close to population values were
obtained regardless of the choice of test statistic. Though the results produced by ML (i.e.,
normality assumptions) were accurate overall when data were normal, we observed that the
sample RMSEA tended to overestimate the population RMSEA when data were non-normal, and

the bias increased with decreasing sample size, decreasing model misspecification, or increasing

model size. For example, the average sample ML RMSEA is .084 using X;, when the

population ML RMSEA = 0 if kurtosis = 3, skewness =21, N=200, p =1, and p = 32.
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Robust methods (MLM/MLMYV and MLR) provide similar results than choice ML when
data are normal, but more accurate estimates when data are non-normal. For the condition above,
MLM and MLMV yielded an average of .064 and MLR an average RMSEA of .075. In general,
and across conditions, MLM/MLMYV provided more accurate RMSEA point estimates than
MLR. Finally, we note that all test statistics appear to converge to the population RMSEA

values, i.e., bias decreases as sample size increases.

Insert Table 2 about here

Table 3 shows the coverage rates (i.e., percentage of confidence intervals that include the
true parameter) for 90% Cls around the population RMSEA. We have highlighted in Table 3
conditions where acceptable coverage rates (between 85% and 95%) were obtained. As Table 3
reveals, the coverage of the 90% CIs obtained under normality (i.e., choice ML) was generally
poor. As was the case for point estimates, the coverage rates for ML CIs were strongly
influenced by the degree of non-normality. Choice ML produced some acceptable Cls only when
data were normal. In general, negligible differences were observed in terms of coverage of Cls
between choices ML, MLM, MLMYV, and MLR when data were normal. However, when data
were not normal, coverage of Cls of robust methods (MLM, MLR and MLMYV) was better than
for choice ML. For example, when fitting models with non-normal data (kurtosis = 3, skewness =
21) with p =16 and p = .8, population RMSEA = .067 and N = 1000, coverage rate for 90% Cls
under ML was .215, for MLM and MLR was .784 and .721, respectively, and for MLMV was
.925. Among robust methods, choice MLMV negligibly outperformed choices that involved only

a mean correction (MLM and MLR).
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Furthermore, the coverage rates of the RMSEAS robust to non-normality (i.e., using
choices MLM, MLR, MLMYV) need not improve with increasing sample size. This is because the
mean (or mean and variance) adjusted statistics do not follow asymptotically a chi-square
distribution. They only agree in mean (or in mean and variance) with a reference a chi-square
distribution. As a result, their empirical distribution need not converge to that of the reference
distribution as sample increases. For instance, coverage for 90% ClIs around the population
RMSEA using MLMV when skewness = 1, kurtosis =7, p = .8, p = 16, improves from N = 200

to 500, but worsens from N = 500 to 1000: coverage rates are .925, .908, and .879, respectively.

Insert Table 3 about here

Table 4 shows the results for tests of close fit, more specifically, empirical rejection rates
at a 5% significance level of tests of the RMSEA being less than or equal to its population value.
We considered rejection rates between 0.03 and 0.08 as reasonably accurate and they are
highlighted in Table 4. Empirical rejection rates for choice ML (i.e., under normality) were
strongly influenced by the non-normality of the data. When data were not normal, no acceptable
empirical rejection rates were obtained using choice ML regardless of model size, model
misspecification or sample size. Empirical rejection rates were also strongly influenced by model
size. In general, robust choices (MLMV, MLM and MLR) yield more accurate results than
choice ML across conditions. However, the main finding that can be extracted from this table is

that assessing close fit using the RMSEA in large models (p = 32) often fails.

Insert Table 4 about here
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A numerical example: Fitting a confirmatory factor analysis model to the short version of
the SPSI-R
The Social Problem Solving Inventory-Revised (SPSI-R: D’Zurilla, Nezu, & Maydeu-
Olivares, 2002) is a 52 item questionnaire designed to measure the five dimensions of the social
problem solving model of D’Zurilla and colleagues (D’Zurilla, Nezu, & Maydeu-Olivares, 2004;
Maydeu-Olivares & D’Zurilla, 1996). Here, we report the results of fitting a five-factor
confirmatory model to the 25 items of the short version of the questionnaire. The US normative
young adult sample was used. Sample size is N = 1,020. Each item consists of a rating using five
response alternatives from ‘very untrue of me’ to ‘very true of me’. Data appears quite normally
distributed: skewness ranges from -.78 to .81 with an average of .18; excess kurtosis ranges from
-1.03 to .04 with an average of -.59. We fitted the model with maximum likelihood choices ML,
MLM, MLR, and MLMV. The first is suitable for normal outcomes; the others yield standard
errors and X statistics robust to non-normality. Goodness of fit results are presented in Table 5.
We include in this table the X? statistics, and constant ¢ computed using the formula in Table 1,
naive (incorrect) RMSEA results, and the correct RMSEA results (computed using the formula
in Table 1). We see in Table 5 that regardless of the X statistic used, the hypothesis of exact
model fit is to be rejected. This is not surprising since we are fitting a quite restrictive model
(265 df) to 25 observed variables. We note, however, that the MLMV X? is smallest and that the
ML X? is largest. This is consistent with simulation results by Maydeu-Olivares (2017b) who
found that the ML X? rejects too often in models of this size, even with normally distributed data;
in contrast, the MLMV X? maintained adequate rejection rates.
Now, the naive RMSEA results are obtained by using formula (4) and (5) for all choices

of test statistic implemented in the current version of Mplus; that is, if MLMYV is used, by
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replacing X,, by X;,,, in these equations. The correct RMSEA results are obtained using the

formula in Table 1. We see in Table 5 that when the naive approach is used, much lower
RMSEA estimates are obtained when using robust methods (MLM, MLMYV, or MLR) than when
normality is assumed (choice ML). For instance, under ML the estimated RMSEA is .050,
whereas when MLMYV is used the estimate is .040. In fact, robust CIs for the RMSEA do not
include the RMSEA estimate obtained using ML.

The correct robust RMSEA results (obtained using Lavaan, Rosseel, 2012) reveal a
different picture: they are much more in line with those obtained under normality. For instance,
the MLMYV results suggest that the point estimate is .048. Given our simulation results, we
conclude that the MLMV RMSEA results are likely to be the most accurate. We also note that in
this example the effect of using the naive approach to estimate RMSEA results is to
underestimate the degree of model misfit, giving the impression that the model fits better than it
does.

Discussion

Our findings are in line with previous research (Brosseau-Liard et al., 2012; Curran,
Bollen, Chen, Paxton, & Kirby, 2003; Fan et al., 1999; Hu & Bentler, 1999). Sample size and
model size influence the bias of RMSEA estimation because the RMSEA is a function of the X*
statistic, whose performance is influenced, in turn, by both sample size and model size. Shi et al.
(2019) found that the bias of the RMSEA increased as model size increased. This is in contrast to
results by Kenny and McCoach (2003) who reported the opposite effect. Shi et al. (2019)
speculated that this might be due to the size of the models considered in each study (4 to 25
variables in Kenny and McCoach vs. 10 to 120 in Shi et al.). The present results support Shi et

al.’s conclusions. Brosseau-Liard et al. (2012) have also suggested that the bias of the sample
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RMSEA may increase with decreasing model size because it involves population RMSEA values
close to zero.

As reported in the literature, we found that RMSEA point estimates, Cls and tests of
close fit obtained under normality (i.e., choice ML) were adversely affected by non-normality.
ML estimation assumes multivariate normality, which is frequently violated in practice (Micceri,
1989). Although the ML estimates are consistent when data are not normal, test statistics and
standard errors are inflated when data are non-normal (Chou et al., 1991; Curran et al., 1996;
Muthén & Kaplan, 1985). Repeatedly, research has also found inflated sample estimates of
RMSEA (Brosseau-Liard et al., 2012; Curran, Bollen, Chen, Paxton, & Kirby, 2003; Fan et al.,
1999), poor coverage of Cls (Brosseau-Liard et al., 2012; Maydeu-Olivares, 2017b; Maydeu-
Olivares, Shi, & Rosseel, 2018), and inflated false positive error rate of tests of close fit
(Maydeu-Olivares, 2017b; Maydeu-Olivares et al., 2018) due to non-normality. In other words,
when data are not normal, inflated RMSEA estimates may be obtained, and models may be
rejected by tests of close fit because of non-normality, not because of lack of fit proper.

Brosseau-Liard et al. (2012) distinguished two approaches to estimate the RMSEAML in
the presence of non-normal data. One is the naive approach we have described which directly
substitutes X with relevant robust statistic (which they refer to as the population-corrected
robust RMSEA); the other is the correct approach examined in the current study (which they
refer to as the sample-corrected robust RMSEA). They report that the correct formula used here
yielded consistent estimates of the population RMSEA and did a good job at reducing bias due to
non-normality. In contrast, the naive approach results in a statistic that decreases with increasing
non-normality. In fact, the RMSEA computed based on the naive approach have population

values change with the degree of non-normality (Brosseau-Liard et al., 2012; Curran et al., 1996;
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Nevitt & Hancock, 2000; Savalei, 2018). Therefore, the authors recommended using the
formulae presented in Table 1. However, MLM was the focus of Brosseau-Liard et al. (2012);
few studies have addressed the estimation of the ML RMSEA based on MLMV and MLR.
Recently, research provided insights on how to correctly compute the ML RMSEA and CI with
MLM, MLMYV, and MLR (Maydeu-Olivares et al., 2018; Savalei, 2018).

In accordance with prior research (Brosseau-Liard et al., 2012), under non-normal data,
the robust RMSEAwmL computed using the correct approach generally reduced the biases of
uncorrected RMSEAwML point estimates, Cls, and tests of close fit. However, when the data were
normally distributed, comparison of the point estimates of different corrections revealed that the
robust RMSEA did not change much of the biases. This finding indicated that the robust
methodology corrects for non-normality but not biases from other causes, which is also in line
with Brosseau-Liard et al. (2012).

Our study revealed that MLMYV consistently had a better performance than MLM, and
MLR. For the point estimates of RMSEA, the numeric values of MLM are equal to MLMYV (see
Savalei, 2018 for a detailed explanation). The MLM could lead to a poor test statistic compared
to MLMYV because the MLM performs only a mean adjustment instead of a mean and variance
adjustment in MLMV. Though MLM and MLR yield similar CIs and tests of close fit because
both of them perform a mean adjustment, MLM and MLR are based on different test statistics
because of different information function estimates (Asparouhov & Muthén, 2005; Yuan &
Bentler, 2000). Studies have suggested that the test statistics based on Asparouhov and Muthén
(2005) such as MLR could lead to under-rejection or over-rejection of models (Maydeu-

Olivares, 2017b; Savalei, 2010).
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There are limitations with this study. As with many simulation studies, we used a single
hypothesized model; also, factor loadings were kept constant across conditions. In addition,
alternative types of model misspecifications could be included. Our study used omitted factor
correlation; future studies could include omitted cross-loadings to provide a comprehensive
picture of the behavior of the robust RMSEA. In addition, different data generation method
might also influence the simulation results. One might wonder whether the results would differ
for ordinal data modeled as if it were continuous. To test this possibility, we repeated our study
using Muthén and Kaplan’s (1985) approach: Non-normal data were obtained by generating
multivariate normal data and discretizing it into five categories according to a set of thresholds to
obtain data with the desired skewness and kurtosis. This method has been used to generate non-
normal data in previous simulation studies (e.g, Forero & Maydeu-Olivares, 2009; Maydeu-
Olivares, Coffman, & Hartmann, 2007). Tables summarizing the results obtained are provided as
supplementary materials. As can be seen in the supplementary materials, similar results were
found: MLMYV outperformed other choices of test statistics in tests of close fit. Interestingly,
when using the Muthén and Kaplan (1985) approach to generate the data, MLMYV confidence
intervals and test of close fit results are much more accurate than using the Vale and Maurelli
(1983) approach to generate data using similar values of skewness and kurtosis’. In other words,
confidence intervals and tests of close fit appear to be more precise when fitting models to
ordinal data (treating it as continuous, e.g., Rhemtulla, Brosseau-Liard, & Savalei, 2012), than
when data are truly continuous. Maydeu-Olivares, Fairchild and Hall (2017) investigated the
effect of the number of response alternatives (including truly continuous data) on the average
sample RMSEAML estimates. They used the naive approach to estimate the population parameter

from for the mean and variance corrected statistic (i.e., MLMV) ®. Further research is clearly
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needed to investigate the effect of the number of response alternatives (including truly
continuous data) on coverage rates for the RMSEAwMmL.

In closing, the main goal of the current study was to compare the performances of
different choices for estimating the RMSEAML with non-normal data. Results from our
simulation study support that when the correct approach (formula) is applied, MLMV is the best
choice by providing the most accurate point estimates, Cls and tests of close fit (type I error
rates). However, its performance is unsatisfactorily when data are truly continuous in large
models; its performance is better when data are ordinal treated as continuous. Though more
studies are needed to replicate and extend the results to other situations, we hope this study could
provide some insights for applied researchers to evaluate the extent of misfit in SEM models

under non-normal data.
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Footnotes

!'Some exogenous variables can be dummy variables, as in regression.

2 There are two versions of the mean and variance corrected statistic, one proposed by Satorra
and Bentler (1994) and another proposed by Asparouhov and Muthén (2010). Here we use the
latter, as it is simpler to describe. In practice, differences between both statistics are very small
(Foldnes & Olsson, 2015).

3 The sample RMSEA (4) is not an unbiased estimator of the population RMSEA (2) when data
are normally distributed. It is a consistent estimator, in other words, it will converge to the
population value as sample size increases. With non-normal data, the “naive” approach results in
a quantity that does not converge to the population RMSEA (2) as sample size increases; it
converges to a different population quantity.

“ For mean corrected statistics, the constant ¢ is generally printed by software programs. For
mean and variance corrections it is not currently printed by software programs.

5 The results of this additional set of simulations is available from the authors upon request.

 The correct formula was not available at the time.
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Table 1. Formula for estimating the scaling correction c for different choices of corrections for

goodness-of-fit test statistics

Choice  Suitable for X? statistic Scaling correction, ¢
ML Normal outcomes likelihood ratio (LR) statistic 1
MLM Non-normal Satorra and Bentler (1994) mean-adjusted LR X2
outcomes QML
MLM
MLMV  Non-normal Asparouhov and Muthén (2010) mean- and variance- X2 X
. ML MLM
outcomes adjusted LR
X2 2 _
MLM MLMV
MLR Non-normal Asparouhov and Muthén (2005) mean-adjusted LR X2
outcomes ML

2
XMLR
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Table 2. Population RMSEA and Average of RMSEA estimates across Replications

p=16 p=32
MLM MLM
p N Skew.. Kurt. Pop. ML & MLR Pop. ML &  MLR
MLMV MLMV

4 200 3 21 .138 151 141 147 105 .125  .116 .122
500 3 21 138 144 138 140 105 .114  .107 .110
1000 3 21 .38  .141 137 138  .105 .110  .105 .106
8 200 3 21 .067 .104 084 .094 .054 .096  .081 .090
500 3 21 .067 .086  .071 .075 .054 .076  .063 .066
1000 3 21 067 077 068 .070  .054 .067  .057 .059

1 200 3 21 0 .08 053 .069 0 084  .064 .075
500 3 21 0 058 026 .035 0 .057  .034 .04
1000 3 21 0 042 014 .020 0 .042  .019 .024

4 200 1 7 138 140  .138 .140  .105 .110  .108 .110
500 1 7 138 139 137 138 .105 .107  .105 .106
1000 1 7 138 138 137 138 .105 .106  .105 .105

8 200 1 7 .067 078 072 075 .054 .068  .064 .067
500 1 7 .067 072 068 .069 .054 .060  .056 .057
1000 1 7 .067 069 067 .067 .054 .058  .055 .055

1 200 1 7 0 041 026 .034 0 .044 034 .041
500 1 7 0 027 012 016 0 .028  .015 .019
1000 1 7 0 020 007 .009 0 .020  .008 .010
4200 0 0 .138 136  .136  .138  .105 .105  .105 .106
500 0 0 .138 137 137 138  .105 .105  .105 .105
1000 0 0 .138 137 137 138 .105 .105  .105 .105

8 200 0 0 .067 068  .068 .068 .054 .057  .058 .058
500 0 0 .067 067 067 .067 .054 .055  .055 .055
1000 0 0 .067 067  .067 .067 .054 .054  .054 .054

1 200 0 0O o0 014 015 .015 0 017 .018 .019
500 0 O 0 .008  .008 .008 0 .007  .007 .007
1000 0 0 0 005  .005 .005 0 .004  .004 .004

Notes: pop = population value; ML = likelihood ratio (LR) test statistic; MLM = Satorra-Bentler
(1994) mean adjusted LR; MLMYV = Asparouhov and Muthén (2010) mean and variance
adjusted LR, MLR = Asparouhov and Muthén (2005) mean adjusted LR.
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Table 3. Coverage Rates for 90% Confidence Intervals around the Population RMSEA

p=16 p=32

p N Skew. Kurt. Pop. ML MLM MLMV MLR Pop. ML MLM MLMV MLR
4 200 3 21 138 425 744 924 562 105 .050 341 720 143
500 3 21 138 509 .750 903  .665 105 157 .569 872 436

1000 3 21 138 522 763 882  .678 105 233 614 861  .536

.8 200 3 21 .067 056  .564 868 287 .054 .000 .025 338 .002
500 3 21 .067 114 752 927 608 054 .000 .324 792 133

1000 3 21 067 215 784 925 721 054 .002  .568 891 407

1 200 3 21 0 .001 .343 833 .085 0 .000 .000 135 .000
500 3 21 0 .000 .661 955 342 0 .000 .041 719 .003

1000 3 21 0 .000 .805 978 586 0 .000 .256 945 065

4 200 1 7 138 723 780 891 705 105 489 612 878 478
500 1 7 138 716  .808 889 725 105 540 .643 .837 581

1000 1 7 38 702 785 849 714 105 568 641 788 602

.8 200 1 7 .067 581 778 925  .666 054 123 380 .824 198
500 1 7 .067 .650 .809 908 779 054 256  .656 901 563

1000 1 7 .067 .688  .807 879 793 054 346 .707 877 672

1 200 1 7 0 281 734 954 501 0 .006 .122 790 .026
500 1 7 0 235 .827 973 748 0 .005 .530 965 280

1000 1 7 0 204 912 974 856 0 .001 755 985  .595

4 200 0 0 .138 764 .765 828 741 105 659 .656 843 622
500 0 0 .138 755 778 805 723 105 .641 .642 732 615

1000 0 0 .38 757 .77 794 714 105 634 .634 686 .611

.8 200 0 0 .067 824 819 .888  .817 054 714  .690 903 .684
500 0 0 .067 825  .827 853 825 054 738 734 842 734

1000 0 0 .067 817  .816 .830  .815 054 739 740 794 738

1 200 0 0 0 914 901 956 899 0 .708  .660 960  .658
500 0 0 0 936 .933 954 932 0 884 875 963  .874

1000 0 0 0 942 941 950 941 0 925 .920 961 920

Notes: skew = skewness, kurt = excess kurtosis, pop = population value; ML = likelihood ratio
(LR) test statistic; MLM = Satorra-Bentler (1994) mean adjusted LR; MLMYV = Asparouhov and
Muthén (2010) mean and variance adjusted LR, MLR = Asparouhov and Muthén (2005) mean
adjusted LR. Shaded results indicate acceptable coverage (between .85 and .95).
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Table 4. Test of close fit results. Empirical rejection rates at a 5% significance level of a test that

the RMSEA is less than or equal to its population value

p=16 p=32
p N  Skew. Kurt. Pop. ML MLM MLMV MLR Pop. ML MLM MLMV MLR
4

200 3 21 138 550  .186 .060 .393 105 950  .659 289 .861

500 3 21 138 432 122 .047 228 105 841 331 113 508

1000 3 21 138 374  .094 .043 187 105 737 228 .083 337

.8 200 3 21 .067 945 431 134 717 054 1.00 977 671 998
500 3 21 .067 887  .208 .067 371 054 1.00 .676 212 869
1000 3 21 067 780  .141 .054 220 054 998 405 109 582

1 200 3 21 0 999  .658 171 915 0 1.00 1.00 .870  1.00
500 3 21 0 1.00 .340 .045 658 0 100 .959 284 997

1000 3 21 0 1.00 .196 022 414 0 1.00 .744 055  .935

4 200 1 7 138 194 113 .052 210 105 480 329 116 485
500 1 7 138 175  .065 .033 152 105 366 .193 .087 289
1000 1 7 138 174  .081 .053 158 105 314 170 101 .230

.8 200 1 7 .067 413 192 .072 316 .054 881 .625 184 807
500 1 7 .067 324 123 .061 .163 054 745 306 098 418

1000 1 7 .067 267  .102 067 118 054 646 225 100 .270

1 200 1 7 0 .720  .268 .049 501 0 994 879 215 974
500 1 7 0 767 .129 027 253 0 995 471 035 722

1000 1 7 0 .798  .088 027 145 0 999 245 015 .406

4 200 0 0 .138 .096 .099 072 138 105 198 211 100 261
500 0 0 .138 .097 .079 .068 .140 105 158 161 119 207

1000 0 0 .138 .100  .080 074 147 J0S 162 163 139 202

.8 200 0 0 .067 .115 .122 .084 126 054 261 293 102 298
500 0 0 .067 .092 .094 .080 .096 054 183 .189 A17 192

1000 0 0 .067 .088 .090 .083  .091 054 172 175 139 176

1 200 0 0 0 .086 .101 .045 103 0 295 343 .041 345
500 0 0 0 .065 .067 .046  .068 0 .116  .127 .037  .126

1000 0 0 0 .058 .060 .050  .059 0 .075 .080 .039  .080

Notes: pop = population value; ML = likelihood ratio (LR) test statistic; MLLM = Satorra-Bentler
(1994) mean adjusted LR; MLMYV = Asparouhov and Muthén (2010) mean and variance
adjusted LR, MLR = Asparouhov and Muthén (2005) mean adjusted LR. Shaded results indicate
acceptable rejection rates (between .03 and .08).
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Table 5. A five factor confirmatory factor analysis model fitted to the short version of the SPSI-
R: RMSEA parameter estimates, 90% confidence intervals, and p-values for a test that RMSEA <

.05 for different choices of overall test statistics with ML estimates

Naive Correct
Estimator | X? c Est 90% CI p Est 90% CI p
ML 033.527 1 na na na .050 (.046,.053) .544
MLM  [798.599 1.1690| .044  (.041,.048) .995 048  (.044, .052) .796
MLMV 692512 1.4590| .040 (.036,.043) 1 .048  (.043,.052) .765
MLR  [799.497 1.1676| .044  (.041,.048) .995 048  (.044,.052) .795

Notes: N = 1,020; df = 265; na = not applicable. The naive approach is currently implemented in
most software packages, it uses Browne and Cudeck’s formula (4), (6) and (7) regardless of
choice of test statistic. The correct results are obtained using formula (8), (9), and (10) —see also

Table 1.



