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Abstract

The natural myocardium is a highly aligned tissue with an oriented vasculature. Its characteristic cellular as well
as nanoscale extracellular matrix (ECM) organization along with an oriented vascular network ensures
appropriate blood supply and functional performance. Although significant efforts have been made to develop
anisotropic cardiac structure, currently neither an ideal biomaterial nor an effective vascularization strategy to
engineer oriented and high-density capillary-like microvessels has been achieved for clinical cardiovascular
therapies. A naturally derived oriented ECM nanofibrous scaffold mimics the physiological structure and
components of tissue ECM and guides neovascular network formation. The objective of this study was to
create an oriented and dense microvessel network with physiological myocardial microvascular features.

Methods: Highly aligned decellularized human dermal fibroblast sheets were used as ECM scaffold to regulate
physiological alignment of microvascular networks by co-culturing human mesenchymal stem cells (hMSCs) and
endothelial cells (ECs). The influence of topographical features on hMSC and EC interaction was investigated to
understand underlying mechanisms of neovasculature formation.

Results: Results demonstrate that the ECM topography can be translated to ECs via CD166 tracks and
significantly improved hMSC-EC crosstalk and vascular network formation. The aligned ECM nanofibers
enhanced structure, length, and density of microvascular networks compared to randomly organized
nanofibrous ECM. Moreover, hMSC-EC co-culture promoted secretion of pro-angiogenic growth factors and
matrix remodeling via metalloprotease-2 (MMP-2) activation, which resulted in highly dense vascular network
formation with intercapillary distance (20 pm) similar to the native myocardium.

Conclusion: HMSC-EC co-culture on the highly aligned ECM generates physiologically oriented and dense
microvascular network, which holds great potential for cardiac tissue engineering.

Key words: Extracellular matrix nanofibers; prevascularization, vascular density, vascular maturation, vascular orientation

Introduction

The natural myocardium is a highly aligned
tissue with an oriented vasculature [1, 2]. The specific
cellular and nanoscale extracellular matrix (ECM)
organization of the myocardium make it mechanically
strong, while the orientation of microvessels ensure
its effective blood supply and functional performance.
In the past decade, significant efforts have been
focused on developing synthetic or naturally aligned
nanofibrous scaffolds to form an anisotropic cardiac
structure, stimulate angiogenesis, or incorporate
engineered microvessels to maintain tissue viability
after implantation. However, neither an ideal

biomaterial nor an effective vascularization strategy
to engineer oriented capillary-like microvessels has
yet been achieved for clinical cardiovascular
therapies.

Most capillaries in the heart muscle run along
and tend to wrap around the cardiomyocytes in a
parallel arrangement with respect to the myocardial
fibers. Such an orientation determines the direction of
blood flow along a particular fiber (or a group of
fibers) [1, 2]. Therefore, it is important to create
aligned microvessels for efficient oxygen and nutrient
transport, and also incorporate natural inlet and
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outlet sides, facilitating the anastomosis of the cardiac
patch to the host vasculature post-implantation [3].
Advanced microfabrication [4-7] and 3D printing [8,
9] show great promise in fabricating tissue constructs
with defined microvessel structure. Unfortunately,
these microvessels are markedly larger in diameter
(100 pm-1mm) than native capillaries (< 10 um) [10],
and undoubtedly will significantly lower the
microvessel density and constrain the blood supply
and functional performance of the engineered cardiac
patch after implantation. Several groups reported that
alignment of engineered microvessels has been
achieved via mechanical strain applied to the cellular
constructs [3, 11-13]. Although the cardiac patch
engraftment was significantly improved due to the
rapid microvessel inosculation on injured
myocardium, the dynamic cultures dramatically
complicated the fabrication process. Moreover, the
microvessel density was low and the patch failed in
replicating the natural myocardium structure.
Additionally, the materials utilized in these
applications, as in microfabrication and 3D printing,
are normally limited to hydrogels. Unfortunately,
hydrogels normally cannot attain the complex
structure, composition, and mechanical strength
needed to match the aligned nanofibrous ECM found
in natural myocardium.

A variety of synthetic and natural materials have
been developed as cardiovascular tissue substitutes.
However, they are limited in real applications because
their degradation products can cause adverse tissue
reactions. Decellularized natural ECMs from native
tissues are composed of multiple proteins interlaced
with proteoglycans. The ECM not only serves as a
supporting scaffold with receptor sites to orient cells,
but also acts as a communication portal that provides
a means for cells to interact via signaling factors to
regulate a variety of molecular functions.
Nevertheless, natural ECM suffers from problems of
autologous tissue/organ scarcity, host responses, and
pathogen transfer when allogenic and xenogenic
tissues and organs are used [14]. Human cell-derived
ECM scaffolds can be screened for pathogens to
eliminate  the  provocation of undesirable
inflammatory and immunological reactions from
natural tissues and organs [14, 15]. It thus offers a
promising alternative to ECM derived from natural
tissues. Human dermal fibroblasts can be easily
isolated and used to a high passage without a
decrease in growth rate [16-18]. They also secrete
abundant ECM  biomacromolecules such as
fibronectin, proteoglycans, collagen and elastin.
Therefore, ECM scaffolding derived from human
dermal fibroblast cell sheets is an attractive candidate
for engineering a completely biological cardiac patch.

When using a suitable substrate, such as
Matrigel® or fibrin gel, ECs can self-assemble
microvessels at the same order of magnitude density
as native capillaries. Nevertheless, their structure
experiences a post-implant regression [19]. Native
microvessels are surrounded and stabilized by
sparsely distributed pericytes. Similarly, supporting
cells are required to stabilize engineered microvessels
[20]. Mesenchymal stem cells (MSCs) can function as
pericytes and secrete proangiogenic factors during
tissue regeneration [21]. Moreover, MSCs are easily
obtainable, extensively proliferative in vitro,
immunomodulatory [22-30], and can stimulate tissue
regeneration [23, 28, 31, 32]. Although MSCs do not
differentiate into cardiomyocytes, the beneficial effect
of MSCs in promoting myocardial regeneration is well
documented. It has been shown, for example, that
intramyocardial injection of MSCs in small animal
models of myocardial infarction (MI) can reduce
fibrosis and infarct size, form new cardiac tissue,
increase capillary density, and improve cardiac
contractility and left ventricular ejection fraction
[33-35]. Moreover, injection of MSC sheet fragments, a
cluster form of MSCs mixed with self-assembled
ECM, can further improve cell retention and deliver
cell therapy [36]. These unique properties enable
hMSCs to combine with ECM scaffolds and ECs to
biofabricate a prevascularized patch, in which hMSCs
play a dual role of stabilizing vasculature formed by
ECs in vitro and regenerating the infarcted cardiac
tissue after implantation.

It is important to create aligned microvessels in
an engineered hMSC patch to biomimic the natural
aligned myocardial capillaries and promote its
functional performance after implantation. Although
the role of aligned fibers in guiding cell alignment is
well established, their effect on microvessel alignment
is not well understood. Our group has previously
derived a highly aligned ECM nanofibrous scaffold by
decellularizing an aligned human dermal fibroblast
sheet. The nanofibers are around 80 nm in their
diameter, similar to the size of collagen nanofibers in
vivo. Moreover, the aligned nanofibers elicited a
reduced immune response compared their randomly
organized nanofibrous counterpart, and could be
repopulated with hMSCs and then stacked or rolled
into a thick 3D structure for engineering diverse
tissues [37, 38]. In this study, we used this aligned
ECM nanofibrous scaffold to guide the interaction of
hMSCs and ECs to form highly oriented microvessels
under our previously optimized oxygen (O2)
conditions: 7 day hMSC culture at 2% O- followed by
7 day hMSC-EC co-culture at 20% O, Such a
combination of O culture conditions facilitated
hMSCs to maintain their angiogenic property, which
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further improved the microvessels” development and
maturation [39-41]. Moreover, we elucidated the role
of nanotopographical ECM organization on
microvessel alignment, density and maturation,
which are important considerations in the
development of prevascularized 3D tissues. The
prevascularized ECM scaffolds could serve as
building blocks to fabricate a 3D prevascularized
hMSC patch through multi-layering approaches.

Materials and Methods

Fabrication of aligned ECM scaffolds

The ECM scaffolds derived from human dermal
fibroblast sheets (ATCC, Manasass, VA) were
prepared as previously described [42]. Briefly, aligned
polydimethylsiloxane (PDMS) substrates were casted
from nano-grated masters with 350 nm grating width
and 130 nm grating depth, and coated with type I
collage (Sigma-Aldrich, St Louis, MO). Human
dermal fibroblasts were seeded on top of the material
surface and cultured in Dulbecco's modified eagle
medium (DMEM) with 20% fetal bovine serum (FBS)
for 3 weeks with a medium change every 72 hours (h).
The obtained cell sheets were gently peeled off from
the PDMS layer and decellularized with 0.5% sodium
dodecyl sulfate, 10 mM Tris (Bio-rad, Hercules, CA),
and 25 Mm Ethylenediaminetetraacetic acid (EDTA,
Sigma-Aldrich) solution for 15 minutes (min). After
the decellularization process, the ECM sheets were
thoroughly washed with PBS, followed by incubation
in DMEM with 20% FBS, and 1% penicillin/
streptomycin for 48 h at room temperature to further
decompose the remaining DNA in the ECM sheets.
The structure of ECM nanofibers is shown in
Supplemental Figure 1.

ECM prevascularization

The hMSCs were obtained from Texas A&M
University Health Sciences Center. Passage 3 hMSCs
at a density of 10,000 cells/cm? were seeded on the
decellularized ECM sheets and cultured in
a-minimum essential medium (a-MEM) with 20%
FBS, 1% Pen/strep, and 1% L-glutamine (Thermo
Fisher Scientific, Waltham, MA). Following the
optimal culture conditions we have achieved in our
previous studies [39, 40], hMSCs were maintained
under hypoxia (2% O») condition for 7 days. The
hMSCs grown on aligned ECM nanofibrous scaffold
is shown in Supplemental Figure 1. Subsequently, the
passage 3 human umbilical vein endothelial cells
(HUVECs) (Lonza, Walkersville, MD), which have
been typically used as model ECs, were seeded at a
density of 20,000 cells/cm? on top of the hMSCs/ECM
constructs. The co-cultures were maintained in

normoxia (20% O2) up to 7 days in endothelial cell
growth media (EGM, Lonza), which was changed
every 48 h.

Vasculature staining and imaging

The co-cultured prevascularized constructs were
washed with PBS, fixed and stained with mouse
polyclonal antibody against human CD31 (Abcam,
Cambridge, MA), and followed by DyLight 488 horse
anti-mouse IgG secondary antibody (Vector
laboratories, Burlingame, CA). The samples were
washed and incubated in 4, 6-diamidino-2-
phenylindole (DAPI, Sigma-Aldrich) solution to label
the cell nuclei. Images were captured under an
Olympus FV-1000 confocal microscope. The vascular
networks were quantified by the Image] software,
using methods previously described [43]. We firstly
chose one vessel that aligned along the main direction
of the nanogratings and set the angle of it as 0 degree,
the angles of other vessels were measured and
defined as A Angle. Experiments were triplicated, and
5 non-overlapping panels were randomly analyzed
from each individual sample for unbiased statistical
analysis. The same immunofluorescent staining was
performed with anti-CD146 and anti-CD166 primary
antibody staining. CD146 is known as the melanoma
cell adhesion molecule (MCAM), which is regarded as
a pericyte marker [44]. CD166 stains activated
leukocyte cell adhesion molecule, and it was used to
detect hMSC-EC interaction [45]. Images were
captured under an Olympus FV-1000 confocal
microscope by depth scan every 1 um. The obtained
images were reconstructed into 3-D views by a Fiji
software.

Enzyme-linked immunosorbent assay (ELISA)
of soluble angiogenic growth factors

An ELISA assay was employed to quantify
angiogenic growth factors. The cell culture medium
was collected from different groups at different time
points. Growth factors in the hMSC sheet were
extracted as previously described, and 1 mL
extraction buffer was used for each sample [10]. The
concentration of vascular endothelial growth factor
(VEGF), basic fibroblast growth factor (bFGF),
transforming growth factor beta 1 (TGF-f1), and
angiopoietin 1 (Ang-1) were determined using ELISA
kits (R&D Systems, Minneapolis, MN) following the
manufacture’s protocol. Absorbance was measured
with a plate reader (Molecular Devices, USA) at 450
nm with correction wavelength set at 540 nm.
Experiments were triplicated and each sample and
standard was measured in duplicates.
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Real-time reverse transcription polymerase
chain reaction (RT-qPCR)

Ribonucleic acid (RNA) was extracted using an
RNeasy® extraction kit (Qiagen, Valencia, CA).
Extracted RNA was reverse transcribed into cDNA
using a reverse transcription kit (Life Technologies,
Rockville, MD) and amplified by the StepOnePlus™
Real-Time PCR System (Applied Biosystems,
Waltham, MA) using SYBR® Green Real Time PCR
Master Mixes (Life Technology). Customized
KiCgStart® SYBR® Green Primers (Sigma-Aldrich)
were used, with the sequences listed in Table 1. The
GAPDH gene was used as an endogenous control.
Data was analyzed using the AACt method.
Amplification measurements were triplicated and
three individual samples were tested for statistical
analysis.

Gelatin zymography for MMP-2 assessment

Gelatin zymography was performed to assess
matrix metalloprotease (MMP) enzymatic activity.
Briefly, the medium was collected from different time
points during co-culture. The collected medium from
different groups was diluted to the same total protein
concentration as measured by the bicinchoninic acid
assay (BCA, Thermo Fisher = Scientific).
Polyacrylamide gels containing 4 mg / mL gelatin
were used to separate the protein samples through
electrophoresis. Non-reducing (beta mercaptoethanol
free) sample buffer was used to dilute protein
samples, and 10 pL of each sample was loaded into
each well. Gels containing separated proteins were
incubated for 24 h at 37 °C in incubation buffer (1%
Triton X-100, 50 mM Tris, 5 mM CaCl,, and 1uM
ZnCl) to allow gelatinase reaction. Gels were then
stained with coomassie blue (Sigma-Aldrich) staining
solution for 30 min, followed by destaining until clear
bands could be observed. The density of the bands
was analyzed by image]. The experiment was
triplicated for statistical analysis.

MMP inhibition
The MMP inhibition was performed to
determine MMP inhibitor’s influence on the structural

Table 1 List of primer sequences

properties of microvessels. A MMP inhibitor, APR 100
(Tocris Bioscience, Bristol, UK), was dissolved in
dimethyl sulfoxide (DMSO) (Corning, NY) to prepare
a 1mM stock solution. APR 100 is a selective inhibitor
of MMP-2 (ICso = 12 nM), which also displays
selectivity over MMP-9, MMP-3, MMP-1 and MMP-7
(ICso = 200, 4500, > 50000 and > 50000 nM
respectively). Three different working concentrations
(1 pM, 5 pM, 10 pM) of APR 100 were prepared in
endothelial cell growth medium (EGM), which was
used during the 7-day co-culture. No APR 100 was
added in the control group. After 7 days of co-culture,
prevascularized constructs were washed with PBS,
fixed and stained with mouse polyclonal antibody
against human CD31 (Abcam), followed by DyLight
488 horse anti-mouse IgG secondary antibody (Vector
laboratories). Samples were mounted, and images
were captured under an Olympus FV-1000 confocal
microscope. Experiments were triplicated, and at least
5 non-overlapping areas from each sample were
randomly observed.

Western blot of activated leukocyte cell
adhesion molecule (CD166)

Western blotting was performed on both aligned
and random co-cultured constructs to assess the
protein expression of CD166. Construct lysates were
prepared using radioimmunoprecipitation assay
(RIPA) buffer with 1% protease inhibitors (Thermo
Fisher). Denatured cell lysates were separated by
sodium  dodecyl sulfate-polyacrylamide  gel
electrophoresis (SDS-PAGE), and transferred onto a
polyvinylidene fluoride (PVDF) membrane. Blocking
was performed with Tris-buffered saline (TBS)
supplemented with 0.1% Tween-20 (TBST) (Thermo
Fisher Scientific, Waltham, MA) and 5% dry milk
(Bio-rad). The blocked membrane was incubated with
the primary anti-CD166 antibody (Abcam) overnight
at 4 °C. Horseradish peroxidase-conjugated
secondary antibody (1:3000, Bio-rad) and enhanced
luminol-based chemiluminescent (ECL) substrate
(Bio-rad) was used to develop the bands. The
developed membrane was imaged using a FluorChem
Imaging System (Alpha InnoTech, San Leandro, CA).

Statistical analysis
All statistical results

Common name Symbol/ Gene ID Forward sequence Reverse sequence were obtained from
GAPDH GAPDH/2597 5' - ACAGTTGCCATGTAGACC 5' - TTTTTGGTTGAGCACAGG triplicated ~ experiments.
VEGFA VEGFA/7422 5'- GACCAAAGAAAGATAGAGCAAG 5'- ATACGCTCCAGGACTTATAC

bFGF FGF2/2247 5'- CAAGCAGAAGAGAGAGGAG 5'- CACTCATCCGTAACACATTTAG ~ Lhe results were reported
Paxillin PXN/5829 5'- ATCCTGGATAAAGTGGTGAC 5'- AAAGAAGGCTCCACACTG as mean * standard
N-Cadherin ~ CDH2/1000 5'- ACATATGTGATGACCGTAAC 5'- TTTTTCTCGATCAAGTCCAG deviation. Statistical
Integrin a2 ITGA2/3673 5'- GGTGGGGTTAATTCAGTATG 5'- ATATTGGGATGTCTGGGATG comparisons between
Integrin B1 ITGB1/3688 5'- ATTCCCTTTCCTCAGAAGTC 5'- TTTTCTTCCATTTTCCCCTG ‘ o
MMP-2 MMP2/4313 5' - TTCTGGAGATACAATGAGGTG  5'- CTTGAAGAAGTAGCTGTGAC experimental conditions

were performed using
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one-way ANOVA and Tukey’s post hoc test. Results
were considered statistically significant for p < 0.05.

Results

Morphology of microvascular networks

Immunofluorescent staining of microvessels
from aligned and random groups at different time
points are presented in Figure la. The microvessel
alignment was observed in the aligned groups
throughout the entire co-culture period, while curves
and swirls of vascular networks were observed in the
random groups. Higher magnification imaging
revealed the single vessel morphology. Similar
structures were observed from both aligned and
random groups at day 3. At days 5 and 7, distinct
boundaries and tubular morphologies were observed
in the aligned groups, while the vascular structure
was relatively impaired in the random groups. The
characterization of microvessels was organized in
Figure 1(b-e). The alignment of the vascular networks
was displayed as a boxplot (Figure 1b). The
interquartile range (IQR), which showed the range of
variation, was computed from the boxplot. The IQR
values were significantly lower in the aligned groups
(2.7 fold at day 3, 1.5 fold at day 5, and 2.2 fold at day
7, p <0.01), as aligned groups exhibited less variation
in their organization compared with the wider and
full range variation found in random groups. The
average vessel length in aligned groups was
significantly higher than in the random groups (1.3

A B

fold at day 3 and day 5, 1.2-fold at day 7, p < 0.01), and
reached 0.23 mm at day 7 (Figure 1c). A similar trend
was observed in total microvessel length, which was
significantly higher in the aligned groups than their
random counterparts (1.3 fold at day 3, 1.5 fold at day
5,and 1.1 fold at day 7, p < 0.01, Figure 1d). The vessel
coverage percentage was significantly higher in the
aligned groups at day 7 (p < 0.05), with a total of 14.4%
area covered by the vascular networks (Figure 1le).
However, the average vessel diameter of the random
groups was 1.3 fold wider at day 7 (p < 0.01), with
wider vessels also observed at days 3 and 5 (p < 0.05)
(Figure 1f). The intercapillary distance was
significantly lower at day 5 (+ 13.8 pm) and day 7 (+
11.2 pm) (1.7 fold, p < 0.01) for the aligned groups, in
accordance with the higher vessel density and
coverage percentage.

Assessment of pro-angiogenic growth factor in
co-culture medium

The pro-angiogenic growth factors in the
medium from the co-culture system for both aligned
and random groups were quantified by ELISA assay.
Monocultures of ECs on both aligned and random
ECM were used as controls to evaluate the
pro-angiogenic growth factor release mediated by
hMSCs. The background EGM concentration was also
measured for reference. The VEGF concentration was
significantly elevated (10 fold, p < 0.01) in the
co-culture groups throughout the entire period, as it

was below the EGM concentration in the monoculture
[
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Figure 1. Morphologies and characteristics of co-cultured microvascular network. (A) Immunofluorescent images of co-cultured microvascular networks at
different time points. (B) Boxplot analysis of vessel alignment for aligned and random co-cultured groups. (C) Average vessel length. (D) Total vessel length. (E) Vessel coverage
percentage. (F) Average vessel diameter. (G) Average intercapillary distance. The reduced interquartile measurement deviation of aligned groups indicates less vessel alignment
variation compared to the random groups. The microvascular characterization demonstrated a denser and enhanced vascular structure in the aligned group. (*p < 0.05, **p <

0.01)
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groups (Figure 2a). Interestingly, at day 5, the VEGF
concentration in the aligned culture medium
decreased compared to the random co-culture group.
The VEGF consumption at day 5 explains the
increased total vascular length in the aligned
co-culture group, as indicated in Figure 1d. Both
co-cultures and monocultures consumed bFGF.
Compared with monocultures, the co-cultures
consumed additional bFGF, which was 2 fold reduced
in the system. Aligned and random co-cultures
consumed similar amounts of bFGF over the cell
culture period (Figure 2b). The TGF-f1 concentration
was slightly higher in co-cultured groups than
monoculture groups and EGM level (Figure 2c), and
no significant differences were identified between the
aligned and random groups. The Ang-1 concentration
was robustly increased to 634 pg / mL at day 3 in the
aligned co-culture groups (2 fold higher than random
groups, p < 0.01), and significantly dropped at days 5
and 7 to less than 100 pg/mL. In contrast, the Ang-1
level held steady in random groups throughout the
entire culture period (250-300 pg/mL). It was also
observed that the monocultures had slightly higher
Ang-1 concentration (less than 50 pg/mL) compared
to EGM (Figure 2d).

Pro-angiogenic growth factors in co-cultured
constructs

Growth factors extracted from co-cultured
constructs were also measured by ELISA. A higher
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concentration of VEGF was localized to the
co-cultured groups (3 folds, p < 0.01). At day 7, only
the aligned groups showed significant increase of
VEGF concentration (5 fold higher than random
groups, p < 0.01). All the other samples had a low
localized VEGF concentration, which was lower than
100 pg/mL. No VEGF was detected in the day 7
random monoculture group (Figure 3a). A higher
concentration of bFGF was found in co-cultured
constructs relative to monocultured groups.
Importantly, a higher bFGF concentration was
observed in aligned co-culture groups than random
co-cultured groups at day 5 (1.3 fold, p <0.01) and day
7 (1.8 fold, p < 0.01) (Figure 3b). Results of the qPCR
analysis of VEGF and bFGF mRNA expression of
aligned co-cultured groups were normalized to the
random co-cultured groups. The mRNA expression
levels of VEGF were 1.5 fold higher at day 3 and 2.3
fold (p <0.05) higher at day 5, indicating the
accelerated angiogenesis process before day 7.
Following that, the VEGF mRNA was elevated in
random co-cultured groups at day 7, denoting its
delayed angiogenesis until day 7. The bFGF mRNA
expression was lower for the aligned co-cultured
groups at day 3, but was 1.2 fold higher at day 5 and
1.5 fold higher at day 7. However, no statistical
differences were detected for bFGF mRNA expression
level (Figure 3c).
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Figure 2. Pro-angiogenic growth factors VEGF (A), bFGF (B), TGF-81 (C), and Ang-1 (D) concentration in the growth medium. The background concentration of
each factor was measured and marked as “EGM level” on each graph. The co-cultures with hMSCs secreted high level of VEGF than EC monocultures. (*p < 0.05, **p < 0.01)
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Figure 3. Pro-angiogenic growth factors expression. (A) VEGF and (B) bFGF
localized in the constructs assessed by ELISA. (C) The mRNA expression of VEGF
and bFGF was measured by qRT-PCR. The aligned ECM/hMSC/EC has significantly
more localized VEGF (day 7) and bFGF (day 5 and day 7) than the random
ECM/MSC/EC group. (*p < 0.05, ¥*p < 0.01)

Maturation assessment through pericyte
identification

Immunofluorescent staining of CD146/CD31
was performed to assess the maturation of the
vascular structures at day 7 (Figure 4). Representative
images demonstrated clear lumen formation in
microvessels of aligned groups. Leading cells of the
sprout known as ‘tip cells’ were observed in both
groups, as shown in left images. Tip cells guide other
ECs by sensing its surrounding environment for
guidance cues. Aligned hMSC nuclei were observed

at the base of the tip cell in the aligned group. In
contrast, the tip cell in the random group followed the
underlying hMSCs without a pre-defined direction.
These images provided important evidence regarding
the role of hMSCs in guiding ECs by transferring
topographical features of the ECM. Moreover, the
CD31 positive microvessels covered with CD146
positive cells could be clearly identified from the
cross-sectional view. In contrast, a flatter lumen was
observed in the random group with less CD146
staining around the microvessel lumen.

Adhesion molecule mRNA expression and
mapping

The qPCR analysis of paxillin, N-cadherin,
integrin a;, and integrin fi mRNA expression of
aligned co-cultured groups were performed and
normalized to the random co-cultured groups (Figure
5a). While mRNA expression was similar in paxillin at
day 3 and day 7, day 5 paxillin expression was
up-regulated 2 fold (no significance) in the aligned
groups. N-cadherin mRNA expression followed the
same trend, as the day 5 N-cadherin expression was
enhanced 7 fold (p < 0.05) in the aligned groups.
Integrin a> mRNA expression was up-regulated in the
aligned groups at day 3 (2 fold, p < 0.05) and day 5 (4.5
fold, p < 0.05), and returned to the same level as
random at day 7. Immunofluorescent staining of
paxillin is presented in Figure 5b. Although red
fluorescent paxillin positive staining was visualized
for both aligned and random co-cultured groups, the
paxillin expression pattern was highly aligned,
complementing the aligned morphology of the
vascular networks. In contrast, the vascular networks
on the random co-cultured samples showed a random
paxillin pattern, which followed the ECM nanofibers’

topography.

Matrix remodeling activity and MMP-2
activation

The hMSC-secreted ECM consists of collagen I,
collagen IV, laminin and fibronectin etc. [41]. The
migration of ECs on top of the hMSC layer requires
degradation of ECM components. The MMP family is
responsible for ECM remodeling and vessel
development, in which gelatinase MMP-2 and MMP-9
can degrade gelatins, collagens, laminin and aggrecan
[46]. Gelatin zymography analysis was performed to
screen the identity of MMP during angiogenesis.
From the gel images in Figure 6a, MMP-2 at 75 kDa
was extensively expressed compared to MMP-9 at 92
kDa. Whereas MMP-9 was absent from the
co-cultured constructs. Thus, MMP-2 was identified
as the major player, and activated MMP-2 at 68 kDa
bands were detected as well. Activated MMP-2
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expression was quantitatively analyzed by the band
intensity. These results indicated that aligned
co-cultured groups had higher activated MMP-2
concentration at day 3 (1.5 fold, p < 0.05), which
gradually decreased by day 7, whereas random
co-culture groups showed gradual and significantly
higher MMP-2 concentration (1.4 fold, p < 0.05) at day
7 (Figure 6b). Moreover, co-culture groups showed
higher MMP-2  concentration compared to
monoculture groups (only ECs) in both culture
medium and cellular constructs (Figure 6a), which
indicated a possible role of hMSCs in MMP-2
activation via CD166. The qPCR analysis of MMP-2
mRNA expression of aligned co-cultured groups were
performed and normalized to the random co-cultured
groups. Total MMP-2 mRNA expression was similar
between aligned and random co-cultured groups at
days 3 and 5, but drastically increased (5.7 fold, p <
0.01) at day 7 for the aligned co-cultured groups
(Figure 6c), which indicated highly active matrix
remodeling.

To further verify the function of MMP in the
co-culture system, a MMP inhibitor APR100 was
introduced in the culture medium with three different
concentrations (1 puM, 5 uM and 10 uM). It was
observed that in the presence of APR100, especially at
its high concentrations (5 uM and 10 pM), large
“structural gaps” were formed in the branches of the
microvessels, as indicated by white asterisks in Figure
7. Whereas, in control groups, microvessels showed

A

Random

overall intact structures without such large gaps.
Moreover, when exposed to MMP inhibition,
microvessels showed discontinued and/or
compromised vessel wall structure, which looked
more like flat cellular patches rather than tubular
structure, as indicated by white arrows. By increasing
APR100 concentration from 1 pM to 10 uM, it was
observed that the majority of the microvessels were
shortened in their length along with reduced vascular
density.

CD166 protein expression and organization

The western blot analysis of CD166 was
performed on aligned and random co-cultured
groups at different time points. Up-regulation of
CD166 was observed at day 3 (3 fold, p < 0.05) and day
5 (3 fold, no significance) in random co-cultured
groups (Figure 8a). However, up-regulation of CD166
was found in aligned co-cultured groups at day 7 (9
fold, p < 0.05). Confocal Z-stack images displayed
CD166 tracks on aligned co-cultured groups, which
guided the orientation of vascular networks (Figure
8b, arrows). No clear tracks of CD166 were observed
on the random groups. 3D confocal imaging
suggested that CD166 tracks localized to the bottom of
the vascular networks, guiding the progression of the
vessels in aligned groups. In comparison, the random
co-cultured groups showed scattered CD166
expression, providing no guidance to the vascular
progression (Figure 8c).

B

Figure 4. Co-immunofluorescent staining of CD146 (red) and CD31 (green) for both aligned and random groups. The microvessel was well insulated by a
CD146 positive cell layer in the aligned group (arrows). Similarly, the cross-sectional view revealed a complete lumen by CD31 positive cells, which were covered with CD146

positive cells. The 3D image further proved this finding in the 3D structure.
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Figure 5. The mRNA expression of cell adhesion molecules responsible for cell-ECM interaction (A) and the morphology of paxillin (B) in both aligned and
random samples. The aligned samples presented significantly higher mRNA expression at day 5. The paxillin were organized along the direction of hMSCs and microvessels. (*p

<0.05)

Discussion

Native myocardium is anisotropic, consisting
not only of aligned cardiomyocytes, but also similarly
aligned capillaries. It has been shown that most
cardiomyocytes are aligned at an angle of less than 45
degrees [47]. The capillaries between muscle cells are
organized in the direction of muscle fibers, in order to
fulfill interstitial oxygen and nutrient diffusion
requirements for cell metabolism [48, 49]. The
orientation of cells and capillaries gives rise to the
robust density of microvasculature. In the native
heart, the average intercapillary distance is 20 pm [50].
Moreover, the capillaries are wrapped by mural cells
to ensure effective support during mass transport and
blood flow. Therefore, an engineered myocardium
should not only mimic the cell alignment, but also the
capillary orientation, high density and maturity, to

more closely mimic the architecture and support the
functional performance of engineered tissues
post-implantation. Although attempts have been
made by some groups to create aligned vessels using
micropatterning [51, 52], interstitial flow [53], and
tensile loading [54], none of the resulting vascular
networks are comparable with the physiological high
alignment and density of native tissues. Aligned ECM
nanofibers not only preserve the biomimetic
nanofibrous topography, but also provides a
biological niche and bioactivities of native ECM of
target tissues [55, 56]. Such a biomimetic scaffold
offers great opportunity for engineering an
anisotropic cardiac patch with highly organized cells
and capillary geometries, while generating insight
into the mechanism of capillary formation,
progression, and maturation.
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Figure 6. The activity of MMPs was assessed by gelatin zymography (A), and MMP-2 was identified as the major membrane cleaving enzyme in this co-cultured angiogenesis
system. Note that |) the early activation of MMP-2 in aligned ECM/hMSC/EC groups and 2) the delayed MMP-2 activation in the random counterparts (B). (C) The total MMP-2
mRNA expression was up-regulated in the aligned ECM/hMSC/EC groups at day 7. (*p < 0.05, **p < 0.01)

Alignment promoted vascular network density
and maturation

It has been reported that an aligned topography
provides surface guidance for EC elongation and
motility, which can promote vascular formation in
implantable materials [57, 58]. Several studies have
also shown that MSC differentiation could be
regulated by provision of topographical cues [59, 60],
and that growth factor release profiles varied under
different topography[61]. Those topographic cues
included nano-scale fibers, ridges, and pores of the
basement membrane, which were in direct contact
with the attached cells [62]. Our results on the density
of newly formed vasculature prove that nanofibrous
alignment enhances vascular formation (Figure 1).
Compared with other groups’ prevascularization
strategies through EC/MC co-culture, our construct
generated superior microvascular alignment, length

and density [3, 51, 52, 61, 63]. Importantly, the average
intercapillary distance of our aligned vascular
networks after 5 days co-culture was below 20 pum,
which matched the physiological intercapillary
distance (~20 pm) that is observed in native
myocardium [50]. Whereas in other cardiac tissue
engineering strategies that have generated aligned
and physiologically sized microvessels, their
intercapillary space ranges from 50 pm to 100 pm [3,
52]. MSCs can be recruited by neovasculature as
pericytes to wrap the microvessels and promote their
lumen formation and stabilization [64]. This theory

explains the enhanced maturation of our
prevascularized aligned groups in their 3D
morphologies (Figure 6c), which was further

evidenced by a layer of pericytes wrapping around
the aligned vessels as shown by the positive CD146
staining (Figure 4).
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Figure 7. Influence of MMP-2/9 inhibitor APR100 on microvascular network formation. Aligned and randomly organized microvascular networks formed under 1
uM, 5 pM and 10 uM of APR100 after 7 days of EC culture. No APR100 in the control groups. White arrows and asterisks (¥) indicate the vessel walls and the structural gaps
within microvascular networks, respectively. Both aligned and randomly organized control groups showed intact vessel wall, whereas fewer microvessels and large structural gaps
appeared within branches of microvascular networks in MMP-inhibited samples, especially those with higher APR100 concentration.
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Figure 8. Western blot analysis (A), 2D (B) and 3D (C) morphologies of CD166 expression at different time points for both aligned and random co-culture groups. The CD166
tracks were identified in aligned ECM/hMSC/EC groups, as identified by yellow arrows (B) The CD166 was concentrated at the interface between hMSCs and ECs in the aligned
groups and guided the microvessels progression, while scattered CD166 expression was observed in random groups. (*p < 0.05, **p < 0.01)
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Figure 9. Schematic representation of aligned vascular network development by hMSC-EC co-culture on decellularized nanofibrous aligned ECM
construct. (A) hMSCs transferred topographical features of aligned nanofibrous ECM to ECs in order to develop aligned and dense vascular network. (B) CD166-expressing
hMSCs modulated MMP-2 activation, which further regulated directional ECM remodeling. Intercellular crosstalk between hMSCs and ECs resulted in vascular network

formation.

Topography regulated angiogenic growth
factors in co-culture environment

Angiogenic growth factors in cell cultures play a
significant role in vascular network formation [65, 66].
hMSCs provide essential paracrine secretions
including VEGF, bFGF, IGF-1, TGF-f, Ang-1 and HGF
to promote EC-mediated angiogenesis [67, 68], in
which TGF-g is a factor that promotes pericyte
proliferation [69, 70]. In the present study, the activity
of hMSCs could be responsible for enhanced
expression of VEGF in both culture medium and
co-cultured constructs compared to the EC/ECM
monocultures (Figure 2a and 3a). The increased
genotypic and phenotypic expression of VEGF in
aligned co-cultures (Figure 3a, c) compared to random
groups was consistent with the significantly
improved microvessel density, as shown by their
increased vessel length and vessel coverage (Figure 1).
The bFGF concentration in cell culture medium of
co-cultured constructs was reduced compared to
monocultured constructs (Figure 2b). This increased
consumption of bFGF could have contributed to the
development of high-density capillary networks.
However, the opposite phenomenon was observed in
aligned cellular constructs, where bFGF expression

was significantly increased compared to all other
groups (Figure 3b). This significant increase in VEGF
and bFGF expression in aligned cellular constructs
compared to random ones was attributed to the
topographical features. Studies have shown that
TGF-f promotes EC quiescence and MSC
differentiation towards pericytes during the vascular
maturation process [21, 71-74]. Increased levels of
TGF-f were observed in both aligned and random
co-cultured constructs compared to monocultures,
but no significant difference was shown (p > 0.01). The
pericyte-like cells surrounding the microvessels could
be attributed to the differentiation of hMSCs, causing
by the synergized effect of bFGF and TGF-f [69],
which resulted in higher expression of pericyte
protein CD146 at day 7 (Figure 4). Besides TGF-f,
angiopoietins are a major family of angiogenic growth
factors. MSCs secrete Ang-1, especially during wound
healing, which recruits macrophages and endothelial
lineage cells [75-77]. Ang-1 phosphorylates the Tie-2
receptor and this Ang-1/Tie-2 interaction regulates
maturation of newly formed vasculature, which
ultimately results in complex functional vascular
network formation [78, 79]. Our previous research
indicated that hMSCs cultured on the ECM in hypoxic
environments promoted expression of Ang-1[39].
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Similarly, in this study a hypoxic environment during
hMSCs culture on aligned ECM could be responsible
for the initial increased expression of Ang-1 at day 3,
which decreased gradually during normoxic
co-culture (Figure 2d). Significantly increased levels
of Ang-1 at day 3 in aligned co-cultures (Figure 2d)
compared to all other groups might have led to
development of an aligned and more matured
vascular network. In summary, enhanced expression
of these angiogenic factors in aligned co-cultured
constructs compared to random constructs shows the
effects of topographical features on microvascular
network alignment and maturation.

Topography guided anisotropic microvascular
progression

Various studies have demonstrated that matrix
proteolytic activities can result in development of
topographical cues in order to facilitate EC migration,
vessel stabilization, and vessel maturation [80, 81].
Adhesion molecules are involved in matrix
proteolytic events, which regulate construct
remodeling during vascular formation. One of the
focal adhesion molecules, paxillin, which was present
at the ventral surface of cells, formed aligned tracks
along the direction of aligned nanofibers and hMSCs
(Figure 5). In addition, the mRNA of focal adhesion
proteins was highly expressed in aligned groups.
These organized and more intense focal adhesion sites
could modulate and direct the migration of tip cells
(Figure 4), which is the first important step for
angiogenic sprouting [82]. Moreover, significantly
higher MMP-2 was activated in aligned samples at
early stages of angiogenic development (Figure 6a).
CD-166 has been identified as the modulator of
MMP-2 activation during ECM remodeling [83].
Investigation of matrix remodeling during
angiogenesis indicated that the activation of MMP-2
was dependent on the density of CD166 positive cells,
including MSCs [84, 85]. Clear CD166 tracks were
observed in the aligned co-culture group along with
aligned vascular network (Figure 8b). In contrast, the
vascular network was more aberrant on random
nanofibrous ECM due to scattered CD166 expression
(Figure 8b & 8c), which resulted in randomly oriented
and less dense vascular network formation. It is thus
possible that through CD166, the aligned
topographical = feature  upregulated = hMSCs’
capabilities for MMP-2 activation, which might have
played a role in the increased vascular network
density. This was verified by MMP inhibition in the
co-culture system, where the microvessels showed a
deteriorated vessel wall, along with shortened vessel
length and reduced vascular density (Figure 7).

Based on our results, potential mechanism of
nano-topography guided angiogenesis can be
concluded in the following steps: 1) hMSCs followed
contact guidance that was provided by aligned ECM
nanofibers, and formed aligned confluent hMSC layer
in the same direction 2) CD166-expressing hMSCs
formed vascular guiding tracks. Importantly, CD166
mediated MMP-2 activation, and MMP-2 in turn
mediated ECM remodeling. Activated MMP-2
possibly helped EC migration along the alighed ECM
nanofibers. 3) Intercellular interaction between ECs
and MSCs promoted the pro-angiogenic factor release
and deposition, which resulted in aligned, stable and
mature vascular network formation, as illustrated in
Figure 9.

Conclusions

In this study, we demonstrated successful
engineering of highly oriented, dense and matured
vascular networks on an aligned nanofibrous ECM
construct by hMSC/EC co-culture. The ECM
topography greatly influenced the vascular network
development by enhancing vascular alignment,
angiogenic growth factor secretion, and ECM
remodeling. Importantly, our study indicated that
hMSCs successfully translated the alignment of
nanofibrous ECM scaffold to ECs and guided the
microvascular structure. These prevascularized
aligned ECM constructs with highly dense and
mature microvascular networks could be stacked on
each other to construct completely biological 3D tissue
to accelerate cardiac regeneration.
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