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SUMMARY

In developing organisms, spatially prescribed cell
identities are thought to be determined by the
expression levels of multiple genes. Quantitative
tests of this idea, however, require a theoretical
framework capable of exposing the rules and preci-
sion of cell specification over developmental time.
We use the gap gene network in the early fly embryo
as an example to show how expression levels of the
four gap genes can be jointly decoded into an
optimal specification of position with 1% accuracy.
The decoder correctly predicts, with no free pa-
rameters, the dynamics of pair-rule expression pat-
terns at different developmental time points and in
various mutant backgrounds. Precise cellular identi-
ties are thus available at the earliest stages of
development, contrasting the prevailing view of
positional information being slowly refined across
successive layers of the patterning network. Our re-
sults suggest that developmental enhancers closely
approximate a mathematically optimal decoding
strategy.

INTRODUCTION

Biological networks transform input signals into outputs that

capture information of functional importance to the organism.

One path to understanding these transformations is to ‘‘read

out,’’ or decode this relevant information directly from the

network activity (Georgopoulos et al., 1986; Haynes and Rees,

2006). In neural networks, for example, features of the organ-

ism’s sensory inputs and motor outputs have been decoded

from observed action potential sequences, sometimes with

very high accuracy (Hatsopoulos and Donoghue, 2009; Marre

et al., 2015; Rieke et al., 1997). Decoding provides an explicit

test of hypotheses about how biologically meaningful informa-

tion is represented in the network.
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The gap genes involved in patterning the early embryo of the

fruit fly Drosophila melanogaster provide an alternative example

of the decoding problem (Briscoe and Small, 2015; Jaeger,

2011; Nüsslein-Volhard and Wieschaus, 1980). Individually,

the gap genes form a network with strong, bidirectional cou-

plings among themselves. But, taken together, the gap genes

form a single layer in an otherwise feed-forward flow of infor-

mation, where they take inputs from the primary maternal mor-

phogens and drive the expression of pair-rule genes (Carroll,

1990; Rivera-Pomar and Jäckle, 1996) (Figure 1A). Pair-rule

expression occurs in stripes that are precisely and reproducibly

positioned within the embryo, forming an outline for the

segmented body plan of the fully developed organism (Law-

rence, 1992).

The emergence of a precise and reproducible body plan re-

quires each cell in the developing embryo to take actions that

are appropriate to its position. Previous work has shown that a

snapshot of gap gene expression levels contains enough infor-

mation to position each cell with �1% precision along the em-

bryo’s anterior-posterior (AP) axis (Dubuis et al., 2013a; Tka�cik

et al., 2015). This is comparable to the precision with which

pair-rule patterns and other morphological markers are speci-

fied. The fact that this information is available, however, does

not mean that it is used by the organism. Here, we take the

pair-rule stripes as a measure of the embryo’s own readout of

positional information and test this idea explicitly: we decode

the positional information conveyed by gap gene expression

levels and use this decoder to predict the dynamics of pair-rule

stripes in wild-type (WT) and their distortions in mutant embryos

(Figure 1).

We can imagine many different ways of decoding gene

expression levels to estimate position, but there is a unique

optimal decoding scheme. More specifically, if the embryo

makes use of all the available information, then the statistical

structure of gap gene expression patterns determines the

form of the decoding algorithm (Figure 1B), without the need

for an explicit model or for any additional parameters; decoded

positions then predict the occurrence of pair-rule stripes (Fig-

ure 1C). To construct the optimal decoder, we measured all

gap gene expression levels simultaneously and with sufficient
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Figure 1. Decoding in a Genetic Network

(A) In the earlyDrosophila embryo,maternally providedmorphogens (bcd, nos, tor) regulate the expression of gap genes (kni,Kr, gt, hb), which is visualized here in

a mid-sagittal slice through an embryo during n.c. 14 (scale bars, 100 mm). Enhancers (schematically depicted as circles) respond to combinations of gap protein

concentrations to drive pair-rule gene expression that occurs in a precise and reproducible striped pattern (Gregor et al., 2014).

(B) Schematic depiction of the decoding problem. Positional information is supplied by threemorphogens primarily acting in the anteriorA, posteriorP, or terminal

T domains. The network can be viewed as an input/output device that encodes physical location x in the embryo using concentrations fg1;g2;g3;g4g of the gap

gene proteins. Optimal decoding is a well-posed mathematical problem, whose solution is found in the posterior distribution Pðx�j fgigÞ (Equation 3); results can

be visualized as a decoding map, Pðx�j xÞ (Equation 4; Figure 2). The posterior distribution is constructed from measurements (average gap gene expressions,

fgiðxÞg and their covariability, CijðxÞ, and contains no arbitrary parameters.

(C) Testable predictions from optimal decoding. Pair-rule stripes are expected wherever decoding a combination of concentrations yields an implied position, X�,
associated with a pair-rule stripe, X�

str, in WT.
accuracy to characterize the noise in the system. This allows us

to give a good description of the joint distribution of gap

gene expression levels at each position along the AP axis,

and these distributions, in turn, determine the form of the

optimal decoder.

To test the optimal decoder, we employ seven distinct ge-

netic variants that alter primary maternal inputs. We show

that a single optimal decoder constructed from WT data ac-

counts, quantitatively, for the altered locations of pair-rule

stripes in mutant embryos, for the dynamical shifts of the

pair-rule stripes in WT embryos, and even predicts when the

occurrence of these stripes should be variable. These results

fit into a broader picture of early embryonic patterning in

Drosophila as a system in which (1) noise levels are as low as

possible given the limited number of molecules involved (Gre-

gor et al., 2007), (2) the reproducibility of developmental

patterning can be traced back to reproducible maternal inputs

(Petkova et al., 2014), and (3) network interactions are selected

to extract the maximum amount of information from these in-

puts (Sokolowski and Tka�cik, 2015; Tka�cik et al., 2008, 2012;

Walczak et al., 2010). Stated in more mechanistic terms, our re-

sults suggest that the complex regulatory logic of the pair-rule

gene enhancers (Levine, 2010; Small et al., 1991) implements

nearly optimal decoding of gap gene network activity, and

thus provides access to precise and potentially unique cellular

identities already at the earliest stages of development; i.e.,

four genes are sufficient to uniquely predict the fates of �60

cells along the central 80% of the dorsal line in the early fly em-

bryo (Dubuis et al., 2013a).
RESULTS

Dictionaries, Maps, and Optimality
There is a clear advantage to organisms that can construct a

rich and precise body plan, specifying the detailed pattern of

structures at different positions. It is less clear when this

positional information needs to be available, or whether evolu-

tionary pressures have been strong enough to drive mecha-

nisms that extract as much positional information as possible

given the physical constraints. Here, we test the hypothesis

that the fly embryo achieves an optimal decoding of position

given access to the gap gene expression levels in each individ-

ual nucleus, at a single moment in time. While optimality is a

controversial hypothesis (Bialek, 2012), we emphasize that, in

the present context, it makes unambiguous, quantitative pre-

dictions, which we test.

Let fgig= fg1; g2;g3; g4g be the expression levels of the gap

genes hunchback (hb), Krüppel (Kr), knirps (kni), and giant (gt).

At each point x along the embryo’s AP axis, gap gene expression

levels take on average values, gi xð Þ, but also exhibit fluctuations

around thismean that can be summarizedwith a 434 covariance

matrix, CijðxÞ. Exploiting our ability to make precise, quantitative

measurements of the expression of all four gap genes simulta-

neously across many embryos (Dubuis et al., 2013b), we

construct gi xð Þf g and CijðxÞ (Figures S1A and S1B; STAR

Methods), initially focusing on a small time window, centered

42 min into nuclear cycle (n.c.) 14, in which mutual information

about position carried by the gap gene expression profiles is

highest (Dubuis et al., 2013a).
Cell 176, 844–855, February 7, 2019 845



If the fluctuations are Gaussian (an approximation tested pre-

viously) (Dubuis et al., 2013a), then the mean expression level

and the covariance matrix determine the joint probability distri-

bution of gap gene expression levels given position. Explicitly,

for the simultaneous expression levels of K genes:

P gif gjxð Þ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð ÞKdet bC xð Þ

h ir e�c2
K

gif g; xð Þ=2; (1)

where c2
K measures the similarity of the gene expression pattern

to the mean pattern gi xð Þf g expected at x,

c2
K gif g; xð Þ=

XK
i;j= 1

gi � gi xð Þð Þ bC�1
xð Þ

� �
ij
gj � gj xð Þ� �

; (2)

and bCðxÞ is the covariance matrix. We previously estimated the

information that individual gap gene expression levels provide

about position assuming only that the underlying probability dis-

tribution is smooth, and this agrees within error bars with the in-

formation calculated in the Gaussian approximation (Dubuis

et al., 2013a; Tka�cik et al., 2015). Thus, this approximation is

not a model of the system, but a compact summary of its

behavior that captures the relevant information. From this sum-

mary, and the hypothesis of optimality, we will make predictions

for the results of very different measurements, with no additional

parameters that need to be fit.

To construct the optimal decoder, we apply Bayes’ rule (STAR

Methods):

Pðx�j fgigÞ= 1

ZðfgigÞPðfgigjx�ÞPXðx�Þ; (3)

where the left-hand side, called the posterior, is a distribution

over positions x� that are implied by some combination of gap

gene expression levels fgig. Implied because the decoder has

no access to the actual position of a cell; it can only use the

four gap gene expression levels fgig, which provide varying

amounts of evidence for different possible positions. PXðx�Þ is
the (prior) probability that a cell is at position x�, independent
of gene expression level, and is in our case uniform along the

AP axis; Z serves to normalize the distribution and is indepen-

dent of x�.
The posterior Pðx�jfgigÞ contains all the information that any

mechanism, cellular or computational, could extract from

expression levels fgig. If the posterior has a single, reasonably

sharp peak at x� = X�ðfgigÞ, then we can translate expression

levels back into positions unambiguously, using a dictionary

fgig/X�; this is known as the maximum a posteriori (MAP)

decoder (MacKay, 2003). The width of the distribution

Pðx� j fgigÞ around its peak quantifies the positional error,

i.e., the uncertainty in implied position due to the variability

in gap gene expression levels (Tka�cik et al., 2015). But if the

posterior has multiple peaks, or broad plateaus, then genuine

ambiguities in decoding exist and the MAP decoder is

misleading. We keep track of the entire posterior distribution
846 Cell 176, 844–855, February 7, 2019
of implied positions and visualize it as a decoding map

(Figure 2).

To construct the decoding map for a single embryoa, we take

the measured expression levels fga
i ðxÞg in that embryo at actual

position x and insert them into Equation 3. This yields a map of

implied positions versus actual positions,

Pa
map x�jxð Þ=P x�j gif gð Þj gif g= ga

i
xð Þf g: (4)

If the considered genes provide enough information to specify

position accurately and unambiguously, then Pa
mapðx�jxÞ will be

a narrow ridge of density along the diagonal where the implied

position is equal to the actual position, x� = x. Figure 2 walks

through the steps in the construction of the decoding map

Pa
mapðx�jxÞ in the case in which we have access to the expression

level of only one gene, in this case Kr.

Using a dataset of 38 WT embryos, we construct decoding

maps based on the information carried by one, two, three, or

all four gap genes (Figure 3). Note that although we always

decode the gene expression levels from single embryos, like in

Equation 4, it is convenient to show maps that are averaged

over all the embryos a in our data. For most locations in the em-

bryo, decoding based on a single gene provides little information

(Figures 2, 3A, and S1C). In small regions of the embryo, decod-

ing can be more precise, but substantial ambiguities remain

where one expression level is equally consistent with two

different implied positions. Decoding based on two (Figures 3B

and S1D) or three (Figures 3C and S1E) genes results in less am-

biguity and more precision.

We report the decoding maps in units of probability density,

because the x coordinate is treated as continuous, which lets

us construct mathematical objects independent of the choice

of binning scheme for positions. The increase in precision corre-

sponds to the sharpening of the posterior distribution, whose

peaks get higher and narrower as we include increasing

numbers of gap genes. This increase is reflected in the dynamic

range of grayscales for each map, since by normalization nar-

rower distributions Pa
mapðx�jxÞ have higher density at their peaks.

We also quantify this sharpening by computing the standard de-

viation of these distributions and finding the median over x as

summarized in Figure S1I.

With all four genes, the distribution Pa
mapðx�jxÞ is approximately

Gaussian, with a width sx � 0:01L for nearly all points along the

embryo’s AP axis (Figures 3D and S5A). This is also the precision

with which subsequent developmental markers, including the

pair-rule gene stripes and the cephalic furrow, are generated

(Dubuis et al., 2013a; Liu et al., 2013). Remarkably, one percent

is less than the distance between two adjacent cells, suggesting

that the gap genes could specify every cell along the AP-axis

(Dubuis et al., 2013b, 2013a). Thus, multiple expression levels

combine to synthesize an unambiguous code for position that

reaches extraordinary precision (Figure 3).

We emphasize that we decode positions based on graded

expression levels of the gap genes (Dubuis et al., 2013a; Gaul

and Jäckle, 1989), which contrasts with the traditional interpreta-

tion of the gap genes as forming ‘‘expression domains’’ that are

either on or off (Albert and Othmer, 2003; Alberts et al., 2002;
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Figure 2. Coding and Decoding of Position in Fly Embryos

(A) Optical section through the midsagittal plane of a Drosophila embryo with immunofluorescence labeling for Krüppel (Kr) protein (scale bar, 100 mm). Raw

dorsal fluorescence intensity profile of depicted embryo (blue curve, ga(x)) and encoding probability distribution PðKrjxÞ (gray) constructed from 38 WT embryos

of ages between 40–44min into n.c. 14. Position x along the AP axis is normalized by embryo length L, with x=L= 0 (1) for the anterior (posterior) poles. Probability

distribution of Kr expression levels (left).

(B) Decoding probability distribution PðxjKrÞ constructed via Bayes’ rule from the measured probability distributions PðgÞ and PðgjxÞ in (A), using a uniform

prior PXðxÞ = 1=L. PðxjKrÞ is input for the optimal decoder, which maps Kr levels to positions along the AP axis. Posterior probability distributions of locations

x consistent with observing Kr levels 0.05, 0.5, or 1 are the conditional probability densities PðxjKrÞ shown in top panels.

(C) Decoding map Pa
gðx�jxÞ for a single embryo a. Top cartoons display regions of inferred positions based on Kr alone. Dynamic range (gray bar, right) applies to

all three probability panels.

See also Figure S1.
Meinhardt, 1986), or with the use of binary switch-like or boolean

networks to describe genetic circuits more generally (Kauffman

et al., 1978; Sánchez and Thieffry, 2001). If we collapse the

continuous profiles into on/off domains, then decoding maps

are ambiguous even in WT embryos (Figures S1F and S1G),

andmeaningful predictions for stripe positions in the mutant em-

bryos are impossible. Thus, rather than forming a set of four bi-

nary switches, the gap gene expression levels represent a

more continuous, analog coordinate system that specifies posi-

tion for individual cells.

Decoding in Mutant Embryos
That the four gap genes carry precise, unambiguous information

about position does not mean that the embryo uses this informa-

tion to determine cellular identities. To test whether this is the

case, we exploit the powerful genetic tools that have been estab-

lished in Drosophila. We perturbed the maternal signals Bicoid

(bcd), Nanos (nos), and Torso-like (tsl), which strongly affect

the gap gene network (Figure S2; Video S1). Importantly,

because we have perturbed only the inputs to the gap gene

network, we expect that decoding is carried out with the same

mechanism in WT and mutant embryos. If the optimal

readout strategy is used by the embryo, our decoder should

generate meaningful position estimates in mutant backgrounds

(Equation 4), and these estimates can be compared directly to
actual position readouts in mutant embryos, using locations of

pair-rule expression stripes as positional markers.

We have analyzed embryos from lines in which we delete the

three maternal signals individually, in pairs, and all together.

The latter is a control, which confirms that all information about

position indeed is provided by the three maternal signals (Fig-

ure S2K). For each of the remaining six combinations, we

measured expression levels for all four gap genes simulta-

neously (Figures S2A–S2H). In every case, we construct the

posterior distribution Pðx�jfgigÞ from WT gene expression

levels in absolute units, and then apply it to individual mutant

embryos measured in the same batch, thus avoiding variations

in staining, imaging, normalization, etc., across batches. The

results of these analyses are a series of decoding maps (Fig-

ure 4), which should be compared to the map for WT embryos

(Figure 3D).

Before proceeding to analyze these maps and to test our pre-

dictions, we emphasize that even the possibility of decoding the

expression patterns in mutant backgrounds is non-trivial. The

optimal decoder is built out of the distribution of expression

levels that we see in WT embryos, and these fill only a very small

region of the full four dimensional space of possibilities. If the

expression levels in mutant embryos fell far outside this region,

then we would have no reason to trust our description of the dis-

tributions PðfgigjxÞ, and hence no basis from which to make
Cell 176, 844–855, February 7, 2019 847
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Figure 3. Decoding with an Increasing Number of Gap Genes in WT Embryos

(A–D) Top row: dorsal fluorescence intensity profile(s) from simultaneously stained embryos (mean± SD); units scaled so that 0 (1) corresponds to minimum

(maximum) mean expression. Bottom row: decoding maps, Pðx�jxÞ from Equation 4, averaged over 38 embryos. (A) Decoding using single gene (Kr, blue) (also

Figures 2 and S1C).

(B) Decoding using a combination of two genes, Kr (blue) and Hb (red) (also Figure S1D).

(C) Decoding using three genes, Kr (blue), Hb (red), and Gt (orange) (also Figure S1E).

(D) Decoding using all four gap genes.

See also Figure S1.
reliable inferences. To test whether this could be the case, we

compared c2 in Equation 2 between the mean WT and the

mutant gap gene expression (see STAR Methods, Exploring

mutant embryos). We found a surprising degree of overlap: the

largest c2 in the WT embryos is larger than 98% of the values

that we see in mutant embryos (Figure S2I); extreme values of

c2 in the mutant backgrounds are confined to small regions of

the embryo. Deletingmaternal signals introduces large perturba-

tions, yet the gap gene network responds in a way that is not far

outside the distribution of possible responses under WT condi-

tions. This fact is what makes decoding positional information

in mutant embryos feasible.

Many features of the decoding maps in Figure 4 are expected

from previous, qualitative characterizations of these mutant

backgrounds. Thus, whenwe delete tsl the distortions are largely

at the embryo’s poles (Figure 4A), to which tsl expression is

confined (Martin et al., 1994); and when we delete osk (which

controls the localization of the nos signal), we see major distor-

tions in the posterior (Figure 4C), consistent with nos being a

posterior determinant (Wang and Lehmann, 1991). When we

delete bcd there are major distortions in the anterior portion of

the map (Figure 4B), where the concentration of Bcd protein is

highest, but distortions of the map extend along the entire length

of the embryo, in contrast to the more local effects of removing

tsl or nos.

To further characterize the maternal patterning inputs, we

examined double mutant backgrounds, in which the positional

information is supplied by a single remaining maternal input (Fig-

ures 4D–4F). When the only spatial information is supplied by tsl

or nos (in embryos from mothers doubly mutant for bcd nos or

bcd tsl, respectively), the resultant embryos lack much of the

WT gap gene pattern. Inferred positions based on the levels of

the remaining gap genes at no point match the diagonal defined

by the WT pattern.
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One challenge in analyzing embryos with patterning informa-

tion only from Bcd is that removal of nos and tsl results in uni-

formly high ectopic levels of maternal Hb (Hülskamp et al.,

1989; Struhl, 1989). These uniform levels confer no positional in-

formation but the repressive activity of Hb as a transcription fac-

tor blocks expression of gap genes and thus all patterning in the

abdomen (Gavis et al., 2008; Irish et al., 1989). As an alternative,

we have generated germline clones (Hannon et al., 2017), which

lack maternal hb activity, as well as positional cues from nos and

tsl. These mutant backgrounds have a rich collection of pair-rule

stripes, providing amore detailed test of our theory. Surprisingly,

decoding maps in these mutant embryos (Figure 4E) have a

nearly continuous ridge of density, with a width close to that in

WT, that runs nearly from x=L= 0:3 to x=L = 0:8. This is qualita-

tively consistent with the observation that these embryos show

WT patterns between the gnathal and sixth abdominal segments

(Hannon et al., 2017). It is also surprising that we can achieve

precise (if distorted) decoding at x=Lx0:8, where the only source

of positional information is the Bcd protein, which is present at

very low concentrations (Little et al., 2011, 2013).

Quantitatively Testing the Dictionary
While the predictions of optimal decoding are in qualitative

agreement with expectations from previous work, it is crucial

that this theoretical framework makes detailed quantitative pre-

dictions about positions. The peaks of pair-rule expression are

positional markers that predict features of the final body plan,

and thus we take these peaks as a measure of the embryo’s

own readout of positional information (Figures S5B–S5D). Inde-

pendent of our work, it is much less clear how levels of pair-

rule expression relate to development; therefore, the units of

pair-rule gene expression are normalized within each genotype,

and we make no attempt to compare these levels across

genotypes.
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Figure 4. Decoding Maps and Stripe Locations in Mutant Embryos

(A–F) Average decoding maps for six maternal mutant backgrounds (whitened APT symbols above the panels signify whether the anterior A, posterior P, or

terminal T systems are deficient): (A) etsl4; (B) bcdE1; (C) osk166; (D) bcdE2 osk166; (E) Bcd-only germline clone; and (F) bcdE etsl1; same grayscale used in Figure 3D.

Measured Eve expression profiles in WT embryos (left side of A and D), and in mutant embryos (below each corresponding decoding map); individual profiles

(gray), mean profile (black), and peak locations (black dots), units scaled so that 0 (1) corresponds to minimum (maximum) mean Eve expression within each

genotype. Average locations of WT Eve stripes (horizontal dotted lines) are used to predict Eve stripes in the mutant backgrounds: stripes expected at AP lo-

cations in mutant embryos where horizontal dotted lines intersect peak(s) of the probability density. Open black circles mark intersections of horizontal dotted

lines and respective average locations of Eve stripes in mutant embryos (vertical dotted lines). Variable number of Eve stripes highlighted by horizontal starred

bars (see B and F; see Figure S6). Red line in (C) marks observed Eve stripe that is not predicted by the decoding map. Red line in E shows a predicted Eve stripe

that is not observed in the mutant embryo. When horizontal lines intersect a broad probability distribution, we expect to observe diffuse Eve stripes like in (F).

(A) shows additional predictions for Run (cyan) and Prd (magenta) stripes; the dense collection of markers traces the ridge of implied positions in the decoding

map with very high accuracy.

See also Figures S2, S3, and S4 and Video S1.
As a first example, when we delete bcd (Figure 4B), quantita-

tive distortions of the map extend even into the posterior half of

the embryo, so that the map is shifted, and the plot of x� versus x
(following the ridge of high probability in the map) does not have

unit slope. In particular, expression levels found at x=L= 0:7 (or at

x=L = 0:55) have their most likely decoded values at x�=L= 0:75

(or x�=L = 0:67). But in the WT embryo, positions x=L= 0:75 and
x=L= 0:67 are associated with the stripes vii and vi of expression

for the pair-rule gene eve, as shown at left in Figure 4. If the ma-

chinery for interpreting gap gene expression is using the same

dictionary that we have constructed mathematically, then we

predict that the bcd deletion mutants should shift these two

Eve stripes to x=L= 0:7 and x=L = 0:55, which is what we see

(Figure 4B). More dramatically, expression levels at x=L= 0:23
Cell 176, 844–855, February 7, 2019 849



Figure 5. Predicted versus Observed Locations of 70 Pair-Rule

Stripes in Mutant Embryos

Horizontal axis: measured pair-rule stripe positions in mutant embryos

(mean ± SD across embryos of a given genotype). Vertical axis: predictions

from decoding the gap gene expression levels in mutant embryos (mean± SD

across embryos of a given genotype). Color scale indicates the displacement

of the observed peak from its WT location ðDx=LÞ. Eleven diffuse stripes are

analyzed separately (Figure S5). In addition, we observe, but do not predict

three stripes, and predict, but do not observe, three stripes.

See also Figures S5 and S6.
in the bcd mutant background are decoded as x�=L= 0:75 with

high probability, and correspondingly there is an eve expression

pattern at this anomalously anterior location. This is predicted to

be not a displacement of the first (nearest) Eve stripe, but rather a

duplication of the seventh stripe, which is consistent with clas-

sical observations on cuticle morphology in these mutant back-

grounds (Driever and Nüsslein-Volhard, 1988), and with recent

RNAi/reporter experiments (Staller et al., 2015).

The quantitative agreement between the decoding maps and

the locations of the Eve stripes extends to all six examples of sin-

gle and double maternal mutants shown in Figure 4, as well as to

the prediction of stripe locations for the pair-rule genes paired

(prd) and runt (run) (Figures S3 and S4). Notably, there is good

agreement both when the shifts are small, as with the deletion

of tsl (Figure 4A), and when the shifts are much larger, resulting

in the deletion of several stripes, as with the bcd osk and bcd

tsl double mutants (Figures 4D and 4F). In cases in which the

implied position of a stripe crosses a diffuse band of probability

density in the decoding map, like in the anterior of the bcd tsl

mutant, we might expect that there would be expression of eve

but not a sharp stripe, and this is what we see (Figure 4F).

For simplicity Figure 4 shows decoding maps that are aver-

aged over all embryos for each mutant line. If we focus instead

on decoding maps for individual embryos, their variability pre-

dicts the embryo-to-embryo variability in pair-rule gene expres-

sion. In particular, for bcd tsl mutants the positions that map to

the WT locations of Eve stripes iv and v (x�=L= 0:56 and x�=L =

0:62) substantially vary in the window 0:4< x=L< 0:6. If we look

at the eve expression patterns in individual embryos (thin lines

at bottom of Figure 4F; for detailed analysis, see Figures S6A–

S6C), we see two peaks with variable positions, as predicted.
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For the bcdmutant, the average decodingmap again has density

at x�=L= 0:56 and x�=L= 0:62 (Figures 4B and S6D–S6F), but

when we decode the gap gene expression patterns from individ-

ual mutant embryos we find that these features vary not only in

their position but even in their presence or absence, so that indi-

vidual embryos are predicted to have a variable number of Eve

stripes, and this is again what we see.

There are a small number of errors in our predictions. In the osk

mutants a posterior Eve stripe is observed where none is pre-

dicted (Figure 4C), and in bcd osk mutants we predict a variable

number of Prd stripes (Figure S3D). A Run stripe is predicted at

x=Lx0:6, where none is observed (Figure S4C); and we have

no prediction for the very blurred band of Run expression at

x=L> 0:7 (Figure S4C). In addition, in the bcd tsl mutant a Run

stripe is predicted at x=Lx0:45, where none is observed (Fig-

ure S4F). Another failure occurs at a rare point where the combi-

nations of gap gene expression are outside the range sampled in

theWT embryos (Figure S2J), and thuswemay be simply extrap-

olating the probability distributions too far.

In the WT embryo, local decoding of gap gene expression

levels always leads to smooth maps, so that spatial averaging

would not result in any systematic changes. Further, fluctuations

in the expression level are correlated over significant distances

(Krotov et al., 2014), so that spatial averaging also would not

reduce the noise or enhance the reliability of decoded positions.

These arguments fail at a small number of locations in the mu-

tants where the decoding map has a dramatic discontinuity,

like in the oskmutants (Figure 4C). In this case, any spatial aver-

aging would involve combining vastly different signals, and the

outcome would depend on the details of the averaging process,

so we lose predictive power based on the maps alone.

Finally, a more quantitative survey compares howwell the pre-

dictions of pair-rule stripe positions based on the decoding

maps correspond to the actual measured positions in the six mu-

tants for all eve, run, and prd stripes (Figure 5). For nearly all the

70 identifiable pair-rule stripes, the predicted position agrees

with the measured position within the measured embryo-to-em-

bryo variability. Further, direct comparison of the horizontal and

vertical error bars in Figure 5 reveals that also the measured vari-

ability in stripe positions is in good agreement with the predicted

variability (Figure S6G), again a highly nontrivial connection be-

tween the decoding map and embryo-to-embryo fluctuations

in mutant gap gene expression. This rich and tight correspon-

dence between measurements and predictions for stripe posi-

tions (and even their variability) implies that developmental

enhancers in the Drosophila embryo implement a close analog

of the mathematically optimal decoding scheme, efficiently

reading out gap gene expression levels and transforming them

into a positional specification with 1% accuracy, sufficient for

precise assignment of cellular identities along the AP axis.

Dynamics in Wild-Type Embryos
Gap gene expression levels vary in time, even within n.c. 14

(Jaeger, 2011). In principle we could ask about the information

contained in these expression levels, moment bymoment, allow-

ing for the possibility that the best decoding of this information

also varies in time. If, on the other hand, we imagine that the

embryo implements a single decoder, optimized—like in the
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Figure 6. Decoding Maps from Dynamic Gap Gene Expression Patterns

(A–C) A single decoder built from gap gene expression at 40–44min into n.c. 14 is used to decode gap gene expression patterns in embryos from 15± 2 (A), 30± 2

(B), and 50± 2 (C) min into n.c. 14, respectively. Grayscale like in Figure 2D. Top panels show the mean gap gene expression ± SD (shading) across embryos in

each decoded time window. Bottom panels show mean (black line) and individual (gray lines) profiles of Eve patterns 8 min later (delay accounts for time to

synthesize Eve proteins (Edgar et al., 1986). Dots in main decoding panels mark intersections of average Eve peak locations in time window 45–55 min n.c. 14,

with the average locations of Eve peaks in the corresponding timewindow for each panel. Light gray open circles in (C) correspond to locations of Eve peaks in (B),

to illustrate shift. Note that Eve stripe vii shifts by �0:06L during the 20 min separating the two time windows.

(D) Measured (black dashed line) and predicted (blue dashed line) mean locations of Eve peaks throughout n.c. 14marked at 5-min intervals (triangles), horizontal

lines mark three time windows in (A)–(C).

(E) Predicted versus measured Eve stripe locations throughout n.c. 14. Time (min) depicted in blue scale bar.

All horizontal and vertical error bars in (D) and (E) are SDs. See also Videos S1 and S2.
discussion above—to extract maximum positional information at

themoment when this information itself is maximal (Dubuis et al.,

2013b, 2013a), then we necessarily predict that the map of

implied versus actual position will change over time. Thus,

following the same logic used in our analysis of mutants, the

stripes of pair-rule gene expression should shift over time,

which is known to happen. The question is whether our

optimal decoder predicts the correct quantitative pattern of

stripe dynamics.
The possibility of using dynamics as a test of optimal decoding

hinges on our ability to stage the developmental time of fixed em-

bryos with 1-min precision during n.c. 14 (Dubuis et al., 2013b).

Gap gene expression shows large temporal changes, with Kr, Gt,

and Kni increasing in expression, and Hb concentration showing

a complex non-monotonic change in the anterior with a concom-

itant increase in the posterior (top panels in Figure 6A–C; Video

S1). Simultaneous to these radical gap gene expression changes

between hours 2–3 of the embryo’s development, the posterior
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Eve stripes (especially stripes v–vii) undergo subtle but signifi-

cant shifts toward the anterior (Figure 6D), consistent with

previous reports (DiNardo and O’Farrell, 1987; Frasch and

Levine, 1987).

To analyze these data, we use the same decoder as discussed

above, which is constructed from data taken during a single

5-min time interval (40–44 min into n.c. 14). This decoder trans-

lates the changes in gap gene expression to a temporal

sequence of decoding maps, visualized in an animation of suc-

cessive probability distributions (Video S2). Three selected snap-

shots at 15, 30, and 50 min into n.c. 14 highlight initially radical

changes (Figures 6A versus 6B), followed by subtle refinements

(Figures 6B versus 6C).

15min into n.c. 14, the decodingmap has clear structure in the

central region of the embryo, but pair-rule gene expression does

not show indications of its final striped pattern. This delay in acti-

vation of pair-rule genes may reflect specific timing mecha-

nisms, and the initial broad profiles of pair-rule gene expression

may be controlled by different pathways, such as direct activa-

tion of Eve by Bcd (Small et al., 1992).

30 min into n.c. 14, the situation is very different. Using the

same decoder, gap gene expression now provides a nearly

unambiguous map of implied positions for locations x=L> 0:4

(Figure 6B). Six of the seven Eve stripes are now detectable at

locations that are quantitatively consistent with the decoding

map’s predictions. Stripe i occurs at a position where optimal

decoding is ambiguous, and its position may reflect details of

its activation mechanism that led to its early expression already

15 min into n.c. 14. Alternatively, this could be a ‘‘misprediction’’

of stripe ii, which is subsequently resolved.

While the decoding map at this time point exhibits relatively

low positional errors, it also displays a small but significant sys-

tematic error, visible as a slight tilt and bend of the probability

density away from the diagonal (Figure 6B). Posterior positions

thus are decoded to be slightly further posterior, and the most

posterior positions correspond to a broad smear of probability

density at x�=Lx0:75. If the embryo is using this decoder, then

Eve stripes ii–vi should occur at positions slightly posterior to

their locations at 40 min (when our decoder is constructed),

and this agrees with experiment. The inferred position

x�=Lx0:75 is the position at which Eve stripe vii should occur,

and the smear in the decoding map then predicts that this stripe

should be more diffuse and variable, as well as shifted on

average to the posterior, all in agreement with the data.

As developmental time progresses, the ridge of high probabil-

ity in the decoding map rotates counter-clockwise and sharpens

in the posterior, predicting shifts of Eve stripes toward the ante-

rior and a sharpening of Eve stripes i and vii, again consistent

with our measurements (Figure 6C). The quantitative success

of these predictions for the subtle dynamic shifts of Eve stripes

inWT embryos is summarized in Figure 6E. Thus, using the single

optimal decoder to instantaneously decode gap gene expres-

sion throughout n.c. 14 is nearly sufficient to account for the dy-

namics of Eve stripes, without making an explicit model for these

dynamics.

Finally, we return to the question of how much information

could be extracted from the gap gene expression patterns if

we allow ourselves to build a different decoder at each moment
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in time (see Video S3). Perhaps surprisingly, this adaptive decod-

ing is largely unambiguous throughout the entire hour of n.c. 14,

and improvements in the precision of decoding are quantitative

rather than qualitative. Importantly this means that our predic-

tion, e.g., of variability in Eve stripe vii arises not because there

is no information available to define this position precisely, but

rather because the decoder which is tuned to extract maximal

information late in n.c. 14 fails to do so at earlier times. In this

way, the dynamics of the stripes provide a deep if subtle

test of the idea that the enhancers controlling pair-rule expres-

sion implement the optimal decoder that we have constructed

theoretically.

DISCUSSION

We have focused here on just one step in the flow of information

through a genetic network, the transformation from broad pat-

terns of gap gene expression to the sharp stripes of pair-rule

gene expression. But even this one step is complex. The

approach we have taken is to use an optimization principle as

a way of circumventing this complexity. This approach is com-

mon in neuroscience, where there is a productive distinction be-

tween what a neural circuit is computing and how it is being

computed (Marr, 1982), and is gaining traction in other biological

contexts. We emphasize that, in the version considered here,

optimality is not a matter of opinion or aesthetics, but rather a

well-defined theory that makes quantitative predictions (Bia-

lek, 2012).

Quantitative Tests of Optimality
Wepursued the hypothesis that cells make use of all the informa-

tion available from local measurements of gap gene expression

levels at a single moment in time. If the embryo makes optimal

use of this information, then the theory predicts a parameter-

free connection between two different classes of experimental

data: decoding maps built from gap gene expression and the

embryo’s own readout of positional information, via pair-rule

expression patterns. If, on the other hand, the system makes

sub-optimal use of the gap gene signals, and restores precision

by appeal to other signals, then the optimal decoding algorithm

will not predict the observed map distortions. This is a detailed

and stringent test of the theory: as summarized in Figure 5, we

have seventy pair-rule gene stripes across six different mutants

where theory and experiment agree quantitatively, plus more

than a dozen instances in which theory correctly predicts diffuse

or variable stripes.

Constraints
Arguments from optimality often are suspect because they

ignore many details. We pose optimization as an abstract math-

ematical problem, independent of the biological hardware that

implements the functions we are optimizing, and independent

of the ancestral mechanisms from which this hardware evolved.

Thus, optimization is equivalent to the hypothesis that real mo-

lecular mechanisms are sufficiently flexible to interpret transcrip-

tion factor concentrations precisely, and that evolutionary

pressures have been strong enough to drive these mechanisms

close to a mathematically defined optimum. It is surprising that



such an abstract principle makes successful quantitative predic-

tions without reference to molecular mechanisms. Indeed, for

many years, detailed models of genetic networks have been

tested by making predictions of mutant phenotypes, but we

are unaware of any example in which comparably detailed quan-

titative agreement has been achieved.

Spatial and Temporal Averaging
The hypothesis that cells make optimal use of local gap gene

expression levels at a single moment in time raises the question

of whether noise levels could be reduced by spatial and temporal

averaging, so that the system in fact fails to reach its true optimal

performance. However, the protein concentrations that we

analyze accumulate in time, which means that signals at one

moment already reflect substantial temporal averaging, as can

be seen by comparing noise levels in mRNA and protein (Little

et al., 2013). The success of optimal decoding based on a single

moment in time to capture the dynamics of Eve stripes in WT em-

bryos also speaks against extra time averaging. Further, we have

argued that the precision of the gap gene response tomaternal in-

puts depends on some degree of spatial averaging (Little et al.,

2013), and this is reflected in spatial correlations of the noise (Erd-

mann et al., 2009;Gregor et al., 2007), whichmay be enhanced by

other network interactions (Krotov et al., 2014); a consequence of

these correlations is that further spatial averaging will not result in

substantially improved estimates of absolute position.

The above arguments suggest that there is no extra informa-

tion that can be extracted by further averaging, and that dy-

namics at the level of pair-rule genes may just be a reflection

of dynamics at the level of gap genes. This does not mean that

no such averaging occurs: in the same way that spatiotemporal

dynamics within the gap gene network may be essential in ex-

tracting maximal information from the maternal inputs (Sokolow-

ski and Tka�cik, 2015; Tka�cik et al., 2008, 2012; Walczak et al.,

2010), such dynamics may be important for implementing the

optimal decoding algorithm that we have identified here, and

for insulating it from spurious noise sources. Small amounts of

spatial averaging would change our predictions only in those pla-

ces where the mutant maps have sharp discontinuities, and

indeed the few incorrect predictions of the theory are at such dis-

continuities (e.g., Figure 4C).

Further Tests of the Theory
Simultaneous measurements of pair-rule expression with all the

gap genes would allow us to test directly whether, for example,

the predicted variations in stripe number are correct, embryo by

embryo, rather than just in aggregate. More subtly, since there

are spatial correlations in the fluctuations of gap gene expression

levels (Krotov et al., 2014), our decoding predicts that there

should be correlations in the small positional errors that occur

in WT and mutant embryos, and hence the fluctuations in posi-

tion of the pair-rule stripes must also be correlated. We note

that while we have measured expression patterns along the dor-

sal side at the mid-sagittal plane of the embryo, the spatial pat-

terns of gap and pair-rule expression vary along its dorso-vental

(DV) axis. If the decoding map changes with DV positions, this

would imply that the pair-rule genes read simultaneously AP

and DV positional information.
Most fundamentally, themolecular mechanisms that lead from

gap gene product concentrations to pair-rule expression must

implement the dictionary that we have developed. Thus, we

should be able to predict the functional logic of these develop-

mental enhancers by asking that they provide an optimal decod-

ing of positional information, rather than fitting to data. More

generally, the approach presented here is directly applicable to

any system where positional information is encoded through

spatially distributed molecular concentrations (Gregor et al.,

2014). One such example is the decoding of position in the devel-

oping vertebrate neural tube, where an optimal decoding from

antiparallel morphogen gradients makes similar quantitative pre-

dictions (Zagorski et al., 2017).

Connections to Classical Ideas
Our maps of implied position as a function of actual position pro-

vide a quantitative, probabilistic version of the older idea that one

can plot cell fate versus position—a fate map—even in mutants

(Schüpbach and Wieschaus, 1986). In its original form, this de-

pends on the fact that what we see in the mutant are rearrange-

ments, deletions, and duplications, but no new pattern elements.

It usually is assumed that this arises from canalization (Siegal and

Bergman, 2002; Waddinton, 1942): although the early stages of

pattern formation might generate new and different signals in

response to the mutation, subsequent stages of processing

force these signals back into a limited set of possibilities. What

we see here is that even signals that are responding immediately

to the primary maternal inputs can be decoded to recapitulate

the patterns seen in the WT. There is no need for subsequent

steps to drive the pattern back to something built from WT ele-

ments, since it already is in this form.

Implications for Development
In the prevailing view of Drosophila development, positional in-

formation is ‘‘refined’’ across successive layers of the patterning

network (DiNardo and O’Farrell, 1987; Surkova et al., 2008). The

gap genes process noisy and variable maternal signals to estab-

lish sharp domain boundaries. These serve then as anchors for

the even more refined patterns of pair-rule genes. This refine-

ment process suggests that the gap gene outputs should not

suffice for precise and unique positional specification. In

contrast, what we see here is that precise positional information

is available, and this precision is implemented in the Drosophila

patterning system as early as during the 14th interphase (Kauff-

man, 1980). This surprising finding raises the question about the

role of pair-rule and subsequent regulatory layers. While beyond

the scope of this work, one interesting possibility is that subse-

quent layers serve to transform the positional information, fully

available already at the gap gene layer, into an explicit commit-

ment to repeated but discrete cell types, arranged in a segmental

pattern (Lawrence, 1981; Martinez Arias et al., 1988; Simcox and

Sang, 1983).

Coda
Perhaps the most important qualitative conclusion from our re-

sults is that precision matters. We are struck by the ability of em-

bryos to generate a body plan that is reproducible on the scale of

single cells, corresponding to positional variations �1% of the
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length of the egg. As with other examples of extreme precision in

biological function, from molecule counting in bacterial chemo-

taxis to photon counting in human vision (Rieke and Baylor,

1998; Segall et al., 1986), we suspect that this developmental

precision is a fundamental observation, and to the extent that

precision approaches basic physical limits it can even provide

the starting point for a theory of how the system works (Bialek,

2012; Tka�cik and Bialek, 2014). But precision in the final result

of development could arise frommany paths. We have a theoret-

ical framework that suggests how such precision could arise

from the very earliest stages in the control of gene expression,

if this control itself is very precise, and this has motivated exper-

iments to measure gene expression levels with correspondingly

high precision. What we have done here is to bring theory and

experiment together, predicting how quantitative variations in

gap gene expression levels should influence the developmental

process on the hypothesis that the embryomakes optimal use of

the available information, in effect maximizing precision at every

step. Genetics then gives us a powerful tool to test these predic-

tions, manipulating maternal inputs and observing pair-rule out-

puts. These rich data are in detailed agreement with theory,

providing strong support for this precisionist view.
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Alexa-594 (guinea pig) Invitrogen, Grand Island, NY Cat#A-11076; RRID: AB_141930

Alexa-568 (rabbit) Invitrogen, Grand Island, NY Cat#A-11036; RRID: AB_143011

Alexa-647 (mouse) Invitrogen, Grand Island, NY Cat#A-21235; RRID: AB_2535804

Software and Algorithms
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Thomas

Gregor (tg2@princeton.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly strains
Embryos lacking single maternal patterning systems were obtained from females homozygous for bcdE1, osk166 or tsl4. For embryos

with positional information only from the Osk patterning system, we used females homozygous for bcdE1 etsl1. To generate Bcd-only

germline clones lacking WTmaternal contributions from hb, nos and tsl, FRT � hbFB � nosBNetsl1/ TM3 females were crossed to y w

p[ry+FLP]22 ; pfry½ + t7:2� = neoFRTg82B etsl4 pfw½+mC�=ovoD1 � 18g / TM3 males and the resultant larvae subjected to three

hour-long heat shocks at 37+C. To obtain embryos with input only from the Torso patterning system, we used bcdE2 osk166 females

for gap gene measurements and bcdE1 nosBN females for pair-rule embryos. The segmentation phenotypes of osk166and nosBN are

equivalent (Wang et al., 1994). Embryos lacking all maternal patterning systems were obtained from triply mutant bcdE1 nosBN etsl1

females. All stocks were balanced with TM3, Sb.

METHOD DETAILS

Measuring gap gene expression
Gap protein levels were measured as previously described (Dubuis et al., 2013b). We draw particular attention to the discussion of

experimental error as it is especially important for the present analysis, which includes estimates of the covariance matrix. As before,
e1 Cell 176, 844–855.e1–e5, February 7, 2019
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most of our analysis is focused on a narrow time window, 40–44 min into n.c. 14. Expression levels were normalized such that the

mean expression levels of WT embryos ranged between 0 (assigned to the minimal value across the AP axis of the mean spatial

profile, separately for each gap gene) and 1 (similarly assigned to the maximal value across the AP axis). In detail, gene expression

profile ga
i of any embryo a was calculated as:

ga
i =

Iagi � I
wt

min;gi

I
wt

max;gi
� I

wt

min;gi

;

where I
wt

and I
wt

are the lowest and highest raw fluorescence int
min max ensity values of themeanWT embryo fluorescence profile; Iagi
is the

raw fluorescence profile of the particular embryo, which can be either mutant or WT. Note that this normalization simply assigns a

conventional unit of measurement to gap gene concentrations; no per-embryo profile ‘‘alignment’’ is used to reduce embryo-to-em-

bryo variance. Mean expression levels for the four gap genes can be seen at the top of Figure 3D; this figure also shows the standard

deviation of each expression level as a function of position, in the width of the shaded regions. We recall that these standard devi-

ations are the square–root of the diagonal elements in the covariance matrix CijðxÞ. In Figure S1A we show measurements of the six

independent off–diagonal elements of this matrix, again as a function of position. Analyzing the covariance matrix estimates across

replicates of WT datasets, Figure S1B compares the errors in our estimates of these matrix elements within single experiments to the

variability across experiments; they are in good agreement.

Gap gene expression in mutants
To quantify mutant gap protein levels in units of WT protein levels, mutants and WT embryos were stained together, and imaged

alongside on the same microscope slide in a single acquisition cycle. Fluorescence signals from mutant embryos were normalized

to their WT reference for each gap gene, so absolute changes in gap gene concentrations—not only changes in the shape of the gap

gene spatial profiles—were retained in all analyses. Thus, an expression level of g= 0:72 in amutantmeans that the relevant protein is

at the same absolute concentration as when we see g= 0:72 in the WT. A summary of results on the mutant gap gene expression

profiles (mean ± standard deviation across embryos) is given in Figures S2A–S2H.

Measuring pair-rule gene expression
To image pair-rule proteins, we used guinea pig anti-Runt, and rabbit anti-Eve (gift from Mark Biggin) polyclonal antibodies, and

monoclonal mouse anti-Pax3/7(DP312) antibody (gift from Nipam Patel). Secondary antibodies are, respectively, conjugated with

Alexa-594 (guinea pig), Alexa-568 (rabbit), and Alexa-647 (mouse) from Invitrogen, Grand Island, NY. Embryo fixation, antibody stain-

ing, imaging and profile extraction were performed as previously described (Dubuis et al., 2013b). Our goal was to predict features of

pair-rule protein concentration profiles, such as the locations of expression peaks, for which comparisons between WT and mutant

expression levels of pair-rule genes were not essential. Pair-rule protein profiles weremeasured in mutant embryos in time widows of

45- to 55-min into n.c. 14; for consistency with gap gene analyses and convenience we normalized such that the mean expression

levels for each gene in each batch of embryos ranged between 0 and 1; individual profiles were scaled as described (Dubuis et al.,

2013b; Gregor et al., 2007), which does not affect the locations of peaks and troughs in the striped profiles. As an exception, we

report pair-rule expression levels in triple maternal mutants (bcd nos tsl) in WT units, because the pair-rule genes are expressed uni-

formly and therefore lack positional features.

Quantification and Statistical Analysis
Constructing the decoding maps

To construct decoding maps and subsequently predict pair-rule expression stripes, Equations 3 and 4 require us to estimate the dis-

tribution of gap gene expression levels at each position, PðfgigjxÞ, from data. Direct sampling might be feasible when we think about

one gene, but in thinking about the full gap gene network we are trying to describe a (joint) probability distribution in a four dimensional

space, and nowwe certainly don’t have enough data to describe the distribution by binning and sampling alone. Instead, we approx-

imated the embryo-to-embryo fluctuations in gene expression as Gaussian with mean and (co)variance that vary with position. In

previous work we tested this approximation; while we can see deviations fromGaussianity (Krotov et al., 2014), the Gaussian approx-

imation gives very accurate estimates of the positional information carried by the expression levels of individual genes (Dubuis et al.,

2013a; Tka�cik et al., 2015), which is most relevant for the decoding that we attempt here.

For a single gene, the Gaussian approximation is

PðgjxÞ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

gðxÞ
q e�c2

1
ðg;xÞ=2;
where c2ðg; xÞ measures the similarity of the gene expression lev
1 el to the mean, gðxÞ, at position x,

c2
1ðg; xÞ=

ðg� gðxÞÞ2
s2
gðxÞ

;
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and s ðxÞ is the standard deviation in expression levels at point x.
g Given measurements of gene expression versus position in a large

set of embryos, we can compute the mean and variance in the standard way, so that these two equations can be applied directly to

the data.

The generalization of the Gaussian approximation to the case where coding and decoding are based on a combination of K genes

simultaneously is given by Equations 1 and 2 in the main text, which depend on CðxÞ, the covariance matrix of fluctuations in the

expression of the different genes at point x. Figures S1A and S1B show the estimation of covariance matrix elements of gap gene

fluctuations across embryos,

CijðxÞ=
D�

ga
i ðxÞ � giðxÞ

��
ga
j ðxÞ � gjðxÞ

�E
a
;

where h,i denotes averaging over embryos indexed by a. Note t
a hat the covariance matrix, as well as the mean profiles giðxÞ them-

selves, are a function of position along the AP axis.

Figure 2 shows a step-by-step procedure for constructing a ‘‘decoding dictionary’’ based on a single gap gene, Kr, frommeasured

data, and a ‘‘decoding map’’ for a single WT embryo; the decoding map presented in Figure 3A is an average over 38 such individual

decoding maps. Similarly, top panels of Figure S1C show the profiles of all four individual gap genes in the WT embryos, while the

bottom panels show the corresponding decoding maps. As with the case of Krüppel in Figure 2, all of these maps show substantial

ambiguities, where the signal at one point in the embryo is consistent with a wide range of possible positions. Ambiguity arises when-

ever a vertical slice through these density plots encounters multiple peaks, but in the case of decoding based on single genes these

ambiguities are so common that they result in either vast swaths of gray or in intricate folded patterns. In particular locations—spe-

cifically, at the flanks of mean expression profiles where the slope of the profile is high—the distributions Pðx�jxÞ become highly

concentrated, indicating that the quantitative expression levels of individual genes provide the ingredients for precise inferences

of position, as suggested previously (Dubuis et al., 2013a; Gregor et al., 2007). Importantly, only posteriors for single gap genes

(e.g., the distribution PðxjKrÞ in B) can be directly visualized (decoding with two genes, for instance, requires a 3-dimensional visual

representation). Decoding maps Pðx�jxÞ (Equation 4), however, can be visualized for an arbitrary number of genes.

Figure S1D shows that combining two genes always reduces ambiguity relative to the single gene case, but does not eliminate it

entirely, and a similar trend is observed in Figure S1E with triplets of gap genes. Once we include all four genes (Figure 3D), ambiguity

is essentially absent and the maps sharpen further. We can see the sharpening as an increase is the probability density Pðx�jxÞ, since
by normalization narrower distributions have to have higher density at their peaks. We can quantify this sharpening by computing the

standard deviation of these distributions and then finding the median over x; a summary of these results is given in Figure S1I.

We emphasize that our decoding of positional information is based on the absolute concentrations of the gap gene products. We

have chosen units in which the maximal mean expression levels are equal to one, but there is no normalization of the individual em-

bryos. Further, we use the graded levels of expression explicitly in our calculations, and one can see this even in the case of a single

gene (e.g., for Kr in Figure 2), where the most precise information is conveyed in the region where the expression level is varying. This

is in contrast to a classical view of gap genes as being expressed in ‘‘domains’’ whose boundaries provide the anchors for further

refinement of the pattern. In previous work we have shown that any attempt to discretize gap gene expression into on/off domains

results in a substantial loss of positional information (Dubuis et al., 2013a), and in Figures S1F–S1H we show how this loss of infor-

mation translates into less precise decoding. We can define on/off domains either by thresholding simply at the midpoint of the

expression range (g = 0:5; Figure S1F), or by adjusting thresholds separately for each gap gene to optimize the decoding map (Fig-

ure S1G). In both cases we use the optimal decoding of the discretized signals, but nonetheless there is a dramatic loss of precision.

We further emphasize that the notion of a threshold, which is well defined for a single signal, is more ambiguous in the case where

multiple concurrent signals drive patterning, as with the gap genes. The idea of putting independent, and possibly different, thresh-

olds on each of the inputs separately may appear as a natural extension of the single-gene case, but this idea already entails a drastic

(and untested) independence assumption. It would be equally possible that the relevant patterning thresholds act on some unknown,

even nonlinear, combination of the four gap gene signals. In particular, in biophysical models of enhancer function where the gene

expression is controlled by the concentrations of multiple inputs, and where the threshold is determined by the sigmoid activation

function of the enhancer, the interpretation of thresholds applying to nonlinear combinations of inputs is more realistic than the inter-

pretation of different thresholds independently applying to each of the inputs. Furthermore, the picture of independent thresholds

acting on individual gap genes leaves completely unanswered the question of how binarized gap gene profiles can be read out in

a biophysically realistic fashion to combinatorially drive the expression of their target genes. Thus, graded expression levels carry

more information, and it is not more ‘‘biologically plausible’’ to assume that only on/off distinctions are relevant.

Exploring mutant embryos

We analyzed patterns of gap gene expression in six mutant lines of flies, deficient in one or two of the threematernal inputs to the gap

gene network, as summarized in Figure S2. To construct decoding maps for mutant embryos, as in Figure 4, we first computed pos-

terior distributions Pðx j fgigÞ as prescribed by Equation 3 from WT embryo data, and evaluated these distributions at gap gene

expression levels measured in mutant embryos. But the WT expression levels fill only a very small region of the full four dimensional

space of possibilities; if the expression levels in mutant embryos fell largely outside this region, thenwewould be extrapolating too far

from the WT measurements and could not make reliable inferences. To test whether this could be the case, we computed c2
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(Equation 2) between the observed combinations of expression levels and the mean expression levels expected at each position in

the WT, and compared that to the c2 values for mutant embryos.

Figure S2I shows the cumulative distribution of c2 across the entire population of WT embryos, from all six experiments. Normal-

ized per gene, the mean of c2 is one, but the distribution has a tail extending to nearly ten times this value. To construct a comparable

distribution for mutant embryos, we first note that the gene expression values at one point x can be decoded to a position x
0
that is

very far from x. Consequently, in mutant embryos we looked for the point x
0
in the WT that achieved the minimum of c2

Kðfgig; x0 Þ over
all possible x

0
(which is the location that the mutant gap gene profiles decode to) and then look at the cumulative distribution of c2 at

these decoded locations.

As expected, c2 values in mutant embryos are larger than in the WT, but there is a surprising degree of overlap between the two

distributions: the largest value of c2 that we observe in the WT embryos is larger than 98% of the values that we see in the mutants,

and Figure S2J shows that the extreme values of c2 in the mutants are confined to small regions of the embryo, rather than being

widely distributed. Although mutant background induces huge changes in the inputs of the gap gene network and in the gap

gene profiles themselves, the gap gene network responds in a way that is not so far outside the distribution of possible responses

under natural conditions. This fact is what makes decoding positional information in mutant embryos feasible.

The mutant fly lines that we analyze involve manipulation of three maternal input signals to the gap gene network, and our discus-

sion assumes that these are the source of positional information along the AP axis. It thus is an important control to delete all three of

the inputs, and demonstrate the positional information is absent. This is shown in Figure S2K,wherewe apply our optimal decoding to

the patterns of gap gene expression that we observe in this triplemutant fly line. The result is clear, in that the decodingmap is flat—all

cells have gap gene expression levels that imply a position near the middle of the embryo. Correspondingly, pair-rule gene expres-

sion is spatially uniform, rather than striped.

Predicting pair-rule stripe positions

Decoding maps make parameter–free predictions for the locations of positional markers in mutant embryos. To test these predic-

tions, we compare to the locations of expression peaks for the pair-rule genes. If a cell at position x in themutant embryo has expres-

sion levels for the gap genes that lead to a high probability of inferring a position x� = xs, where xs is the position of a pair-rule stripe in

theWT, then we expect that there will be a peak in pair-rule gene expression at the point x in themutant. Mathematically, this process

(shown graphically in Figure 4) proceeds as follows: we construct Pa
mapðx�jxÞ for a mutant embryo a, and look at the line x� = xs; this

gives us a (non–normalized) density ras ðxÞ = Pa
mapðx� = xsjxÞ, and there should be pair-rule stripes at the local maxima of this density.

Because stripes in the WT are driven by different enhancers and are thus not identical, it is important that our calculation should pre-

dict the occurrence of a particular identified stripe s (e.g., s could be eve stripe iv) at x.

The construction of the density ras ðxÞ is shown in Figure S5 for each stripe of Eve, Prd, and Run, and for each individual WT embryo.

There is an excellent correspondence between the average pair-rule gene expression profile and the set of individual embryo den-

sities for all stripes. Interestingly, we also observe that themeasuredwidth of the pair-rule stripes s roughlymatches the typical widths

of the corresponding density functions, rsðxÞ, hinting that the decoding model may be predictive not only about pair-rule stripe

locations but also about quantitative pair-rule gene expression levels, an issue to be explored in subsequent work.

Predicting pair-rule stripe positions in mutant embryos

Figure 4 shows the average decoding maps for six different mutants, and the corresponding predictions for the locations of eve

stripes. Figures S3 and S4 show the same maps, but with predictions for prd and run stripes, respectively. These average maps,

Pmapðx�jxÞ = hPa
mapðx�jxÞia, can be easily plotted as a single map, and then decoded analogously to the procedure outlined above:

we looked for the position x where the decoding map peaks if the inferred position x� is equal to a known pair-rule stripe location,

x� = xs in theWT. Decoding the ‘‘mean pair-rule stripe position’’ in thismanner does not differ fromdecoding single embryos to predict

the pair-rule stripe positions individually, and then taking the average prediction. But by analyzing the decoding maps from individual

embryos we can also predict fluctuations in stripe locations, a fact we used in making Figure 5.

Decoding from individual embryos predicts variability in stripe position, shape, and in the total number of observed stripes.

Figures S6A–S6F shows examples of individual Eve profiles where some of the stripes iii, iv, v were either missing or had a broad,

poorly localized ‘‘diffuse’’ profile in mutant backgrounds. These phenomena, specific to these stripes, are predicted in the correct

mutant backgrounds from the individual embryo decoding maps.

A detailed description of individual embryo pair-rule stripe predictions in mutant backgrounds, analogous to those for the WT, is

shown in Figure S5. In these panels, we denote separately diffuse stripes, as well as a small number of observed-but-not-predicted

and predicted-but-unobserved stripes. All non-diffuse predictions across the three pair-rule genes and all mutants are summarized in

Figure 5. Figure S6G analogously shows, for the same non-diffuse stripe predictions, a summary of observed versus predicted stripe

position variability across embryos.

The significance of absolute concentrations

We invested substantial experimental effort tomeasure gap gene expression levels in mutant embryos side-by-side with theWT con-

trols, so that absolute concentrations can contribute to the decoding. But do they? In Figures S6H–S6K we show the effect of the

absolute level on the decoding map, and consequently on the pair-rule stripe prediction performance. In the bcdmutant background

(Figure S6H), gap gene expression levels are strongly perturbed in shape but also suppressed in magnitude by roughly two-fold. De-

coding these profiles gives predictions of pair-rule stripes that agree very closely with data (Figure S6I, black symbols). In contrast,
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when mutant profiles are individually normalized so that they span the range of expressions between 0 and 1—in essence, keeping

the profile shape but undoing the magnitude effect—leads to much worse predictions of pair-rule stripes (Figure S6I, red).

In the tsl mutant background, the effect of absolute concentrations is subtler. In these mutants, Kr and Kni are overexpressed

by � 10� 20% relative to the WT, which leads to a slight deformation in the decoding map in the posterior ðx >0:5Þ, and this effect

disappears if we normalize to keep only relative expression levels. While the effect is smaller than in the bcd background, pair-rule

stripes at 0:6< x < 0:7 are consistently predicted better using absolute gap gene concentrations. In sum, both for large scale and pre-

cision effects on our pair-rule predictions, being able to measure gap gene concentrations relative to theWT is crucial. This suggests

as well that the embryo itself responds to precisely determined, absolute concentrations of signaling molecules.

QUANTIFICATION AND STATISTICAL ANALYSIS

We imaged n= 292 WT embryos simultaneously stained fluorescently against the four trunk gap genes. We imaged n= 178 WT em-

bryos simultaneously stained fluorescently against three pair-rule genes. Analysis on embryos—simultaneously stained against the

four trunk gap genes—was performed on n= 38WT embryos in the 40-44min timewindow, and n= 102WT embryos in the 38-48min

time window. Analysis on embryos—simultaneously stained against the three pair-rule genes—was performed on n= 34 WT em-

bryos in the 45-55 timewindow. The covariancematrix of fluctuations in gap gene expression levels was computed for 7 independent

WT datasets (n = 37; 29; 43; 32; 29; 24, and 102 embryos). Gap gene protein expression inmutant backgrounds was analyzed in the

38–48 min time window on n= 40 etsl4 embryos, n= 20 bcdE1 embryos, n= 28 osk166 embryos, n= 15 bcdE2 osk166 embryos, n= 19

Bcd-only germline clone embryos, n= 31 bcdE1 etsl1 embryos, and n= 16 bcdE1 nosBN tsl1 embryos. Pair-rule gene protein expres-

sion in mutant backgrounds was analyzed in the 45–55min time window on n= 14 etsl4 embryos, n= 12 bcdE1 embryos, n= 11 osk166

embryos, n= 17 bcdE2 nosBN embryos, n= 32 Bcd-only germline clone embryos, n= 20 bcdE1 etsl1 embryos, and n= 26 bcdE1 nosBN

tsl1 embryos.
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Figure S1. Building a Decoder Using Graded Levels of Gap Gene Expression, Related to Figures 2 and 3

(A and B) Estimation of gap gene covariance matrix from WT embryos. For each of seven independent WT datasets we compute the covariance matrix of

fluctuations in gap gene expression levels at each point along the AP axis during n.c. 14 in the 38–48 min developmental time window (n = 37; 29; 43; 32; 29; 24,

and 102 embryos). Errors within an experiment are standard deviations across matrices computed from random halves of each dataset, while errors across

experiments are the standard deviations for the seven means of each matrix element. The left panels show off-diagonal matrix elements at each point along the

AP axis; mean (black)± errors (gray shading) across experiments. For reference, we also show the matrix elements from the single largest WT dataset ðn= 102Þ
embryos (red) and the errors within this experiment (red shading). Scatterplot shows errors within single experiments (chosen is the largest value from the 7

datasets) versus error across experiments on estimating all covariance matrix elements.

(C–E). Decoding maps from one, two or three gap genes. Top rows: dorsal expression profiles, 40–44 min into n.c. 14; gene as indicated in panel. Mean (lines) ±

standard deviation (shading) across 38 WT embryos. Bottom rows: average decoding maps.

(F–H) Decoding based on binary, threshold-based readout. (F) Binary decoding from gap genes: transition fromOFF to ON state (domain) when expression levels

cross half of their maximum mean level (top). (G) As in F, but with thresholds set such that the mutual information between x� and x is maximized. (H) Decoding

map based on graded variations in gap gene expression (replot of Figure 3D for comparison).

(I) Precision of decoding based on different combinations of genes.We compute the standard deviation of the distributions Pðx� j xÞ, and subsequently themedian

over all x. Results shown for decoding based on all combinations of 1, 2, and 3 genes, all four genes (‘‘graded’’), and four binary genes thresholded into ON/OFF

domains. Hashed bars are the results for the 38-embryo WT dataset restricted to the 40–44 min developmental time window in n.c. 14; non-hashed bars are the

results for the 102-embryo dataset restricted to the 38–48 min developmental time window. For ‘graded’ decoding, the difference in median positional error

between the two embryo selections is mostly due to the systematic change with time in the gap gene expression profile shapes in the 38–48minwindow. Unlike in

Dubuis et al. (2013a), here profiles are not normalized or aligned prior to decoding; thus systematic variation with time increases the positional error in the

38–44 min window relative to the 40–44 min window.
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Figure S2. Decoding in Embryos with Maternal Mutant Backgrounds, Related to Figure 4

(A–H) Dorsal gap gene expression profiles in various maternal backgrounds (mean ± standard deviation across embryos aged 38–48min into n.c. 14;N indicates

number of embryos). The expression levels g are measured in units of maximal WT expression levels (see H), which are measured from WT embryos collected,

processed, stained, and imaged simultaneously as the corresponding mutant background embryos (number of WT embryos shown in parenthesis). (A, E)

Terminal system (via tsl), (B, F) Anterior system (via bcd), (C, G) Posterior system (via nos), is absent or the only input of positional information. Whitened symbols

A, P, and T above the figures indicate whether the Anterior, Posterior, or Terminal systems are deficient. For completeness gap gene expression profiles for WT

are shown (H), and for mutant embryos lacking all three maternal systems (D); in the latter case all positional information along the AP axis is lost (see K).

(I) Gap gene expression levels in mutant embryos largely overlap those observed in WT embryos. Cumulative probability (y axis, log scale) as a function of c2 per

gene—c2
K from Equation 2, divided by K = 4 (see Star Methods, Exploring mutant embryos). It represents the probability that c2 per gene is greater than the value

on the x axis in WT embryos (red), andmutant embryos (black). Normalized per gene, the mean of the cumulative distribution of c2 across the entire population of

WT embryos is one, but the distribution has a tail extending to nearly ten times this value. Vertical dashed line marks the maximal c2 observed in WT dataset. As

expected, c2 values from mutant embryos are larger than in the WT case, but there is a surprising degree of overlap between the two distributions: the largest

value of c2 that we observe in WT embryos is larger than 98% of the values that we see in mutant embryos (dashed line); extreme values of c2 in the mutant

backgrounds are confined to small regions of the embryo, rather than being widely distributed.

(J) Spatial distribution of c2 values along the AP axis of mutants. c2 per gene for individual mutant embryos as a function of position along the AP axis (gray lines),

together with a limit on the largest c2 per gene observed in WT embryos as in I (horizontal red dashed lines).

(K) Decoding map for the triple deletion mutant bcdE1, nosBN, etsl1. Positions of Eve stripes in theWT (left) fail to intersect the map, consistent with the absence of

stripes in the mutant (bottom). Deleting all three maternal inputs removes AP positional information completely.
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Figure S3. Decoding Maps and Prd Stripe Locations in Mutant Embryos, Related to Figure 4

(A–F) Average decoding maps for six maternal mutant backgrounds: (A) etsl4; (B) bcdE1; (C) osk166; (D) bcdE2 osk166; (E) Bcd-only germline clone; (F) bcdE1 etsl1. In

each decoding panel, we use the average locations of the seven peaks of WT Prd expression (left side of A and D) to predict Prd stripe locations in the mutant

backgrounds where horizontal dotted lines intersect the probability density. Open black diamonds mark intersections between horizontal dotted lines and

corresponding average mutant Prd stripe locations (vertical dotted lines). Measurements of the actual Prd expression profiles in each mutant background are

shown below the corresponding decoding panel, where filled black circles indicate the profile peaks. Intensity in all decoding panels refers to WT intensity in

Figure 2D. Roman numerals above the horizontal dotted lines denote the WT Prd stripe number. Horizontal starred bars (in B and F) indicate locations where the

expressed number of Prd stripes is variable: this is captured qualitatively by the decoding maps. Vertical red dotted lines in D mark peaks with variable

expressivity, which are not predicted by the decoding map.
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Figure S4. Decoding Maps and Run Stripe Locations in Mutant Embryos, Related to Figure 4

(A–F) Average decodingmaps for six maternal mutant backgrounds: (A) etsl4; (B) bcdE1; (C) osk166; (D) bcdE2 osk166; (E) Bcd-only germline clone; (F) bcdE1 etsl1. In

each decoding panel, we use the average locations of the seven peaks of WT Run expression (left side of A and D) to predict Run stripe locations in the mutant

backgrounds where horizontal dotted lines intersect the probability density. Open black triangles mark intersections between horizontal dotted lines and cor-

responding averagemutant Run stripe locations (vertical dotted lines).Measurements of the actual Run expression profiles in eachmutant background are shown

below the corresponding decoding panel, where filled black circles indicate the profile peaks. Intensity in all decoding panels refers to WT intensity in Figure 2D.

Roman numerals above the horizontal dotted lines denote the WT Run stripe number. Horizontal starred bar (in B) indicates a location where the expressed

number of Run stripes is variable: this is captured qualitatively by the decoding map. Horizontal red dotted lines in C and F mark predicted peaks, which are not

observed.
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Figure S5. Predicting Pair-Rule Stripe Expression from Mutant Decoding Maps in Individual Embryos, Related to Figure 5

(A) Positional error of the WT distribution computed by locally fitting a Gaussian around the peak of the posterior probability density, with mean±SD

sðx=LÞ= 0:008± 0:002 (black); same positional error from Dubuis et al. (2013b), with mean sðx=LÞ= 0:010± 0:005 (red). The two measurements overlap where the

posterior probability density is unimodal, consistent with the assumption that the unimodal peak is Gaussian. When there are ambiguities, such as the multi-

peaked regions at x=Lx0:2 and x=Lx0:4, the black line is lower than the red, which also measures the spread across multiple peaks.

(B–D) Predictions, Pðx� = xsjxÞ, from individual WT and mutant decoding maps. Rows are for the genes eve (B), prd (C), and run (D), and roman numerals indicate

stripe number. Average WT decoding map (as in Figure 2D) with horizontal dotted lines marking the average locations of pair-rule peaks, xs. Panels Pðx� = xsjxÞ,
with colors marking different stripes s (legend). The average pair-rule expression is plotted (black solid line), scaled for visualization.We exclude the anterior-most

Prd stripe in C from further analysis because it is not well defined. Note also weak ‘‘echoes’’ of pair-rule stripes 1 and 2 in the far anterior (for x < 0:3), which we did

not detect in the data. These may be missing because of influences from other gap genes that are active in the far anterior. Stripe predictions in mutant embryos

are annotated as peaks, diffuse stripes and mistakes. Filled black circles on the x axis mark the average locations of measured peaks, which are successfully

predicted from the decoding maps and plotted in Figure 5. Predicted diffuse stripes are marked by filled diamonds over horizontal lines, which span the diffuse

regions. Open triangles show anterior ‘‘echoes’’ of pair-rule stripes as in WT. Interestingly, a duplication of Eve stripe 7, and diffuse expression of stripes 3-4 are

found expressed where predicted in the anterior of bcdE1 embryos. Red stars shows observed, but not predicted stripes. Black stars shows predicted, but not

observed stripes.
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Figure S6. Features of Pair-Rule Stripe Predictions, Related to Figure 5

(A–F) Predicting variable number of Eve stripes in bcd tsl and bcdE1 mutants. Decoding maps from individual mutant embryos, gray levels are as Figure 2D.

Horizontal dashed lines indicate the average locations of WT Eve peaks, and their intersections with the decoding map are shown in the side panel ðPðx� = xsjxÞÞ.
In bcd tsl embryos stripes iv and v (purple and green open triangles, respectively), and diffuse stripe iii (yellow open triangle) are predicted to have variable

expressivity: (A) all stripes are predicted, (B) diffuse stripe iii is missing, (C) stripes iv,v are either overlapping or missing. In bcdE1 embryos stripes iv and v are

predicted to have variable expressivity: (D) both stripes are predicted, (E) only stripe v is predicted, (F) only stripe iv is predicted. We find examples of such

variability in the measured Eve expression profiles in mutant embryos, shown in the top panels (evemut, filled triangles).

(G) For each stripe prediction in Figure 4, we compare the observed pair-rule stipe variability (standard deviation in stripe variability across embryos of the same

genotype; shown as x axis error bar in Figure 4) with the predicted pair-rule stripe variability. Plotting convention same as in Figure 4. Predicted pair-rule stripe

variability (shown as y axis error bar in Figure 4) is computed as the standard deviation over pair-rule stripe predictions across individual mutant embryos. For Prd

stripes (diamonds) our variability predictions are not correlated significantly to the observed probability. In contrast, for Eve stripes (circles) and for Run stripes

(triangles) our predictions correlate strongly and significantly with the observed variability (Eve: Pearson correlation 0.65, p value <0:001; Run: Pearson correlation

0.83, p value <0:001).

(H–K) Absolute expression levels predict mutant pair-rule stripe positions better than normalized expression levels. (H) We predict pair-rule stripes in bcdE1

embryos, whose gap gene expression is in absolute units, normalized to reference WT embryos, or normalized with respect to themselves so that each gap

gene’s dynamic range in the mutant is normalized to between 0 and 1 along the AP axis. (J) Like H. but for etsl embryos. Top panels, mean gap gene expression in

respective units; bottom panels, average decoding map with horizontal dotted lines at the average locations of WT Eve stripes (roman numerals). (I, K) Summary

of stripe predictions from decoding based on absolute (black) or normalized (red) expression levels. In H predictions derived from absolute (black) expression

levels clearly aremore predictive about pair-rule gene expression stripe locations. In J where the absolute and normalized decodingmaps differ in the posterior of

the embryo, we quantify the difference in predictive performance by c2, the average squared deviation between the predicted and measured stripe location,

divided by the predicted variability in stripe location (y-error bar). For all stripes located at x=LR0:55, the c2 for the predictions that use absolute gap gene

expression levels (black) is c2
absx1:0, less than the c2

mutx1:5 for the predictions generated using normalized gap gene expression profiles (red); consequently,

even in the etslmutant embryos where perturbation to gap gene expression is small, the absolute expression levels of gap genesmake predictions about pair-rule

stripe locations with smaller errors than the normalized gap gene expression levels.
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