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Abstract Olfactory receptor usage is highly heterogeneous, with some receptor types being
orders of magnitude more abundant than others. We propose an explanation for this striking fact:
the receptor distribution is tuned to maximally represent information about the olfactory
environment in a regime of efficient coding that is sensitive to the global context of correlated
sensor responses. This model predicts that in mammals, where olfactory sensory neurons are
replaced regularly, receptor abundances should continuously adapt to odor statistics.
Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased,
decreased, or unchanged abundances of different activated receptors. We demonstrate that this
diversity of effects is required for efficient coding when sensors are broadly correlated, and
provide an algorithm for predicting which olfactory receptors should increase or decrease in
abundance following specific environmental changes. Finally, we give simple dynamical rules for
neural birth and death processes that might underlie this adaptation.

DOI: https://doi.org/10.7554/eLife.39279.001

Introduction

The sensory periphery acts as a gateway between the outside world and the brain, shaping what an
organism can learn about its environment. This gateway has a limited capacity (Barlow, 1961),
restricting the amount of information that can be extracted to support behavior. On the other hand,
signals in the natural world typically contain many correlations that limit the unique information that
is actually present in different signals. The efficient-coding hypothesis, a key normative theory of
neural circuit organization, puts these two facts together, suggesting that the brain mitigates the
issue of limited sensory capacity by eliminating redundancies implicit in the correlated structure of
natural stimuli (Barlow, 1961; van Hateren, 1992a). This idea has led to elegant explanations of
functional and circuit structure in the early visual and auditory systems (see, e.g. Laughlin, 1987,
Atick and Redlich, 1990; Van Hateren, 1993; Olshausen and Field, 1996; Simoncelli and Olshau-
sen, 2001; Fairhall et al., 2001; Lewicki, 2002; Ratliff et al., 2010; Garrigan et al., 2010;
Tkacik et al., 2010; Hermundstad et al., 2014; Palmer et al., 2015; Salisbury and Palmer, 2016).
These classic studies lacked a way to test causality by predicting how changes in the environment
lead to adaptive changes in circuit composition or architecture. We propose that the olfactory sys-
tem provides an avenue for such a causal test because receptor neuron populations in the mamma-
lian nasal epithelium are regularly replaced, leading to the possibility that their abundances might
adapt efficiently to the statistics of the environment.
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elife digest A mouse’s nose contains over 10 million receptor neurons divided into about 1,000
different types, which detect airborne chemicals - called odorants — that make up smells. Each
odorant activates many different receptor types. And each receptor type responds to many different
odorants. To identify a smell, the brain must therefore consider the overall pattern of activation
across all receptor types. Individual receptor neurons in the mammalian nose live for about 30 days,
before new cells replace them. The entire population of odorant receptor neurons turns over every
few weeks, even in adults.

Studies have shown that some types of these receptor neurons are used more often than others,
depending on the species, and are therefore much more abundant. Moreover, the usage patterns of
different receptor types can also change when individual animals are exposed to different smells.
Tesileanu et al. set out to develop a computer model that can explain these observations.

The results revealed that the nose adjusts its odorant receptor neurons to provide the brain with
as much information as possible about typical smells in the environment. Because each smell
consists of multiple odorants, each odorant is more likely to occur alongside certain others. For
example, the odorants that make up the scent of a flower are more likely to occur together than
alongside the odorants in diesel. The nose takes advantage of these relationships by adjusting the
abundance of the receptor types in line with them. Tegileanu et al. show that exposure to odorants
leads to reproducible increases or decreases in different receptor types, depending on what would
provide the brain with most information.

The number of odorant receptor neurons in the human nose decreases with time. The current
findings could help scientists understand how these changes affect our sense of smell as we age.
This will require collaboration between experimental and theoretical scientists to measure the odors
typical of our environments, and work out how our odorant receptor neurons detect them.

DOI: https://doi.org/10.7554/eLife.39279.002

The olfactory epithelium in mammals and the antennae in insects are populated by large numbers
of olfactory sensory neurons (OSNs), each of which expresses a single kind of olfactory receptor.
Each type of receptor binds to many different odorants, and each odorant activates many different
receptors, leading to a complex encoding of olfactory scenes (Malnic et al., 1999). Olfactory recep-
tors form the largest known gene family in mammalian genomes, with hundreds to thousands of
members, owing perhaps to the importance that olfaction has for an animal’s fitness (Buck and
Axel, 1991; Tan et al., 2015; Chess et al., 1994). Independently evolved large olfactory receptor
families can also be found in insects (Missbach et al., 2014). Surprisingly, although animals possess
diverse repertoires of olfactory receptors, their expression is actually highly non-uniform, with some
receptors occurring much more commonly than others (Rospars and Chambille, 1989; Ibarra-
Soria et al., 2017). In addition, in mammals, the olfactory epithelium experiences neural degenera-
tion and neurogenesis, resulting in replacement of the OSNs every few weeks (Graziadei and Gra-
ziadei, 1979). The distribution of receptors resulting from this replacement has been found to have
a mysterious dependence on olfactory experience (Schwob et al., 1992; Santoro and Dulac, 2012;
Zhao et al., 2013; Dias and Ressler, 2014; Cadiou et al., 2014; lbarra-Soria et al., 2017):
increased exposure to specific ligands leads reproducibly to more receptors of some types, and no
change or fewer receptors of other types.

Here, we show that these puzzling observations are predicted if the receptor distribution in the
olfactory epithelium is organized to present a maximally informative picture of the odor environ-
ment. Specifically, we propose a model for the quantitative distribution of olfactory sensory neurons
by receptor type. The model predicts that in a noisy odor environment: (a) the distribution of recep-
tor types will be highly non-uniform, but reproducible given fixed receptor affinities and odor statis-
tics; and (b) an adapting receptor neuron repertoire should reproducibly reflect changes in the
olfactory environment; in a sense it should become what it smells. Precisely such findings are
reported in experiments (Schwob et al., 1992, Santoro and Dulac, 2012, Zhao et al., 2013,
Dias and Ressler, 2014; Cadiou et al., 2014; Ibarra-Soria et al., 2017).
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In contrast to previous work applying efficient-coding ideas to the olfactory system (Keller and
Vosshall, 2007; McBride et al., 2014; Zwicker et al., 2016; Krishnamurthy et al., 2017), here we
take the receptor—odorant affinities to be fixed quantities and do not attempt to explain their distri-
bution or their evolution and diversity across species. Instead, we focus on the complementary ques-
tion of the optimal way in which the olfactory system can use the available receptor genes. This
allows us to focus on phenomena that occur on faster timescales, such as the reorganization of the
receptor repertoire as a result of neurogenesis in the mammalian epithelium.

Because of the combinatorial nature of the olfactory code (Malnic et al., 1999; Stopfer et al.,
2003; Stevens, 2015; Zhang and Sharpee, 2016; Zwicker et al., 2016; Krishnamurthy et al.,
2017) receptor neuron responses are highly correlated. In the absence of such correlations, efficient
coding predicts that output power will be equalized across all channels if transmission limitations
dominate (Srinivasan et al., 1982; Olshausen and Field, 1996; Hermundstad et al., 2014), or that
most resources will be devoted to receptors whose responses are most variable if input noise domi-
nates (van Hateren, 1992a; Hermundstad et al., 2014). Here, we show that the optimal solution is
very different when the system of sensors is highly correlated: the adaptive change in the abundance
of a particular receptor type depends critically on the global context of the correlated responses of
all the receptor types in the population—we refer to this as context-dependent adaptation.

Correlations between the responses of olfactory receptor neurons are inevitable not only because
the same odorant binds to many different receptors, but also because odors in the environment are
typically composed of many different molecules, leading to correlations between the concentrations
with which these odorants are encountered. Furthermore, there is no way for neural circuitry to
remove these correlations in the sensory epithelium because the candidate lateral inhibition occurs
downstream, in the olfactory bulb. As a result of these constraints, for an adapting receptor neuron
population, our model predicts that increased activation of a given receptor type may lead to more,
fewer or unchanged numbers of the receptor, but that this apparently sporadic effect will actually be
reproducible between replicates. This counter-intuitive prediction matches experimental observa-
tions (Santoro and Dulac, 2012; Zhao et al., 2013; Cadiou et al., 2014; Ibarra-Soria et al., 2017).

Olfactory response model

In vertebrates, axons from olfactory neurons converge in the olfactory bulb on compact structures
called glomeruli, where they form synapses with dendrites of downstream neurons (Hildebrand and
Shepherd, 1997); see Figure 1a. To good approximation, each glomerulus receives axons from only
one type of OSN, and all OSNs expressing the same receptor type converge onto a small number of
glomeruli, on average about two in mice to about 16 in humans (Maresh et al., 2008). Similar archi-
tectures can be found in insects (Vosshall et al., 2000).

The anatomy shows that in insects and vertebrates, olfactory information passed to the brain can
be summarized by activity in the glomeruli. We treat this activity in a firing-rate approximation, which
allows us to use available receptor affinity data (Hallem and Carlson, 2006; Saito et al., 2009). This
approximation neglects individual spike times, which can contain important information for odor dis-
crimination in mammals and insects (Resulaj and Rinberg, 2015; DasGupta and Waddell, 2008;
Wehr and Laurent, 1996; Huston et al., 2015). Given data relating spike timing and odor exposure
for different odorants and receptors, we could use the time from respiratory onset to the first eli-
cited spike in each receptor as an indicator of activity in our model. Alternatively, we could use both
the timing and the firing rate information together. Such data is not yet available for large panels of
odors and receptors, and so we leave the inclusion of timing effects for future work.

A challenge specific to the study of the olfactory system as compared to other senses is the lim-
ited knowledge we have of the space of odors. It is difficult to identify common features shared by
odorants that activate a given receptor type (Rossiter, 1996; Malnic et al., 1999), while attempts at
defining a notion of distance in olfactory space have had only partial success (Snitz et al., 2013), as
have attempts to find reduced-dimensionality representations of odor space (Zarzo and Stanton,
2006; Koulakov et al., 2011). In this work, we simply model the olfactory environment as a vector
¢ = {c1,...,cy} of concentrations, where ¢; is the concentration of odorant i in the environment
(Figure 1a). We note, however, that the formalism we describe here is equally applicable for other
parameterizations of odor space: the components ¢; of the environment vector ¢ could, for instance,
indicate concentrations of entire classes of molecules clustered based on common chemical traits, or
they might be abstract coordinates in a low-dimensional representation of olfactory space.

Tesileanu et al. eLife 2019;8:e39279. DOI: https://doi.org/10.7554/eLife.39279 3 0of 39


https://doi.org/10.7554/eLife.39279

e LI F E Research article Physics of Living Systems

a
epithelium bulb
odorants  OSNs glomeruli
N e —
TN =
T I
40
‘).,I‘"-
I 8
S o
v y ]
e b o
= b I

response vector

ERRRETRRRSLL)
el
Cj— — Ta
I u sensing matrix Gaussian

(linear filter) noise
Prdyae ‘
environment vector Ta = Ka Z Saiti + Mo/ Ka

concentration

Figure 1. Sketch of the olfactory periphery as described in our model. (a) Sketch of olfactory anatomy in
vertebrates. The architecture is similar in insects, with the OSNs and the glomeruli located in the antennae and
antennal lobes, respectively. Different receptor types are represented by different colors in the diagram.
Glomerular responses (bar plot on top right) result from mixtures of odorants in the environment (bar plot on
bottom left). The response noise, shown by black error bars, depends on the number of receptor neurons of each
type, illustrated in the figure by the size of the corresponding glomerulus. Glomeruli receiving input from a small
number of OSNs have higher variability due to receptor noise (e.g., OSN, glomerulus, and activity bar in green),
while those receiving input from many OSNs have smaller variability. Response magnitudes depend also on the
odorants present in the medium and the affinity profile of the receptors. (b) We approximate glomerular
responses using a linear model based on a ‘sensing matrix’ S, perturbed by Gaussian noise n,. K, are the numbers
of OSNs of each type.

DOI: https://doi.org/10.7554/eLife.39279.003

Once a parameterization for the odor environment is chosen, we model the statistics of natural
scenes by the joint probability distribution P(cy,...,cy). We are neglecting temporal correlations in
olfactory cues because we are focusing on odor identity rather than olfactory search where timing of
cues will be especially important. This simplifies our model, and also reduces the number of olfactory
scene parameters needed as inputs. Similar static approximations of natural images have been
employed powerfully along with the efficient coding hypothesis to explain diverse aspects of early
vision (e.g., in Laughlin, 1981; Atick and Redlich, 1990; Olshausen and Field, 1996; van Hateren
and van der Schaaf, 1998; Ratliff et al., 2010, Hermundstad et al., 2014).

To construct a tractable model of the relation between natural odor statistics and olfactory recep-
tor distributions, we describe the olfactory environment as a multivariate Gaussian with mean ¢q and
covariance matrix I,

environment P(c) ~N(cg,T) . (1)
This can be thought of as a maximum-entropy approximation of the true distribution of odorant con-

centrations, constrained by the environmental means and covariances. This simple environmental
model misses some sparse structure that is typical in olfactory scenes (Yu et al., 2015;
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Krishnamurthy et al., 2017). Nevertheless, approximating natural distributions with Gaussians is
common in the efficient-coding literature, and often captures enough detail to be predictive
(van Hateren, 1992a; van Hateren, 1992b; Van Hateren, 1993; Hermundstad et al., 2014). This
may be because early sensory systems in animals are able to adapt more effectively to low-order sta-
tistics which are easily represented by neurons in their mean activity and pairwise correlations.

The number N of odorants that we use to represent an environment need not be as large as the
total number of possible volatile molecules. We can instead focus on only those odorants that are
likely to be encountered at meaningful concentrations by the organism that we study, leading to a
much smaller value for N. In practice, however, we are limited by the available receptor affinity data.
Our quantitative analyses are generally based on data measured using panels of 110 odorants in fly
(Hallem and Carlson, 2006) and 63 in mammals (Saito et al., 2009).

We next build a model for how the activity at the glomeruli depends on the olfactory environ-
ment. We work in an approximation in which the responses depend linearly on the concentration
values:

rg =K, ZSGECE + Na vV Ka: (2}

where r, is the response of the glomerulus indexed by «, S, is the expected response of a single
sensory neuron expressing receptor type a to a unit concentration of odorant i, and K, is the number
of neurons of type a. The second term describes noise, with 7, the noise for a single OSN, modeled
as a Gaussian with mean 0 and standard deviation a,, 1,~N(0,02).

The approximation we are using can be seen as linearizing the responses of olfactory sensory neu-
rons around an operating point. This has been shown to accurately capture the response of olfactory
receptors to odor mixtures in certain concentration ranges (Singh et al., 2018). While odor concen-
trations in natural scenes span many orders of magnitude and are unlikely to always stay within the
linear regime, the effect of the nonlinearities on the information maximization procedure that we
implement below is less strong (see Appendix 3 for a comparison between our linear approximation
and a nonlinear, competitive binding model in a toy example). One advantage of employing the lin-
ear approximation is that it requires a minimal set of parameters (the sensing matrix coefficients Su),
while nonlinear models in general require additional information (such as a Hill coefficient and a max-
imum activation for each receptor-odorant pair for a competitive binding model; see Appendix 3).

Information maximization
We quantify the information that responses, r = (r1,...,ry), contain about the environment vector,
¢ = (ci,...,cn), using the mutual information /(r, ¢):

P(r|c)} ’ 3)

f(r,t:):[“{MrdN"P(r:c)‘log{ P(r)

where P(r,c) is the joint probability distribution over response and concentration vectors, P(r|c)
is the distribution of responses conditioned on the environment, and P(r) is the marginal distribution
of the responses alone. Given our assumptions, all these distributions are Gaussian, and the integral
can be evaluated analytically (see Appendix 2). The result is

I(r,c) :%Trlog(]l—!—KE_lQ), (4)

where the overlap matrix Q is related to the covariance matrix I' of odorant concentrations (from
Equation (1)),

Q=S5rs", 6]

and K and X are diagonal matrices of OSN abundances K, and noise variances o2, respectively:
K =diag(Ki,...,Ky), X=diag(d?,...,0%). 6)

The overlap matrix Q is equal to the covariance matrix of OSN responses in the absence of noise
(0o =0; see Appendix 2). Thus, it is a measure of the strength of the usable olfactory signal. In
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contrast, the quantity XK ' is a measure of the amount of noise in the responses, where the term
K ! corresponds to the effect of averaging over OSNs of the same type. This implies that the quan-
tity KE1Q is a measure of the signal-to-noise ratio (SNR) in the system (more precisely, its square),
so that Equation (4) represents a generalization to multiple, correlated channels of the classical
result for a single Gaussian channel, I:%log(l +SNR2) (Shannon, 1948; van Hateren, 1992a;
van Hateren, 1992b). In the linear approximation that we are using, the information transmitted
through the system is the same whether all OSNs with the same receptor type converge to one or
multiple glomeruli (see Appendix 2). Because of this, for convenience we take all neurons of a given
type to converge onto a single glomerulus (Figure 1a).

The OSN numbers K, cannot grow without bound; they are constrained by the total number of
neurons in the olfactory epithelium. Thus, to find the optimal distribution of receptor types, we maxi-
mize /(r,c) with respect to {K,}, subject to the constraints that: (1) the total number of receptor
neurons is fixed (3~ K, = Kit); and (2) all neuron numbers are non-negative:

arg max
{Ka}= K,>0, Ifr,c). @
> akKa =Kot

Throughout the paper, we treat the OSN abundances K, as real numbers instead of integers,
which is a good approximation as long as they are not very small. The optimization can be per-
formed analytically using the Karush-Kuhn-Tucker (KKT) conditions (Boyd and Vandenberghe, 2004)
(see Appendix 2), but in practice it is more convenient to use numerical optimization.

Note that in contrast to other work that has used information maximization to study the olfactory
system (e.g. Zwicker et al., 2016), here we optimize over the OSN numbers K,, while keeping the
affinity profiles of the receptors (given by the sensing matrix elements S;;) constant. Below we ana-
lyze how the optimal distribution of receptor types depends on receptor affinities, odor statistics,
and the size of the olfactory epithelium.

Receptor diversity grows with OSN population size
Large OSN populations

In our model, receptor noise is reduced by averaging over the responses from many sensory neu-
rons. As the number of neurons increases, K,z — », the signal-to-noise ratio (SNR) becomes very
large (see Equation (2)). When this happens, the optimization with respect to OSN numbers K, can
be solved analytically (see Appendix 2), and we find that the optimal receptor distribution is given
by

Kom K3 = 5 (024, 07A) ®

where A is the inverse of the overlap matrix Q from Equation (5), A=Q"!, 2 are the receptor

noise variances (Equation (6)), and 0?A=Y 02A, /M is a constant enforcing the constraint
3" K, =Kyt When Ky is sufficiently large, the constant first term dominates, meaning that the
receptor distribution is essentially uniform, with each receptor type being expressed in a roughly
equal fraction of the total population of sensory neurons. In this limit, the receptor distribution is as
even and as diverse as possible given the genetically encoded receptor types. The small differences
in abundance are related to the diagonal elements of the inverse overlap matrix A, modulated by
the noise variances o2 (Figure 2a). The information maximum in this regime is shallow because only
a change in OSN numbers of order K;,;/M can have a significant effect on the noise level for the
activity of each glomerulus. Put another way, when the OSN numbers K, are very large, the glomeru-
lar responses are effectively noiseless, and the number of receptors of each type has little effect on
the reliability of the responses. This scenario applies as long as the OSN abundances K, are much
larger than the elements of the inverse overlap matrix A.

Small and intermediate-sized OSN populations
When the number of neurons is very small, receptor noise can overwhelm the response to the envi-
ronment. In this case, the best strategy is to focus all the available neurons on a single receptor
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Figure 2. Structure of a well-adapted receptor distribution. In panels (a—c) the receptor sensing matrix is based on Drosophila (Hallem and Carlson,
2006) and includes 24 receptors responding to 110 odorants. In panels (d—e), the total number of OSNs K, is fixed at 4000. In all panels,
environmental odor statistics follow a random correlation matrix (see Appendix 4). Qualitative aspects are robust to variations in these choices (see
Appendix 1). (a) Large OSN populations should have high receptor diversity (types represented by strips of different colors), and should use receptor
types uniformly. (b) Small OSN populations should express fewer receptor types, and should use receptors non-uniformly. (c) New receptor types are
expressed in a series of step transitions as the total number of neurons increases. Here, the odor environments and the receptor affinities are held fixed
as the OSN population size is increased. (d) Correlation between the abundance of a given receptor type, K,, and the logarithm of its signal-to-noise
ratio in olfactory scenes, log Qus/ 02, shown here as a function of the tuning of the receptors. For every position along the x-axis, sensing matrices with a
fixed receptor tuning width were generated from a random ensemble, where the tuning width indicates what fraction of all odorants elicit a strong
response for the receptors (see Appendix 1). When each receptor responds strongly to only a small number of odorants, response variance is a good
predictor of abundance, while this is no longer true for wide tuning. (e) Receptor abundances correlate well with the diagonal elements of the inverse
overlap matrix normalized by the noise variances, o2(Q'),_,, for all tuning widths. In panels (d-e), the red line is the mean obtained from 24 simulations,
each performed using a different sensing matrix, and the light gray area shows the interval between the 20th and 80th percentiles of results. (f) Number
of intact olfactory receptor (OR) genes found in different species of mammals as a function of the area of the olfactory epithelium normalized to
account for allometric scaling of neuron density ((Herculano-Houzel et al., 2015); see main text). We use this as a proxy for the number of neurons in
the olfactory epithelium. Dashed line is a least-squares fit. Number of intact OR genes from (Niimura et al., 2014), olfactory surface area data from
(Moulton, 1967; Pihlstrém et al., 2005; Gross et al., 1982, Smith et al., 2014), and weight data from (Rousseeuw and Leroy, 1987; FCI, 2018;
Gross et al., 1982; Smith et al., 2014).

DOI: https://doi.org/10.7554/eLife.39279.004

type, thus reducing noise by summation as much as possible (Figure 2b). The receptor type that
yields the most information will be the one whose response is most variable in natural scenes as
compared to the amount of receptor noise; that is, the one that corresponds to the largest value of
Qua/0>—see Appendix 2 for a derivation. This is reminiscent of a result in vision where the variance
of a stimulus predicted its perceptual salience (Hermundstad et al., 2014).

As the total number of neurons increases, the added benefit of summing to lower noise for a sin-
gle receptor type diminishes, and at some critical value it is more useful to populate a second recep-
tor type that provides unique information not available in responses of the first type (Figure 2b).
This process continues as the number of neurons increases, so that in an intermediate SNR range,
where noise is significant but does not overwhelm the olfactory signal, our model leads to a highly
non-uniform distribution of receptor types (see the trend in Figure 2b as the number of OSNs
increases). Indeed, an inhomogeneous distribution of this kind is seen in mammals (lbarra-
Soria et al., 2017). Broadly, this is consistent with the idea that living systems conserve resources to
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the extent possible, and thus the number of OSNs (and therefore the SNR) will be selected to be in
an intermediate range in which there are just enough to make all the available receptors useful.

Increasing OSN population size

Our model predicts that, all else being equal, the number of receptor types that are expressed
should increase monotonically with the total number of sensory neurons, in a series of step transi-
tions (see Figure 2c). Strictly speaking, this is a prediction that applies in a constant olfactory envi-
ronment and with a fixed receptor repertoire; in terms of the parameters in our model, the total
number of neurons K is varied while the sensing matrix § and environmental statistics I" stay the
same. Keeping in mind that these conditions are not usually met by distinct species, we can never-
theless ask whether, broadly speaking, there is a relation between the number of functional receptor
genes and the size of the olfactory epithelium in various species.

To this end, we looked at several mammals for which the number of OR genes and the size of the
olfactory epithelium were measured (Figure 2f). We focused on the intact OR genes (Niimura et al.,
2014), based on the expectation that receptor genes that tend to not be used are more likely to
undergo deleterious mutations. We have not found many direct measurements of the number of
neurons in the epithelium for different species, so we estimated this based on the area of the olfac-
tory epithelium (Moulton, 1967; Pihlstrom et al., 2005; Gross et al., 1982; Smith et al., 2014).
There is a known allometric scaling relation stating that the number of neurons per unit mass for a
species decreases as the 0.3 power of the typical body mass (Herculano-Houzel et al., 2015).
Assuming a fixed number of layers in the olfactory epithelial sheet, this implies that the number of

neurons in the epithelium should scale as Nggy o (epithelialarea)/ (bodymassﬁm. We applied this
relation to epithelial areas using the typical mass of several species (Rousseeuw and Leroy, 1987;
FCl, 2018; Gross et al., 1982; Smith et al., 2014). The trend is consistent with expectations from
our model (Figure 2f), keeping in mind uncertainties due to species differences in olfactory environ-
ments, receptor affinities, and behavior (e.g. consider marmoset vs. rat). A direct comparison is
more complicated in insects, where even closely related species can vary widely in degree of special-
ization and thus can experience very different olfactory environments (Dekker et al., 2006). As we
discuss below, our model’s detailed predictions can be more specifically tested in controlled experi-
ments that measure the effect of a known change in odor environment on the olfactory receptor dis-
tributions of individual mammals, as in Ibarra-Soria et al. (2017).

Optimal OSN abundances are context-dependent

We can predict the optimal distribution of receptor types given the sensing matrix § and the statis-
tics of odors by maximizing the mutual information in Equation (4) while keeping the total number
of neurons K, = 3_, K, constant. We tested the effect of changing the variance of a single odorant,
and found that the effect on the optimal receptor abundances depends on the context of the back-
ground olfactory environment. Increased exposure to a particular ligand can lead to increased abun-
dance of a given receptor type in one context, but to decreased abundance in another (Figure 3). In
fact, patterns of this kind have been reported in recent experiments (Santoro and Dulac, 2012;
Zhao et al.,, 2013; Cadiou et al., 2014; Ibarra-Soria et al., 2017). To understand this context-
dependence better, we analyzed the predictions of our model in various signal and noise scenarios.

One factor that does not affect the optimal receptor distribution in our model is the average con-
centration vector ¢g. This is because it corresponds to odors that are always present and therefore
offer no new information about the environment. This is consistent with experiment (Ibarra-
Soria et al., 2017), where it was observed that chronic odor exposure does not affect receptor
abundances in the epithelium. In the rest of the paper, we thus restrict our attention to the covari-
ance matrix of odorant concentrations, I".

The problem of maximizing the amount of information that OSN responses convey about the
odor environment simplifies considerably if these responses are weakly correlated. In this case, stan-
dard efficient coding theory says that receptors whose activities fluctuate more extensively in
response to the olfactory environment provide more information to brain, while receptors that are
active at a constant rate or are very noisy provide less information. In this circumstance, neurons
expressing receptors with large signal-to-noise ratio (SNR, i.e. signal variance as compared to noise
variance) should increase in proportion relative to neurons with low signal-to-noise ratio (see

Tesileanu et al. eLife 2019;8:e39279. DOI: https://doi.org/10.7554/eLife.39279 8 of 39


https://doi.org/10.7554/eLife.39279

LI F E Research article Physics of Living Systems

a b
0 -
2
© 1
xt’-\l
% o
. 1
*
-2
30 -2 -1 0 1 2
AK,

Figure 3. Comparison of changes in receptor abundances when the same perturbation is applied to two different
environments. One hundred different pairs of environments were generated, with each environment defined by a
random odor covariance matrix (procedure in Appendix 4, parameter 8 = 8). In each pair of environments

(i = 1,2), the variance of a randomly chosen odorant was increased (details in Appendix 4) to produce perturbed
environments. For each receptor, we computed the optimal abundance before and after the perturbation (K; and
K!) and computed the differences AK; = K} — K;. The background environments i = 1,2 in each pair set the
context for the adaptive change after the perturbation. We used a sensing matrix based on fly affinity data
(Hallem and Carlson, 2006) (24 receptors, 110 odors) and set the total OSN number to K. = 2000. Panel (b)
zooms in on the central part of panel (a). In light blue regions, the sign of the abundance change is the same in
the two contexts; light pink regions indicate opposite sign changes in the two contexts. In both figures, dark red
indicates high-density regions where there are many overlapping data points.

DOI: https://doi.org/10.7554/eLife.39279.005

Appendix 2 for a derivation). In terms of our model, the signal variance of glomerular responses is

given by diagonal elements of the overlap matrix O (Equation 5), while the noise variance is a2; so

we expect K,, the number of OSNs of type a, to increase with Q. /02. Responses are less correlated
if receptors are narrowly tuned, and we find indeed that if each receptor type responds to only a
small number of odorants, the abundances of OSNs of each type correlate well with their variability
in the environment (narrow-tuning side of Figure 2d). This is also consistent with the results at high
SNR: we saw above that in that case K,=C — ¢2(Q!)_,, and when response correlations are weak, Q
is approximately diagonal, and thus (Q7!),, =1/Qua-

The biological setting is better described in terms of widely tuned sensing matrices (Hallem and
Carlson, 2006), and an intermediate SNR level in which noise is important, but does not dominate
the responses of most receptors. We therefore generated sensing matrices with varying tuning width
by changing the number of odorants that elicit strong activity in each receptor (as detailed in Appen-
dix 1). We found that as receptors begin responding to a greater diversity of odorants, the correla-
tion structure of their activity becomes important in determining the optimal receptor distribution; it
is no longer sufficient to just examine the signal to noise ratios of each receptor type separately as a
conventional theory suggests (wide-tuning side of Figure 2d). In other words, the optimal abun-
dance of a receptor type depends not just on its activity level, but also on the context of the corre-
lated activity levels of all the other receptor types. These correlations are determined by the
covariance structures of the environment and of the sensing matrix.

In fact, across the range of tuning widths the optimal receptor abundances K, are correlated with
the inverse of the overlap matrix, A = Q! (Figure 2e). For narrow tuning widths, the overlap matrix
Q is approximately diagonal (because correlations between receptors are weak) and so Q! is simply
the matrix of the inverse diagonal elements of Q. Thus, in this limit, the correlation with O~! simply
follows from the correlation with Q that we discussed above. As the tuning width increases keeping
the total number of OSNs K, constant, the responses from each receptor grow stronger, increasing
the SNR, even as the off-diagonal elements of the overlap matrix 0 become significant. In the limit
of high SNR, the analytical formula K,=C — 020, (Equation 8) ensures that the OSN numbers K,
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are still correlated with the diagonal elements of 0!, despite the presence of large off-diagonal
components. Because of the matrix inversion in 07!, the optimal abundance for each receptor type
is affected in this case by the full covariance structure of all the responses and not just by the vari-
ance Q. of the receptor itself. Mathematically, this is because the diagonal elements of Q7! are
functions of all the variances and covariances in the overlap matrix Q. This dependence of each
abundance on the full covariance translates to a complex context-dependence whereby changing
the same ligand in different background environments can lead to very different adapted distribu-
tions of receptors. In Appendix é we show that the correlation with the inverse overlap matrix has an
intuitive interpretation: receptors which either do not fluctuate much or whose values can be
guessed based on the responses of other receptors should have low abundances.

Environmental changes lead to complex patterns of OSN abundance
changes

To investigate how the structure of the optimal receptor repertoire varies with the olfactory environ-
ment, we first constructed a background in which the concentrations of 110 odorants were distrib-
uted according to a Gaussian with a randomly chosen covariance matrix (e.g., Figure 4a; see
Appendix 4 for details). From this base, we generated two different environments by adding a large
variance to 10 odorants in environment 1, and to 10 different odorants in environment 2

a environment 1 environment 2
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Figure 4. Effect of changing environment on the optimal receptor distribution. (a) An example of an environment with a random odor covariance matrix
with a tunable amount of cross-correlation (details in Appendix 4). The variances are drawn from a lognormal distribution. (b) Close-ups showing some
differences between the two environments used to generate results in (¢ and d). The two covariance matrices are obtained by adding a large variance
to two different sets of 10 odorants (out of 110) in the matrix from (a). The altered odorants are identified by yellow crosses; their variances go above
the color scale on the plots by a factor of more than 60. (c) Change in receptor distribution when going from environment 1 to environment 2, in
conditions where the total number of receptor neurons K is large (in this case, K¢ = 40000), and thus the SNR is high. The blue diamonds on the left
correspond to the optimal OSN fractions per receptor type in the first environment, while the orange diamonds on the right correspond to the second
environment. In this high-SNR regime, the effect of the environment is small, because in both environments the optimal receptor distribution is close to
uniform. (d) When the total number of neurons K, is small (K,; = 100 here) and the SNR is low, changing the environment can have a dramatic effect
on optimal receptor abundances, with some receptors that are almost vanishing in one setting becoming highly abundant in the other, and vice versa.
DOI: https://doi.org/10.7554/eLife.39279.006
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(Figure 4b). We then considered the optimal distribution in these environments for a repertoire of
24 receptor types with odor affinities inferred from (Hallem and Carlson, 2006). We found that
when the number of olfactory sensory neurons K, is large, and thus the signal-to-noise ratio is high,
the change in odor statistics has little effect on the distribution of receptors (Figure 4c). This is
because at high SNR, all the receptors are expressed nearly uniformly as discussed above, and this is
true in any environment. When the number of neurons is smaller (or, equivalently, the signal-to-noise
ratio is in a low or intermediate regime), the change in environment has a significant effect on the
receptor distribution, with some receptor types becoming more abundant, others becoming less
abundant, and yet others not changing much between the environments (see Figure 4d). This
mimics the kinds of complex effects seen in experiments in mammals (Schwob et al, 1992;
Santoro and Dulac, 2012; Zhao et al., 2013; Dias and Ressler, 2014; Cadiou et al., 2014; Ibarra-
Soria et al., 2017).

Changing odor identities has more extreme effects on receptor
distributions than changing concentrations

In the comparison above, the two environment covariance matrices differed by a large amount for a
small number of odors. We next compared environments with two different randomly generated
covariance matrices, each generated in the same way as the background environment in Figure 4a.
The resulting covariance matrices (Figure 5a, top) are very different in detail (the correlation coeffi-
cient between their entries is close to zero; distribution of changes in Figure 5b, red line), although
they look similar by eye. Despite the large change in the detailed structure of the olfactory environ-
ment, the corresponding change in optimal receptor distribution is typically small, with a small frac-
tion of receptor types experiencing large changes in abundance (red curve in Figure 5c¢). The
average abundance of each receptor in these simulations was about 1000, and about 90% of all the
abundance change values |AK;| were below 20% of this, which is the range shown on the plot in
Figure 5c. Larger changes also occurred, but very rarely: about 0.1% of the abundance changes
were over 800.

If we instead engineer two environments that are almost non-overlapping so that each odorant is
either common in environment 1, or in environment 2, but not in both (Figure 5a, bottom; see
Appendix 4 for how this was done), the changes in optimal receptor abundances between environ-
ments shift away from mid-range values towards higher values (blue curve in Figure 5¢). For
instance, 40% of abundance changes lie in the range |AK| > 50 in the non-overlapping case, while the
proportion is 28% in the generic case.

It seems intuitive that animals that experience very different kinds of odors should have more
striking differences in their receptor repertoires than those that merely experience the same odors
with different frequencies. Intriguingly, however, our simulations suggest that the situation may be
reversed at the very low end: the fraction of receptors for which the predicted abundance change is
below 0.1, |AK|<0.1, is about 2% in the generic case but over 9% for non-overlapping environment
pairs. Thus, changing between non-overlapping environments emphasizes the more extreme
changes in receptor abundances, either the ones that are close to zero or the ones that are large. In
contrast, a generic change in the environment leads to a more uniform distribution of abundance
changes. Put differently, the particular way in which the environment changes, and not only the mag-
nitude of the change, can affect the receptor distribution in unexpected ways.

The magnitude of the effect of environmental changes on the optimal olfactory receptor distribu-
tion is partly controlled by the tuning of the olfactory receptors (Figure 5d). If receptors are
narrowly tuned, with each type responding to a small number of odorants, changes in the environ-
ment tend to have more drastic effects on the receptor distribution than when the receptors are
broadly tuned (Figure 5d), an effect that could be experimentally tested.

Model predictions qualitatively match experiments

Our study opens the exciting possibility of a causal test of the hypothesis of efficient coding in sen-
sory systems, where a perturbation in the odor environment could lead to predictable adaptations
of the olfactory receptor distribution during the lifetime of an individual. This does not happen in
insects, but it can happen in mammals, since their receptor neurons regularly undergo apoptosis
and are replaced.
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Figure 5. The effect of a change in environmental statistics on the optimal receptor distribution as a function of overlap in the odor content of the two
environments, and the tuning properties of the olfactory receptors. (a) Random environment covariance matrices used in our simulations (red entries
reflect positive [co-]variance; blue entries reflect negative values). The environments on the top span a similar set of odors, while those on the bottom
contain largely non-overlapping sets of odors. (b) The distribution of changes in the elements of the environment covariance matrices between the two
environments is wider (i.e. the changes tend to be larger) in the generic case than in the non-overlapping case shown in panel (a). The histograms in
solid red and blue are obtained by pooling the 500 samples of pairs of environment matrices from each group. The plot also shows, in lighter colors,
the histograms for each individual pair. (c) Probability distribution functions of changes in optimal OSN abundances in the 500 samples of either generic
or non-overlapping environment pairs. These are obtained using receptor affinity data from the fly (Hallem and Carlson, 2006) with a total number of
neurons Ky, = 25000. The non-overlapping scenario has an increased occurrence of both large changes in the OSN abundances, and small changes
(the spike near the y-axis). The x-axis is cropped for clarity; the maximal values for the abundance changes |AK;| are around 1000 in both cases. (d)
Effect of tuning width on the change in OSN abundances. Here two random environment matrices obtained as in the ‘generic’ case from panels (a—c)
were kept fixed, while 50 random sensing matrices with 24 receptors and 110 odorants were generated. The tuning width for each receptor, measuring
the fraction of odorants that produce a significant activation of that receptor (see Appendix 1), was chosen uniformly between 0.2 and 0.8. The
receptors from all the 50 trials were pooled together, sorted by their tuning width, and split into three tuning bins. Each dot represents a particular
receptor in the simulations, with the vertical position indicating the amount of change in abundance AK. The horizontal locations of the dots were
randomly chosen to avoid too many overlaps; the horizontal jitter added to each point was chosen to be proportional to the probability of the
observed change AK within its bin. This probability was determined by a kernel density estimate. The boxes show the median and interquartile range
for each bin. The abundances that do not change at all (AK = 0) are typically ones that are predicted to have zero abundance in both environments,
Ki=K =0.

DOI: https://doi.org/10.7554/elife.39279.007

A recent study demonstrated reproducible changes in olfactory receptor distributions of the sort
that we predict in mice (Ibarra-Soria et al., 2017). These authors raised two groups of mice in similar
conditions, exposing one group to a mixture of four odorants (acetophenone, eugenol, heptanal,
and R-carvone) either continuously or intermittently (by adding the mixture to their water supply).
Continuous exposure to the odorants had no effect on the receptor distribution, in agreement with
the predictions of our model. In contrast, intermittent exposure did lead to systematic changes
(Figure 6a).

We used our model to run an experiment similar to that of Ibarra-Soria et al. (2017) in silico
(Figure 6b). Using a sensing matrix based on odor response curves for mouse and human receptors
(data for 59 receptors from Saito et al. (2009)), we calculated the predicted change in OSN
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Figure 6. Qualitative comparison between experiment and theory. (a) Panel reproduced from raw data in Ibarra-Soria et al. (2017), showing the log-
ratio between receptor abundances in the mouse epithelium in the test environment (where four odorants were added to the water supply) and those

in the control environment, plotted against values in control conditions (on a log scale). The error bars show standard deviation across six individuals.
Compared to Figure 5B in Ibarra-Soria et al. (2017), this plot does not use a Bayesian estimation technique that shrinks ratios of abundances of rare

receptors toward 1 (personal communication with Professor Darren Logan, June 2017). (b) A similar plot produced in our model using mouse and
human receptor response curves (Saito et al., 2009). The error bars show the range of variation found in the optimal receptor distribution when slightly
perturbing the two environments (see the text). The simulation includes 59 receptor types for which response curves were measured (Saito et al.,
2009), compared to 1115 receptor types assayed in lbarra-Soria et al. (2017). Our simulations used K, = 2000 total OSNs.

DOI: https://doi.org/10.7554/eLife.39279.008

abundances between two different environments with random covariance matrices constructed as
described above. We ran the simulations 24 times, modifying the odor environments each time by
adding a small amount of Gaussian random noise to the square roots of these covariance matrices
to model small perturbations (details in Appendix 4; range bars in Figure 6b). The results show that
the abundances of already numerous receptors do not change much, while there is more change for
less numerous receptors. The frequencies of rare receptors can change dramatically, but are also
more sensitive to perturbations of the environment (large range bars in Figure éb).

These results qualitatively match experiment (Figure 6a), where we see the same pattern of the
largest reproducible changes occurring for receptors with intermediate abundances. The experimen-
tal data is based on receptor abundance measured by RNAseq which is a proxy for counting OSN
numbers (Ibarra-Soria et al., 2017). In our model, the distinction between receptor numbers and
OSN numbers is immaterial because a change in the number of receptors expressed per neuron has
the same effect as a change in neuron numbers. In general, additional experiments are needed to
measure both the number of receptors per neuron and the number of neurons for each receptor

type.

A framework for a quantitative test
Given detailed information regarding the affinities of olfactory receptors, the statistics of the odor
environment, and the size of the olfactory epithelium (through the total number of neurons K), our
model makes fully quantitative predictions for the abundances of each OSN type. Existing experi-
ments (e.g. Ibarra-Soria et al., 2017) do not record necessary details regarding the odor environ-
ment of the control group and the magnitude of the perturbation experienced by the exposed
group. However, such data can be collected using available experimental techniques. Anticipating
future experiments, we provide a Matlab (RRID:SCR_001622) script on GitHub (RRID:SCR_002630)
to calculate predicted OSN numbers from our model given experimentally-measured sensing param-
eters and environment covariance matrix elements (https://github.com/ttesileanu/
OlfactoryReceptorDistribution).

Given the huge number of possible odorants (Yu et al., 2015), the sensing matrix of affinities
between all receptor types in a species and all environmentally relevant odorants is difficult to
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measure. One might worry that this poses a challenge for our modeling framework. One approach
might be to use low-dimensional representations of olfactory space (e.g. Koulakov et al., 2011;
Snitz et al., 2013), but there is not yet a consensus on the sufficiency of such representations. For
now, we can ask how the predictions of our model change upon subsampling: if we only know the
responses of a subset of receptors to a subset of odorants, can we still accurately predict the OSN
numbers for the receptor types that we do have data for? Figure 7a and b show that such partial
data do lead to robust statistical predictions of overall receptor abundances.

First steps toward a dynamical model in mammals
We have explored the structure of olfactory receptor distributions that code odors efficiently, that is
are adapted to maximize the amount of information that the brain gets about odors. The full solu-
tion to the optimization problem, Equation (7), depends in a complicated nonlinear way on the
receptor affinities S and covariance of odorant concentrations I'. The distribution of olfactory recep-
tors in the mammalian epithelium, however, must arise dynamically from the pattern of apoptosis
and neurogenesis (Calof et al., 1996). At a qualitative level, in the efficient coding paradigm that we
propose, the receptor distribution is related to the statistics of natural odors, so that the life cycle of
neurons would have to depend dynamically on olfactory experience. Such modulation of OSN life-
time by exposure to odors has been observed experimentally (Santoro and Dulac, 2012;
Zhao et al., 2013) and could, for example, be mediated by feedback from the bulb (Schwob et al.,
1992).

To obtain a dynamical model, we started with a gradient ascent algorithm for changing receptor
numbers, and modified it slightly to impose the constraints that OSN numbers are non-negative,
K, = 0, and their sum Ki,; = >__ K, is bounded (details in Appendix 5). This gives

dK,
dt

=a{K, —AK; —aZ(R") K2}, (%)

where « is a leaming rate, o2 is the noise variance for receptor type 4, and R is the covariance
matrix of glomerular responses,

Rop = <rarb) - <ra)<"'b) ) (10}

with the angle brackets denoting ensemble averaging over both odors and receptor noise. In the
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Figure 7. Robustness of optimal receptor distribution to subsampling of odorants and receptor types. Robustness in the prediction is measured as the
Pearson correlation between the predicted OSN numbers with complete information, and after subsampling. (a) Robustness of OSN abundances as a
function of the fraction of receptors removed from the sensing matrix. Given a full sensing matrix (in this case a 24 x 110 matrix based on Drosophila
data (Hallem and Carlson, 2006)), the abundances of a subset of OSN types were calculated in two ways. First, the optimization problem from
Equation (7) was solved including all the OSN types and an environment with a random covariance matrix (see Figure 5). Then a second optimization
problem was run in which a fraction of the OSN types were removed. The optimal neuron counts K| obtained using the second method were then
compared (using the Pearson correlation coefficient) against the corresponding numbers K; from the full optimization. The shaded area in the plot
shows the range between the 20th and 80th percentiles for the correlation values obtained in 10 trials, while the red curve is the mean. A new subset of
receptors to be removed and a new environment covariance matrix were generated for each sample. (b) Robustness of OSN abundances as a function
of the fraction of odorants removed from the environment, calculated similarly to panel a except now a certain fraction of odorants was removed from
the environment covariance matrix, and from the corresponding columns of the sensing matrix.

DOI: https://doi.org/10.7554/eLife.39279.009
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absence of the experience-related term (R')_, the dynamics from Equation (9) would be simply
logistic growth: the population of OSNs of type a would initially grow at a rate «, but would saturate
when K, =1/A because of the population-dependent death rate AK,. In other words, the quantity
M/A sets the asymptotic value for the total population of sensory neurons, Ky, — M /A, with M being
the number of receptor types.

Because of the last term in Equation (9), the death rate in our model is influenced by olfactory
experience in a receptor-dependent way. In contrast, the birth rate is not experience-dependent
and is the same for all OSN types. Indeed, in experiments, the odor environment is seen to have lit-
tle effect on receptor choice, but does modulate the rate of apoptosis in the olfactory epithelium
(Santoro and Dulac, 2012). Our results suggest that, if olfactory sensory neuron lifetimes are appro-
priately anti-correlated with the inverse response covariance matrix, then the receptor distribution in
the epithelium can converge to achieve optimal information transfer to the brain.

The elements of the response covariance matrix R could be estimated by temporal averaging of
co-occurring glomerular activations via lateral connections between glomeruli (Mori et al., 1999).
Performing the inverse necessary for our model is more intricate. The computations could perhaps
be done by circuits in the bulb and then fed back to the epithelium through known mechanisms
(Schwob et al., 1992),

Within our model, Figure 8a shows an example of receptor numbers converging to the optimum
from random initial values. The sensing matrix used here is based on mammalian data (Saito et al.,
2009) and we set the total OSN number to K;,; = 2000. The environment covariance matrix is gener-
ated using the random procedure described earlier (details in Appendix 4). We see that some recep-
tor types take longer than others to converge (the time axis is logarithmic, which helps visualize the
whole range of convergence behaviors). Roughly speaking, convergence is slower when the final
OSN abundance is small, which is related to the fact that the rate of change dK,/dr in Equation (9)
vanishes in the limit K, — 0. For the same reason, OSN populations that start at a very low level also
take a long time to converge.

In Figure 8b, we show convergence to the same final state, but this time starting from a distribu-
tion that is not random but was optimized for a different environment. The initial and final environ-
ments are the same as the two environments used in the previous section to compare the
simulations to experimental findings (Figure 6b). Interestingly, many receptor types actually take
longer to converge in this case compared to the random starting point, perhaps because there are
local optima in the landscape of receptor distributions. Given such local minima, stochastic fluctua-
tions will allow the dynamics to reach the global optimum more easily. In realistic situations, there
are many sources of such variability, for example, sampling noise due to the fact that the response
covariance matrix R must be estimated through stochastic odor encounters and noisy receptor

Time (a.u.) Time (a.u.)

Figure 8. Convergence in our dynamical model. (a) Example convergence curves in our dynamical model showing how the optimal receptor
distribution (orange diamonds) is reached from a random initial distribution of receptors. Note that the time axis is logarithmic. (b) Convergence curves
when starting close to the optimal distribution from one environment (blue diamonds) but optimizing for another. A small, random deviation from the
optimal receptor abundance in the initial environment was added (see text).
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readings. In fact, in Figure 8b, we added a small amount of noise (corresponding to +0.05K;:/M) to
the initial distribution of receptors to improve convergence rates.

Discussion

We built a model for the distribution of receptor types in the olfactory epithelium that is based on
efficient coding, and assumes that the abundances of different receptor types are adapted to the
statistics of natural odors in a way that maximizes the amount of information conveyed to the brain
by glomerular responses. This model predicts a non-uniform distribution of receptor types in the
olfactory epithelium, as well as reproducible changes in the receptor distribution after perturbations
to the odor environment. In contrast to other applications of efficient coding, our model operates in
a regime in which there are significant correlations between sensors because the adaptation of OSN
abundances occurs upstream of the brain circuitry that can decorrelate olfactory responses. In this
regime, OSN abundances depend on the full correlation structure of the inputs, leading to predic-
tions that are context-dependent in the sense that whether the abundance of a specific receptor
type goes up or down due to a shift in the environment depends on the global context of the
responses of all the other receptors. All these striking phenomena have been observed in recent
experiments and had not been explained prior to this study.

In our framework, the sensitivity of the receptor distribution to changes in odor statistics is
affected by the tuning of the olfactory receptors, with narrowly tuned receptors being more readily
affected by such changes than broadly tuned ones. The model also predicts that environments that
differ in the identity of the odors that are present will lead to greater deviations in the optimal
receptor distribution than environments that differ only in the statistics with which these odors are
encountered. Likewise, the model broadly predicts a monotonic relationship between the number of
receptor types found in the epithelium and the total number of olfactory sensory neurons, all else
being equal.

A detailed test of our model requires more comprehensive measurements of olfactory environ-
ments than are currently available. Our hope is that studies such as ours will spur interest in measur-
ing the natural statistics of odors, opening the door for a variety of theoretical advances in olfaction,
similar to what was done for vision and audition. Such measurements could for instance be per-
formed by using mass spectrometry to measure the chemical composition of typical odor scenes.
Given such data, and a library of receptor affinities, our GitHub (RRID:SCR_002630) online repository
provides an easy-to-use script that uses our model to predict OSN abundances. For mammals, con-
trolled changes in environments similar to those in Ibarra-Soria et al. (2017) could provide an even
more stringent test for our framework.

To our knowledge, this is the first time that efficient coding ideas have been used to explain the
pattern of usage of receptors in the olfactory epithelium. Our work can be extended in several ways.
OSN responses can manifest complex, nonlinear responses to odor mixtures. Accurate models for
how neurons in the olfactory epithelium respond to complex mixtures of odorants are just starting
to be developed (e.g. Singh et al., 2018), and these can in principle be incorporated in an informa-
tion-maximization procedure similar to ours. More realistic descriptions of natural odor environments
can also be added, as they amount to changing the environmental distribution P(c). For example,
the distribution of odorants could be modeled using a Gaussian mixture, rather than the normal dis-
tribution used in this paper to enable analytic calculations. Each Gaussian in the mixture would
model a different odor object in the environment, more closely approximating the sparse nature of
olfactory scenes discussed in, for example, Krishnamurthy et al. (2017).

Of course, the goal of the olfactory system is not simply to encode odors in a way that is optimal
for decoding the concentrations of volatile molecules in the environment, but rather to provide an
encoding that is most useful for guiding future behavior. This means that the value of different odors
might be an important component shaping the neural circuits of the olfactory system. In applications
of efficient coding to vision and audition, maximizing mutual information, as we did, has proved
effective even in the absence of a treatment of value (Laughlin, 1981; Atick and Redlich, 1990;
van Hateren, 1992a; Olshausen and Field, 1996; Simoncelli and Olshausen, 2001; Fairhall et al.,
2001; Lewicki, 2002; Ratliff et al, 2010; Garrigan et al., 2010; Tkacik et al., 2010;
Hermundstad et al., 2014; Palmer et al., 2015; Salisbury and Palmer, 2016). However, in general,
understanding the role of value in shaping neural circuits is an important experimental and
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theoretical problem. To extend our model in this direction, we would replace the mutual information
between odorant concentrations and glomerular responses by a different function that takes into
account value assignments (see, e.g. Rivoire and Leibler, 2011). It could be argued, though, that
such specialization to the most behaviorally relevant stimuli might be unnecessary or even counter-
productive close to the sensory periphery. Indeed, a highly specialized olfactory system might be
better at reacting to known stimuli, but would be vulnerable to adversarial attacks in which other
organisms take advantage of blind spots in coverage. Because of this, and because precise informa-
tion regarding how different animals assign value to different odors is scarce, we leave these consid-
erations for future work.

One exciting possibility suggested by our model is a way to perform a first causal test of the effi-
cient coding hypothesis for sensory coding. Given sufficiently detailed information regarding recep-
tor affinities and natural odor statistics, experiments could be designed that perturb the
environment in specified ways, and then measure the change in olfactory receptor distributions.
Comparing the results to the changes predicted by our theory would provide a strong test of effi-
cient coding by early sensory systems in the brain.

Materials and methods

Software and data

The code (written in Matlab, RRID:SCR_001622) and data that we used to generate all the results
and figures in the paper is available on GitHub (RRID:SCR_002630), at https://github.com/ttesileanu/
OlfactoryReceptorDistribution (Tesileanu, 2019; copy archived at https://github.com/elifesciences-
publications/OlfactoryReceptorDistribution).
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Choice of sensing matrices and receptor noise variances

We used three types of sensing matrices in this study. Two were based on experimental data,
one using fly receptors (Hallem and Carlson, 2006), and one using mouse and human
receptors (Saito et al., 2009); and another type of sensing matrix was based on randomly-
generated receptor affinity profiles. These can all be either directly downloaded from our
repository on GitHub (RRID:SCR_002630), https://github.com/ttesileanu/
OlfactoryReceptorDistribution, or generated using the code available there.

Fly sensing matrix

Some of our simulations used a sensing matrix based on Drosophila receptor affinities, as
measured by Hallem and Carlson (Hallem and Carlson, 2006). This includes the responses of
24 of the 60 receptor types in the fly against a panel of 110 odorants, measured using single-
unit electrophysiology in a mutant antennal neuron. We used the values from Table S1 in
(Hallem and Carlson, 2006) for the sensing matrix elements. To estimate receptor noise, we
used the standard deviation measured for the background firing rates for each receptor (data
obtained from the authors). The fly data has the advantage of being more complete than
equivalent datasets in mammals.

Mammalian sensing matrix

When comparing our model to experimental findings from (Ibarra-Soria et al., 2017), we used
a sensing matrix based on mouse and human receptor affinity data from (Saito et al., 2009).
This was measured using heterologous expression of olfactory genes, and tested in total 219
mouse and 245 human receptor types against 93 different odorants. However, only 49 mouse
receptors and 10 human receptors exhibited detectable responses against any of the
odorants, while only 63 odorants activated any receptors. From the remaining 59 x 63 = 3717
receptor-odorant pairs, only 335 (about 9%) showed a response, and were assayed at 11
different concentration points. In this paper, we used the values obtained for the highest
concentration (3 mM).

Random sensing matrices
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Appendix 1—figure 1. Heat maps of the types of sensing matrices used in our study. The color
scaling is arbitrary, with red representing positive values and blue negative values. ‘Fly’ and
‘mammal’ are the sensing matrices based on Drosophila receptor affinities (Hallem and
Carlson, 2006), and mouse and human affinities (Saito et al., 2009), respectively. ‘Fly
scrambled’ and ‘mammal scrambled’ are permutations of the ‘fly’ and ‘mammal’ matrices in
which elements are arbitrarily scrambled. ‘Tuning’, ‘gaussian’, ‘binary’, and ‘signed’ are

random sensing matrix generated as described in the Random sensing matrices section.
DOI: https://doi.org/10.7554/eLife.39279.013

=
,

The random sensing matrices matrices used in the main text (and referred to as ‘tuning’ in
some of the figures in this Appendix) were generated as follows. We started by treating the
column (i.e. odorant) index as a one-dimensional odor coordinate with periodic boundary
conditions. We normalized the index to a coordinate x running from 0 to 1. For each receptor,
we then chose a center x; along this line, corresponding to the odorant to which the receptor
has maximum affinity, and a standard deviation o, corresponding to the tuning width of the
receptor. Note that both x; and o are allowed to be real numbers, so that the maximum
affinity can occur at a position that does not correspond to any particular odorant from the
sensing matrix.

To obtain a bell-like response profile for the receptors while preserving the periodicity of
the odor coordinate we chose, we defined the response affinity to odorant x by

$(x) =exp [—% (Mﬂ . (11

This expression can be obtained by imagining odorant space as a circle embedded in a two-
dimensional plane, with odorant x mapped to an angle # = 2#x on this circle, and considering
a Gaussian response profile in this two-dimensional embedding space. This is simply a
convenient choice for treating odor space in a way that eliminates artifacts at the edges of the
sensing matrix, and we do not assign any significance to the particular coordinate system that
we used.

The centers x; for the Gaussian profiles for each of the receptors were chosen uniformly at
random, and the tuning width o was either a fixed parameter for the entire sensing matrix, or
was uniformly sampled from an interval. Before using the matrices we randomly shuffled the
columns to remove the dependencies between neighboring odorants, and finally added some
amount of random Gaussian noise (mean centered and with standard deviation 1/200). The
overall scale of the sensing matrices was set by multiplying all the affinities by 100, which
yielded values comparable to the measured firing rates in fly olfactory neurons (Hallem and
Carlson, 2006).
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For the robustness results below we also generated random matrices in additional ways: (1)
‘gaussian’: drawing the affinities from a Gaussian distribution (with zero mean and standard
deviation 2), (2) 'bernoulli’: drawing from a Bernoulli distribution (with elements equal to 5
with probability 30%, and 0 with probability 70%), (3) ‘signed’: drawing from a Bernoulli
distribution followed by choosing the sign (so that elements are 5 with probability 15%, -5
with probability 15%, and 0 with probability 70%); and (4, 5) 'fly scrambled’ and ‘mammal
scrambled’: scrambling the elements in the fly and mammalian datasets (across both odorants
and receptors).

Robustness of results to changing the sensing matrix

Our qualitative results are robust across a variety of different choices for the sensing matrix
(Appendix 1—figure 1). For instance, the optimal number of receptor types expressed in a
fraction of the OSN population larger than 1% grows monotonically with the total number of
neurons (Appendix T—figure 2). Similarly, the general effect that environment change has on
optimal OSN numbers, with less abundant receptor types changing more than more abundant
ones, is generic across different choices of sensing matrices (Appendix 1—figure 3).

fly fly scrambled mammal mammal scrambled
60 60
£ 2 g 2 g g
= = 2 40 2 40
2 2 2 2
g 10 g 10 g 20 g 20
* 0 T T T T T * 0 T T T T T = 0 * 0
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Appendix 1—figure 2. Effect of sensing matrix on the dependence between the number of
receptor types expressed in the optimal distribution and the total number of OSNs. The labels
refer to the sensing matrices from Appendix T—figure 1.
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Appendix 1—figure 3. Different choices of sensing matrix lead to similar behavior of optimal
receptor distribution under environment change. The labels refer to the sensing matrices from
Appendix 1—figure 1, whose scales were adjusted to ensure that the simulations are in a low
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SNR regime. The blue (orange) diamonds on the left (right) side of each plot represent the
optimal OSN abundances in environment 1 (environment 2). The two environment covariance
matrices are obtained by starting with a background randomly-generated covariance matrix
(as described below) and adding a large amount of variance to two different sets of 10
odorants (out of 110 for most sensing matrices, and 63 for the ‘mouse’ and ‘'mouse scrambled’
ones).

DOI: https://doi.org/10.7554/eLife.39279.015
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Appendix 2

DOI: https://doi.org/10.7554/elife.39279.012

Mathematical derivations

Deriving the expression for the mutual information

In the main text we assume a Gaussian distribution for odorant concentrations and
approximate receptor responses as linear with additive Gaussian noise, Equation (2). Thus it
follows that the marginal distribution of receptor responses is also Gaussian. Taking averages
of the responses, (r,), and of products of responses, (r,7;), over both the noise distribution
and the odorant distribution, and using Equation (2) from the main text, we get a normal
distribution of responses:

r~N(rg,R), (12)

where the mean response vector rj and the response covariance matrix R are given by

Ty :KSCO!

R =[E+KQK, (13)

where § is the sensing matrix, K is a diagonal matrix of OSN abundances, and X is the
covariance matrix of receptor noises, £ = diag(a?,...,07) (also see the main text). Here, as in
Equation (1) in the main text, ¢g is the mean concentration vector, T is the covariance matrix
of odorant concentrations, and we use the overlap matrix from Equation (5) in the main text,
Q = STST. Note that in the absence of noise (£ = 0), the response matrix is simply the overlap
matrix Q modulated by the number of OSNs of each type, Rugisaess = KOK.

The joint probability distribution over responses and concentrations, P(r, c), is itself
Gaussian. To calculate the corresponding covariance matrix, we need the covariances between
responses, (rarp) — (ra) (1), which are just the elements of the response matrix R from
Equation (13) above; and between concentrations, (cicj) — (¢)(cj), which are the elements of
the environment covariance matrix I', Equation (1) in the main text. In addition, we need the
covariances between responses and concentrations, (r,c;) — (r,){¢;), which can be calculated
using Equation (2) from the main text. We get:

(r,c)~N((ro,c0),A), (14)
with
A:( fq Ksr)_ (15)
STk T
The mutual information between responses and odors is then given by (see below for a
derivation):
I(r,c):%log%. (16)
From Equation (13) we have
det R = det(Z + KQ)det K, 17)

and from Equation (15),
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R KST
det A =det K ) detI- det(R—KSTT ' TSTK)
18
=det T - det(ZK + KQK — KST'S'K) (18)
=detT-det ZK,

where we used Equation (13) again, and employed Schur’s determinant identity (derived
below). Thus,
1. detT-det(X+KQ) detK 1

_2 L —1
I(r,c) = 2log T det T detK = 210gdet(]l+ X KQ) (19)

This recovers the result quoted in the main text, Equation (4).
By using the fact that the diagonal matrices K and £~! commute, we can also write:

1 1
I(r,c) = Elogdet(z—”?z”? +327'KQ) = ElogdetE_Uz (=12 4 3712KQ)
1 1
= Elogdet(z”2 + 27 12KQ)x 2 = Flogdet (I + Kx~'205-1/2) (20)
1 -
= Elogdet(]l +KQ).

This shows that the mutual information can be written in terms of a symmetric 'SNR matrix’

0 =3x"1205"2 Thisis simply the covariance matrix of responses in which each response was
normalized by the noise variance of the corresponding receptor.

Schur’s determinant identity
The identity for the determinant of a 2 x 2 block matrix that we used in Equation (18) above
can be derived in the following way. First, note that

A B I B — =
(e 0)= o) ("o o) @
CD 0D Dl'c 1
Now, from the definition of the determinant it can be seen that
A B A
det( ):det( O):detA, (22)
0 I CcC1I

since all the products involving elements from the off-diagonal blocks must necessarily also
involve elements from the O matrix. Thus, taking the determinant of Equation (21), we get the
desired identity

A B
det( ) =detD -det(A —BD'C). (23)
C D

Mutual information for Gaussian distributions

The expression from Equation (16) for the mutual information /(r, ¢) can be derived by
starting with the fact that / is equal to the Kullback-Leibler (KL) divergence from the joint
distribution P(r, ¢) to the product distribution P(r)P(c). As a first step, let us calculate the KL
divergence between two multivariate normals in n dimensions:

B B p(x)
D= Di(pllg) = [ p0loZ S dx, (24)

where
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1 1 - }
X) =————exp|—=(x— A (x— ,
p) = |5 )47 (x m) »
() =—meexp| 50— ) "B (x|
q = (27) det B P ) Hp HB/| -
Plugging the distribution functions into the logarithm, we have
1. detB 1 T P e
D= Jlooir+y [ 60— ) B ki)~ (x =) A (k) dx, (26)

where the normalization property of p(x) was used. Using also the definition of the mean
and of the covariance matrix, we have

[ P = s (272)
[ p(x)xxdx = Ay, (27b)
which implies
[ p0) = )7~ ) = THAC )+ (a— )€ s — ) e)
for any vector i and matrix C. Plugging this into Equation (26), we get
1. detB 1

_ 1 T,
D =3log———+5[Tr(AB™") —n] +5 (1a — 1) B~ (s — p1g) - (29)

We can now return to calculating the KL divergence from P(r,c) to P(r)P(c). Note that,
since P(r) and P(c) are just the marginals of the joint distribution, the means of the variables
are the same in the joint and in the product, so that the last term in the KL divergence
vanishes. The covariance matrix for the product distribution is

0
Agrot — (‘z r) , 30)

so the product inside the trace becomes

R .\/R' 0 I ...
AA by = = 31
prod ( r)(o rl) ( I[)’ G1
where the entries replaced by '. .." need not be calculated because they drop out when the

trace is taken. The sum of the dimensions of R and T is equal to the dimension, n, of A, so that
the term involving the trace from Equation (29) also drops out, leaving us with the final result:

det RdetI”

—San 32

1= D (p(r,€)p(x)p(e)) =5 log

which is the same as Equation (16) that was used in the previous section.

Deriving the KKT conditions for the information optimum
In order to find the optimal distribution of olfactory receptors, we must maximize the mutual
information from Equation (4) in the main text, subject to constraints. Let us first calculate the
gradient of the mutual information with respect to the receptor numbers:
of 10 .. 10 -
— =——logdet(I+ KQ) ==—Trlog(I + KQ). 33
oK, 20K, e det [+ KQ) =77 ~Trlog(I+KQ) (33)
The cyclic property of the trace allows us to use the usual rules to differentiate under the
trace operator, so we get
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o 1 [oK -, 1| 1= 0(Kpbpe) =y =0
@ 0| R e,
" (34)
—2(0" +X),..

We now have to address the constraints. We have two kinds of constraints: an equality
constraint that sets the total number of neurons, Y~ K, = Ki.; and inequality constraints that
ensure that all receptor abundances are non-negative, K, > 0. This can be done using the
Karush-Kuhn-Tucker (KKT) conditions, which require the introduction of Lagrange multipliers: A
for the equality constraint, and p, for the inequality constraints. At the optimum, we must

have:
ol 1.0 0
oK, :Eﬁm(g“"%) — Dby Ko @9)
:)'-_yu'a:

where the Lagrange multipliers for the inequality constraints, 1., must be non-negative, and
must vanish unless the inequality is saturated:

>
Ha =0, (36)
paKg = 0.
Put differently, if K, >0, then p, =0 and 8//8K, = A/2; while if K, = 0, then
01 /0Kq = A/2 — pa <A /2. Combined with Equation (34), this yields
0 '+K),! =, ifK,>
@'+ Ky =2, HK,>0,0r &)
(O'+K),, <A, ifK,=0.

The magnitude of A is set by imposing the normalization condition > K, = K.

The many-neuron approximation

Suppose we are in the regime in which the total number of neurons is large, and in particular,
each of the abundances K, is large. Then we can perform an expansion of the expression
appearing in the KKT equations from Equation (37):

(@' +K) T =K' @+07K ) =K IO 'K, (38)

whose aa component is

o B 1 Q—l 1 Q—l
1 o |1 —=Z@a|___ || _Za<as
(0 +K)_, ra {l X, } ra {l K| (39)
where we used 0 = £ /20572, With the notation
A=07", (40)

we can plug into Equation (37) and get

K, K2

a

|Gt (1)

This quadratic equation has only one large solution, and it is given approximately by
K, ~ i —0?Ag,. 42)

Combined with the normalization constraint, 3 K, = Ki, this recovers Equation (8) from the
main text.
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Optimal distribution for uncorrelated responses

When the overlap matrix Q = STST is diagonal, the optimization problem simplifies

considerably. By plugging Q = diag(Q,,) into Equation (4) in the main text, we find
I(r,e) = %logdet(]l—!—}:_lKQ) = %logdetdiag(l + K2Quaa/ 0%)

= —Zlog (l + K, Qaa) .

We can again use the KKT approach and add Lagrange multipliers A and y, for enforcing the
equality and inequality constraints, respectively,

I‘:—Zlog(l+l( ) AZK — Ky, (44)

and take derivatives with respect to K, to find the optimum,

43)

o 1 1
0o me—— A, 45
0Ka 2Kat02/Qua = M 49

with the condition that p, > 0 and either p, or K, must vanish, u,K, = 0. This leads to

1 o
Ka:max((),i— Q) (46)

showing that receptor abundances grow monotonically with Q,,/a2. This explains the
correlation between OSN abundances K, and receptor SNRs Q,,/o> when the responses are
uncorrelated or weakly correlated.

First receptor type to be activated

When there is only one active receptor, K, = Kiot, Koz = 0, the KKT conditions from
Equation (37) are automatically satisfied. The receptor that is activated first can be found in
this case by calculating the information /(r, ¢) using Equation (4) from the main text while
assuming an arbitrary index x for the active receptor, and then finding x = x* that yields the
maximum value. Without loss of generality, we can permute the receptor indices such that
x = 1. Using Equation (19) and setting K1 = K:ot, we have:

1 1
Ii(r,e) = ETrlog(]I +K2!0) = Elogdet(ll +Kz10)

1+ Kot 011/0% KiOr2/o? -+ KiotOiu/ 07

1 o 1 0

=5log : . (47)
0 0 1

1 Kiot O11

= Elog(l + p ).

Thus, in general, the information when only receptor type x is activated is given by

KtotQ

X

L(r,c) :—log(l -+ =), (48)
which implies that information is maximized when x matches the receptor corresponding to

the highest ratio between the diagonal value of the overlap matrix Q and the receptor

variance in that channel o; that is the receptor that maximizes the signal-to-noise ratio:
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2
i

x* = arg max Oux = argmax 0y, = argmaxSNR, . 49)
o

Another way to think of this result is by employing the usual expression for the capacity of a
single Gaussian channel, and then finding the channel that maximizes this capacity.

Invariance of mutual information under invertible and differentiable

transformations
Consider the mutual information between two variables r € R and ¢ € R":
P
I(r,c) = [ drd"cP(r,c)- log{ gl';)} . (50)
Let us now define two different variables that depend on r and ¢ in an invertible and
continuously-differentiable (but in general nonlinear) way,
y=y(r), x=x(c). (51)

The joint probability distribution for the new variables is related to the joint distribution of the
original variables through the Jacobian determinants,

P(y,x) = P(r,c)det], det ], (52)
where
ar. dry e e
1 Y o Axy
J=1: - |, T=|: . |- (53)
dry dr; dc, c;
1 Y o T a}ﬂ-

For the marginals, we have

P(y) :[d”xP(y,x):[chdeij P(r,c)det J,detJ. = P(r)det J,,

(54)
1
P(x) :[dMyP(y,x}:[ermP(r,c)detﬂrdetﬂc:P(c)det,ﬂc,
where we used the standard substitution formula for multiple integrals. We can now
calculate the mutual information between the new variables:
P(y|x) M. N P(y,x)

I(y,x) :[d”yd”xf'(y,x}-log{ :[d yvdVx Py, x) -log |—=1——

P(y) P(y)P(x)

1 1 P(r,c)det],det].

= [ dMrd¥e—— P det J, det J. -1 :

f e T dend, | (Fo0) detJr det . -log {P(r)det,ﬂ,,P(c)det,HJ (55)

= [ dMrdVcP(r,c) -log {%}

=I(r,c).

Thus, invertible and continuously-differentiable transformations of either the response
variables r or the concentration variables ¢ in our model leave the mutual information
unchanged.

Multiple glomeruli with the same affinity profile

In mammals, the axons from neurons expressing a given receptor type can project to
anywhere from 2 to 16 different glomeruli. Here we show that in our setup, information
transfer only depends on the total number of neurons of a given type, and not on the number
of glomeruli to which they project.
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The key observation is that mutual information, Equation (3) in the main text, is unchanged
when the responses and/or concentrations are modified by invertible transformations (see
previous section). In particular, linear transformations of the responses do not affect the
information values. Suppose that we have a case in which two receptors p and ¢ have identical
affinities, so that S,; = S, for all odorants i. We can then form linear combinations of the
corresponding glomerular responses,

re =rptrg=(Kp+Kg) D> Spici+n,VEKp +m,VKy,
i (56)
r- =Kgrp— Kprg = "TPKq\/EP - "Tqu\/Eq:

and consider a transformation that replaces (r,, ry) with (r,,r_). Since r_ is pure noise, that
is it does not depend on the concentration vector ¢ in any way, it has no effect on the mutual
information.

We have thus shown that the amount of information that M receptor types contain about
the environment when two of the receptors have identical affinity profiles is the same as if
there were only M — 1 receptor types. The two redundant receptors can be replaced by a
single one with an abundance equal to the sum of the abundances of the two original
receptors. The sum of two Gaussian variables with the same mean is Gaussian itself and has a
variance equal to the sum of the variances of the two variables, meaning that the noise term

K,a* +chr2_

7, in the r, response has variance T a
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A nonlinear response example

Estimating the mutual information numerically

Consider an extension of our model in which the responses depend in a nonlinear way on
concentrations, but are still subject to pure Gaussian noise:

Ta :fa(c) + %1}& 7 MNa M-"\'r(o:crg) > (57}

Note that here we are calculating the average OSN response 7, = r,/K,, while in the main text
we used the total response r,. As far as mutual information calculations are concerned, the
difference between 7, and r, does not matter, as they are related by an invertible
transformation.

Unless the functions f; are linear, a closed-form solution for the mutual information
between concentrations and responses cannot be found. It is thus necessary to calculate the
mutual information integral numerically. We can still do part of the calculation analytically,
though:

P(r|c)
P(r)

I(¥,c) :[dM?'dch(f,c)log
(58)
. [ ™7 P(5) log P(F) + [ d¥cP(c) dMF P(rc) log P(F|c).

In our case, P(F|c) is a multivariate Gaussian distribution whose covariance matrix is XK ' and
does not depend on the concentrations. This means that the ¢ integral in the second term can
be performed independently of the T integral, in which case it drops out of the calculation, as
it is equal to 1. The T integral is simply the negative entropy of a multivariate Gaussian
distribution, and is thus equal to

1 M
[{f”?‘P(ﬂc)log P(Fle) = —?{:;gcl&tl‘][(‘1 _7105 2me
59)
1 2 (
=— 2;105(2#6?,,)'

The first term in Equation (58) is the entropy of the responses, which needs to be calculated
numerically. We use a histogram method, in which we split the space of possible responses
along each dimension into bins of equal size A. We then estimate the probability in each bin. If
i1 ...iq indexes the bins, we can then think of the response distribution as a discrete PDF

P;, iy, and we can estimate the entropy using

H(F) = — [ M7P(E)logP(F) = 3 Piy i 1ogf1—};;‘". (60)

.y

In this approach, the challenge remains to estimate the PDF of the responses,

1
v/ (2™ det TK!

where f is the vector of response functions f = (fi,. . ., fir ). We do this using a sampling

P(E) = [ ¥ P(c)P(|c) = [ d¥eP(c) exp {—% (F—f£(c) K= (—£(c)| (6)

technique based on the law of large numbers. Given n sample concentration vectors ¢; drawn
from the probability distribution P(c), we have

Tesileanu et al. eLife 2019;8:e39279. DOI: https://doi.org/10.7554/elife.39279 32 of 39


https://doi.org/10.7554/eLife.39279

e LI F E Research article Physics of Living Systems

B 1 1 _ .
P(F) =Ep){ \/(MMMEK_Imcp[—g(r—f(c))’m '~ f(c))}
1 1 1 (62)
o exp| — 5 (F —(c;)) "KE™ (7 £(cy)),
T JenM ezt 2

where Ep){-- -} denotes the expected value under the distribution of concentrations. We
use this formula to estimate the histogram elements P;,_;, and then use Equation (60) to
estimate the response entropy H(F). We then plug H(F) and Equation (59) into Equation (58)
to find the mutual information. Note that we have not assumed anything about the natural
distribution of odor concentrations, P(c), so that we are not restricted to Gaussian
environments with this method.

Competitive binding model

The way in which olfactory neurons respond to arbitrary mixtures of odorants is not completely
understood. However, simple kinetic models in which different odorant molecules compete for
the same receptor binding site have been shown to capture much of the observed behavior
(Singh et al., 2018). In such models, the activation of an OSN of type a in response to a set of
odorants with concentrations ¢; is given by

o Ei Ea,-{_',-/ECSOG,-

e 63
T S, /EC50, (63)

where EC50,; is the concentration of odorant i for which the response for the OSN of type a
reaches half its maximum, and ¢,; is the maximum response elicited by odorant i in an OSN of

type a.

Results from a toy problem

The computation time from the method outlined above for calculating mutual information
grows exponentially with the dimensionality M of the response space. Additionally, it grows
linearly with the number n of samples drawn from the odor distribution, which in turn needs to
grow exponentially with the number N of odorants we are considering in order to sample
concentration space sufficiently well. For this reason, large-scale simulations involving this
method are infeasible.

Thus we focused on a simple example with M = 3 receptors and N = 15 odorants. We used
an arbitrary subset of elements from the fly sensing matrix and a pair of randomly-generated
non-overlapping environments (Appendix 3—figure 1) to first calculate the optimal receptor
distribution using the linear method described in the main text (Appendix 3—figure 2, top).
We chose the scale of the environment covariance matrices to get a variability in the
responses of around 1, large enough to enter the nonlinear regime when using the nonlinear
response function (described below). We then set the total neuron population to K.y = 200,
which put us in an intermediate SNR regime in which all the receptor types were used in the
optimal distribution, but their abundances were different (Appendix 3—figure 2, top).

a b

-04 -03 0.2 -01 0 01 02 03 04

P — T T T T environment 1 environment 2
05

g1 A H N
$2 m En O 0
<3 T - T T T : . -0.5

2 4 6 8 10 12 14 5 10 15

Odorants

Appendix 3—figure 1. Sensing matrix and environment covariance matrices used in our toy
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problem involving a non-linear response function.
DOI: https://doi.org/10.7554/eLife.39279.018
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Appendix 3—figure 2. Comparing results from the linear model in the main text to results
based on a nonlinear response function. The top row shows the optimal receptor distribution
obtained using the linear model for a system with three receptor types and 15 odorants. The
middle row shows how the estimated mutual information varies with OSN abundances in a
nonlinear model based on a competitive binding response function. The bottom rows shows
the optimal receptor distribution from the nonlinear model, obtained by finding the cells in
the middle row in which the information is maximized.

DOI: https://doi.org/10.7554/eLife.39279.019

In the linear approximation, we found that receptor 1 is under-represented in environment
1, while in environment 2 receptor 3 has very low abundance. We wanted to see how much
this result is affected by a nonlinear response function. We used a competitive binding model
as described above in which the matrix of EC50 values was taken equal to the sensing matrix
used in the linear case, and the efficacies ¢,; were all set to 1:

E -Sm-(,',- 1
a — —= 5 64
Ty Sac | VKL (64)

To calculate the mutual information between responses and concentrations for a fixed
choice of neuron abundances K, we used the procedure outlined above with 20 bins between
-0.75 and 1.5 for each of the response dimensions. We sampled n = 10* concentration vectors
to build the response histogram. We calculated the information values in both environments at
a 10 x 10 grid of OSN abundances (Appendix 3—figure 2, middle row), and found the cell
which maximized the information. The OSN abundances at this maximum (Appendix 3—
figure 2, bottom) show the same pattern of change as we found in the linear approximation,
with receptors 1 and 3 exchanging places as least abundant in the OSN population.
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Random environment matrices

Generating random covariance matrices

Generating plausible olfactory environments is difficult because so little is known about natural
odor scenes. However, it is reasonable to expect that there will be some strong correlations.
This could, for instance, be due to the fact that an animal’s odor is composed of several
different odorants in fixed proportions, and thus the concentrations with which these odorants
are encountered will be correlated.

The most straightforward way to generate a random covariance matrix would be to take
the product of a random matrix with its transpose, I' = MMT. This automatically ensures that
the result is positive (semi)definite. The downside of this method is that the resulting
correlation matrices tend to cluster close to the identity (assuming that the entries of M are
chosen i.i.d.). One way to avoid this would be to use matrices M that have fewer columns than
rows, which indeed leads to non-trivial correlations in I'. However, this only generates rank-
deficient covariance matrices which means that odorant concentrations are constrained to live
on a lower-dimensional hyperplane. This is too strong a constraint from a biological
standpoint.

To avoid these shortcomings, we used a different approach for generating random
covariance matrices. We split the process into two parts: we first generated a random
correlation matrix by the method described below, in which all the variances (i.e. the diagonal
elements) were equal to 1; next we multiplied each row and corresponding column by a
standard deviation drawn from a lognormal distribution.

In order to generate random correlation matrices, we used a modified form of an algorithm
based on partial correlations (Lewandowski et al., 2009). The partial correlation between two
variables X; and X; conditioned on a set of variables L is the correlation coefficient between
the residuals R; and R; obtained by subtracting the best linear fit for X; and X; using all the
variables in L. In other words, the partial correlation between X; and X; is equal to that part of
the correlation coefficient that is not explained by the two variables depending on a common
set of explanatory variables, L. In our case the X; are the concentrations of different odorants
in the environment and the partial correlations in question are, for example, the correlation
between any pair of the odorants conditioned on the remaining ones. We want to construct
the unconditioned correlation matrix between the odor concentrations vectors of the
environment. There is an algorithm to construct this matrix that starts by randomly drawing
the partial correlation between the first two odorants X; and X, conditioned on the rest, and
then recursively reducing the size of the conditioning set while generating more random
partial correlations until the un-conditioned correlation values are obtained. For details, see
Lewandowski et al. (2009).

The specific procedure used in Lewandowski et al. (2009) draws the partial correlation
values from beta distributions with parameters depending on the number of elements in the
conditioning set L. This is done in order to ensure a uniform sampling of correlation matrices.
This, however, is not ideal for our purposes because these samples again tend to cluster close
to the identity matrix. A simple modification of the algorithm that provides a tunable amount
of correlations is to keep the order of the beta distribution fixed @ = B = const (see Stack
Exchange, at https://stats.stackexchange.com/q/125020). When the parameter B is large we
obtain environments with little correlation structure, while small g values lead to stronger
correlations between odorant concentrations. The functions implementing the generation of
random environments are available on our GitHub (RRID:SCR_002630) repository at https://
github.com/ttesileanu/OlfactoryReceptorDistribution (see environment/generate_random_
environment.m and utils/randcorr.m).
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Perturbing covariance matrices

When comparing the qualitative results from our model against experiments in which the odor
environment changes (Ibarra-Soria et al., 2017), we used small perturbations of the initial and
final environments to estimate error bars on receptor abundances. To generate a perturbed
covariance matrix, f‘, from a starting matrix I', we first took the matrix square root: a
symmetric matrix M, which obeys

r=mMMm" =M. (65)

We then perturbed M by adding normally-distributed i.i.d. values to its elements,

Mij = Mij + 0Ny (66}

and recreated a covariance matrix by multiplying the perturbed square root with its
transpose,

FT=MMT. (67)

This approach ensures that the perturbed matrix I" remains a valid covariance matrix—
symmetric and positive-definite—which would not be guaranteed if the random perturbation
was added directly to I'. We chose the magnitude o of the perturbation so that the error bars
in our simulations are of comparable magnitude to those in the experiments.

We used a similar method for generating the results from Figure 3, where we needed to
apply the same perturbation to two different environments. Given the environment covariance
matrices I, with k € {1,2}, we took the matrix square root of each environment matrix,

M; = ]“;'12. We then added the same perturbation to both, M; = M + P, then recovered

covariance matrices for the perturbed environments by squaring My, Ty = Efkﬂf. In the
examples used in the main text, the perturbation P was a matrix in which only one column was
non-zero. The elements in this column were chosen from a Gaussian distribution with zero
mean and a standard deviation five times larger than the square root of the median element
of I'y. This choice was arbitrary and was made to obtain a visible change in the optimal
receptor abundances between the ‘control’ and ‘exposed’ environments.

Finally, we employed this approach also for generating non-overlapping environments.
Given two environments I'y and I'; and their matrix square roots M; and M,, we reduced the
amount of variance in the first half of M’s columns and in the second half of M>'s. We did this
by dividing those columns by a constant factor f, which in this case we chose to be f = 4. We
then used the resulting matrices M, to generate covariance matrices I'; = M;M! with largely
non-overlapping odors.
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Deriving the dynamical model

To turn the maximization requirement into a dynamical model, we employ a gradient ascent
argument. Given the current abundances K,, we demand that they change in proportion to
the corresponding components of the information gradient, plus a Lagrange multiplier to
impose the constraint on the total number of neurons:

ol
oK,

K= za( —)L) —a[(@ +K),, —A]. (68)

The brain does not have direct access to the overlap matrix Q, but it could measure the
response covariance matrix R from Equation (13). Thus, we can write the dynamics as
K, =a{[0I+KQ) . —A}
=a{[K ! (Z2RK'271/2 — ) 2'2KR '3/
=a{K' -A - (ZPRTE),)
=a{K;' A —0oR,, },

aa _)"}

69

where we used the fact that £/ and K are diagonal and thus commute. These equations
do not yet obey the non-negativity constraint on the receptor abundances. The divergence in
the K, ! term would superficially appear to ensure that positive abundances stay positive, but
there is a hidden quadratic divergence in the response covariance term, R,!; see

Equation (13). To ensure that all constraints are satisfied while avoiding divergences, we
multiply the right-hand-side of Equation (69) by K2, yielding

K, =alK,— K;(A+03R,) )], (70)

which is the same as Equation (9) from the main text.

If we keep the Lagrange multiplier A constant, the asymptotic value for the total number of
neurons K, will depend on the statistical structure of olfactory scenes. If instead we want to
enforce the constraint }_ K, = K, for a predetermined K;,;, we can promote A itself to a
dynamical variable,

dA
—= K,—K, 71
a =B KeKal, 71

where B is another learning rate. Provided that the dynamics of A is sufficiently slow
compared to that of the neuronal populations K, this will tune the experience-independent
component of the neuronal death rate until the total population stabilizes at K.

Tesileanu et al. eLife 2019;8:e39279. DOI: https://doi.org/10.7554/elife.39279 37 of 39


https://doi.org/10.7554/eLife.39279

e LI F E Research article Physics of Living Systems

Appendix 6

DOI: https://doi.org/10.7554/elife.39279.012

Interpretation of diagonal elements of the inverse
overlap matrix

In the main text we saw that the diagonal elements of the inverse overlap matrix 0, were
related to the abundances of OSNs K. Specifically,
1 -1
Kaz)—L—af g (72)

where A is a Lagrange multiplier imposing the constraint on the total number of neurons.
As noted around Equation (13) above, the overlap matrix Q is related to the response
covariance matrix R: in particular, Q is equal to R when there is a single receptor of each type
(K, = 1) and there is no noise (o, = 0). That is, the overlap matrix measures the covariances
between responses in the absence of noise. This means that its inverse A = Q! is effectively a
so-called ‘precision matrix’. Diagonal elements of a precision matrix are inversely related to
corresponding diagonal elements of the covariance matrix (i.e. the variances), but, as we will
see below, they are also monotonically related to parameters that measure how well each
receptor response can be linearly predicted from all the others. Since receptor responses that
either do not fluctuate much or whose values can be guessed based on the responses of other
receptors are not very informative, we would expect that abundances K, are low when the
corresponding diagonal elements of the inverse overlap matrix A4, are high, which is what we
see. In the following we give a short derivation of the connection between the diagonal
elements of precision matrices and linear prediction of receptor responses.

Let us work in the particular case in which there is one copy of each receptor and where
there is no noise, so that Q = R, thatis Q; = (r;r;) — (r;)(r;). Without loss of generality, we
focus on calculating the first diagonal element of the inverse overlap matrix, A;;, where
A = QL. For notational convenience, we will also denote the mean-centered first response
variable by y = r; — (r1), and the subsequent ones by x, = 1.1 — (r,+1). Then the covariance
matrix Q can be written in block form

(O xX) 3
Q_(<}-'X) M )’ 95

where M is
M= (xxT), (74)

and x is a column vector containing the x, variables. Using the definition of the inverse
together with Laplace’s formula for determinants, we get

detM

An
Using the Schur determinant identity (derived above) on the block form (Equation (73)) of the
matrix Q,

B det M

~ det M-det[(?) — (yxT)M~1 (yx)]
1

02) = XM (yx) ”

An
(76)

where we used the fact that the argument of the second determinant is a scalar.
Now, consider approximating the first response variable y by a linear function of all the
others:
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y=alx+gq, (77)

where g is the residual. Note that we do not need an intercept term because we mean-
centered our variables, (y) = (x) = 0. Finding the coefficients a that lead to a best fit (in the
least-squares sense) requires minimizing the variance of the residual, and a short calculation
yields

a* =argmin,,(¢)” = argmin,,(y — a’x)* = M~ (yx), (78)

where M is the same as the matrix defined in Equation (74).
The coefficient of determination p? is defined as the ratio of explained variance to total
variance of the variable y,

(@Tx)?) aT@xMa'  (yx")M MM~ (yx)
{}_‘2) - <}2) a <."‘2) (79)
0?)

P =

Comparing this to Equation (76), we see that

1 1
A T ——
T2

showing that the diagonal elements of the precision matrix are monotonically related to the
goodness-of-fit parameter p? that indicates how well the corresponding variable can be
linearly predicted by all the other variables. In addition, the inverse dependence on the

(80)

variance of the response {y)2 shows that variables that do not fluctuate much (low {}-‘)2} lead to
high diagonal values of the precision matrix . From Equation (72), we see that these variances
should be considered ‘large’ or “small’ in comparison with the noise level in each receptor
(or,). Since receptor responses that either do not fluctuate much or whose values can be
guessed based on the responses of other receptors are not very informative, we should find
that receptor abundances K, are low when the corresponding diagonal elements of the
inverse overlap matrix A,, = Q! are high.
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