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SUMMARY

How transcriptional bursting relates to gene regula-
tion is a central question that has persisted for more
than a decade. Here, we measure nascent transcrip-
tional activity in early Drosophila embryos and char-
acterize the variability in absolute activity levels
across expression boundaries. We demonstrate
that boundary formation follows a common transcrip-
tion principle: a single control parameter determines
the distribution of transcriptional activity, regardless
of gene identity, boundary position, or enhancer-pro-
moter architecture. We infer the underlying bursting
kinetics and identify the key regulatory parameter
as the fraction of time a gene is in a transcriptionally
active state. Unexpectedly, both the rate of polymer-
ase initiation and the switching rates are tightly con-
strained across all expression levels, predicting syn-
chronous patterning outcomes at all positions in the
embryo. These results point to a shared simplicity un-
derlying the apparently complex transcriptional pro-
cesses of early embryonic patterning and indicate a
path to general rules in transcriptional regulation.

INTRODUCTION

A central question in gene regulation concerns how discrete mo-
lecular interactions generate a continuum of expression levels
observed at the transcriptome level (Lionnet and Singer, 2012;
Scholes et al.,, 2017). A large set of molecular activities is
required to elicit RNA transcription, including transcription factor
binding, chromatin modifications, and long-range enhancer-pro-
moter interactions (Voss and Hager, 2014). However, in most
cases, it is unclear which of these interactions predominantly
regulate RNA synthesis rates and variability for a given gene
(Coulon et al., 2013). In general, for genes whose transcription
rates depend on levels of external inputs, we do not know which
regulatory steps are preferably tuned to achieve required mRNA
expression levels. Overall, it is unknown whether constraints

exist that might select common mechanisms for modulating
transcriptional activity across genes, space, and time.

Addressing these questions requires measuring the kinetic
rates of transcription in absolute units. Many studies using sin-
gle-molecule counting approaches have documented the inher-
ently stochastic nature of transcription (Little et al., 2013; Raj
et al., 2006; Taniguchi et al., 2010; Zenklusen et al., 2008). In or-
ganisms ranging from bacteria to vertebrates, genes exhibit tran-
scription bursts characterized by intermittent intervals of mRNA
production followed by protracted quiescent periods (Bothma
et al.,, 2014; Golding et al., 2005; Suter et al., 2011). This inherent
stochasticity in gene activation results in higher cell-to-cell vari-
ability than expected from constitutive expression (Blake et al.,
2003). A simple telegraph or two-state model has been used to
explain the measured variability in the context of transcriptional
bursting (Peccoud and Ycart, 1995). In this model, a locus
switches at random between inactive and active states, with
only the latter permitting transcription initiation. Despite its preva-
lent use, it is not largely known which molecular events determine
the kinetic rates of this model (Coulon et al., 2013), nor is it widely
understood which of these kinetic rates are modulated by external
input signals or to what extent. However, with precise measure-
ments and quantitative modeling, it is possible to gain intuition
for the mechanisms of transcriptional bursting based on their
signature in the measured variability (Jones et al., 2014; Larson
et al.,, 2013; Molina et al., 2013; Senecal et al., 2014; Zoller
etal.,, 2015).

Drosophila embryos provide an ideal model to investigate
transcriptional regulation (Gregor et al., 2014). Early embryos ex-
press many genes in graded patterns in response to modulatory
inputs (Struhl et al., 1992). Spatial domains, where gene expres-
sion levels transition from highly active to nearly silent, are func-
tionally the most critical for the developing embryo, as they
determine specification of cell identities (Kornberg and Tabata,
1993). Among the earliest expressed genes in Drosophila devel-
opment are the gap genes, which encode transcription factors
responsible for anterior-posterior (AP) patterning (Jaeger,
2011). Each gap gene is expressed in its own unique domain,
and the expression boundaries arise at distinct and precise po-
sitions (Dubuis et al., 2013). Gene expression levels are spatially
graded across several cell diameters, and the intermediate levels
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of these gap genes confer patterning information necessary for
segmentation (Lawrence, 1992). Therefore, the precise control
of expression levels is essential for properly patterned cell fate
specification.

The regulation of gap genes appears highly complex. Many
activating and repressing factors determine expression bound-
aries through complex layers of homo- and heterotypic proteinin-
teractions at multiple promoters and enhancers (Estrada et al.,
2016; Jaeger et al., 2004; Kvon et al., 2014; Perry et al., 2011; Se-
gal et al., 2008). The collective activity of these factors generates
expression rates that vary with position in the embryo (Briscoe
and Small, 2015; Lawrence, 1992; Manu et al., 2009). Given the
diversity of cis-regulatory architecture and trans-acting factors
regulating these genes, an intuitive expectation is that expression
rates emerge from carefully tuned transcription factor concentra-
tions and binding affinities. Since various bursting kinetics could
achieve suchrates, a straightforward prediction is that the under-
lying bursting kinetics will differ between boundaries. This expec-
tation is consistent with prior studies in cultured cells suggesting
that many regulatory strategies exist (Carey et al., 2013; Dey
et al., 2015; Molina et al., 2013; Senecal et al., 2014). However,
it is unknown how bursting rates are modulated across multiple
expression boundaries in intact tissues.

To address these questions, we developed a single-molecule
fluorescent in situ hybridization (smFISH) method that generates
accurate counts of nascent RNA molecules in individual nuclei.
We applied this method to assess absolute transcriptional
activity of the gap genes in terms of the number and variability
of RNA polymerase Il (Pol Il) molecules at transcribing loci.
This approach reveals a common principle that unifies transcrip-
tional activity across expression boundaries. Surprisingly, a sin-
gle common control parameter globally determines the distribu-
tion of transcriptional activity. We use a simple telegraph model
to interpret our measurements. We show that the key regulatory
parameter is the fraction of time a gene is in a transcriptionally
active state, while the Pol Il initiation rate is constant. Contrary
to the expectation of diverse bursting kinetics, the promoter
switching rates are tightly constrained across boundaries. This
constraint highlights the conservation of the switching correla-
tion time and predicts synchronous transcriptional outcomes
regardless of expression level, gene identity, or position in the
embryo. We propose that this synchronicity is important for
ensuring precise patterning. Moreover, our results suggest an
emergent simplicity in the modulation of bursting that governs
the apparently complex process of embryo segmentation. Over-
all, our quantitative approach provides a framework for uncover-
ing unifying principles of transcriptional regulation that can be
applied across genes in any biological context.

RESULTS

Precise Measurements of Transcriptional Activity

During early fly development, gene expression boundaries arise
from spatially varying transcription factor concentrations. Early
embryos thus provide a natural context in which to ask how input
factors shape transcription dynamics. Here, we enhanced a pre-
viously developed smFISH method (Little et al., 2013) to yield a 3-
to 4-fold increase in sensitivity, enabling precise counting of
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nascent transcripts and measurement of transcriptional activity
across boundaries (STAR Methods). We performed confocal im-
aging with fluorescent oligonucleotide probes to label single
mRNA molecules in fixed embryos followed by analysis to esti-
mate intensities of transcription sites (i.e., spatially co-localized
nascent transcripts) and individual cytoplasmic mRNAs. This
method measures instantaneous activity per nucleus in terms
of intensity units of individual cytoplasmic mRNAs, the “cyto-
plasmic unit” (C.U.) by normalizing the total intensity of each
locus to that of cytoplasmic mRNAs (Figures 1A and 1B).

We measured the transcriptional activity of the four major gap
genes hunchback (hb), Krippel (Kr), knirps (kni), and giant (gt)
along the embryo’s AP axis. These genes are expressed early
in development in broad spatial domains, permitting measure-
ments of thousands of synchronized nuclei across small
numbers of embryos; these factors all favor low measurement
error (Figures 1C and 1D; N ~ 15 embryos per combination of
gene/genotype). Analysis of expression levels in mid- to late
interphase 13 ensures sufficient time to attain steady-state levels
of transcribing Pol Il (Figures S1A-S1D and STAR Methods), and
DNA replication occurs in early interphase (Blumenthal et al.,
1974) such that these observations eliminate ambiguity arising
from varying numbers of loci. Since loci on recently duplicated
chromatids are often closely apposed in space, we measure to-
tal transcription per nucleus (Little et al., 2013) then infer proper-
ties of individual loci. As a control, we generated data from em-
bryos heterozygous for a hb deficiency and observed half the
wild-type level of expression per nucleus (Figure 1C). Impor-
tantly, we observe a corresponding decrease in variance to
half of wild-type (Figure 1D), supporting previous findings that
all loci behave independently (Little et al., 2013). These results
demonstrate the suitability of using total transcriptional activity
per nucleus to infer the behavior of individual loci.

Since biological variance greatly constrains models of regula-
tory processes, we needed to determine how variability arises
from measurement error, embryo-to-embryo differences, and
intrinsic fluctuations in individual nuclei. The performance of
our measurements was assessed by labeling each mRNA in
alternating colors along the length of the strand. This allowed
us to perform independent normalization in each channel, thus
characterizing sources of measurement error, such as noise
stemming from imaging and normalization (Figure 2A). Estima-
tion of the variance of the mean across embryos (Figure 2B)
enables further splitting of the variability in terms of embryo
alignment along the AP axis and inherent embryo-to-embryo
variability (Figures STE-S1H and STAR Methods). For all genes
and at all positions, measurement variability (imaging and spatial
alignment) represents less than 7% of the total variance on
average (Figure 2C), indicating that biological variability domi-
nates our measurements (Dubuis et al., 2013). Importantly, this
variability arises almost entirely from differences between nuclei
rather than differences between embryos (Figure 2D); the low
embryo-to-embryo variability in the maximally expressed re-
gions (16 + 4% coefficient of variation [CV]; Figure 2E) empha-
sizes that the mean expression levels across embryos are repro-
ducible in absolute units (Figure 1C). Therefore, the measured
expression noise mainly stems from zygotic transcription and
is intrinsic to the molecular processes of transcription rather
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Figure 1. Absolute Quantification of Gap Gene Transcriptional Activity

(A) Activity of individual nuclei (blue) for the gene hunchback (hb) measured by single-molecule mMRNA-FISH (green) in nuclear cycle 13 (nc13) of the blastoderm
embryo of length L. Red arrowheads: nuclei with two sites of transcription; magenta arrowheads: single site of transcription.

(B) Activity profile of hb as a function of AP position in % egg length for 18 embryos. Activity of individual nuclei from the summed intensity of all transcription sites
per nucleus, normalized by the average intensity of a single cytoplasmic mRNA (C.U.), is shown. Blue dots: total mean intensity per nucleus; vertical dashed lines:

AP bins; circles: mean activity in each bin.

(C) Mean activity in C.U. as a function of AP position during nc13 for hunchback in wild-type (labeled hb wt in blue, N = 18 embryos), hunchback deficiency with
half the hb dosage (hb def, light blue, N = 7), Krippel (Kr, magenta, N = 11), knirps during early (kni early, green, N = 14) and late (kni late, light green, N = 16) nc13,
giant in females with two alleles (gt female, red, N = 20) and in males with one (gt male, light red, N = 16).

(D) Total variance of transcriptional activity as a function of AP position (color code as in C).

All error bars are 68% confidence intervals. See also Figure S1.

than from extrinsic sources of variability. Low measurement error
and the predominance of intrinsic variability facilitates analysis of
the noise-mean relationship, permitting inference of bursting ki-
netics from several hundred nuclei at each position along the AP
axis (Figure 1B) as detailed below.

Single-Parameter Distribution of Transcriptional

Activity across All Expression Boundaries

The expression patterns of the gap genes are determined by
multiple enhancer elements at varying distances from their pro-

moters (Kvon et al., 2014; Perry et al., 2011). Each enhancer con-
tains a variable number of binding sites for multiple patterning
input factors with cross-regulatory interactions (Ochoa-Espi-
nosa et al., 2005; Schroeder et al., 2004). These features and ev-
idence from genetic manipulations (Hoch et al., 1990; Jacob
et al., 1991; Pankratz et al., 1992) indicate that many molecular
processes regulate transcription rates generating observed
mRNA levels with their stereotypical modulation as a function
of position (Figure 1C). Given the diversity of input factors and
molecular control elements, it would appear likely that different
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Figure 2. Decomposition of the Total Variance

0
10 20 30 40
Mean activity in max region [C.U.]

(A) Imaging noise estimation with dual-color smFISH. mRNA molecules are tagged with an alternating probe configuration. Blue circles: activity of single nucleiin
15 hb embryos. In absence of measurement noise or normalization error, both channels should perfectly correlate with slope 1. We characterized the spread
along the fitted line (solid line), assuming error in both channels. Dashed lines: 15 envelope.

(B) Variance of the mean aﬁ across embryos as a function of AP position (color code as in Figure 1C).

(C) Decomposition of the total variance 2 into measurement error and biological variability. Estimates of imaging error (red), alignment error (blue), and embryo-
to-embryo variability (magenta) are decoupled from the total variance. The remaining variance corresponds to biological variability and is termed intrinsic

nucleus-to-nucleus variability in the text (green).

(D) Decomposition of total variance for all the genes pooled together. Nucleus-to-nucleus variability dominates (~84%).
(E) Fractional embryo-to-embryo variability (CV) as a function of mean activity (solid black line: mean ratio; dashed lines: 68% confidence intervals) reaches 16 + 4%
(CV) in the maximally expressed regions that are the most reproducible. This represents absolute reproducibility, as all embryos peak at comparable means.

Error bars are 68% confidence intervals. See also Figure S1.

genes should exhibit vastly different, uniquely defined transcrip-
tional kinetics. To make progress in understanding these com-
plex relationships, we capitalize on the fact that the kinetics of
the processes underlying transcription determines not only
mean expression levels but also the variability (Figure 1D). There-
fore, we can use the noise-mean relationship to characterize the
transcription kinetics for individual genes.

To characterize noise-mean relationships in our system, we
examined the dependence of variability on mean transcription
levels (Figure 3A). In agreement with prior measurements (Little
et al., 2013), genes span a similar dynamic range of expression
levels across boundaries, from nearly zero to a maximum value
of 34 + 6 C.U. (Figure 1C). Moreover, transcription is inherently
variable: at all positions and for all genes, variability exceeds
that expected from a simple model of constitutive activity, with
noise (measured as CV?) approximately 10 times larger than
Poisson for mean transcriptional activity below 10 C.U. (Fig-
ure 3A). However, the noise-mean relationship follows an unex-
pectedly similar overall trend (Figure 3A and STAR Methods).
Unlike many other systems (bacteria, yeast, mammalian cell cul-
ture), there is no clearly identifiable noise floor at high expression
(Keren et al., 2015; Taniguchi et al., 2010; Zoller et al., 2015). The
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absence of such an extrinsic noise floor is likely a key feature of
early embryo development: nuclei are highly synchronized within
the cell cycle and share the same environment of the syncytial
blastoderm. Sources of extrinsic noise that affect gene expres-
sion in cultured cells are thus minimized. Moreover, the collapse
on a unique curve is unexpected and atypical given the different
promoter-enhancer architectures (Hornung et al., 2012; Sanchez
and Golding, 2013).

This result is even more striking when we convert our units of
transcriptional activity from C.U. to the actual number count of
Pol Il molecules, g. Such a conversion is necessary, as the inten-
sity at a given active transcription locus is dependent on the
length of the individual gene, the copy number, and the probe
arrangement (Figure S2A and STAR Methods). Accounting for
these factors, we can describe the shape of the distribution of
Pol Il counts per locus by calculating the second, third, and
fourth cumulants for each gene across each boundary. While
again, the expectation is that Pol Il counts should differ between
different genes, an extra data collapse is observed instead: the
second, third, and fourth cumulants for all data points are nearly
uniquely determined by a single parameter, the mean activity (g)
(Figures 3B-3D and S2B-S2D). Thus, transcriptional activity for
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Figure 3. A Two-State Model Recapitulates Data Collapse and Single-Parameter Modulation

(A) Noise-mean relationship (noise = CV?). Dashed line: Poisson background, the lowest attainable noise; solid lines: fitting for each gene the following functional
form of the noise CV? = (1 +a(1—u/ug))/u, where a and u, are fitted parameters. The collapse of the trend to Poisson noise (1/y) at high expression implies an
upper limit of attainable expression levels, u, (vertical dashed line). Color code as in Figure 1C.

(B-D) Normalized second (B), third (C), and fourth (D) cumulant as a function of normalized Pol Il counts for a single gene copy. Activities in C.U. were converted
into Pol Il counts g by using fluorescent probe locations and gene lengths L. Assuming independence, the mean and the cumulant were divided by the gene copy
number Ny = 2,4. Dashed lines: Poisson background; solid lines: fitting the cumulants with second-, third-, and fourth-order polynomials, respectively, con-
strained to match the Poisson level at maximum Pol Il counts go = uy(Lg)/(C1NgLy), Where (L) is the average gene length and C1< [0, 1] is a conversion factor
that depends on the probe locations on transcripts. Color code as in Figure 1C.

(E) Two-state model for measured transcriptional activity. The mean activity in Pol Il counts is (g) = kiniTe (1) with initiation rate ki,;, elongation time 7e = Ly /Kelo, and
mean promoter activity (n) = Kon/(Kon + koft)€ [0, 1]. The maximal Pol Il count is given by gg = kini7e. The measured mean activity in C.U. is u = C1Ny(g), where N
is the gene copy number and C1€ [0, 1] a conversion factor as in (B-D).

(F-I) Noise-mean relationship (F) and normalized second (G), third (H), and fourth (I) cumulants predicted by the two-state model under different single-parameter
mean activity modulation schemes: Pol Il initiation rate ki (gray), off rate ko (green), on rate kon (blue), and promoter occupancy (n) at constant switching
correlation time 7, =1/ (kon + koff) (red). Modulation of (n) by means of ko, or at constant 7, achieve numerical values that closely match the trends of our data.
Error bars are 68% confidence intervals. See also Figures S2 and S3.
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Table 1. Terminology and Parameterization of Transcription Rates

Kinetic Rates Units Parameterization {kini, kon, Kot} Parameterization {kin;, (n), 75}
Pol Il initiation rate kin; [min~"] Kini Kini
Promoter switching on rate ko, [min~"] Kon @
Tn
Promoter switching off rate Ko [min~"] Koft 1—(n)
Tn

Bursting Parameters Units Parameterization {Kini, Kon, Koff} Parameterization {kin;, (n), 72}
Promoter mean occupancy (n) # Kon  _ i (n)

(kon + koff)
Switching correlation time 7, [min] 1 T

(kon + koﬁ)
Burst size b # Kini KiniTn

kot 1—(n)
Burst frequency f [min~"] Kon Koff = kott () (M1 —(n))

(Kon + koﬁ) Tn
Mean transcript synthesis rate [min~"] Kini Kon Kini(n)

Within the context of the two-state model, the most intuitive parameterization is given by the kinetic rates kini, kon, and kos. However, fluctuation analysis
in transcriptional activity and inference approach both revealed that the three independent and uncorrelated variables, kini, 7, and (n), provide a more
natural parameterization in which only (n) is modulated, while kinj and 7, are both constant. Bursting parameters are clearly identified in both

parameterizations.

all genes and across the entire expression range is characterized
by a unique, common single-parameter distribution. This obser-
vation is model-free and indicates that a single parameter deter-
mines the generation of all gene expression boundaries. The
uniqueness of the Pol Il count distribution suggests that despite
the well-documented diversity of cis-regulatory elements and
trans-acting factors, a common conserved set of processes is
regulated to determine transcription kinetics across all bound-
aries in the early embryo.

Two-State Model Identifies the Unique Control
Parameter
The shared Pol Il count distribution suggests that a common
general model can describe the regulation of all gap genes.
The observed intrinsic super-Poissonian variability in our data
suggests that these genes operate in a bursting regime. While
constitutive genes can be modeled by a single parameter—
i.e., the effective initiation rate —multiple independent parame-
ters are required to model transcription kinetics of bursting
genes. A popular minimalist model accounting for bursting is
the “two-state” or “telegraph” model (Peccoud and Ycart,
1995). It has been widely used to describe the distribution of
mature mRNA and protein counts (Bar-Even et al., 2006; Raj
et al., 2006; Zenklusen et al., 2008). Such a simple mechanistic
model enables estimation of kinetic rates underlying bursting
(Figure 3E and Table 1), i.e., the switching rates between pro-
moter states (kon and koi), as well as the effective initiation
rate ki, (Larson et al., 2013; Senecal et al.,, 2014; Suter
et al., 2011).

Our measurements of nascent transcriptional activity repre-
sent instantaneous counts of the number of Pol Il molecules
engaged in transcription, providing a more direct measurement
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of transcriptional activity compared to counts of mature mRNAs
or proteins. The two-state model presents a straightforward and
parameter-sparse means to describe how discrete randomly
occurring events generate a continuum of expression rates.
Assuming the Pol Il elongation rate kg, is constant and identical
for all gap genes (Garcia et al., 2013; O’Brien and Lis, 1993), this
model predicts the dependence of variability on mean activity for
different scenarios of parameter modulation. Specifically, it pre-
dicts which kinetic rates are modulated to form gene expression
boundaries.

Given that the first four cumulants of our data are uniquely
determined by the mean activity, we sought to explore modu-
lation of the mean arising from varying a single parameter,
where such parameters could consist of combinations of the ki-
netic rates. When we solve the master equation for such a
model (STAR Methods), a comparison of predicted noise
(Figure 3F) with our data (Figure 3A) eliminates modulation of
kini- Indeed, solely varying ki leads to saturation of noise at
high activity, which is not observed. This is true no matter the
values of kon and Ko, Which only affect the level of the plateau.
Instead, our measurements are consistent with modulation of
the fractional mean promoter occupancy (n), defined as (n) =
Kon/(Kon + Kkoff). (Here, occupancy refers to the active or
“ON” state; thus (n) is bound between zero and one.) This
value is the fraction of time spent in the active state and is
equivalent to the probability of finding a locus in the active state
(Lucas et al., 2013; Xu et al., 2015). Varying (n) is the only
solution leading to a concave function for the variance
observed in the data (Figures 3B and 3G and STAR Methods,
Equation 8). Modulation of the mean production rate is thus
determined by (n) rather than the rate at which Pol Il molecules
enter into productive elongation.



In principle, either or both of the rates kon and kot may be tuned
to modulate (n). To test which of these scenarios reproduces the
noise and the shape of the cumulants (Figures 3A-3D), we first
set the value of ki, to match the Poisson background in the
data (Figure 3B, dashed line; and STAR Methods). For the spe-
cial case in which both switching rates are modulated simulta-
neously, we achieved effective single-parameter modulation by
fixing the switching correlation time 7, = 1/(kon + Ko), the char-
acteristic timescale for changes in promoter activity. This quan-
tity reveals how fast the switching occurs, how much time is
required for the mean number of Pol || molecules engaged in
transcription to reach steady state, and what fraction of the
switching noise is filtered by the elongation process (STAR
Methods). When 7, is fixed, both switching rates, kon and ko,
are fully determined by (n), i.e.,

koo =L and ke = =)

Tn Tn

In the three scenarios (tuning kon, koff, OF (N)), the single free
parameter (either kof, kon OF 75) Was estimated by fitting the set
of modeled cumulants to the data, assuming steady-state Pol
Il levels (Figures 3G-3l and S2E). Modulation of k. alone is ruled
out, since this does not capture the noise below 10 C.U. (Fig-
ure 3F). However, modulation of ko alone or of (n) at fixed 7, re-
capitulates the noise and the cumulants (Figures 3F-3I). Thus, in
addition to conserved ki,, the model predicts a second
conserved quantity across genes and positions —either k¢ alone
or a combination of ko, and Kog.

Finally, we examined whether the fitted cumulants assuming
steady state are compatible with the finite duration of the nuclear
cycle (~15 min). The time during which a gene relaxes from an
inactive state devoid of elongating Pol Il (start of interphase 13)
to steady state is determined by the correlation time 7, (Fig-
ure S3A). Since each parameter modulation predicts a different
dependency of 7, on (n) (Figure S3B), we tested under each sce-
nario whether the mean and the cumulants at mid-cycle would
be attained in time. It follows that modulation of (n) through ko,
alone or at fixed 7, predicts a time-dependent solution at mid-
cycle that is consistent with the steady-state assumption above
(Figures S3C-S3G and STAR Methods). Thus, the two-state
model explains the data collapse and predicts that tuning only
the mean occupancy (n) uniquely describes the formation of
expression boundaries regardless of their position in the embryo.

Transcriptional Bursting in Absolute Units

Further insight into transcriptional mechanisms requires the ab-
solute scales of kinetic parameters. To go beyond arguments
based on cumulants, we adopted an approach that is agnostic
to the modulation strategy. To resolve whether kq or 7, is con-
stant and exclude other non-trivial forms of modulation (i.e., mul-
tiple rates changing simultaneously), we inferred all kinetic rates
from the full distribution of transcriptional activity for each gene
and at each position independently. We performed dual-color
smFISH, tagging the 5 and 3’ regions of the transcripts with
differently colored probe sets that provide two complementary
readouts of nascent activity (Figure 4A) (Brody et al., 2011; Xu
et al., 2016). The measured activities are correlated via a finite

Pol Il elongation time (Figures S4A-S4C and STAR Methods)
and provide two snapshots of the state of the gene. Jointly
measuring the 5’ and 3’ activities constrains the possible config-
urations of nascent transcripts and Pol Il configurations at each
locus (Figure 4B).

Given a stochastic model of transcription, it is possible to
extract the transcriptional parameters underlying the activities
of each gene (Figures 4C, 4D, and S5). Using the two-state
model, we calculated the likelihood of the joint distribution of 5’
and 3’ activities at each AP position while accounting for mea-
surement noise (Figure 4E and STAR Methods). The rate param-
eters kini, Kon, and ko for each AP position were inferred from the
likelihood of the data according to Bayes’s rule. We sampled the
joint posterior distribution of the parameters (Hastings, 1970),
which provides a probability for each parameter combination
given the observed data. All inferred parameters with respective
errors were estimated from the sampled joint posterior distribu-
tion (Figures 4E and S5C). Validating our approach, inference on
synthetic data clearly shows that the parameters are identifiable
as long as the Pol Il elongation rate is measured independently
(Figures S6A-S6F). Moreover, the previously measured Pol I
elongation rate keo =1.5 kb/min (Garcia et al., 2013) provides
an absolute timescale, enabling inference of endogenous ki-
netics from chemically cross-linked, inert embryos.

The inferred kinetic rates revealed nearly identical modula-
tion across all expression boundaries, regardless of gene
identity or boundary position (Figure 5). Consistent with pre-
dictions based on cumulants (Figure 3), the initiation rate ki,
is constant at 7.2 + 1.0 Pol Il initiations per minute and does
not change across genes or positions (Figure 5A). Thus, while
in the ON state, these genes share the same rate-limiting
step(s) in the cascade of molecular interactions leading to
productive Pol Il elongation as reported for constitutive genes
(Choubey et al.,, 2015). We also observe close agreement
between measured and inferred mean activity, as well as
good agreement between all other cumulants (Figures S6G-
S6J). Our inference confirms that all expression boundaries
are generated through modulation of the mean promoter
occupancy (Figure 5B). This result supports the view that
the processes that determine ki, are disfavored as mecha-
nisms for controlling mRNA synthesis rates. Because these
rates are determined by (n) for all genes and span a similar
dynamic range for all boundaries (Figure S6K), we advocate
that promoter occupancy represents the key control param-
eter describing expression boundary formation.

Current models of boundary formation imply a careful tuning of
multiple input factor concentrations and DNA binding affinities
(Briscoe and Small, 2015; Jaeger, 2011). The complexity and
diversity of these inputs leads to an intuitive expectation that ki-
netic switching rates will differ between genes. This expectation
seems all the more reasonable given that many combinations of
kon and kqs generate the same (n). Surprisingly, both kon and Ko
are tightly constrained for all genes and across all boundaries
when portrayed as a function of mean occupancy (n) (Figures
5C and 5D). This suggests that some combination of k., and
kot must be conserved. Indeed, as predicted by the cumulant
analysis above, our measurements confirm that the conserved
combination is in fact the correlation time of the switching
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Figure 4. Estimation of Transcription Parameters via Dual-Color smFISH

(A) Schematic of the dual-color single-molecule mRNA-FISH technique. Two independent probe sets hybridized to different fluorophore target the 5’ (green) and
3’ region (red). The combination of readouts constrains the possible configurations of nascent transcript locations and numbers.

(B) Dual-color smFISH measurement space represented as 5’ versus 3’ activity. Solid black line: border of possible measurements given probe set configuration,
gene length, and maximal possible Pol Il density (here, we assumed a Pol Il holoenzyme footprint of 90 bp); dashed black line: expected ratio of 3’ to 5’ activity
defining the subset of configurations for which nascent transcripts are equally spaced along the entire gene length but at different densities.

(C) Activity profile for hb as a function of AP position for both 5" and 3’ channels. Dots: total intensity of nascent transcripts in C.U. in a single nucleus. N = 18
embryos aligned and overlaid. Vertical dashed lines: AP bins; circles: mean activity in each bin; error bars: 68% confidence intervals.

(D) Empirical distributions of 5’ versus 3’ activity for hb; colored circles: individual nuclei. Color code represents different AP bins. Black circles: mean of each AP
bin (see B). The measurements are enclosed by the envelope of maximal Pol Il density (black line as in B).

(E) Inference of parameters defined by the two-state model. Parameters are estimated from the empirical distribution individually at each AP bin (the data, C and
D). We calculated the likelihood of the data given a set of parameters P(Data | kini,kon,Koft)- By applying Bayes’s rule, we obtained the posterior probability P(kini,
kon, kot Data), the probability of the parameters given the observed data; the posterior probability was sampled by Monte-Carlo Markov chain (MCMC). Final
estimates of the parameters are given by the median of the marginal posterior (vertical dashed line in histogram). The color code of the distributions stands for the

log+o probability.
See also Figures S4, S5, and S6.

process 7, = 1/(kon + Kkoft), Which is roughly constant at all po-
sitions over the entire expression range for every gene
(Figure 5E).

Our inference thus revealed that the more natural parameteri-
zation of this system is expressed in terms of the three indepen-
dent, uncorrelated variables {kini, 7, (n)} in which only (n) is
modulated (Table 1). The conservation of correlation time implies
that kon and ko must be carefully coordinated such that all
boundaries emerge from quantitatively identical modulation of
switching rates. In addition, these conclusions are unaffected
by changes in elongation rate, which only rescales the kinetic pa-
rameters (Figures S6L-S6N and STAR Methods).

Our observation of constant ki, and 7, has several implica-
tions. Much prior work has characterized bursting in terms of
burst size b =kini/korr (the average number of transcripts pro-
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duced per burst) and burst frequency f = (n) - kot (Which reduces
to Kon for short burst durations, i.e., small (n)) (Dar et al., 2012;
Dey et al., 2015). Interestingly, by virtue of the constancy of ki
and 7,, at high activity ((n)>0.5), mainly the burst size
changes (Figure 5F), while for (n) <0.5, it is the burst frequency
that changes (Figure 5G). These results recapitulate recent ob-
servations of frequency modulation (Bartman et al., 2016; Fu-
kaya et al., 2016; Larson et al., 2013; Li et al., 2018; Senecal
et al., 2014) and might explain previously observed global trends
in burst size (Sanchez and Golding, 2013).

Provided all genes become transcriptionally competent at the
same time following mitosis (Blythe and Wieschaus, 2015, 2016),
the conserved correlation time we measure here implies that all
genes reach steady state simultaneously (Figures S3C and S3F).
Consistent with prior observations (Dubuis et al., 2013; Garcia
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Figure 5. Inferred Transcription Parameters Are Tightly Constrained across Gap Genes
(A and B) Inferred Pol Il initiation rate kini (A) and promoter mean occupancy (n) (B) for all genes across AP position.

(C and D) Inferred on-rate ko, (C) and off-rate ko (D) as a function of mean occupancy (n) for all genes. Solid black lines represent the global trend using the mean

value of 7, (see formula in inset).

(E) Inferred switching correlation time 7, as a function of mean occupancy (n) for all genes with a mean value of 7, =3.0 + 1.2 min (dashed line).
(F and G) Inferred burst size b (F) and burst frequency f (G) as a function of the mean occupancy (n). Solid black lines represent the global trend using the mean

value of ki and 7, (see formula in inset).

Color code as in Figure 1C. Error bars are the 10™ to 90" percentiles of the posterior distribution. See also Figure S6.

et al., 2013), synchronicity suggests that the relative mean syn-
thesis rates are maintained (i.e., unmodulated) across the
patterning boundaries during early development (Figure S3F).
In addition, a short correlation time (7, =3.0 = 1.2 min, small rela-
tive to ~15 min duration of interphase 13) ensures effective tem-
poral averaging of the switching noise by accumulation of stable
transcripts, further suggesting that both expression timing and
noise minimization jointly constrain switching rates. These dy-
namic constraints may be essential for precise and reproducible
patterning outcomes, affecting the range of permissible values of
kon and kos. Together, these results show that for the gap genes,
the apparently complex process of regulating expression rates is
explained by a conceptually simple, shared modulation strategy
of bursting kinetics. Our approach opens a path to uncovering
general principles to unify the regulation of transcription
across genes.

DISCUSSION

A multitude of processes influence eukaryotic transcription
rates. Itis not clear which events might be more likely than others
to determine the kinetics of bursting—either globally or in a gene
specific manner, nor is it known how bursting kinetics compare
across endogenous genes over a range of expression levels.
Our quantitative bursting measurements reveal that all gap
gene expression boundaries arise from the same underlying ki-
netics regardless of the differences in regulatory elements.
Thus, from the complex combination of diverse interactions spe-
cific to each gene emerges a simple, common strategy for tran-
scriptional regulation.

Our recognition of shared regulation surfaced only upon devel-
opment of a highly precise single-molecule method of quantifi-
cation. Conclusions about bursting depend heavily upon
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understanding sources and extent of measurement error and
minimizing variability from extrinsic sources. Extrinsic pro-
cesses, such as cell growth and division, DNA duplication, and
mRNA transport and decay, can significantly affect the apparent
variability between cells and thus also bursting rates (Battich
et al., 2015; Bahar Halpern et al., 2015; Zopf et al., 2013). We
minimize these effects by measuring transcription at nascent
sites in an endogenous system with synchronized cell divisions.
Moreover, explicit quantification of measurement error resulted
in a noise model that significantly constrained our inference
framework. All these approaches are generally applicable to
enable precise quantification in any system.

The fundamental mean-cumulant relationships we uncovered
demonstrate that a single-parameter distribution globally deter-
mines transcriptional activity (Figures 3B-3D). Employing the
telegraph model (Peccoud and Ycart, 1995), we find that the
modulation of mean occupancy (n) predicts mean mRNA syn-
thesis rates comparable with previous measurements (Fig-
ure S60) (Garcia et al., 2013) and reproduces the distribution
of nascent activity (Figures S6G-S6J), whereas ki, and 7, are
conserved. The global behavior we observe is surprising, given
that bursting is generally believed to be gene and promoter spe-
cific. Multiple factors and processes, including enhancer-pro-
moter interactions, chromatin context, nucleosome occupancy,
Pol Il pausing, and transcription factor interactions, all impinge
on bursting rates (Bartman et al., 2016; Brown and Boeger,
2014; Carey et al., 2013; Dar et al., 2012; Dey et al., 2015; Fukaya
et al., 2016; Molina et al., 2013; Senecal et al., 2014; Suter et al.,
2011; Weinberger et al., 2012; Zenklusen et al., 2008). It remains
to be determined whether the same processes are modulated in
the same manner or, conversely, whether different regulatory
strategies have converged to generate identical transcriptional
activity across genes.

These observations raise the question of whether the com-
mon transcriptional bursting kinetics carry a functional advan-
tage (Eldar and Elowitz, 2010). In early embryos, the precise
positioning of cell fates requires minimizing variability between
nuclei, which is achieved by a combination of long mRNA life-
times permitting accumulation and spatial averaging through
the syncytial cytoplasm (Little et al., 2013). In principle, modu-
lating kini at a constitutive promoter would generate the theo-
retical minimal (Poisson) transcriptional noise at all levels (San-
chez et al., 2013). The fact that neither constitutive activity
({(n) <0.85) nor Pol Il saturation (Keio/kini ~ 215 bp > Pol I
footprint) is ever observed suggests that some constraint pro-
hibits this system from maintaining a continuous active state
and/or it is not straightforward to alter ki,. Instead, a constant
switching correlation time suggests that this value is important
in facilitating robust patterning. We propose that both expres-
sion timing and noise minimization jointly constrain switch-
ing rates.

The mechanistic origins of the conserved parameters are un-
known. One possibility is that protein-DNA affinities have been
individually selected to confer the switching rates we observe.
However, it is unclear how transient transcription factor interac-
tions, usually on the order of seconds, could generate bursts on
the order of minutes (Elf et al., 2007; Izeddin et al., 2014; Karpova
et al., 2008). Another possibility is that the fast transcription fac-
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tor binding kinetics are masked by the slower dynamics of com-
mon general factors involved in the transcription process. In fact,
recent evidence suggests that mediator and TATA-binding pro-
tein binding, as well as the core promoter and its shape, play a
key role in bursting (Li et al., 2018; Schor et al., 2017; Tantale
et al., 2016). Alternatively, processes of potentially even slower
dynamics, such as long-range enhancer-promoter interactions,
chromatin modification, or Pol Il pausing, may determine com-
mon bursting kinetics (Chen et al., 2018; Henriques et al.,
2018; Nicolas et al., 2018).

The observed constancy of 7, will guide further modeling and
identification of the molecular mechanisms. This constancy is
connected to the binomial noise level (STAR Methods, Equation
8). Extensions of the two-state model must provide similar
filtering of the binomial noise, which will restrict the possible
class of models. For example, we tested two particular exten-
sions of the two-state model. One possibility is a three-state
model consisting of a two-step reversible activation (Rieckh
and Tkacik, 2014). Alternatively, a model with an additional noise
term, such as input noise stemming from input transcription fac-
tor diffusion (Kaizu et al., 2014; Tkacik et al., 2008), could explain
dual modulation of switching rates observed under the two-state
model. However, distinguishing these models will require live
imaging.

The common transcriptional parameters of the gap genes
highlight a form of complexity reduction: despite the variety of
upstream regulatory elements, all expression boundaries result
from similar bursting kinetics. Whether this signature results
from an underlying molecular simplicity has yet to be deter-
mined. Regardless of the mechanistic means by which these
similarities are achieved, the convergence suggests the general
constraints that limit the range of permitted bursting rates and/or
minimize transcription variability. The unexpected conservation
of the initiation rate and the correlation time might indicate a
path to general rules in transcriptional regulation. It is now
possible to inquire about the breadth of these generalities and
whether they apply to the same gene expressed in different
cell types, to the transcriptome as a whole, or even across or-
ganisms. Indeed, it appears plausible that other classes of genes
share similarly constrained bursting kinetics (Sanchez and Gold-
ing, 2013). The methods we utilize here are applicable in a variety
of systems and permit the discovery of the molecular mecha-
nism(s) conferring unified transcription kinetics.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

o KEY RESOURCE TABLE
® CONTACT FOR REAGENT AND RESOURCE SHARING
o EXPERIMENTAL MODEL AND SUBJECT DETAILS
O Fly strains
e METHOD DETAILS
O DNA oligonucleotides
O smFISH protocol
O Imaging
O Image analysis



Calibration in absolute units

Measurement error

Single parameter distribution of transcriptional activity
Two-state model of transcriptional activity

Cumulant analysis

Inferring transcription kinetics of endogenous genes
from dual color smFISH

® QUANTIFICATION AND STATISTICAL ANALYSIS

O OO0OO0OO0O0

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, three tables, and one data file
and can be found with this article online at https://doi.org/10.1016/j.cell.
2018.09.056.

ACKNOWLEDGMENTS

We thank C. Bartman, W. Bialek, P. Francois, M. Levo, J. Mozziconacci, F.
Naef, A. Raj, T. Sokolowski, G. Tkacik, and E. Wieschaus for insightful discus-
sion and valuable comments on the manuscript. B.Z. was partially supported
by the Swiss National Science Foundation early Postdoc Mobility fellowship.
This study was funded by grants from the National Institutes of Health (U01
EB021239, U01 DA047730, and RO1 GM097275) and the National Science
Foundation (PHY-1734030).

AUTHOR CONTRIBUTIONS

Conceptualization, methodology, formal analysis, investigation, writing—orig-
inal draft, writing—review & editing, funding acquisition, resources, and super-
vision: B.Z., S.C.L., and T.G.

DECLARATION OF INTERESTS
The authors declare no competing interests.

Received: February 5, 2018
Revised: July 2, 2018
Accepted: September 26, 2018
Published: October 18, 2018

REFERENCES

Bahar Halpern, K., Tanami, S., Landen, S., Chapal, M., Szlak, L., Hutzler, A.,
Nizhberg, A., and ltzkovitz, S. (2015). Bursty gene expression in the intact
mammalian liver. Mol. Cell 58, 147-156.

Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E., Pilpel, Y., and
Barkai, N. (2006). Noise in protein expression scales with natural protein abun-
dance. Nat. Genet. 38, 636-643.

Bartman, C.R., Hsu, S.C., Hsiung, C.C.S., Raj, A., and Blobel, G.A. (2016).
Enhancer Regulation of Transcriptional Bursting Parameters Revealed by
Forced Chromatin Looping. Mol. Cell 62, 237-247.

Battich, N., Stoeger, T., and Pelkmans, L. (2015). Control of Transcript
Variability in Single Mammalian Cells. Cell 163, 1596-1610.

Blake, W.J., KAEm, M., Cantor, C.R., and Collins, J.J. (2003). Noise in
eukaryotic gene expression. Nature 422, 633-637.

Blumenthal, A.B., Kriegstein, H.J., and Hogness, D.S. (1974). The units of DNA
replication in Drosophila melanogaster chromosomes. Cold Spring Harb.
Symp. Quant. Biol. 38, 205-223.

Blythe, S.A., and Wieschaus, E.F. (2015). Zygotic genome activation triggers
the DNA replication checkpoint at the midblastula transition. Cell 160,
1169-1181.

Blythe, S.A., and Wieschaus, E.F. (2016). Establishment and maintenance of
heritable chromatin structure during early Drosophila embryogenesis. eLife
5, 1752-1765.

Bothma, J.P., Garcia, H.G., Esposito, E., Schlissel, G., Gregor, T., and Levine,
M. (2014). Dynamic regulation of eve stripe 2 expression reveals transcriptional
bursts in living Drosophila embryos. Proc. Natl. Acad. Sci. USA 1717,
10598-10603.

Briscoe, J., and Small, S. (2015). Morphogen rules: design principles of
gradient-mediated embryo patterning. Development 742, 3996-4009.

Brody, Y., Neufeld, N., Bieberstein, N., Causse, S.Z., Béhnlein, E.M., Neuge-
bauer, K.M., Darzacq, X., and Shav-Tal, Y. (2011). The in vivo kinetics of
RNA polymerase Il elongation during co-transcriptional splicing. PLoS Biol.
9, e1000573.

Brown, C.R., and Boeger, H. (2014). Nucleosomal promoter variation gener-
ates gene expression noise. Proc. Natl. Acad. Sci. USA 111, 17893-17898.
Carey, L.B., van Dijk, D., Sloot, P.M.A., Kaandorp, J.A., and Segal, E. (2013).
Promoter sequence determines the relationship between expression level
and noise. PLoS Biol. 77, e1001528.

Chen, H., Levo, M., Barinov, L., Fujioka, M., Jaynes, J.B., and Gregor, T.
(2018). Dynamic interplay between enhancer-promoter topology and gene ac-
tivity. Nat. Genet. 50, 1296-1308.

Choubey, S., Kondev, J., and Sanchez, A. (2015). Deciphering Transcriptional
Dynamics In Vivo by Counting Nascent RNA Molecules. PLoS Comput. Biol.
11, e1004345.

Coulon, A., Chow, C.C., Singer, R.H., and Larson, D.R. (2013). Eukaryotic tran-
scriptional dynamics: from single molecules to cell populations. Nat. Rev.
Genet. 14, 572-584.

Dar, R.D., Razooky, B.S., Singh, A., Trimeloni, T.V., McCollum, J.M., Cox,
C.D., Simpson, M.L., and Weinberger, L.S. (2012). Transcriptional burst fre-
quency and burst size are equally modulated across the human genome.
Proc. Natl. Acad. Sci. USA 109, 17454-17459.

Dubuis, J.O., Samanta, R., and Gregor, T. (2013). Accurate measurements of
dynamics and reproducibility in small genetic networks. Mol. Syst. Biol. 9, 639.
Eldar, A., and Elowitz, M.B. (2010). Functional roles for noise in genetic circuits.
Nature 467, 167-173.

Elf, J., Li, G.-W., and Xie, X.S. (2007). Probing transcription factor dynamics at
the single-molecule level in a living cell. Science 316, 1191-1194.

Estrada, J., Wong, F., DePace, A., and Gunawardena, J. (2016). Information
Integration and Energy Expenditure in Gene Regulation. Cell 166, 234-244.
Fukaya, T., Lim, B., and Levine, M. (2016). Enhancer Control of Transcriptional
Bursting. Cell 166, 358-368.

Fukaya, T., Lim, B., and Levine, M. (2017). Rapid Rates of Pol Il Elongation in
the Drosophila Embryo. Curr. Biol. 27, 1387-1391.

Garcia, H.G., Tikhonov, M., Lin, A., and Gregor, T. (2013). Quantitative imaging
of transcription in living Drosophila embryos links polymerase activity to
patterning. Curr. Biol. 23, 2140-2145.

Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemical reac-
tions. J. Phys. Chem. 87, 2340-2361.

Golding, I., Paulsson, J., Zawilski, S.M., and Cox, E.C. (2005). Real-time ki-
netics of gene activity in individual bacteria. Cell 723, 1025-1036.

Gregor, T., Garcia, H.G., and Little, S.C. (2014). The embryo as a laboratory:
quantifying transcription in Drosophila. Trends Genet. 30, 364-375.

Hastings, W.K. (1970). Monte Carlo Sampling Methods Using Markov chains
and Their Applications. Biometrika 57, 97-109.

Henriques, T., Scruggs, B.S., Inouye, M.O., Muse, G.W., Williams, L.H.,
Burkholder, A.B., Lavender, C.A., Fargo, D.C., and Adelman, K. (2018). Wide-
spread transcriptional pausing and elongation control at enhancers. Genes
Dev. 32, 26-41.

Hoch, M., Schréder, C., Seifert, E., and Jéckle, H. (1990). cis-acting control
elements for Kriippel expression in the Drosophila embryo. EMBO J. 9,
2587-2595.

Hornung, G., Bar-Ziv, R., Rosin, D., Tokuriki, N., Tawfik, D.S., Oren, M., and
Barkai, N. (2012). Noise-mean relationship in mutated promoters. Genome
Res. 22, 2409-2417.

Cell 175, 835-847, October 18, 2018 845


https://doi.org/10.1016/j.cell.2018.09.056
https://doi.org/10.1016/j.cell.2018.09.056
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref1
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref1
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref1
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref2
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref2
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref2
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref3
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref3
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref3
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref4
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref4
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref5
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref5
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref6
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref6
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref6
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref7
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref7
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref7
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref8
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref8
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref8
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref9
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref9
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref9
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref9
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref10
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref10
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref11
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref11
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref11
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref11
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref12
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref12
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref13
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref13
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref13
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref14
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref14
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref14
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref15
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref15
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref15
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref16
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref16
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref16
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref17
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref17
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref17
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref17
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref18
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref18
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref19
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref19
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref20
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref20
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref21
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref21
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref22
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref22
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref23
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref23
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref24
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref24
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref24
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref25
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref25
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref26
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref26
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref27
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref27
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref28
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref28
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref29
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref29
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref29
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref29
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref30
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref30
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref30
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref31
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref31
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref31

Izeddin, I., Récamier, V., Bosanac, L., Cissé, .., Boudarene, L., Dugast-Dar-
zacq, C., Proux, F., Bénichou, O., Voituriez, R., Bensaude, O., et al. (2014). Sin-
gle-molecule tracking in live cells reveals distinct target-search strategies of
transcription factors in the nucleus. eLife 3, e02230.

Jacob, Y., Sather, S., Martin, J.R., and Ollo, R. (1991). Analysis of Kriippel con-
trol elements reveals that localized expression results from the interaction of
multiple subelements. Proc. Natl. Acad. Sci. USA 88, 5912-5916.

Jaeger, J. (2011). The gap gene network. Cell. Mol. Life Sci. 68, 243-274.

Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K.N.,
Manu, Myasnikova, E., Vanario-Alonso, C.E., Samsonova, M., et al. (2004). Dy-
namic control of positional information in the early Drosophila embryo. Nature
430, 368-371.

Jones, D.L., Brewster, R.C., and Phillips, R. (2014). Promoter architecture dic-
tates cell-to-cell variability in gene expression. Science 346, 1533-1536.

Kaizu, K., de Ronde, W., Paijmans, J., Takahashi, K., Tostevin, F., and ten
Wolde, P.R. (2014). The Berg-Purcell limit revisited. Biophys. J. 106, 976-985.

Karpova, T.S., Kim, M.J., Spriet, C., Nalley, K., Stasevich, T.J., Kherrouche, Z.,
Heliot, L., and McNally, J.G. (2008). Concurrent fast and slow cycling of a tran-
scriptional activator at an endogenous promoter. Science 319, 466-469.

Keren, L., van Dijk, D., Weingarten-Gabbay, S., Davidi, D., Jona, G., Wein-
berger, A., Milo, R., and Segal, E. (2015). Noise in gene expression is coupled
to growth rate. Genome Res. 25, 1893-1902.

Kornberg, T.B., and Tabata, T. (1993). Segmentation of the Drosophila em-
bryo. Curr. Opin. Genet. Dev. 3, 585-594.

Kvon, E.Z., Kazmar, T., Stampfel, G., Yafiez-Cuna, J.O., Pagani, M.,
Schernhuber, K., Dickson, B.J., and Stark, A. (2014). Genome-scale functional
characterization of Drosophila developmental enhancers in vivo. Nature
512, 91-95.

Larson, D.R., Fritzsch, C., Sun, L., Meng, X., Lawrence, D.S., and Singer, R.H.
(2013). Direct observation of frequency modulated transcription in single cells
using light activation. eLife 2, e00750.

Lawrence, P.A. (1992). The making of a fly: The genetics of animal design.

Lestas, I., Paulsson, J., Ross, N.E., and Vinnicombe, G. (2008). Noise in Gene
Regulatory Networks. IEEE Trans. Automat. Control 53, 189-200.

Li, C., Cesbron, F., Oehler, M., Brunner, M., and Héfer, T. (2018). Frequency
Modulation of Transcriptional Bursting Enables Sensitive and Rapid Gene
Regulation. Cell Syst. 6, 409-423.

Lionnet, T., and Singer, R.H. (2012). Transcription goes digital. EMBO Rep. 13,
313-321.

Little, S.C., Tikhonov, M., and Gregor, T. (2013). Precise developmental gene
expression arises from globally stochastic transcriptional activity. Cell 154,
789-800.

Lucas, T., Ferraro, T., Roelens, B., De Las Heras Chanes, J., Walczak, A.M.,

Coppey, M., and Dostatni, N. (2013). Live imaging of bicoid-dependent tran-
scription in Drosophila embryos. Curr. Biol. 23, 2135-2139.

Manu, Surkova, S., Spirov, A.V., Gursky, V.V., Janssens, H., Kim, A.R., Radu-
lescu, O., Vanario-Alonso, C.E., Sharp, D.H., Samsonova, M., et al. (2009).
Canalization of gene expression in the Drosophila blastoderm by gap gene
cross regulation. PLoS Biol. 7, e1000049.

Molina, N., Suter, D.M., Cannavo, R., Zoller, B., Gotic, I., and Naef, F. (2013).
Stimulus-induced modulation of transcriptional bursting in a single mammalian
gene. Proc. Natl. Acad. Sci. USA 170, 20563-20568.

Munsky, B., and Khammash, M. (2006). The finite state projection algorithm for
the solution of the chemical master equation. J. Chem. Phys. 124, 044104.
Nicolas, D., Zoller, B., Suter, D.M., and Naef, F. (2018). Modulation of tran-
scriptional burst frequency by histone acetylation. Proc. Natl. Acad. Sci.
USA 115, 7153-7158.

O’Brien, T., and Lis, J.T. (1993). Rapid changes in Drosophila transcription
after an instantaneous heat shock. Mol. Cell. Biol. 13, 3456-3463.
Ochoa-Espinosa, A., Yucel, G., Kaplan, L., Pare, A., Pura, N., Oberstein, A.,
Papatsenko, D., and Small, S. (2005). The role of binding site cluster strength

846 Cell 175, 835-847, October 18, 2018

in Bicoid-dependent patterning in Drosophila. Proc. Natl. Acad. Sci. USA 102,
4960-4965.

Pankratz, M.J., Busch, M., Hoch, M., Seifert, E., and Jéckle, H. (1992). Spatial
control of the gap gene knirps in the Drosophila embryo by posterior
morphogen system. Science 255, 986-989.

Peccoud, J., and Ycart, B. (1995). Markovian Modeling of Gene-Product Syn-
thesis. Theor. Popul. Biol. 48, 222-234.

Perry, M.W., Boettiger, A.N., and Levine, M. (2011). Multiple enhancers ensure
precision of gap gene-expression patterns in the Drosophila embryo. Proc.
Natl. Acad. Sci. USA 108, 13570-13575.

Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., and Tyagi, S. (2006).
Stochastic mMRNA synthesis in mammalian cells. PLoS Biol. 4, e309.

Rieckh, G., and Tkacik, G. (2014). Noise and information transmission in pro-
moters with multiple internal States. Biophys. J. 706, 1194-1204.

Sanchez, A., and Golding, I. (2013). Genetic determinants and cellular con-
straints in noisy gene expression. Science 342, 1188-1193.

Sanchez, A., and Kondev, J. (2008). Transcriptional control of noise in gene
expression. Proc. Natl. Acad. Sci. USA 105, 5081-5086.

Sanchez, A., Choubey, S., and Kondev, J. (2013). Regulation of noise in gene
expression. Annu. Rev. Biophys. 42, 469-491.

Scholes, C., DePace, A.H., and Sanchez, A. (2017). Combinatorial Gene Regu-
lation through Kinetic Control of the Transcription Cycle. Cell Syst. 4, 97-108.
Schor, I.E., Degner, J.F., Harnett, D., Cannavo, E., Casale, F.P., Shim, H., Gar-
field, D.A., Birney, E., Stephens, M., Stegle, O., and Furlong, E.E. (2017). Pro-
moter shape varies across populations and affects promoter evolution and
expression noise. Nat. Genet. 49, 550-558.

Schroeder, M.D., Pearce, M., Fak, J., Fan, H., Unnerstall, U., Emberly, E.,
Rajewsky, N., Siggia, E.D., and Gaul, U. (2004). Transcriptional control in the
segmentation gene network of Drosophila. PLoS Biol. 2, E271.

Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U., and Gaul, U. (2008).
Predicting expression patterns from regulatory sequence in Drosophila seg-
mentation. Nature 457, 535-540.

Senecal, A., Munsky, B., Proux, F., Ly, N., Braye, F.E., Zimmer, C., Mueller, F.,
and Darzacq, X. (2014). Transcription factors modulate c-Fos transcriptional
bursts. Cell Rep. 8, 75-83.

Dey, S.S., Foley, J.E., Limsirichai, P., Schaffer, D.V., and Arkin, A.P. (2015).
Orthogonal control of expression mean and variance by epigenetic features
at different genomic loci. Mol. Syst. Biol. 17, 806.

Sidje, R.B. (1998). Expokit: A Software Package for Computing Matrix Expo-
nentials. ACM Trans. Math. Softw. 24, 130-156.

Struhl, G., Johnston, P., and Lawrence, P.A. (1992). Control of Drosophila
body pattern by the hunchback morphogen gradient. Cell 69, 237-249.
Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., and Naef, F.
(2011). Mammalian Genes Are Transcribed with Widely Different Bursting
Kinetics. Science 332, 472-474.

Taniguchi, Y., Choi, P.J., Li, G.W., Chen, H., Babu, M., Hearn, J., Emili, A., and
Xie, X.S. (2010). Quantifying E. coli proteome and transcriptome with single-
molecule sensitivity in single cells. Science 329, 533-538.

Tantale, K., Mueller, F., Kozulic-Pirher, A., Lesne, A., Victor, J.-M., Robert,
M.-C., Capozi, S., Chouaib, R., Backer, V., Mateos-Langerak, J., et al.
(2016). A single-molecule view of transcription reveals convoys of RNA poly-
merases and multi-scale bursting. Nat. Commun. 7, 12248.

Tkacik, G., Gregor, T., and Bialek, W. (2008). The role of input noise in tran-
scriptional regulation. PLoS ONE 3, e2774.

Voss, T.C., and Hager, G.L. (2014). Dynamic regulation of transcriptional states
by chromatin and transcription factors. Nat. Rev. Genet. 15, 69-81.
Weinberger, L., Voichek, Y., Tirosh, I., Hornung, G., Amit, I., and Barkai, N.
(2012). Expression noise and acetylation profiles distinguish HDAC functions.
Mol. Cell 47, 193-202.

Xu, H., Sepulveda, L.A., Figard, L., Sokac, A.M., and Golding, I. (2015).
Combining protein and mMRNA quantification to decipher transcriptional regu-
lation. Nat. Methods 72, 739-742.


http://refhub.elsevier.com/S0092-8674(18)31307-2/sref32
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref32
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref32
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref32
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref33
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref33
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref33
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref34
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref35
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref35
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref35
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref35
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref36
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref36
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref37
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref37
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref38
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref38
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref38
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref39
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref39
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref39
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref40
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref40
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref41
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref41
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref41
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref41
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref42
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref42
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref42
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref44
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref44
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref45
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref45
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref45
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref46
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref46
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref47
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref47
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref47
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref48
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref48
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref48
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref49
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref49
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref49
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref49
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref50
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref50
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref50
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref51
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref51
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref52
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref52
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref52
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref53
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref53
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref54
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref54
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref54
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref54
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref55
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref55
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref55
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref56
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref56
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref57
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref57
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref57
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref58
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref58
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref59
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref59
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref59
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref60
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref60
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref61
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref61
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref62
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref62
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref63
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref63
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref64
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref64
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref64
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref64
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref65
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref65
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref65
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref66
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref66
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref66
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref67
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref67
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref67
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref68
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref68
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref68
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref69
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref69
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref70
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref70
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref71
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref71
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref71
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref72
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref72
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref72
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref73
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref73
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref73
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref73
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref74
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref74
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref74
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref75
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref75
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref76
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref76
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref76
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref77
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref77
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref77

Xu, H., Skinner, S.0., Sokac, A.M., and Golding, I. (2016). Stochastic Kinetics
of Nascent RNA. Phys. Rev. Lett. 777, 128101-128106.

Zenklusen, D., Larson, D.R., and Singer, R.H. (2008). Single-RNA counting re-
veals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15,
1263-1271.

Zoller, B., Nicolas, D., Molina, N., and Naef, F. (2015). Structure of silent tran-
scription intervals and noise characteristics of mammalian genes. Mol. Syst.
Biol. 11, 823.

Zopf, C.J., Quinn, K., Zeidman, J., and Maheshri, N. (2013). Cell-cycle depen-
dence of transcription dominates noise in gene expression. PLoS Comput.
Biol. 9, e1003161.

Cell 175, 835-847, October 18,2018 847


http://refhub.elsevier.com/S0092-8674(18)31307-2/sref78
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref78
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref79
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref79
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref79
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref80
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref80
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref80
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref81
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref81
http://refhub.elsevier.com/S0092-8674(18)31307-2/sref81

STARXxMETHODS

KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Experimental Models: Organisms/Strains

D. melanogaster: Oregon-R, wild-type laboratory stock N/A Flybase: FBst1000077
D. melanogaster: chromosomal deletion spanning hb w[1118]; Bloomington Drosophila Flybase: FBab0045343
Df(3R)BSC477/TM6C, Sb[1] cu[1] Stock Center BDSC: 24981
Oligonucleotides

smFISH probes for hb, see Table S1 This paper N/A

smFISH probes for Kr, see Table S1 This paper N/A

smFISH probes for kni, see Table S1 This paper N/A

smFISH probes for gt, see Table S1 This paper N/A

Software and Algorithms
FiSH Toolbox Little et al. (2013) N/A

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Thomas
Gregor (tg2@princeton.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly strains

Oregon-R (Ore-R) embryos were used as wild-type. Embryos heterozygous for a deficiency spanning hb were collected from crosses
of heterozygous adults of the strain w'''®; Df(8R)BSC477/TM6C. Heterozygotes of the hb deficiency, as well as wild-type male and
female embryos stained for gt, were distinguished from siblings by visual inspection of nascent transcription sites.

METHOD DETAILS

DNA oligonucleotides

Oligonucleotide sequences complementary to the open reading frames of each gene of interest were chosen using the Biosearch
Technologies Stellaris RNA FISH probe designer (https://www.biosearchtech.com/support/tools/design-software/stellaris-
probe-designer). Amine-modified oligonucleotides were obtained from Biosearch Technologies, chemically coupled to NHS-
ester-Atto565 (Sigma-Aldrich; 72464) or -Atto633 (Sigma-Aldrich; 01464) and purified by HPLC. Probes are listed in Table S1.

smFISH protocol

We modified our smFISH protocol (Little et al., 2013) to minimize background and maximize signal. Embryos were crosslinked in
1xPBS containing 16% paraformaldehyde for 2 min before devitellinization. Embryos were washed four times in methanol, 5 min
per wash, with gentle rocking at room temperature, followed by an extended 30-60 min wash in methanol. Fixed embryos were
then used immediately for smFISH without intervening storage. Embryos washed three times in 1X PBS, 5 min per wash, at room
temperature with rocking. Embryos were then washed 3 times in smFISH wash buffer (Little et al., 2013), 10 min per wash, at
room temperature. During this time, probes diluted in hybridization buffer (Little et al., 2013) were preheated to 37°C. Hybridization
was performed for 1.5 hr at 37C with vigorous mixing every 15 min. During hybridization, smFISH wash buffer was preheated to 37C.
Embryos were washed four times with large excess volumes of wash buffer for 3-5 min per wash, rinsed twice briefly in PBS, stained
with DAPI, and mounted in VECTASHIELD (Vector Laboratories; H-1000). Imaging was performed within 48 hr to ensure high quality
signal.

Imaging

Imaging was performed by laser-scanning confocal microscopy on a Leica SP5 inverted microscope. We used a 63x HCX PL
APO CS 1.4 NA oil immersion objective with pixels of 76 x 76 nm? and z spacing of 340 nm. We typically obtained stacks representing
8um in total axial thickness starting at the embryo surface. The microscope was equipped with “HyD Hybrid Detector” avalanche
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photodiodes (APDs) that we utilized in photon counting mode. This is in contrast to our prior approach (Little et al., 2013) in which
standard photomultiplier tubes (PMTs) were used to collect two separate smFISH image stacks at two different laser intensities: a
low power stack for measuring transcription intensities, and a high power stack to distinguish single mRNAs. The use of low-noise
photon-counting APDs in place of standard photomultipliers provided sufficient dynamic range to capture high signal transcription
sites and to separate relatively dim cytoplasmic single mRNAs from background fluorescence with a single laser power. This also
abrogated the need to calibrate the high- and low-power stacks for comparison. The removal of the calibration step provided an addi-
tional reduction in measurement error.

Image analysis

Raw data are processed according to previously developed image analysis pipeline (Little et al., 2013). Briefly, raw images are filtered
using a Difference-of-Gaussians (DoG) filter to detect spot objects. A master threshold is applied to separate candidate spots from
background. True point-like sources of fluorescence are identified, as they appeared on multiple consecutive z-slices (>3) at the
same location. All candidate particles are then labeled as transcription sites, cytoplasmic transcripts or noise based on global thresh-
olds. The threshold separating cytoplasmic transcripts from noise is defined as the bottom of the valley between the two peaks on the
particle intensity distribution. The threshold for transcription sites depends both on intensity and position, as transcription sites clus-
terin zand are enclosed in nuclei (segmented from DAPI staining). Intensity of transcription sites is obtained by integrating the signal
over a fixed cylinder volume (Vs = = X 0.762 x 3.06 um®, determined from the objective’s PSF).

Calibration in absolute units

We calibrated the integrated intensity of transcription sites Fs by first characterizing the relationship between the fluorescence signal
and the density of cytoplasmic transcripts. We defined summation volumes in the embryo (V =3.8x3.8x8 um?®) avoiding region of
high tissue deformation and excluding transcription site location. For each summation volume we counted the number of detected
cytoplasmic transcripts and integrated the fluorescence intensity. At low count density, the fluorescence per summation volume F
scales linearly with density D (Little et al., 2013). Fitting a simple linear relationship F = aD + (3, where 8 corresponds to background,
enables estimation of a scaling factor « to calibrate transcription sites in “cytoplasmic units” (C.U.) for each embryo. Namely, the
intensity in C.U. is given by f = (Fs — bVs)/a where b is the background intensity per pixel in each nucleus. The resulting quantification
of transcriptional activity for all gap genes is provided in Supplemental Data.

Measurement error
Embryo staging
In order to assess the timing of the different embryos, we first manually ranked the different embryos based on timing estimation from
DAPI staining. We estimated the interphase stage relying on morphological features of the nuclei (shape and textures) in the DAPI
channel. We then verified whether accumulation of cytoplasmic mRNAs correlates with our manual ranking (Figure S1A). Both ap-
proaches lead to similar results and provide a decent proxy for timing. By comparing the average activity of the different embryos
in the maximally expressed regions with the cytoplasmic density, we assessed the effect of timing on the mean activity (Figure S1B).
We estimated the Pearson correlation coefficient p for the different genes and regions (gt anterior and posterior regions). Overall,
timing explain up to p? = 44% of the embryo variability (defined as the variance of the mean activity among embryos ”;24) in the maxi-
mally expressed regions (Figure S1C), with the exception of kni that is highly correlated p ~ 0.8. We thus separated the kni embryos in
two sub-populations, early and late embryos. We performed the splitting by finding the cytoplasmic density threshold that minimizes
the sum of within-population variance in mean activity. We then calculated the staging variability osta = po,, defined as the variability
in mean activity explained by timing between late and early embryos (Figure S1D). Given the overall small staging variability <14%,
the total mean activity is stable enough to warrant the assumption of steady-state.
Imaging noise model
We quantified measurements noise due to imaging and calibration using a two-color smFISH approach, labeling each mRNA in alter-
nating colors along the length of the mRNA. We included 15 hb embryos in the analysis, which corresponds to approximately 4,000
nuclei activity measurements. We then normalized the activity (fluorescence signal) of the nuclei in cytoplasmic units independently in
each channel. In absence of noise and provided accurate normalization, both channels would perfectly correlate with slope one. By
plotting one channel against the other (Figure 2A), we assessed the slope and characterized the spread of the data along the ex-
pected line.

We build a simple effective model to describe measurement noise:

P(S(s), S®|G®, G¥) :/\/'(S(5) | p=G® a2 (G®))-N(S® | u= G®, a2 (G<3))) (Equation 1)
where S stands for the fluorescent signal in cytoplasmic units and G the total nascent transcripts (in C.U.) in absence of noise. We

assumed that the measurement errors were normally distributed and independent in both channels, which was motivated by the
absence of correlation in the background. We further assumed that the variance would depend on activities, consistent with the
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increasing spread observed in the data. In order to estimate the variance specific to each channel, we fitted a straight line y =ax +h
assuming error on both x=S®) and y=S©®. We expanded the variance as a function of the scalar projection along the line v:

?(V)= a2 +byv+bov? + -

Assuming the same error along x and y, we then maximized the following likelihood to estimate the parameters 6 = {a,h, oy, b1,
b27 .. }

P({x;,y; v —ax - h)2>

Ny 1
Ho= H /272 (V,) exp( T2(1+a)2(v))

Using the Akaike information criterion, we selected the best model which was parameterized by (a, o5, b1, b2) with h = 0. The best
fitting parameters were: a = 0.968, g, = 4.59-102, b1 =9.31-103 and b, =9.23-10~* (Figure 2A). The variances in the noise mea-
surement model (Equation 1) are then given by:

0%(G)=0d? (v: G2+ (aG)z)

a§(G)=UZ(V:\/m)

where ¢2(v) = o2 + b1v + bpv2. The resulting imaging noise is shown in Figure S1E. In the maximally expressed regions, we measure
transcriptional activity with an error of 5% and relate it to absolute units with an uncertainty below 3.5% (the largest deviation of the
slope 0.968 + 0.003 from 1). This represents an error reduction by 3- to 4-fold compared to our previous measurements (assuming
multiplicative errors; 6% versus 20%) (Little et al., 2013).

Splitting of the total variance

The Anterior-Posterior axis (AP) was determined based on a mid-sagittal elliptic mask of the embryo in the DAPI channel (Little et al.,
2013). Position is obtained by registration of high- and low-magnification DAPI images of the surface. We then fitted constrained
splines to approximate the mean activity as a function of the AP position. We used different features of the mean profiles such as
maxima and inflection points to refine the alignment between the different embryos. Overall, this realignment procedure enables
us to estimate an alignment error of the order of 2% egg length.

After alignment, we defined spatial bins along the AP-axis with a width of 2.5% of egg length. Such a width was a good compromise
to balance the sampling and binning error. We next sought to decompose the measured total variance of the transcriptional activity o2
(Figure 1D) into different components related to imaging, alignment, embryo and nuclei variability (Figures 2B-2D). We first estimated
the variability of the mean across embryos aﬁ in each bin (Figure 2B); we split the total variance o2 in each bin according to the law of
total variance:

21 ﬁ: 2, 1 i( 7

0" =— 0] ++— i —
Nei:1 I Nei:1 mk
N ——

2 2
s Ty

where N, is the total number of embryos and u the global mean.
Next we aimed to determine what fraction of aﬁ is explained by residual misalignment. Assuming that all the variability in the mean
at boundaries results from spatial misalignment of the different embryos, one can find an upper bound on the residual alignment

error ay:
2
du
2y 2 _ 2
U‘LZO'a” = (& oy

where w is the global mean profile as function of AP position x. For each gene, we estimated the residual alignment error o required to
explain as much embryo variability as possible (Figure S1F, diagonal dash line). Overall we found that gy is of the order of 1% egg

length. The total embryo variability in the maximally expressed regions cannot be explained by misalignment as (g-ﬁ) =0 and leads

to a noise floor (Figure S1F, horizontal dash line). This noise floor can be partly explained by variability in the stage (early versus late
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ali

interphase) of the different embryos (Figures S1C and S1D). In the following we thus split ai =0
embryo to embryo variability.

Finally, we assessed what fraction of the total variance 2 corresponds to combined measurement noise o2, = aﬁng +02; where
a?mg was estimated in subsection (STAR Methods, Imaging noise model). Total measurement noise 2., remains below 20% of
the total variance for all genes and all position (Figure S1G), and on average reaches 6.1+ 3.5%. The remaining variability corre-

sponds to biological variability 2, = 02, + 02, Where a2, is the nuclei variability and was defined as:

2 2 i
+ 05, Where o2, is the residual

2 2 2

— 2
nuc = 7(Timgf d

2
o Tali emb

Overall, the non-nuclear variability (aﬁng +02;+02,,) remains below 33% of the total variance for all genes and all position

(Figure S1H), and on average reaches 16.0 +6.4%. Thus, the nuclei variability 2, largely dominates in our data and represents
84% of the total variance on average (Figures 1E and 1F).

Single parameter distribution of transcriptional activity
Noise-mean relationship in the FISH data
In practice, we measure transcriptional activity in cytoplasmic units (intensity in equivalent number of fully elongated transcripts) and not
in Pol Il counts g directly. The measured mean activity u in cytoplasmic units is proportional to the mean Pol Il counts for a single gene
copy (9), i.e., u=C1Ny4(g) where C1€0, 1] is a conversion factor accounting for the FISH probe locations on the gene and Ny the num-
ber of gene copies (for most gap genes Ny = 4, except for gt male and hb deficient that only have 2 copies). Assuming independence of
loci, the measured variance o?follows a similar relationship, i.e., o° = CgNgo’g with C»€ [0, 1]. The conversion factors Cy and C; are con-
stants that are unique for each gene and are calculated further (STAR Methods, Conversion factor for Pol Il counts).

As we will see later (Equation 8), one can derive the following functional form for the variance in Pol Il counts for a single gene copy:

a2 =(9)+(9)(go — (9))®

where gg is the maximal mean Pol Il counts on the gene that is determined by the Pol Il initiation rate ki, and elongation time 7, and &
a quantity that is related to the dynamics of the promoter activity and bounded @< [0, 1]. Of note, @ =0 for a constitutively expressed
gene such that the variance reduces to US =(g) (Poisson variance). In principle, the values of both go and @ are gene-specific and
could have specific dependency on (g). The interpretation of the equation above and the quantities go and ¢ will be discussed in
greater details later on (STAR Methods, Two-state model of transcriptional activity). Using the relationships between the cytoplasmic
units and Pol Il counts for the mean and variance above, we can express the measured noise as:

2 _
i:%(1+ 1 Ko 'U'Q))
w2 Cy\u CiNg u

where ug = C1Nggo is the maximal mean expression level in cytoplasmic units. In practice, C,/Cy =1 and C1 =0.7 (Table S2, 5 probe
location) such that the Poisson noise background in cytoplasmic units is approximately 1/u. By setting C2/Cy = 1, we further simplify
the equation above and obtain:

0_2

—2=%(1 +a(1 — p/uo)) (Equation 2)

=

with a = go®. By assuming a and p, constant, we found that the above noise-mean relationship (Equation 2) captures the overall
trend in the data well (Figure 3A), witha=9.93 + 0.35 and u, = 53.07 + 1.73 (R?> = 0.99). Although both gt male and hb deficient follow
a similar trend, they deviate from the black line, (@ = 10.66 + 0.35, uy = 18.52+0.28) and (@ = 7.68 +1.00, uy = 29.57 + 1.59) respec-
tively. Interestingly, despite the fact that go and @ could a priori be gene-specific, a is roughly conserved across genes and differ-
ences in u, can be explained by variation in gene copies (Ny =2 copies for gt male and hb deficient instead of 4) and gene length
(gt is shorter than hb, Table S3). This suggests that some key quantities underlying transcription are conserved among the gap genes
and can be highlighted by proper normalization of the measured activity.

Normalized cumulants for a single gene copy

To further investigate the transcriptional commonalities of the gap genes, we calculated the 2"9, 3" and 4™ cumulants from the data
(Figures 3B-3D). For independent random variables, the cumulants have the property to be extensive, which is convenient as the
measured transcriptional activities result from the sum of 2 or 4 independent gene copies. We first converted the k™ cumulants &
computed from the data in cytoplasmic units to Pol Il counts (or number of nascent transcripts) for a single gene copy with a normal-

ized gene length:
1 LO\*
Kk = (L) Ki
CiNg \ Ly
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where « is the k" cumulant in Pol Il counts for a single gene copy, Lg the gene length, Ny the gene copy number (4 for most genes,
except gt male and hb deficient that only have 2 copies) and Cx a conversion factor for the k" cumulant to ensure proper normali-
zation of the Poisson background (Equation 3 and Table S2). The annotated gene length L, varies between 1.8 to 3.6 kb for the gap
genes. In the following we used an effective gene length that is slightly larger and takes into account the possible lingering of fully
elongated transcripts at the loci (Table S3). This effective gene length can be estimated from the dual color FISH data (STAR Methods,
Dual color smFISH and effective gene length). For the normalization, we used a normalized gene length of (Ly) =3.3 kb.

We then fitted a second order polynomial of the mean activity (g) to the variance 05 (Figures 3B and S2A) in order to estimate the
maximal activity go, which was defined as the second crossing point between the Poisson background (Figure S2A dash line) and the
fitted variance (solid line). We found g = 15.21 + 0.20 Pol Il for a normalized gene length of 3.3 kb. Similarly, we fitted 3™ and 4™ order
polynomial of the mean activity to the cumulants xzand k4 (Figures 3C and 3D), constrained to reach the Poisson limit at go. Of note,
the cumulants of the Poisson distribution are all equal to the mean. As we observed in Figures 3B-3D, the polynomial fits (solid lines)
capture the main trend observed in the data, suggesting a simple relationship between the cumulants and the mean. It follows that the
underlying activity distribution is essentially a universal single parameter distribution whose parameter is the mean activity. To test the
extent of the universality, we repeated the analysis above of each gap gene individually (Figures S2B-S2D). The individual fits
(colored solid lines) remain relatively close to each other. Although the fits for hb slightly deviate from the other genes, the global
shape of the cumulants is conserved.

Conversion factor for Pol Il counts

As mentioned above, the cumulants of the transcriptional activity in cytoplasmic units are related to the cumulants in number of
nascent transcripts or Pol |l counts on the gene by conversion factors Cy. We calculated these conversion factors to ensure proper
normalization of the Poisson background, meaning that the conversion of cumulants in C.U. for a constitutive gene would yield the
correct cumulants in Pol Il counts. Knowing the exact location of the fluorescent probe binding regions along the gene, one can calcu-
late the contribution of a single nascent transcript to the signal in C.U. as a function its length /:

s()) =% > H( - 1) :%b(l)
i=1

where H is the unit step function, /; the end position of the i probe binding region and N the total number of probes. Here, we made
the assumptions that each fluorescent probe contributes equally to the signal and each transcribed probe region bound. The number
of probes bound to a transcript of length / is given by b(/) and will be denoted b; for le (I;, /;. 1] with Iy, 1 =Lg4 the length of a fully elon-
gated transcript. The total fluorescent signal s in cytoplasmic units for g transcripts is given by

1N
s=+ ) bigi
>

N

where g = > g;, with g; the number of transcripts whose length / belongs to the length interval (/;,/;,1]. Assuming that g; follows a
i=1

Poisson distribution with parameter % = kiniti where 7; = (/i1 — I;) /kelo, the mean fluorescent signal (s) is then given by

1N 1N 1
(s) =N ;bi<gi> =N ;bikinﬂ'i— <N ;bm KiniTe = C1(9)
c

where 7;=1;/7¢ = (li+1 — I;)/L and C1 the conversion factor that relates the mean number of transcripts (g) to the mean fluorescent
signal (s) in cytoplasmic units. This relation remains valid for the two-state model with (g) = kinite (n) (Equation 7).

As for the mean, one can calculate the conversion factors for the higher moments and cumulants assuming a Poisson background.
The second moment is given by

(s?) = # <Zj:b;b,-gfg,> = # (bebj (91)(g)) + Zb;z (g? >>

i#j

= # (Zb,’bjkizniT,-Tj +> b? kg7t + kmm)>

i#j i
1
= W <Zbibfki2ni7f7/ + Zb,-zkini'l',)
ij i

where (g;g;) = (9i)(g;) since initiation events are assumed independent. This only holds for the Poisson background and is no longer
exact for the two-state model as the switching process would introduce correlations. Nevertheless, the conversion factors for the
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higher moments and cumulants calculated below remain a good approximation under the two-state model, provided most probes
are located in the 5’ region. The variance of the signal is finally given by

N N
(s = (8))%) = (%) = (%) = oy > bk = (# Zb,?ﬁ) 9)=Cx(0)
i=1 i=1

Ca
The calculation above can be generalized to the 3™ and 4™ cumulants. We found the following correction factor for the Poisson
background:

=171

1
Cr :WZN b¥q fork=1, -, 4 (Equation 3)
Calculated values of Cy for each gene and two different configurations of probe locations (5’ or 3’ region) are given in Table S2.

Two-state model of transcriptional activity
Master equation
Transcriptional activity of a single gene copy was modeled as a telegraph process (on-off promoter switching) with transcript initiation
occurring as a Poisson process during the ‘on’ periods (Peccoud and Ycart, 1995). Within the two-state model (Figure 3E), the dis-
tribution of nascent transcripts on a gene results from random Pol Il initiation in the active state coupled with elongation and termi-
nation (Choubey et al., 2015; Senecal et al., 2014; Xu et al., 2016). For simplicity, we combined elongation and termination as an effec-
tive process that was modeled as a deterministic progression (constant Pol Il elongation rate). In addition, we assumed that all the
kinetic rates of the model are constant in time and identical across embryos. The kinetic parameters of the model are the initiation rate
kini, the promoter switching rates ko, and ko, and the elongation time 7o = Lg/kelo.

The master equation that governs the temporal evolution of nascent transcripts at loci is given by

%Pt(g,n) =KiniOnm (Pe(9 — 1,n) — Pe(g,n)) + ko Pr(g,n — 1) — ka1 1Pe(g,n) (Equation 4)
with g the number of nascent transcripts (or alternatively the number of Pol Il) on the gene and n the promoter state. We used the
convention that n=1 and n=0 correspond to the ‘on’ state and ‘off’ state respectively, and the following periodic conditions
n=—1=1and n = 2=0. Here, § stands for the Kronecker delta since initiation only occurs in the active state. Of note, we only
considered the promoter switching and the initiation of elongation (Eq. 5); we did not explicitly model release of transcripts after termi-
nation. The rationale is the following; only the initiation events occurring during the time interval [t — 7, t] contributes to the signal at time
t,i.e., the elongation time 7, determined the ‘memory’ of the system. This is correct as long as the release events are instantaneous and
termination is fast compared to elongation. Thus, the dynamics of nascent transcripts accumulation on the gene for t <, is obtained by
solving the master equation with zero initial transcript on the gene Py, (g) = 640 and an arbitrary initial distribution of promoter state.
Summary statistics
We can derive the temporal evolutions of the central moments from the master equation (Equation 4) (Lestas et al., 2008; Sanchez
and Kondev, 2008). The means of nascent transcripts g and promoter states n satisfy the following equations:
d
E(Q(m =kKini (N (1)) .
(Equation 5)

d
at (n(t)) =Kon — (Kon +Kort)(n (1))
At steady state (% (n) = 0) , the mean occupancy of the promoter is simply given by (n) = kon/(Kon + Kotr). Similarly, the covari-
ance satisfies the following set of equations:
d 2
Eﬂg(t) = 2kini Ogn (t) + kini (ﬂ (t))
(%ag,,(t) =kini02(t) — (Kon + Koft)ogn(t) (Equation 6)
d
G178 = = 2(kon +Kott) 75 () + Kon(1 = (1(1))) + kot (n(1))

Assuming zero initial transcripts and promoter at steady state, one can solve both the mean and variance for g. Thus, the initial
conditions are given by (g(tp)) = 0, (n(to)) = kon/(kon + ko), aé(to) = 0, agn(to) =0 and a2 (to) = (n(ty))(1 — (n(t))). Solving these
equations (Equations 5 and 6) for the elongation time t = 7 leads to:

(9)=9o(n) (Equation 7)
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a2 =go(n) +g5(ny(1 — (n)) (e /7n) (Equation 8)

where go =kiniTe is the maximal mean nascent transcript number or equivalently the mean number of transcripts in a constitutive
regime (gene always ‘on’) and @< [0, 1] a noise filtering function that takes into account the fluctuation correlation times. Here, the
relevant timescales are the elongation time 7. and the promoter switching correlation time 7, = 1/(kon + Koft). The variance (75 results
from the sum of two contributions; the Poisson variance go(n) stemming from the stochastic initiation of transcript and the propa-
gation of switching noise:
2
(82) cAotea/mn =gt - o) ot/
(n) ———

binomial variance
For deterministic elongation, we find that the noise filtering function is given by:

exp(—x)+x —1

In the limit of fast and slow promoter switching respectively, the noise filtering function reduces to

Te > T”X"Dl &(x)=0

Te < Tplim®(x) =1
x—0

Thus, the noise is minimal in the fast switching regime 7, > 1, and reaches the Poisson limit as = go(n). While in the slow switching
regime 7o < T, none of the switching noise is filtered and the variance is described by a second order polynomial of the mean oc-
cupancy (n), i.e., ag = go(n) + g3(n)(1— (n)). Of note, for exponentially distributed life-time of transcripts, such as cytoplasmic
mRNA subject to degradation, the results above remain valid except that the noise averaging function becomes ®(x)=1/(1+x)
with 7, the average life-time of the transcripts.

Following a similar approach as in the previous paragraph, higher order moments and cumulants are analytically calculated from
the master equations (Equation 4). The cumulants up to order 3 are equal to the central moments while higher order cumulants can be
expressed as a combination of central moments. The 4" cumulant is given by x4 = g — 3;13, where u, is the 4" central moment and
s the variance. Assuming promoter at steady state, we solved the equations for 3™ and 4™ moments of g and derive the following
analytical expressions for 3™ and 4" cumulants, k3 and ka:

k3 =go(n) +3g5(n)(1 = (1)) 1(7e /) +G5(n)(1 = (M) (1 = 2(n)) P2 (7e/7n) (Equation 9)

ke =go(n) +795(n) (1 — (1)) @ (7e /) +6g5(N)(1 — (M))(1 — 2(n)) Pa(7e /7n) +G5(N) (1 — (M) (P3(7e/Tn) — B(N)(1 — (n)) Pa(7e/Tn))
(Equation 10)

where &4, ®,, &3 and @4 are noise filtering functions that vanish in the fast switching regime (7. > 7,) and tend to one in the slow
switching regime (1¢ < 75):

exp(—x)+x — 1

@1()():2 e

x exp(—x) +2 exp(—x) +x — 2

By(x)=6 =

X2 exp(—x) +4x exp(—x) + 6 exp(—x) +2x — 6

@3(X)=12 @

exp(—x)° +4x2 exp(—x) + 20x exp(—x) + 28 exp(—x) + 10x — 29
x4

4)4(X) =2
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The above expressions for the cumulants are exact and were tested numerically. The cumulants are polynomials of the mean pro-
moter activity (n), which follows from the propagation of the binomial cumulants from the switching process. Since the cumulants are
extensive, the cumulants for Ny independent gene copies are obtained by multiplying by Ny the expression for a single gene copy
(Equations 8, 9, and 10).

Cumulant analysis

Noise-mean relationship and cumulants predicted by the two-state model

Within the context of the two-state model, we tested whether any transcriptional parameter modulations could explain the global
trends in the noise and the cumulants (Figures 3A-3D). Since we showed based on the cumulants that the distribution of activity
is a single parameter distribution, we restricted the analysis to single parameter modulations of the mean activity (Figures 3F-3I).
It is worth mentioning a few important observations that will simplify this task.

First, we see by close inspection of the steady state cumulants (Equations 8, 9, and 10) that 7, sets the scale, i.e., all parameters are
defined with respect to 7.. In practice, the cumulants only depends on the three following independent parameters Rini = KiniTe,
Ron:konq-e and Roﬁ = KoffTe. Thus, there is some freedom to set the scale of these rates. Here, we used 7, =2.2 min that is
approximately the Pol Il elongation time for the normalized gene length (3.3 kb and ke, = 1.5 kb/min; (Garcia et al., 2013)) and it
will be considered fixed. Second, the magnitude of ki, determines whether the Poisson (first term o ki) or the binomial (second
term ockﬁﬂ) components dominates in the expression of the variance (Equation 6). We immediately see that increasing the mean
Pol Il number on the gene (g) by only modulating ki, cannot explain the data, since it would lead to a monotonic increase of the
variance whereas the observed trend is concave with a global maxima at mid-expression levels. The only way of achieving such
a trend is by modulating (n) provided the binomial term dominates the Poisson one. This condition implies that ki, has to be suffi-
ciently large for intermediate value of (n), i.e., kini > 1/(7e(1— (n))®(7e/7n)). Alternatively, if kini is known, this inequality sets
some constraints on the possible values of 7,. Third, it is possible to give an estimate of ki, from the polynomial fit of the
measured variance (Figure S2A and Figure 3B). The second intercept of the fitted curve (black line) with the Poisson background
(dash line), which should occur at (n) = 1, allows us to estimate go. Assuming ki is maintained constant as (n) is modulated, we
have go = kinite = 15.21, which gives ki =6.99 min! for 7, =2.2 min (see above).

We then investigated three different type of single parameter modulation to vary the mean Pol Il number (g) consistent with the
observation above, namely, modulations of the mean occupancy (n) from 0 to 1 by either varying kon alone, ko alone or both ko,
and Ko while keeping the switching correlation time 7, constant. The latter modulation also corresponds to single parameter mod-
ulation since kon = (n) /7, and kot = (1 — (n)) /7, are then fully determined by (n). For each of these three types of modulation, one
parameter is free (either ko, kon OF 7,) and sets the amplitude of the cumulants (Figure S2E). In order to infer these free parameters,
we fitted (maximum likelihood) the measured cumulants with the modeled ones (Equations 8, 9, and 10) predicted by each modu-
lation strategy (Figures 3G-3l). We found:

1) kon modulation: ko =0.142 min™" and kon = Kot (n)/ (1 — (n))
2) kot modulation: kon =0.075 min™' and kot = Kon(1=(n))/(n)
3) (n) modulation at fixed 7,: 7, =2.9993 min with kon = (n) /7, and kot = (1 — (n)) /7

We then calculated the noise-mean relationship (Equation 2). We also show an example of a ki,; modulation alone (Figure 3F, gray
line); no matter the value of (n) and 7, this modulation cannot reproduce the trend in the data as explained above. The modulation of
kos alone (green line) fails to capture the noise at low expression (Figure 3F). On the other hand both the modulation of ko, alone (blue
line) and n at constant 7, (red line) provides good qualitative agreement with the data (Figures 3F-3I). As mentioned above, it is impor-
tant to keep in mind that the units of kin;, kon, kot @and 7, estimated here depends on the value of the elongation rate. Here, we used a
conservative estimate of ke, = 1.5 kb/min (Garcia et al., 2013), which is possibly too small for the gap genes (Fukaya et al., 2017). A
different elongation rate would simply imply a rescaling of the rates and the correlation time without affecting the fitting results (STAR
methods, Effect of elongation rate on inference). Namely, the mean occupancy (n) would remain unchanged while the rates would be
rescaled by a factor k. /keilo and the correlation time by keio /K, Where k7, corresponds to the new elongation rate.
Time-dependent cumulant analysis
Next, we investigated whether the single parameter modulation fitted above assuming steady state are consistent with the finite dura-
tion of the nuclear cycle (approximately 15 min in nc13). Namely, assuming all the data were taken at mid cycle, we asked under each
modulation scenario whether steady state could be reached in a timely manner (mid cycle), as supported by our staging analysis
(Figures S1A-S1D) and other studies (Garcia et al., 2013). The relaxation time to steady state is determined by the switching corre-
lation time ,. By solving the equation for the temporal evolution of the mean Pol Il number (g(t)) (Equation 5) with initial condition
(g(t=0)) =0 (no Pol Il on the gene) and (n(t=0)) =0 (gene initially ‘off’), one finds:

go(n) (é+:—:(exp(—t/rn) - 1)>Z‘£Te

(9(t) = )
9o(n) (142 xp(t/5,)(1 = exp(re/7) )74

e
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As mentioned above, the relaxation of the mean (g(t)) to its steady state value (g) = go(n) is determined by the correlation time 7,
through the exponential factor exp( — t/7,). As 7, increases, the relaxation gets slower and slower (Figure S3A). It follows that the
finite duration of nc13 should set some upper bound on the possible value of 7,. According to Figure S3A, 7, should not exceed
3 min for (g(t)) to reach approximately 90% of the maximum activity go ({(g) =go for (n) = 1) at mid cycle as observed in the data
(Figure 3B).

Each of the three single parameter modulations fitted above predicts different dependency of 7, on the mean occupancy (n) (Fig-
ure S3B). Importantly, these values of 7, were obtained for ke = 1.5 kb/min (Garcia et al., 2013). A larger elongation rate would lead to
smaller correlation times (Fukaya et al., 2017) (STAR methods, Effect of elongation rate on inference). The main benefit of using a
potentially smaller elongation rate, it provides a stronger guarantee that the time-dependent solution reaches steady state in time
(as the relaxation is slower). For each modulation (Figure S3C), we estimated what fraction of the steady state value (g(t))/(g) is at-
tained as a function of (n) at mid cycle (t=7.5 min). It turns out that the k. modulation clearly fails to reach steady state in time for
higher occupancy, whereas both modulation of k., and n at fixed 7, cover the measured range of activity at mid cycle (0 to 90% of go).
Each modulation predicts different boundary formation dynamics (Figures S3D-S3F). For kon, the highly expressed regions (large (n))
relax much faster than the lowly expressed ones (small (n)), whereas for ks it is the opposite. Interestingly, at fixed 7, each position
relaxes in synchrony and the activity ratio between them is conserved. The latter modulation appears more consistent with previous
experimental observations (Dubuis et al., 2013; Garcia et al., 2013).

Next, we investigated the shape of the higher order time-dependent cumulants. Although the higher order time-dependent cumu-
lants can be calculated from the moment equations, their analytical expressions are cumbersome. Alternatively, one can calculate
the time-dependent cumulants directly from the time-dependent distribution of Pol Il P;(g), which is easily computed numerically.
With the same initial condition as the mean above, the time-dependent distribution of Pol Il P:(g) is given by:

S Pi(g.n|g =0,n=0)t<r,
— n
9=\ TP (0.1l =0.7)P, (0" =0}t > 7,

nn’'

Py(

where P:(g,n|g’,n’) is the propagator of the telegraph model (STAR Methods, Distribution of nascent transcripts, Equation 12) and
Pt(n|n") the propagator of the switching process alone:

Pe(n,n") = (6p1{N) + 6n0(1 — (n)))(1 — exp(—t/7n)) + O €XP(—t/75)

We then computed the 2™, 3" and 4™ time-dependent cumulants from P;(g) for each fitted modulation (Figure S3G). Provided the
elapsed time is sufficiently large compared to the correlation time and the elongation time, the time-dependent cumulants closely
follow the steady state solution. Thus, both the modulation of k,, alone and n at fixed 7, fitted assuming steady state predicts
time-dependent mean versus cumulant curves at mid cycle (t=7.5 min) that are consistent with the data. In addition, under these
conditions, the time-dependent mean activity closely reflect the time-dependent mean occupancy (n(t)):

o) :1 +%exp(*t/7n)(1 — exp(e/Tn))
(

Jo 1 —exp(—t/m)

=1

(n(t)t>7e

Together itimplies that even away from steady state, provided the elapsed time is sufficiently large (t > 7¢,7,), the inference based
on steady state solutions should yield good estimates of the parameters. Indeed, for fixed 7, the relationships between the mean and
the cumulants at steady state are uniquely determined by ki, (n) and 7,. As long as time dependent-cumulants run along the steady
state curves (Figure S3G), the estimation of ki, and 7, will be correct while the estimation of the mean occupancy will in fact corre-
sponds to the instantaneous mean occupancy (n(t)) as (g(t))/go=(n(t)).

Inferring transcription kinetics of endogenous genes from dual color smFISH

Dual color smFISH and effective gene length

We performed dual-color smFISH tagging the 5’ and 3’ regions of the transcripts with different probe sets (Figure 4A and Table S1).
After normalization in cytoplasmic units, both channels offer a consistent readout of the mean and the variability (Figures S4A and
S4B). For each gene, given the 5’ and 3’ FISH probe configurations and assuming constant elongation rate, we calculated the ex-
pected ratio of 3’ over 5’ signalr = Cﬁs)/Css) according to Equation 3 using the annotated gene length (Figures S4C and S4D and Table
S3). The predicted ratios are consistent with the measured ones, albeit with small deviations likely stemming from termination (Fig-
ure S4E). This suggests that nascent transcripts might be retained at transcription sites for a short duration. We then calculated for
each gene, the effective length that would be consistent with the measured ratio (Figure S4F and Table S3). Assuming an elongation
rate keio = 1.5 kb/min (Garcia et al., 2013), we estimated the lag consistent with the length difference between the effective and an-
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notated length (Figure S4F inset). Nascent transcripts remain at the loci for at most 35 s, which remains small compared to the typical
elongation time for the gap genes 7. ~ 2 min. In this study, we used the effective elongation time for each gene that includes the short
lingering time, which was calculated from the effective gene length.

The two channels enable estimation of the total nascent transcripts (5’ channel) and the fractional occupancy of transcripts along
the 5’ and 3’ portions of the gene at each locus (Figures 4B and 4C). Because the 5’ and 3’ activities are temporally correlated through
the elongation process additional information about transcription can be extracted that is not available with a single channel/color
(Figures 4B and 4D). Combining measurements from multiple embryos (Figures 4C and 4D), we select nuclei at similar positions
(bins of 2.5% egg length) to generate the joint distribution of 5’ and 3 activity across AP position bins (Figure 4D).

Distribution of nascent transcripts

Modeling the joint distribution of 5’ and 3’ activity based on the two-state model requires first to calculate two key distributions,
namely the steady-state distribution of nascent transcripts (or Pol Il number) on the gene and the propagator that describes the tem-
poral evolution of an arbitrary distribution of nascent transcripts. Both distributions can be derived from the master equation
(Equation 4). Although the master equation can be solved using generating functions (Xu et al., 2016), we followed another route
that can be easily extended to multi-state system and remains computationally tractable. The master equation can be written in terms
of an operator A containing the propensity functions of the different reactions:

d —~
apt(g7n) :APt(g7n)

After appropriate truncation on the transcript number (setting an upper bound for the maximum number of nascent transcripts)
(Munsky and Khammash, 2006), the A operator can be written in terms of a sum of tensor products of different matrices:

A=ION, +Kz®R, (Equation 11)

with /g standing for the identity matrix of size G + 1 where G is the maximum number of transcripts after truncation. The matrix N,
encodes the rates of the possible transitions for the two-state promoter and R; indicates in which promoter state initiation occurs:

[ kon kot |5 [0 O
vl Sl

while Kg describes the initiation of transcripts:

0
Ki . .0
0
0 0 ki —kKii
The propagator of the resulting finite system can be expressed as a matrix exponential of the A operator:
Pi(g,n|g’,n', 8) =exp (ﬁt) (Equation 12)

where 6 stands for the set of kinetic parameters (kini,kon,Koft). Although the propagator explicitly depends on the kinetic parameters,
we chose to omit 4 in the following for readability. The propagator dictates how an initial joint distribution of transcript and promoter
state P(g’,n’) evolves after time t in P(g,n):

P(gan):Zpt(g7n|gl7nl)P(g’7nl)

an

The distribution of nascent transcripts P(g) for a gene of length L, is typically calculated using the propagator above with
t=1¢=Lgy/keio the elongation time and the initial conditions. Since 7, sets the ‘memory’ of the system, P(g) can be calculated
with initially zero nascent transcript on the gene and is then given by:

P(@)= > P.(g.nlg',n")bgoP(n) (Equation 13)

ng'.n'

where P(n) specifies the initial distribution of promoter state. The distribution P(g) can be computed efficiently by directly estimating
the action of the initial vector on the matrix exponential (Sidje, 1998). Assuming the promoter at steady state, P(n) is then given by:

n) forn=1
P(n):{1 <— zn) forn=0

with the mean occupancy (n) = kon/(Kon + Koft)-
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Provided each gene copy is independent and undistinguishable, the combination of two and four gene copies can be represented
by a three- and five-state promoter model. The corresponding N and R matrices are given by:

2K Kot 0 000
Ns=| 2en —(kott+kon) 2koy |Rs=|0 1 0

0 Kon —2Kof 0 0 2
—4kon Kot 0 0 0
4k°,-| —(koff + San) 2koff 0 0
Ns = 0 3kon —2 (Kot + Kon) 3Koft 0
0 0 2Kon —(BkKott + Kon)  AKos
0 0 0 Kon — Kot
0 0 0O0O
01000
Rs={0 0 2 0 O
0 0030
0 00 0 4

The distribution of nascent transcripts is calculated according to Equation 13, with the propagator P(g, n|g’,n") computed from the
updated A operator (Equations 11 and 12). The steady-state distribution of the Ng-gene copy system is given by:

P(n)= (Ing ) (M"(1 — (M) with ne {0,1,2, -+, Ny } (Equation 14)

where n=Kon/(Kon + Kof) is the steady state mean occupancy of a single promoter.

Joint distribution of 5' and 3’ activity

Here, we lay out the approach used to calculate the joint distribution of 5’ and 3’ activity for an arbitrary configuration of 5’ and 3’ FISH
probes. Analytic solutions for steady-state distributions with idealistic single color probe configuration exist (Xu et al., 2016), but so-
lutions for arbitrary probe configurations and multi-color FISH are cumbersome. Here, the computational approach is general enough
and can be applied to a large class of transcription model, at or out of steady-state (transient relaxation), provided the elongation
process is assumed deterministic.

The measured 5 and 3’ transcriptional activities result from partially elongated nascent transcripts. Each fluorescent probe is
assumed to be instantaneously bound and to contribute equally to the total fluorescence. Thus, the fluorescent signal of each
nascent transcript is proportional to the number of probe binding regions that have been transcribed. In order to calculate the joint
distribution, one needs to proceed backward in time. Starting from the 3’ end up to the 5’ end of the gene, we accumulate the contri-
bution of nascent transcripts to the signal that could have been initiated in the interval separating two successive probe regions.
Since we assumed elongation to occur at constant speed, the distance between two successive probe regions can be converted
into a time. Doing so for each interval leads to the following temporal hierarchy (Figure S4G). We used the following naming conven-
tions for the durations t,.(c): the superscript (C)e {(3), (5)} stands for the probe channel, either (3) for the 3’ probes (red channel) or (5)
for the 5’ probes (green channel), whereas the subscript i denotes the interval separating probe i from probe i — 1 where increments
are performed along the 3’ end to 5’ end direction.

For instance, if the 5’ and 3’ signal is measured at time t = 7¢, only transcripts initiated during the time interval [0, t53>] fully contribute
(1 C.U.) to the 3’ (red) signal, since only those get fully bound by 3’ FISH probes. On the other hand, transcripts initiated during
[tgs), tgs) + t(zs)} will contribute less to the signal since the last probe region has not yet been transcribed at the time of the measurement
t = 7. Thus, the individual contribution of these transcripts to the total 3’ signal is (k — 1) /k C.U., where k is the total number of
probes for the 3’ channel. As we will see below, the probability to initiate g nascent transcripts during any duration t,-(c> is given by
the propagator P, (9,n|0,n") (Equation 12), where n and n’ are the promoter states before and after t}c).

For any model of promoter activity that only consider the stochastic initiation of transcripts (as a Poisson process) and deterministic
elongation with instantaneous release, the propagator will satisfy the following equality:

Pt(gvn‘g/vn/):PT(g_g/an|0an/)

Thus, one only needs to calculate P:(g, n|0,n")=P(g,n|n’), which can be computed much faster than the matrix exponential
(Equation 12) (Sidje, 1998). It then follows that the Chapman-Kolmogorov equation for the time propagation reduces to a discrete
convolution:

92
Py +,(92, N2|no) = Z Z Pt (g2 — g1,n2|n1)Pt, (91, n1|no)

ny g1=0

This property is used extensively in the following calculation of the joint distribution.
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The computation of the joint distribution is performed according to a dynamic programming approach that can in principle be
applied to an arbitrary number of color probes. We first calculate recursively the 3’ contribution (red probes) to the signal P(® (Gk,
Gk, nk), where G stands for the total signal in probe space, Gi the total number of nascent transcripts, nx the promoter state and
k the total number of probes covering the 3’ region. We then calculate the 5’ contribution in a similar fashion, P<5>(Gk,no). Lastly,
we combine both components to generate the final joint distribution P(C;‘( ), G )) in probe space.

Step 1: calculate the 3' contribution. The initial distribution is given by:

&doublehyphen; 38pta,

Gs
- ———
3) (Gz, Gz,nz) =P® | (k —1)g> + kg ;g2 +g1,Ny | = ZP@ (g27n2|n1)Pt§3~, (g1,n1|no)P(n1)P(no)

No,N4q

where P(no) and P(n+) are the initial distributions of promoter state at time t, =0 and tsa) respectively. Assuming promoters at steady
state, both distributions are then given by Equation 14 for a multi-gene system. We then perform the following recursion scheme for
i={3,-,k}:

P (GG = Z%fPt<s (9r. )P | Gy — (k ~i+1)g1.Gi — gy
Ni-1 gi= - G

Gi-1

where gmax = min(|Gi/(k —i + 1)|,G).
Step 2: calculate the 5’ contribution. The initial distribution is given by:

P® <é1 s M |no> =P® (kgi,n1|no) =Pt§51 (g1.n1] no)

We then perform the following recursion scheme forj = {2,--- k}:

- Gmax
p® <Gi7ni‘n0) Z Zpr@ gi,ni|ni— 1) < i — (k—i+1)g;,ni_4 |’70>

ni1 gi= -
Gi1

where gmax = |Gi/(k — i + 1)]. Lastly, we sum out n:
(len(J) ZP (Gk,nk|no)

Step 3: combine 3' and 5’ contributions. The final joint distribution of 5’ and 3’ activity in probe space is then given by:
Gmax - -
P(6%.6%)=3) Po(6” ~kan)P (67, G.n)
n G=0

where Grax = [G(s)/kJ. P®) and P®) are the joint distributions computed at step 1 and 2. Since the actual signal resolution is of the
order of 1 cytoplasmic unit (a fully tagged transcript with k fluorescent probes), the joint distribution can be coarse-grained by aggre-
gating the states G by a block of size k corresponding to a single cytoplasmic unit. The coarse-grained distribution will be denoted
P(G®,G®) in the following. In addition, it is possible to compute P(G®), G®) faster and with good accuracy using a reduced effec-
tive number of probes k, provided the original probe configuration is well approximated. Lastly, we remind the readers that P(G(®),
G®)implicitly depends on the kinetic parameters (kini, kon, koit) through the two-state model propagator, the elongation rate and
the position of the probes through the temporal hierarchy (Figure S4G).

Likelihood and inference

We modeled the joint distribution of 5’ and 3’ activity based on the two-state model and the exact probe location assuming steady
state and constant Pol Il elongation rate (Figure 4E; STAR Methods, Joint distribution of 5’ and 3’ activity). The resulting modeled
activity distribution, together with the measurement noise model (Figure 2A; STAR Methods, Imaging noise model), enable calcu-
lating the likelihood of the 5’ and 3’ activities in C.U. (i.e., Data) given a set of kinetic parameters (kini,Kon. ko). Specifically, the likeli-
hood of the data Data {S ®)'s 3)} given the parameters 6= (k|n|,k0n,koff) is expressed in terms of the measurement noise model
P(S®),8®|GO), G®) (Equatlon 1) and the joint distribution P(G®),G® | §):

P(Datalf) = H Z P(s ,,(3>|G<5)7G(3))p(G(5>7G(a) |6)

G GO
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where Np is the total amount of data, i.e., the total number of measured nuclei per AP-bin for a given gene.

The general idea underlying “classical” inference is to maximize the probability of the data under some model, namely to find the
parameters (Kini, kon, kot) that maximize the likelihood of the data P(Datalkini, kon, Koft)- In this manuscript we adopted a Bayesian
approach, estimating the probability of the kinetic rate parameters of the two-state model given the observed data (i.e., the joint pos-
terior distribution) P(kini, kon, Kotf|Data) using Bayes’ rule:

P(Data|kini7konakoff)P(kiniskonykof‘f)
P(Data)z fP(Data|kini7komkoff)P(kinh on~,koff)dkinidkondkoff

P(kini 3 kon 3 koffIData) =

where P(kini, Kon, Koft) is the prior that encodes for prior knowledge about the parameter values. We used a non-informative and in-
dependent prior for each kinetic parameter, which was chosen as log-uniform P (Kini,kon,Koff) = 1/ (Kini-Kon -Koff). Note that in absence
of a prior P(Kini, Kon, Kof), the most likely parameters are the ones that maximize P(Data|kini, kon, Koff). In that case, the Bayesian
approach is essentially equivalent to “classical” maximum likelihood. The main advantage of the Bayesian approach over maximum
likelihood is that it provides a natural way to estimate the uncertainty on the parameters through the joint posterior and allows us to
determine whether the parameters are identifiable. Indeed, as the uncertainty grows, the posterior distribution becomes wider/flatter,
which directly reflects on the range of the parameter confidence intervals.

Importantly, we set the elongation rate k¢, to the experimentally measured value of 1.5 kb/min (Garcia et al., 2013). At steady state,
aknown value of kg, is required to set the temporal scale of the other transcriptional parameters, which can be seen by inspecting the
expressions of the various cumulants of the nascent transcript distribution (Equations 8, 9, and 10). Since all cumulants can be
parameterized by the three independent parameters go = kini/Kelo, N =Kon/(Kon + Kotf) and the ratio ¢ /7, = (kon + Kotf) /Kelo, it fOllows
that the model is not identifiable when the temporal scale is not set.

We then sampled the joint posterior distribution P(kini, kon, kKoff| Data) using a Markov chain Monte Carlo (MCMC) algorithm (Hast-
ings, 1970), for each gene and at each AP position individually. The sampled joint posterior distribution enables estimation of the mar-
ginal posterior distribution for each kinetic rate and any combination of these rates, such as (n) and 7,. All the parameters of the
model and the error bars were estimated from the marginal posterior distribution, as the median and the percentiles respectively (Fig-
ure 4E). The best-fitting distributions predicted by the model match the data closely (Figure S5B), and outliers are mainly explained by
measurement and binning noise. Importantly, our inference approach does not require any a priori assumptions about the underlying
parameter modulation, nor does it assume any continuity between datasets. In principle, the inferred parameters could be different
for each gene and be modulated in any arbitrary way.

Parameter identifiability and performance

As mentioned above, the two-state model is fully identifiable (structural identifiability) as long as keois fixed. Indeed, in that case the
steady state and time-dependent solution depend on three independent parameters, such as (Kini, Kon, Koft) O (Kini,(n),75). In principle,
provided one has enough data and measurement noise is small, each parameter can be resolved individually. On the other hand, it is
true that some regimes might require a very large/infinite amount of data to infer the different parameters without ambiguity (practical
identifiability). For instance, in the case of instantaneous bursts, namely when ko and ki become large (i.e., approach infinity, but
with finite ratio), only the burst size b = kini /Kot @and the burst frequency f = ko, are well defined. Thus it is not possible to infer the exact
values of ki, and ko individually. Such a scenario can be clearly diagnosed based on the marginal posterior distributions P (ki,|Data)
and P(kos|Data) (from which the median and the error bars of the parameters are estimated). Indeed, since we used non-informative
priors, the variance of these marginal posterior distributions would become extremely large and thus less informative. More intui-
tively, kini and ko would no longer be sharply peaked around a mean value, but would take all possible values (consistent with
the prior) that satisfy b = kini /Kot + SOme error on b. This would consequently lead to to very large error bars on ki and Kof. Thus,
the error bars extracted from the marginal posterior distribution are indicative for whether or not we can estimate these parameters.

To validate our inference framework, we tested the inference on simulated data using a broad range of parameter values and in
presence of measurement noise. Using the Gillespie algorithm (Gillespie, 1977), we generated simulated nuclei activity data based
on 4 independent gene copies modeled by the telegraph model. We used the probe configuration and gene length of hb and
assumed a typical elongation rate of 1.5 kb/min (Garcia et al., 2013). Measurement noise was included in the simulated data accord-
ing to the characterization performed previously on real data (Imaging noise model). We investigated different parameter regimes and
modulation schemes of the mean activity (g), to test whether the input parameters used to generate the data could be inferred prop-
erly (Figures S6A-S6E). Namely, we tested:

1) Modulation of the initiation rate kini alone with 7, =2 min and (n) = 0.35 (cyan dash line).

2) Modulation of the on-rate ko, alone with ki, =7 min~! and ko = 0.25 min™’ (green dash line).
3) Modulation of the off-rate ko alone with kini =7 min™" and ko, =0.25 min™ (blue dash line).

4) Modulation of the mean occupancy (n) alone with kini=7 min" and 7, =2 min (red dash line).

For each scenario, we generated 8 batches of data covering the range of normalized activity (g)/go. Each batch was made of 10
independently sampled datasets of 500 nuclei activity measurements. We performed the inference on each dataset individually
and reported the mixture of posterior distribution over the 10 datasets to take into account the finite size variability in the generated
data. We conclude that the inference framework performs well, since all the inferred quantities cover the true values within error bars.
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In addition, we estimated globally for all synthetic data the fractional inference error |fint — firue | /6irue from the MCMC sampled
parameters 6;s. For all inferred parameters, the median of the error never exceeds 20% (S6F). Overall, the inference allows us to
distinguish the different tested modulation strategies without ambiguities. In addition, the sampled joint posterior distributions
P(kini, kon, kof|Data) are clearly peaked in the parameter space (Figure S5C), indicating that practical identifiability is not an issue
with real data.

Effect of elongation rate on inference

As discussed above, the elongation rate k|, sets the temporal scale of the transcriptional parameters, thus a different elongation rate
would lead to different values of the parameters. In the manuscript, we used a value of kg0 =1.5 kb/min which we previously
measured (Garcia et al., 2013). A recent study suggests that this value might be overall larger in the blastoderm embryo, of the order
of 2.5 kb/min (Fukaya et al., 2017). We thus sought to determine to which extent this new value would affect our results.

In principle, a different value of k¢, rescales the transcriptional parameters in a very predictable way. No matter the elongation rate,
the three quantities kini, (1) and 7, should be perfectly identifiable. It follows that the new parameters (denoted by the * superscript)
have to satisfy the following equations:
ini% = Kini

Ki

T kelo _
[
kelo

*
n

T

Inferring the transcriptional parameters from the data with ke, = 2.5 kb/min instead of ke, = 1.5 kb/min (as in the main text) confirms
the rescaling above (Figures S6L-S6N). As predicted, kini and ki, are rescaled by a factor 2.5/1.5=1.67 and 1.5/2.5=0.6 respec-
tively, whereas (n) is conserved.

QUANTIFICATION AND STATISTICAL ANALYSIS

We imaged hunchback wild-type (labeled hb wt) in N = 18 embryos; a hunchback deficiency fly line with half the hb dosage (hb def)
N =7; Krdppel (Kr) N = 11; knirps during early (kni early) N = 14 and late nc13 (kni late) N = 16; giant females with two alleles (gt female)
N = 20 and giant males with one allele (gt male) N = 16. On average the number of quantified nuclei per AP bin (2.5% egg length) is
n =499 (hb wt), n = 157 (hb def), n = 270 (Kr), n = 354 (kni early), n = 302 (kni late), n = 397 (gt female anterior region), n = 387 (gt female
posterior region), n = 310 (gt male anterior region) and n = 277 (gt male posterior region). The confidence intervals for all point esti-
mators of the data (mean, variance, noise, third cumulant and fourth cumulant; Figures 1, 2, and 3) were built by bootstrapping the
empirical distribution of activity in each individual embryo. We used the 68% confidence intervals for the point estimators. All the error
bars for the inferred parameters (Figure 5) correspond to the 10" to 90" percentiles of the marginal posterior distributions.
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Figure S1. Temporal Staging, Measurement Error, and Embryo-to-Embryo Variability, Related to Figures 1 and 2

(A) Cytoplasmic mRNA density as a function of developmental stage during the 13" interphase as estimated from DAPI staining by eye-inspection. Each data
point corresponds to a single embryo; cytoplasmic density was measured for each gene in the maximally expressed spatial region along the AP axis. Good
correlation between manual ranking and the cytoplasmic mMRNA accumulation correlation justifies the latter as a convenient proxy for time, and thus the
developmental age of the embryos within nuclear cycle 13.

(B) Mean activity in the maximally expressed regions as a function of the cytoplasmic mMRNA density. Each data point corresponds to a single embryo. Color code
as in Figure 1C.

(C) Pearson correlation coefficient p between the mean activity and the cytoplasmic mRNA density calculated over the population of embryos in (B). Values
indicate that up to 44% (p?) of the variance in mean activity across embryos can be explained by staging uncertainty. The large correlation for kni (dark green) led
to splitting the population of kni stained embryos into early and late stages to minimize the staging uncertainty in each subpopulation. We performed the splitting
by finding the cytoplasmic density threshold that minimizes the sum of within-population variance in mean activity.

(D) Staging variability osta in percent of the total mean activity u for each gene in the respective maximally expressed regions. The staging variability corresponds
to the variability in mean activity among embryos, which is explained by staging uncertainty between early and late embryo as estimated from cytoplasmic mRNA
density. The staging variability o, is defined as osta = poy,, where o, is the standard deviation of the mean activity across embryos. Note that the splitting of kni
stained embryos into early and late stages was justified as the staging variability is significantly reduced. The overall small staging variability, which never exceeds
14%, indicates that the mean activity is sufficiently stable in time to warrant a steady state assumption.

(legend continued on next page)



(E) Modeled imaging noise (CV) as a function of the mean activity for both channels. The imaging noise model was built from dual-color smFISH data using an
alternating probe configuration (see Figure 2A). Imaging error simg Was determined from the spread along the regression line between both channels (STAR
Methods). Errors were assumed normally distributed, independent, and of equal magnitude in both channels. Thus, the modeled imaging error ging is char-

acterized as the orthogonal spread along the fitted regression line, which was parameterized as gimg(v) = /02 + b1V +bzv2, where (ag, b+, by) are fit parameters,
and v is the scalar projection of each data point onto the regression line. After fitting, the modeled imaging noise (CV) is given by aimg (V) /u With v =/ u? + (au)2 for

the green channel (green line) and v =/ u2 + (;;/a)Q for the red channel (red line), where a is the slope of the fitted line and u is the mean activity.

(F) Variability of the mean across embryos (CV?) as a function of alignment noise. Each data point corresponds to a single AP bin (2.5% egg length). The diagonal
dashed line (slope = 1) highlights the correlation between the two quantities at the boundaries while the horizontal dash line corresponds to the embryo variability
in the maximally expressed regions for each gene (Figure 2E). The correlation indicates that most variability across embryos in the transition regions can be
explained by alignment noise, whereas the remaining variability in the maximally expressed regions reflects staging variability (C and D) and other extrinsic noise
sources.

(G) Fraction of the total variance o2 corresponding to the measurement variance as a function of the AP position. Measurement variability o2, is defined as the
combination of imaging ¢Z,, and alignment variability s5; . The solid and dashed vertical lines are the overall mean fraction across genes and the 68% confidence
interval, respectively.

(H) Fraction of the total variance o2 corresponding to the non-nuclear variance as a function of the AP position. The non-nuclear variance is the sum of the imaging
24> the alignment o2, and embryo variability 2. The remaining variance ¢2,, = 02 — 02, — 0%, — 02, is defined as the nuclear variance and is deemed intrinsic
to transcription. Overall, the nuclear variance largely predominates as it represents 84 % of the total variance, on average. The solid and dashed vertical lines are
the overall mean fraction across genes and the 68% confidence interval. Color code as in Figure 1C.

All error bars are the 68% confidence intervals.
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Figure S2. Mean-Cumulant Activity Relationships for a Single Gene Copy, Related to Figure 3

(A-D) The mean and the cumulants were corrected for different gene length, probe configuration and copy number. Each data point corresponds to a single AP
bin and the error bars are the 68% confidence intervals. The dashed line stands for the Poisson background. Color code as in Figure 1C.

(A) Estimation of the maximal activity go by fitting a 2" order polynomial of the mean activity to the variance. The maximal activity go is determined as the second
intercept of the fit with the Poisson background (vertical dashed line). In Figures 3B-3D and S2B-D the mean and the cumulants are normalized by the respective
powers of go. Notably, (g)/go = (n) for constant kin;.

(B-D) Normalized cumulants as a function of normalized mean activity. The solid lines are 2" (B), 3"%(C) and 4™ (D) order polynomial fits, respectively. Fits were
performed for each gene independently (colored lines); black line corresponds to the global fit of all genes (Figures 3B-3D). Individual fits are qualitatively similar,
suggesting global trends in the data.

(E) Steady state two-state model cumulants as a function of the mean occupancy (g)/go = (n) for different scenarios of single parameter modulation (modulation
of (n) through either ko, or ko alone, or modulation of (n) at fixed correlation time 7, by changing both ko, and kos; Figures 3G-3l). For each considered
modulation, only a single parameter is free since the value of go (determined from A) has been fixed and the initiation rate ki,; is assumed constant. Varying the free
parameters (graded colored lines) mainly affects the amplitude of the cumulants. The solid black lines stand for the common maximal amplitude limit attained
when the correlation time goes to infinity.
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Figure S3. Time-Dependent Cumulant Analysis, Related to Figure 3
All time dependent-solutions of the two-state model were calculated with initial conditions g(t =0) = 0 (no Pol Il on the gene) and n(t=0) =0 (gene initially in the
‘off’ state).
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(A) Time-dependent mean activity (g(t)) normalized by its steady state value g(t — « ) =g at three different times (t =2.5 min, t =5 min and t = 7.5 min) as a function
of the switching correlation time 7,,. At steady state, the ratio is thus equal to one (horizontal dashed line). The correlation time is the only parameter that affects the
relaxation to steady state. As 7, increases, the relaxation becomes slower. For t=7.5 min, a correlation time no larger than 3 min is required to reach approx-
imately 90% of the maximal activity as observed in the data (Figure 3B).

(B) Correlation time 7, as a function of the mean occupancy (n) for each best-fit single parameter modulation (from Figures 3G-3l). Modulation of k¢ alone
predicts a correlation time that is too large (7, >> 3 min) at high (n) to reach the maximal activity of the data at mid cycle (7.5 min).

(C) Time-dependent relative activity as a function of the mean occupancy (n) for each best-fit single parameter modulation (as in Figures 3G-3l). Same color code
as in (B). The relative activity was calculated as the mean activity (g(t)) att =7.5 min normalized by its steady state value (g). Modulation of k. alone clearly fails to
reach steady state in time at high (n), as it only reaches 40% of the maximal activity. On the other hand, both modulation of ko, alone and of (n) at fixed 7, reach a
sufficiently large maximal activity to explain the data (100% and 88%, respectively).

(D-F) Normalized time-dependent mean activity (g(t))/go as a function of time for each best-fit single parameter modulation (as in Figures 3G-3l). The circles
correspond to the maximal attainable activity ((n) = 1) aftert=2.5,5 and 7.5 min (vertical dashed lines). Each modulation predicts different dynamics for boundary
formation; for k,n modulation high (n) regions relax faster than low (n) regions (D), while it is the opposite for ko (E). For fixed 7, all regions relax in synchrony
independently of (n) (F). In the latter case, during interphase 13 the ratio of any two curves is constant in time, and thus these ratios are conserved across the
patterning boundaries, which are uniquely determined by (n).

(G) Normalized time-dependent cumulants as a function of the normalized time-dependent mean activity for each best-fit single parameter modulation. The solid
black lines correspond to the steady state best fits in Figures 3G-3I. The data in gray are identical to Figures 3B-3D and the error bars are given by the 68%
confidence intervals. For sufficiently large t (i.e., t> {7y, 7e}), the time-dependent mean and cumulant relationships closely follow the steady state ones. In
addition, at fixed elongation time 7., the set of steady state cumulants are uniquely determined by ki, (n) and 7,. Together, these two observations imply that
even when far from steady state, fitting the steady state cumulants would still provide good estimates of the parameters, except that the estimated (n) would
instead corresponds to the instantaneous mean occupancy (n(t)) =(g(t))/go (STAR Methods).
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Figure S4. Link between Signal Properties from Dual-Color smFISH and Probe Configuration for Each Gene, Related to Figure 4

(A) Mean 3’ versus 5’ activity for all gap genes. Each data point corresponds to the mean activity over all embryos in a single AP bin. The slopes for the different
genes depend on the exact probe configuration. Error bars are the 68% confidence intervals.

(B) 3’ versus 5’ noise (CV). The excellent correlation and the slope close to one suggest that the switching correlation time 7, is on the order of the elongation time
Te. Indeed, if 7, < 76, one would have expected more buffering of the switching noise on the 5’ end compared to the 3’ end, whereas if 7, > 7 the magnitude of the
noise should be similar on both ends. Error bars as in (A).

(C) Cumulative hb probe contribution to the fluorescence signal as a function of transcript length. The vertical dashed line corresponds to the length of a
cytoplasmic mRNA for hb (3635 bp). Transcripts whose length is larger than 2667 bp would contribute as 1 cytoplasmic unit in both channels.

(D) Activity ratio (mean 3’ signal over mean 5’ signal) as a function of gene length for hb (blue line). Assuming elongation to occur at constant speed and
instantaneous release of transcripts, the ratio is fully determined by the probes’ location and the gene length (transcribed region). The activity ratio results from the
ratio of the integrals of the cumulative probe contribution in (C).

(E) Activity ratio for each gene. The circles stand for the measured ratio with error bars (both standard errors and standard deviations are shown) obtained from the
propagation of the normalization errors in both channels for all embryos. The crosses correspond to the predicted ratio based on the annotated gene length. The
squares are derived from Pol2 occupancy data (Pol2-ChlP; Blythe and Wieschaus, 2015). For Kr, kni and gt, Pol2 signal is found a few hundreds bp away from
the annotated length suggesting extra processing related to termination. Similarly, the larger measured ratios (compared to the predicted ones based on
annotated gene length (crosses)) likely reflect retention of nascent transcripts at the loci due to termination.

(F) Effective gene length for each gene as determined from the activity ratio. Symbols and error bars as in (E). Assuming an elongation speed of 1.5 kb/min, the
difference between the effective and annotated gene length can be translated in time (inset). The lag or extra residence time of transcripts at the loci is at most 35
seconds.

(G) Temporal hierarchy used to calculate the 5’ and 3’ joint distribution of transcriptional activities. The measured signal result from partially tagged nascent
transcripts and is proportional to the number of probe binding regions that have been transcribed. In order to calculate the joint distribution, we accumulate the
distinct contribution of nascent transcripts, between each probe region, from the 3’ end up to the 5’ end of the gene. At constant elongation rate, the distance
separating each successive probe region is converted into a time t,(c), where the superscript (C)e{(3), (5)} stands for the probe channel and the subscript i
denotes the interval separating probe i from probe i — 1 (from the 3’ end to 5’ end direction). The joint distribution of activity is obtained by subsequent convolution
of the distribution of Pol Il initiated during each time t,.(c). Each of these convolutions are properly weighted to take into account the proper contribution of each
probe region to the activity.
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Figure S5. Parameter Inference from Dual-Color smFISH Activity Distribution Using the Two-State Model, Related to Figure 4

(A and B) The data correspond to the measured distribution of 3’ versus 5 activity across AP position for hb. Data distributions were constructed based on the
2.5%-AP-bins defined in Figure 4C. Dashed black line represents the expected ratio of 3’ versus 5’ activity (r = 0.57 for hb); black circle corresponds to the mean
of the distribution and lies on the dashed line.

(A) Qualitative change of the distribution predicted by the 2-state model as the parameters vary for AP-bin at x /L = 38.6% (top row) and at x/L =48.9% (bottom
row). Changes in the transcriptional parameters Kini, kon, Koff, @and in (n) at fixed 7, set at the same mean activity (g) as in the data leads to qualitatively different
distributions. Thus, all information regarding the kinetic parameters is contained in the distribution of 3’ versus 5’ activity, which enables inference of these rates.
(B) Side by side representation of the empirical (data, top row) and modeled (bottom row) distributions with best-fit parameters for different AP bins. The empirical
distributions are used as input in our inference framework enabling precise inference of the underlying transcriptional kinetics at each AP position. Of note, the
displayed modeled distributions are devoid of measurement noise and represent the theoretical output of the two-state model given the probe-set configuration
and the effective elongation time. Thus, the likelihood of the data is essentially the convolution of the activity distribution calculated from the two-state model with
the noise measurement distribution. Overall, the best-fit distributions reproduced the data well.

(C) Joint posterior distribution of the parameters given the data in (B) for each AP position. These distributions are generated as the output of our inference
framework, namely we sampled the posterior distributions calculated from the likelihood according to Bayes’ rule using a Markov chain Monte Carlo (MCMC)
algorithm. As the joint posterior distributions are highly peaked in the parameter space, it indicates that the parameters of the model are identifiable for all AP
positions. The optimal kinetic rates kini, kon and kos, Which were used to generate the modeled distribution in (B), are estimated from these joint posteriors as the
median of the marginal posterior distributions.
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Figure S6. Validation of the Inference Framework for Dual-Color smFISH and Synthesis Rates, Related to Figures 4 and 5

(A-F) We simulated synthetic 3’ and 5’ nuclear activity data based on four gene copies (two alleles with two sister chromatids each) modeled by a two-state model
with measurement noise, using the probe configuration for hb. To test the performance of our inference, we generated four different datasets by modulating the
mean input activity (g) in the data through: 1) initiation rate kin; alone (cyan), 2) on-rate ko alone (green), 3) off-rate ko alone (blue) and the mean occupancy (n) at
constant switching correlation time 7, (red). The constant go corresponds to the maximal activity for each dataset, defined as go = max(kini)7e, Where the
maximum is taken over the dataset when kiy; varies (cyan) and 7, is the elongation time. Importantly, the inference of the kinetic parameters was performed for

(legend continued on next page)



each sub-dataset independently (individual circles; 500 nuclei), without assuming any continuity in the dataset. To take into account finite size sampling variation
in the data, we inferred parameters on 10 replicates for each synthetic dataset. Thus, the estimated posterior distributions are aggregated over all replicates.
(A-E) Inferred kinetic rates Kini (A), kKon (B), and kot (C), mean occupancy (n) =kon/ (kon + Kott) (D) and switching correlation time 7, = 1/ (kon + Kott) (E) @s a function of
the mean input activity (g)/go. All quantities are estimated from the sampled joint posterior distribution of the kinetic rates. Colored circles stand for the inferred
parameters as a function of input activity, i.e., the median of the marginal posterior distribution. Error bars correspond to the 10" and 90" percentiles of the
posterior distribution. The colored dashed lines represent the input (true) parameters used to simulate the data.

(F) Global relative inference error |6int — fue | /0wrue calculated for each parameter 6. These errors are estimated over all synthetic datasets and replicates and
correspond to the median with error bars given by the 68% confidence intervals. Notably, ki, and (n) are easier to infer than the switching rates kon and ko or the
correlation time 7,, which have more subtle effect on the shape of the activity distribution. Still, the inference is able to distinguish between small differences in
parameter modulation. Overall, the errors remain small, as the medians of the inference errors never exceed 20% of the true values.

(G—J) Four first cumulants of data (unnormalized, in cytoplasmic units) as a function of the ones predicted by the two state-model with best fitting parameters for
multiple gene copies (Ny = 2, 4). Each data point corresponds to a single AP-bin. Error bars are the 68% confidence intervals. Overall, the slopes close to one and
the large R? indicate that the model captures the first four cumulants of data well. Color code as in Figure 1C.

(K) Inferred mean synthesis rate ki, (n) as a function of the mean occupancy (n) for all genes. Modulation of transcript mean synthesis rate across boundaries is
fully determined by the mean occupancy. Color code as in Figure 1C. All error bars correspond to the 10" and 90" percentiles of the posterior distribution.
(L-N) Comparison of the inferred transcriptional parameters ki, (1) and 7, assuming two different elongation speeds ke, (1.5 kb/min versus 2.5 kb/min). Both kip;
and 7, are rescaled while (n) remains the same. Thus, our results are unaffected by the exact value of keo; it only leads to a rescaling of the inferred parameters
that have time units. Color code and error bars as in (K).

(O) Comparison of the estimated mean synthesis rate for a single gene copy of endogenous hb (wt and deficient) and the synthetic hb P2 reporter live-imaged by
Garcia et al. (2013) during interphase 13. The reporter corresponds to a minimal version of the hb gene that is driven by the P2 promoter and the P2 (proximal)
enhancer alone. The mean synthesis rate of the P2 reporter was obtained by multiplying the estimated effective initiation rate and the fraction of active nuclei
divided by two (two sister chromatids per locus), as reported in Garcia et al. (2013). Excluding the posterior region (x/L > 0.45), where the reporter shows ectopic
expression, the estimated mean synthesis rates only differ by approximately 30 to 50%. This difference, in the case of the reporter, likely stems from both larger
live-imaging measurement and calibration errors, and potentially reflects different expression rates between the endogenous gene and the synthetic reporter.
Nevertheless, the reported synthesis rates estimated through different models and techniques are consistent. Error bars as in (K) except for the hb P2 reporter
which are standard errors over multiple embryos.
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