Ligand-Assisted Metal-Centered Electrocatalytic Hydrogen Evolution upon Reduction of a Bis(thiosemicarbazonato)Ni(II) Complex

Rahul Jain,† Abdullah Al Mamun,† Robert M. Buchanan,† Pawel M. Kozlowski,†,* and Craig A. Grapperhaus‡,*

†Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
‡Department of Food Sciences, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland

ABSTRACT: In this study, we report the electrocatalytic behavior of the neutral, monomeric Ni(II) complex of diacetyl-bis(N-4-methyl-3-thiosemicarbazonato), NiL1, for ligand-assisted metal-centered hydrogen evolution in acetonitrile (ACN) and dimethylformamide (DMF). Using foot-of-the-wave analysis (FOWA), NiL1 displays a maximum turnover frequency (TOF) of 4200 and 120 s⁻¹ for acetic acid (CH₃COOH) in ACN and DMF, whereas for trifluoroacetic acid (CF₃COOH) the TOFs are 1300 and 120 s⁻¹ in ACN and DMF, respectively. In ACN, the overpotentials are 0.53 and 0.67 V for CH₃COOH and CF₃COOH, respectively. In DMF, the overpotential is 0.85 V for CH₃COOH. First-order dependence with respect to the catalyst is established. NiL1 displays a minimum Faradaic efficiency of 87% from controlled potential electrolysis. Gas analysis from controlled potential electrolysis in both ACN and DMF using CH₃COOH and CF₃COOH confirms NiL1 as an electrocatalyst to produce H₂. In ACN, TÖNs of 48 and 24 were obtained for CH₃COOH and CF₃COOH, respectively in 4 h. In DMF, TÖNs of 13 and 3 were obtained for CH₃COOH and CF₃COOH, respectively. The H₂ evolution reaction was evaluated using deuterated acid, demonstrating an inverse kinetic isotope, which is consistent with formation of a metal hydride intermediate. A proposed ligand-assisted metal-centered mechanism for HER is supported by computational investigations. All catalytic intermediates in the proposed mechanism were structurally and energetically characterized using density functional theory (DFT), with the B3LYP/6-311g(d,p) and BP86/TZV/P in solution modeled via polarizable continuum model. The final step of catalysis involves the reaction of [HNi(L1)]. The correctness of proposed mechanism was confirmed by location of corresponding transition state (TS) having single imaginary frequency (11786 cm⁻¹).

INTRODUCTION

In the pursuit of carbon-free fuels, hydrogen can be considered as an apt energy carrier.¹⁻³ Molecular hydrogen is generated by the two-electron reduction of protons through the hydrogen evolution reaction (HER).³⁻⁵ The stored energy can be extracted on demand via the hydrogen oxidation reaction (HOR).⁶ To date, Pt serves as an excellent electrocatalyst to generate hydrogen, but its high cost and limited availability has inspired the search for economically viable, earth abundant catalysts.⁷⁻¹¹ Typically, HER catalysts operate via a metal-centered route involving a metal hydride.¹²⁻¹⁸ However, recently, a number of HER catalysts have been reported following alternate, ligand-centered pathways.¹⁹⁻²⁷ Bis(thiosemicarbazono) complexes are a class of Schiff base systems possessing a tetradentate, square planar N₃S₂ coordination sphere that have received recent attention as HER catalysts.²⁸⁻³⁰ The ligands are considered redox non-innocent as the terminal α-diamine unit is subject to reduction yielding a γ-radical anion.³⁰⁻³³ The soft donor ligand architecture stabilizes first-row transition metals in low oxidation states.³⁰⁻³⁴⁻³⁸ The first reported bis(thiosemicarbazono) complex as a HER catalyst was the neutral monomeric zinc complex, ZnL1, [L1 = diacetyl-bis(N-4-methyl-3-thiosemicarbazonato)], which evolves hydrogen via a dinuclear, ligand-centered reaction.²³ The copper complex, CuL1, catalyzes HER via a metal-assisted ligand-centered process in which H₂ is evolved at the ligand-center with the metal serving as an electron reservoir.²² Straistari et al. reported a mononemic nickel complex, NiL2, [L2 = 4-(bis[4-(p-methoxyphenyl)-thiosemicarbazonato])₂-2,3-butane] that also catalyzes HER.²⁵ NiL2 was proposed to operate via a ligand-assisted metal-centered route in which Ni(III)-H was suggested as the catalytically active species. In this study, we report the HER activity of NiL1 using CH₃COOH and CF₃COOH as external proton sources in ACN and DMF solutions. Mechanistic details have been investigated experimentally and computationally by employing density functional theory calculations in both gas phase and solution phase modeled via the polarizable continuum model (PCM). The
results support a ligand-assisted metal-centered pathway (Scheme 1) and provide evidence to support the prior suggestion of Ni(III)-H as an intermediate for HER.

Scheme 1. Overview of First-Row Transition Metals with Bis(thiosemicarbazone) Ligands

EXPERIMENTAL SECTION

Materials and Reagents. Chemicals, reagent-grade, were purchased from commercial sources and used without further purification unless otherwise noted. ACN and DMF solvents were dried using an MBraun solvent purification system. The nickel complex of diacetyl-bis(N-4-methyl-3-thiosemicarbazonato), NiL₁, was prepared as previously reported by West.⁴⁰

Electrochemical Methods. A Gamry Interface potentiostat/galvanostat was used to record all cyclic voltammetry (CV) and controlled potential coulometry (CPC) measurements. Overpotential for hydrogen evolution was calculated using the methods reported by Fourmond et al. from the theoretical half wave potential, \(E^0_{1/2} \), and the experimental potential \(E_{\text{cat}}/2 \) one-half of the maximum of catalytic current. The turnover frequency (TOF) for hydrogen evolution was estimated using the foot-of-the-wave analysis (FOWA).⁴²⁻⁴⁵ Sample calculations of overpotential and TOF are included in the Supporting Information.

Overpotential (\(\eta \)) = \(IE^0_{1/2} - E_{\text{cat}}/2 \) \hspace{1cm} (1)

The CV data were collected using a three-electrode cell comprised of a glassy carbon working electrode, platinum wire counter electrode, and Ag/Ag⁺ reference electrode. The glassy carbon working electrode was polished using an aqueous alumina slurry before recording the data. The working and counter electrodes were washed with water, ethanol, isopropanol, acetone, ACN, and DMF before use. After the washing, the electrodes were sonicated for 10 min in the working solvent (ACN or DMF). The three-necked electrochemical cell used for CV studies was washed and dried in an oven overnight before use. In a typical CV experiment, a 0.30 mM solution of the catalyst was prepared in the working solvent (ACN or DMF) containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAHFP) as supporting electrolyte. The solution was sparged with nitrogen for ~15 min and then kept under a nitrogen atmosphere. Data were collected at scan rates of 0.2, 0.5, and 1.0 V/s. An aliquot of acid was added, and CV data were collected at all three scan rates. The next aliquot was not added until constant current was obtained at each scan rate. Additions of acid were continued until the current saturated. Under acid saturating conditions, the scan rate was varied until scan-rate-independent conditions were established.

To calculate the TOF, FOWA was performed using CVs under acid saturated conditions. Herein, we report the average values of TOF recorded at three different scan rates after establishing the scan rate independence. FOWA was analyzed at scan rates of 7.0–9.0 V/s in ACN and 5.0–7.0 V/s in DMF solutions.

The CPC data were collected using a two-chambered glass electrolysis cell. The working compartment was fitted with a glassy carbon working electrode and Ag/Ag⁺ reference electrode. The auxiliary compartment was fitted with a Pt wire counter electrode. The cell was washed and dried in an oven overnight before conducting the experiments. In a typical experiment, the working compartment was loaded with 0.30 mM catalyst, the desired acid (CH₃COOH or CF₃COOH) at saturation conditions, and 0.1 M TBAHFP in ACN or DMF solution. The auxiliary compartment was filled with a 0.1 M TBAHFP in ACN or DMF solution. Before electrolysis, both compartments were sparged with nitrogen for ~15 min. Data was collected at a constant applied potential equal to the potential required for \(i_{\text{cat}} \) in the CV studies. A control (blank) CPC study was conducted and subtracted from experimental results. A Gow-Mac series 400 GC-TCD fitted with a molecular sieve column heated to 130 °C was used for the detection of hydrogen gas in the head space of the CPC cell. Faradaic efficiency was determined using an inverted H-shaped cell in which the evolved gas displaced the volume of the solvent in the cathode compartment, calculated as \(V = \pi (r^2)h \). The evolved moles of hydrogen can be quantified by the applying the conversion factor of 1 mol of gas corresponds to 22.4 L.

RESULTS AND DISCUSSION

Synthesis and Electrochemical Characterization. The NiL₁ complex is obtained in high yields as an air and moisture stable dark green solid by using previously reported methods.⁴⁰ The CV of NiL₁ in DMF solution displays two quasi-reversible events in the cathodic region from 0 to ~2.80 vs Fc⁺/Fc⁺, as in Figure S1. The first event, \(E_1/2 = \sim -1.83 \) V, is assigned to ligand centered reduction, Ni(II)L⁻/Ni(II)L⁻⁻⁻. A similar ligand-centered event is reported for NiL₂ at a potential of ~1.64 V.⁴⁹ The second event for NiL₁ at ~2.45 V is assigned as metal-centered Ni(II/III) couple, which is similar to the reported Ni(II/III) potential of ~2.27 V for NiL₂. The irreversible oxidation event at ~1.30 V for NiL₂ is only observed after scanning through the second reduction event. A similar unassigned feature is observed in the CV of NiL₂.⁴⁹ Analysis of the cathodic current for NiL₁ in DMF at the multiple scan rates from 0.1 to 0.5 V/s were used to construct a Cottrell plot, shown in Figure S1, establishing that the reduction is diffusion limited with a diffusion coefficient of 2.74 \times 10⁻⁷ cm²/s. The CV of NiL₁ in ACN displays a similar quasi-reversible ligand- and metal-centered events at ~1.73 and ~2.31 V, respectively, given in...
The performance of NiL1 as an electrocatalyst for the hydrogen evolution reaction was evaluated under a series of four conditions in which the solvent (ACN or DMF) and proton source (CH\textsubscript{3}COOH or CF\textsubscript{3}COOH) were systematically varied. The acids and solvents in this study were chosen to directly compare the HER activity of NiL1 with the previously reported complexes.22,23,39,55,58 The highest TOF was observed in ACN with CH\textsubscript{3}COOH. Notably, the lowest TOF for NiL1 was observed in DMF with CF\textsubscript{3}COOH, which were the only conditions reported for NiL2.

The addition of CH\textsubscript{3}COOH (pKa = 23.51)59 to NiL1 in ACN introduced a catalytic current at -2.35 V vs Fc$^+/Fc^0$, given in Figure 2. Initially, the catalytic to peak current ratio ($i_{\text{cat}}/i_{\text{p}}$) increase linearly with increasing acid concentration. The value of $i_{\text{cat}}/i_{\text{p}}$ saturates when the concentration of CH\textsubscript{3}COOH reaches 12.60 mM. After establishing these acid saturated conditions, the scan rate was increased until the scan rate independent region was observed at 7.0 V/s. Using FOWA, a TOF of 4200 s$^{-1}$ was determined with an overpotential of 0.53 V.

The electrocatalytic activity of NiL1 in ACN was accessed using CF\textsubscript{3}COOH (pKa = 12.65)60 as a proton source. As shown in Figure 3, there is an increase in the cathodic current at -1.65 V and -2.26 V vs Fc$^-$/Fc0 upon successive additions of CF\textsubscript{3}COOH. The presence of two catalytic waves suggests the mechanism is more complex than with CH\textsubscript{3}COOH and may involve multiple pathways. For the sake of comparison, we will focus on the process occurring at the more cathodic potential (E$^\text{cat/2}$ = -1.90 V vs Fc$^+/Fc^0$). Acid saturation occurs when the concentration of CF\textsubscript{3}COOH reaches 18.0 mM. Under acid saturating conditions, i_{cat} becomes scan rate independent at 7.0 V/s. Using FOWA, a TOF of 1300 s$^{-1}$ is calculated with an overpotential of 0.67 V. The decrease in the HER activity with CF\textsubscript{3}COOH may be attributed to differences in dimerization of the two acids in ACN solutions. For example, the loss of dimerization of CF\textsubscript{3}COOH due to heteroconjugation with water in ACN solutions has been shown to lower HER activity.60

Using a similar approach, the catalytic activity of NiL1 for HER was evaluated in DMF with CH\textsubscript{3}COOH and CF\textsubscript{3}COOH. Successive additions of CH\textsubscript{3}COOH (Figure 4) or CF\textsubscript{3}COOH (Figure 5) to DMF solutions of NiL1 showed increases in cathodic current at -2.62 and -2.10 V, respectively. Acid saturation occurs at 9.80 mM with CH\textsubscript{3}COOH and 32.0 mM with CF\textsubscript{3}COOH. Under scan-rate-independent conditions, 5.0 V/s, a TOF of 1200 s$^{-1}$ at an overpotential of 0.85 V is observed with CH\textsubscript{3}COOH, while a TOF of 120 s$^{-1}$ is observed with CF\textsubscript{3}COOH. The lower activity in DMF as compared to ACN solutions can be associated with the stabilizing hydrogen bonding interactions between the N–H groups in the ligand framework and the DMF solvent.22

Next, the order of the reaction with respect to the catalyst was evaluated. The catalytic current was measured at four different NiL1 concentrations (0.125, 0.25, 0.50, and 0.75 mM) under acid saturating conditions of 12.6 mM CH\textsubscript{3}COOH. A linear relationship was established upon plotting the i_{cat} versus [NiL1], corresponding to a first-order dependence on the concentration of the catalyst, Figure S10.
To gain further insights into the mechanism, the kinetic isotopic effect for HER catalysis by NiL1 was measured using deuterated acids.22,24,61 In separate experiments, CV data were collected with 0.30 mM NiL1 in ACN or DMF with successive additions of the deuterated acids CD\textsubscript{3}CO\textsubscript{2}D or CF\textsubscript{3}CO\textsubscript{2}D. For acetic acid, KIE (H/D) values of 0.75 and 0.64 were obtained in ACN and DMF, respectively. Slightly lower values of 0.54 and 0.57 were obtained for CF\textsubscript{3}CO\textsubscript{2}H/CF\textsubscript{3}CO\textsubscript{2}D in ACN and DMF, respectively. In all the cases, the value of KIE is less than one indicating an inverse isotope effect, which is similar to that reported from Gray and Fukuzumi for HER via a metal hydride intermediate.62,63

Electrocatalytic Hydrogen Evolution: CPC Studies. The stability of NiL1 as an electrocatalyst for HER was evaluated in ACN and DMF by conducting CPC experiments over a period of 4 h, as in Figure 6 and Table 1. Electrolysis of ACN solutions containing 0.1 M TBAHFP, 0.30 mM NiL1, and 12.60 mM CH\textsubscript{3}COOH at a constant potential of −1.90 vs Fe3+/Fe2+ resulted in a total charge passed of 27.56 C, corresponding to 1.43 × 10−4 moles of H\textsubscript{2} produced with a turnover number (TON) of 48. Gas chromatography thermal conductivity (GC-TCD) was used to analyze the headspace sample confirming H\textsubscript{2} as the gaseous product. Similar experiments with CF\textsubscript{3}COOH (18.0 mM) for 4 h yielded a net charge of 13.67 C associated with a TON of 24. The lower TON relative to CH\textsubscript{3}COOH is consistent with the lower TOF. The same trend is observed for CPC data collected in DMF solution. With CH\textsubscript{3}COOH (9.80 mM) a TON of 13 is obtained after 4 h in DMF. When the proton source in DMF is changed to CF\textsubscript{3}COOH (32 mM), the TON is lowered to 3. The relatively low TON, with respect to the TOF, is attributed to the fact that only catalyst at the electrode surface is actively generating the hydrogen, but the bulk concentration of the catalyst is used to calculate the TON values.

Electrocatalytic Hydrogen Evolution: Control Experiments. To confirm that the HER observed is associated with NiL1 in solution and not due to surface adsorbed complex or degradation products, a series of control experiments have been undertaken. First, blank CVs collected in the presence of CH\textsubscript{3}COOH or CF\textsubscript{3}COOH without the addition of NiL1 showed no measurable current at potentials associated with hydrogen evolution (Figures S15−S18). A series of CVs were recorded with NiL1 in ACN or DMF in the presence of acid to confirm HER activity. Then, the glassy carbon working electrode was removed from solution and washed with the deionized water but not polished. Immersion of the electrode into a fresh working solution containing acid and electrolyte showed no observable catalytic current upon sweeping the potential in the cathodic region. This indicates that HER activity is due neither to a film of the catalyst nor its degradation product being strongly absorbed on the electrode surface. To further probe whether the film formation on the working electrode surface was responsible for catalysis, a dip test was performed after CPC (Figure S19).23,61,64

To probe if the first step of catalysis could involve protonation of the catalyst, the titration of NiL1 with acid was monitored in the UV−visible region.22 The electronic spectra of NiL1 in ACN or DMF did not significantly change.

Table 1. CPC Results

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>acid</th>
<th>q (C)</th>
<th>n (× 10−4)</th>
<th>TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACN</td>
<td>CH\textsubscript{3}COOH</td>
<td>27.56</td>
<td>1.43</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>ACN</td>
<td>CF\textsubscript{3}COOH</td>
<td>13.67</td>
<td>0.71</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>DMF</td>
<td>CH\textsubscript{3}COOH</td>
<td>7.26</td>
<td>0.38</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>DMF</td>
<td>CF\textsubscript{3}COOH</td>
<td>1.69</td>
<td>0.087</td>
<td>3</td>
</tr>
</tbody>
</table>
upon the addition of either CH₃COOH or CF₃COOH. The results are consistent with a mechanism in which reduction of NiL₁ is required prior to protonation. Reduction of NiL₁ in ACN with cobaltocene to [NiL₁]⁺ yields an S = 1/2 radical species. The EPR spectrum of [NiL₁]⁻ displays a rhombic signal with a narrow g-value spread, g₁ = 2.02, g₂ = 2.00, and g₃ = 1.983, that is inconsistent with a Ni(I) assignment (Figure S26). The average g-value of 2.003 indicates the reduction is ligand-centered.⁵⁷ Addition of CF₃COOH to the reduced sample results in no significant change in g-values indicating that the radical of Ni(HL₁⁻) remains ligand centered confirming ligand-centered protonation.

Proposed Homogeneous HER Mechanism. A proposed ECEC (E = electron transfer, C = chemical reaction; i.e., protonation) mechanism for HER is shown in Scheme 2. The mechanism is supported by computational investigations as described below. An alternate, EECC mechanism cannot be completely excluded. In either case, the first step of the cycle is ligand centered reduction of NiL₁ by one electron to yield [Ni(II)L₁⁻]⁻. Protonation of [Ni(II)L₁⁻]⁻ occurs at a non-coordinated hydrazino-N to generate Ni(II)(HL₁⁻). Reduction of Ni(II)(HL₁⁻) yields the metal hydride species, [HNi(III)-L₁⁻]⁺, which reacts with external proton in the solution to generate hydrogen. The mechanism is consistent with experimental results that indicate the reaction is first-order with respect to the catalyst. Additionally, the catalysis requires reduction prior to protonation, and the KIE is consistent with the formation of a metal hydride. The proposed mechanism involves four key Ni complexes that were evaluated by DFT investigations.

Computational Studies. The proposed complexes in Scheme 2 were optimized by DFT using the B3LYP functional with the 6-311g(d,p) basis set and the BP86 functional with the TZV/P basis set.⁵³ The former was previously used by our group to investigate the HER catalysis by CuL₁, while the latter was employed by Straistari et al. for NiL₂.³⁷ Geometry optimization were carried out in gas phase, as well as in solution phase using PCM.⁶⁵ The neutral NiL₁ catalyst model was optimized as a restricted singlet (S = 0) using initial geometrical parameters taken from the previously reported crystal structure.⁶⁶ The optimized metal–ligand bond distances and angles are within 0.1 Å and 2.2°, respectively, of the experimental values (see Table S1). Reduction of NiL₁ by one electron yields a doublet electronic state (S = 1/2) best described as the Ni(II)-ligand radical [NiL₁⁻]⁻ with 95% of the spin density on the ligand framework as determined with B3LYP/6-311g(d,p) in the solution phase. Similar results were obtained in the gas phase using B3LYP/6-311g(d,p) and with BP86/TZV/P in the gas and solution phases. The assignment of the first reduction as ligand centered is consistent with the previously reported calculations of [NiL₂⁻]⁻.³⁹ On the basis of the spin density distribution, the second reduction is assigned to be metal-centered reduction from Ni(II) to Ni(I) (Figure S28).

The theoretical prediction of the standard redox potentials for both reduction events in ACN solutions was obtained using Born–Haber cycle with B3LYP/6-311g(dp) (Scheme S1). The standard ferrocene couple (Fc⁺/Fc⁻ = 4.988) was used as a reference electrode.⁶⁷ The first reduction which is assigned as ligand-centered reduction was computed to be −2.04 V, while the second reduction event assigned as metal-centered was predicted to be −2.55 V (Table S3). These values were found to be in good agreement with the experimental values (E°⁺ = −1.73 V and E°⁻ = −2.31 V) considering that the computation of reduction potential using B3LYP functionals requires a consistent shift of −0.48 V.⁶⁸

TD-DFT calculations were performed to simulate the neutral and the reduced species of NiL₁ (Figure S29). The absorption spectrum is dominated by one major band in the range of 300–500 nm consistent with experimental data. In neutral NiL₁, absorption band at 386 nm was assigned to the electronic transition from mixed metal–ligand to ligand orbitals. For monoreduced and direduced species band at 390 and 446 nm demonstrates ligand to ligand and metal–ligand to ligand orbital transition, respectively (Table S2). Protonation of [NiL₁⁻]⁻ can potentially occur at Ni, S, N₂ (hydrazino), N¹ (coordinated), or N³ (pendant amine). Each of these sites were evaluated in the doublet ground state (S = 1/2). The calculations based on B3LYP/6-311g(dp) solution phase, given in Figure 7, favor protonation at the N² (hydrazino) relative to N¹ (coordinated) by 2.85 kcal/mol. All other protonation sites are disfavored by at least 12.56 kcal/mol. The solution phase computed using BP86/TZV/P also favors protonation at N² over N¹ (5.95 kcal/mol; Figure S43). Notably, gas phase calculations show nearly degenerate
energies for protonation at N1 and N2 (Figures S30 and S40). Our results somehow are different than those of Straistari, which report preferential protonation at N1 by 4 kcal/mol over N2.39

The reduction of Ni(HL1·) is complicated as it could result in a singlet (S = 0) or triplet (S = 1) species and may involve shifting of the proton from N2.22 The resulting complex was evaluated in the solution phase using B3LYP/6-311g(d,p) at multiple protonation sites in both spin states (Figure S33). The structures corresponding to singlet states are discounted based on the relatively high energies required for the H2 evolving step (see the Supporting Information). Representations of the lowest energy triplet structures are provided in Figure 8. The lowest energy structure is the S-coordinate,

metal hydride [HNi(L1·)]−. It is best described as Ni(III)-H coordinated to the ligand radical (L1·). The next lowest energy complex, which is protonated at N1, sits 4.43 kcal/mol higher in energy. It is analogous to the lowest energy structure reported by Straistari for [Ni(HL2)−]. All other protonation sites are significantly higher in energy.

The natural bond orbital (NBO) analysis was performed on the lowest energy [HNi(L1·)]− structure.44 The result indicates the formation of the NiH− (Figure S39). Considering the NBO results, the final step of catalysis involves the reaction of [HNi(L1·)]− with H+ generating H2. The reaction occurs without the second protonation of the ligand. The transition state (TS) involving the H2 evolution was located using the B3LYP/6-311g(d,p) in solution modeled via PCM (Figure 9) and characterized by a single imaginary frequency of 1786 cm−1. The relatively low energy barrier of 10.5 kcal/mol of TS supports the formation of hydrogen from the [H-NiL1·]− on interaction with the external proton from the acid in the solution.

CONCLUSION
The redox active framework of thiosemicarbazone ligands can serve as a site of proton reduction. As we have detailed previously, the HER mechanism for metal bis-(thiosemicarbazone) complexes depends on the number of d-electrons and the relative energy of the ligand- and metal-centered orbitals. Previously, our group reported strictly ligand-centered HER for ZnL1 with the metal serving a structural role.23 All reductions and bond making/breaking reactions occur on the ligand. In contrast, HER with CuL1 occurs through metal-assisted ligand-centered reactivity.22 The bond making/breaking reactions remain on the ligand center, but the metal serves as an electron reservoir. Recently, Straistari et al. reported PdL2 as a HER catalyst that is proposed to follow the same mechanism as CuL1.58 In the current paper, we report that bond breaking/making shifts from the ligand to the metal center for NiL1. In this ligand-assisted metal-centered reaction, the ligand serves as the electron reservoir. The mechanism is consistent with the suggestion that a catalytically active Ni(III)-H is responsible for H2 evolution with NiL2. Further, the results of the current manuscript provide the first DFT support of a Ni(III)-H as an intermediate on the reaction surface for HER. A metal hydride pathway was also anticipated for CoL2, although that remains to be confirmed.25

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorg-chem.8b02110.

Sample calculations, supplementary CV data, plots of FOWA analysis, EPR spectra, DFT details of B3LYP/6-311g(d,p) gas phase, BP86/TZV/P (gas and solution) and computational input coordinates (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: craig.grapperhaus@louisville.edu.

ORCID
Abdullah Al Mamun: 0000-0001-8941-8195
Paweł M. Kozlowski: 0000-0002-4090-8078
Craig A. Grapperhaus: 0000-0003-4889-2645

Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS

This research was supported in part by the National Science Foundation (CHE-1665136) and a grant from the Kentucky Science and Engineering Foundation as per grant agreement no. KSEF-148-02-15-350 with the Kentucky Science and Technology Corporation. We are thankful to Cardinal Research Cluster at the University of Louisville for providing the computational facilities. We thank Mr. Nicholas Vishnosky for assistance with electrochemical experiments.

REFERENCES

(27) Thompson, E. J.; Berben, L. A.; Deubel, D. V.; Keppler, B. K. An Electrochemical Study of Birhodium(I) Bis(thiosemicarbazone) Complex: Implications for the Mechanism of