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Abstract—This paper proposes a new equivalent circuit model
for rechargeable batteries by modifying a double-capacitor model
proposed in [1]. It is known that the original model, when
compared to other equivalent circuit models, can better address
the rate capacity effect and energy recovery effect inherent to
batteries. However, it is a purely linear model and includes no
representation of a battery’s nonlinear phenomena. Hence, this
work transforms the original model by introducing a nonlinear-
mapping-based voltage source, with the modification justified by
an analysis and comparison with the single-particle model. The
new nonlinear double-capacitor model is evaluated extensively,
with a parameter identification method proposed and validation
performed on a number of experimental datasets. The evalua-
tion shows that the proposed model offers excellent predictive
capability. With high fidelity and low mathematical complexity,
the proposed new model is advantageous for real-time battery
management applications.

I. INTRODUCTION

Rechargeable batteries have seen an ever-increasing use
in today’s industry and society as power sources for sys-
tems of different scales. This trend has motivated growing
research on advanced battery management algorithms. Since
such algorithms often hinge on mathematical models that
can well capture a battery’s dynamics, battery modeling has
attracted incessant interest during the past years. Based on
the fundamental modeling principles, the existing battery
models generally fall into two categories. The first category
builds on electrochemical principles to characterize the elec-
trochemical reactions and physical phenomena inside a battery
during charging/discharging [2]. The electrochemical models
are considered as the most accurate to predict a battery’s
behavior, finding wide use in battery design and analysis.
However, involving many partial differential equations, they
have complex structures and induce high computational costs.
Although a simplified electrochemical model known as single-
particle model (SPM) has been developed [3], it is still too
sophisticated and computationally expensive when it comes to
real-time battery management.

Rather than using electrochemical principles, another pop-
ular means of battery modeling is to replicate a battery’s
input–output characteristics using circuits made of resistors,
capacitors and voltage sources. This leads to a second category
that is referred to as equivalent circuit models (ECMs). There
is a long history of using ECMs to delineate the internal
resistance of batteries. The first one to our knowledge is the

Randles model proposed in the 1940s [4]. It introduces the
electrical ohmic and reactive resistance to account for the
voltage dynamics in a lead-acid battery. This model has be-
come a de facto standard for interpreting battery data obtained
from electrochemical impedance spectroscopy [5]. Adding a
voltage source representing the open-circuit voltage (OCV) to
the Randles model, one can obtain the Thevenin’s model [6]–
[8]. Removing its resistance-capacitance (RC) circuit, the
Thevenin’s model reduces to the simple Rint model that in-
cludes an ideal voltage source with a series resistor [6]. Adding
one or more RC circuits to the series, it becomes the PNGV
model capable of capturing multi-time-scale voltage transients
during charging/discharging [6]. The literature has also re-
ported a few other modifications to the Thevenin’s model
toward grasping a battery’s dynamics at a more sophisticated
level [9]–[16]. Another ECM that is emerging as a useful tool
is a double-capacitor model [1], [17], which is also referred
to as RC model. It uses two capacitors for storing charge. The
capacitors differ significantly in capacitance and are configured
in parallel, imitating an electrode’s bulk inner part and surface
region, respectively. Compared to the Thevenin’s model, this
unique circuit structure allows the rate capacity effect and
charge recovery effect to be captured, making this model
an attractive choice for charging control [18], [19]. Overall,
ECMs offer significant mathematical simplicity because of
the concise circuit structures and fewer parameters while
providing satisfactory predictive capabilities. This has made
them conducive to real-time estimation and control and thus
advantageous for embedded battery management.

In spite of a large body of work, the development of ECMs
has not been fully explored. One of the most pressing is to
improve the quality of the double-capacitor model mentioned
above. Despite the apparent advantages, this model suffers a
major drawback—it has a linear structure and hence cannot
describe a battery’s nonlinear behavior. In particular, it is
unable to capture the nonlinear SoC-OCV relationship, which
is critical for predicting a battery’s voltage behavior. To deal
with this issue, this paper presents a new ECM by improving
on the double-capacitor model, through a systematic effort of
model development, identification and validation. The specific
contributions of this paper are outlined as follows. First, the
double-capacitor model is modified by introducing a voltage
source as a nonlinear mapping of the voltage across the surface



capacitor. Such a modification has never been reported but
can be well justified by drawing an analogy to the SPM. It
transforms the original model to allow the nonlinear voltage
dynamics to be simulated by the circuit. As a result, the
new model, which is named nonlinear double-capacitor (NDC)
model, is physically more reasonable and can offer remarkably
improved predictive accuracy. Second, an extensive validation
is performed to evaluate the NDC model. To this end, a
method is presented to identify the model parameters from
measurement data in one shot. The obtained model is then
applied to different experimental datasets, where an excellent
prediction performance is observed. With the effectiveness
and mathematical conciseness, the proposed model may find
significant prospective use in advanced battery management.

The remainder of the paper is organized as follows. Sec-
tion II presents the development of the new NDC model based
on modifying the original double-capacitor model. Section III
analyzes and reveals the model parameter’s local identifiabil-
ity and presents an identification method for the parameter
estimation. Section IV offers numerical simulation to verify
the model parameter identifiability and gives the fundamental
upper limit for parameter estimation accuracy. Section V
validates the prediction performance of the proposed NDC
model using different datasets. Finally, concluding remarks are
gathered in Section VI.

II. NDC MODEL DEVELOPMENT

This section develops the new NDC model based on the tra-
ditional double-capacitor model and presents the mathematical
equations governing its dynamics.

As shown in Figure 1(a), the double-capacitor model in-
cludes two capacitors in parallel, Cb and Cs, each serially
connected with a resistor, Rb and Rs, respectively. The double
capacitors provide storage for electric charge like an electrode
and when parallelly connected, simulate the distribution and
migration of charge within the electrode. Specifically, the Rs-
Cs circuit can be considered as corresponding to the electrode
surface region exposed to the electrode-electrolyte interface;
the Rb-Cb circuit represents an analogy of the bulk inner
part of the electrode. This hence implies Cb � Cs and
Rb � Rs. It can be seen that Cb is where the majority of
the charge is stored and that Rb-Cb would demonstrate the
low-frequency part of the charging/discharging response. By
contrast, Cs has a capacity much less than Cb, and its voltage
shows a much faster change during charging/discharging. This
indicates that the Rs-Cs circuit is responsible for the high-
frequency response. In addition, R0 is included into the circuit
to account for the electrolyte resistance. It is pointed out
in [18] that this model can grasp the rate capacity effect,
i.e., the total charge absorbed (or released) by a battery goes
down with the increase in charging (or discharging) current.
To see this, it should be noticed that Vs, the voltage across
Cs, changes faster than Vb, the voltage across Cb, and that the
terminal voltage V is mainly affected by Vs. Thus, when the
current I is large, the fast rise (or decline) of Vs will make V
hit the cut-off threshold earlier even though Cb has yet to be

𝑅0

𝑅𝑠𝑅𝑏

𝐶𝑠𝐶𝑏

𝐼

𝑉

(a)

𝑅0

𝑅𝑠𝑅𝑏

𝐶𝑠𝐶𝑏

𝐼

𝑈 = ℎ 𝑉𝑠

𝐼

𝑉𝑠
𝑉

(b)

Figure 1: (a) The original double-capacitor model; (b) the
proposed nonlinear double-capacitor model.

fully charged (or discharged). Another phenomenon that can
be captured is the capacity and voltage recovery effect. That
is, the usable capacity and terminal voltage would increase
upon the termination of discharging due to the migration of
charge from Cb to Cs.

However, with the nature of a linear dynamic system, this
model is unable to describe the nonlinear dependence of a
battery’s OCV on SoC, which is a crucial feature of batteries.
Its application is thus restricted to only a limited SoC range
allowing for a linear approximation of the SoC-OCV curve,
which would impose much conservatism on the use of a
battery. To overcome this issue, the NDC model is proposed
to expand the original model to include a nonlinear mapping
of Vs, as shown in Figure 1(b). The mapping, expressed as
U = h(Vs), is equivalent to a voltage source, which directly
affects the terminal voltage V .

Here, let us justify the above modification from a perspec-
tive of the SPM, a simplified electrochemical model that has
recently attracted wide interest. An analysis in [18] reveals an
approximate mathematical equivalence between the double-
capacitor model and the SPM in terms of the transport of
the lithium ions within an electrode. The SPM represents
an electrode as a spherical particle, within which lithium
ions are stored. A charging/discharging process would drive
a diffusion-based migration of the lithium ions within the
electrode. If subdividing a spherical particle into two finite
volumes, the bulk inner domain and the near-surface domain,
one can simplify the diffusion of lithium ions between them
to a form approximately equivalent to that of the charge
transport for the double-capacitor model, as proven in [18].
For SPM, the terminal voltage depends on three factors: the
difference in the open-circuit potential of the positive and neg-
ative electrodes, the difference in the reaction overpotential,
and the voltage across the film resistance [2]. The reaction



overpotential difference is almost negligible when the input
current is not too large. In addition, the open-circuit potential
depends on the lithium-ion concentration in the surface region
of the sphere, which is akin to the charge amount on Cs and
consequently relates to the voltage of Cs, i.e., Vs. Therefore,
it is appropriate as well as necessary to introduce a nonlinear
function of Vs as an analogy to the between-electrode open-
circuit potential difference. This comparison with the SPM
suggests that the NDC model is physically reasonable. With
the proposed change, this new model can correctly show the
influence of the charge state on the terminal voltage, while
inheriting all the capabilities of the original model.

For the NDC model, h(Vs) can be parameterized as a
polynomial. A fifth-order polynomial is considered here, i.e.,

h(Vs) = α0 + α1Vs + α2V
2
s + α3V

3
s + α4V

4
s + α5V

5
s ,

where αi for i = 0, 1, . . . , 5 are coefficients. Then, the model
dynamics can be expressed as follows:

[
V̇b(t)

V̇s(t)

]
= A

[
Vb(t)
Vs(t)

]
+BI(t),

V (t) = h(Vs(t)) +R0I(t),

(1a)

(1b)

where

A =

[
− 1
Cb(Rb+Rs)

1
Cb(Rb+Rs)

1
Cs(Rb+Rs)

− 1
Cs(Rb+Rs)

]
, B =

[
Rs

Cb(Rb+Rs)
Rb

Cs(Rb+Rs)

]
.

In above, I > 0 for charging, and I < 0 for discharging.
Note that Vb and Vs should be set to belong to an interval
[V s, V s]. Here, let V s = 0 V and V s = 1 V for simplicity.
Then, Vb = Vs = 1 V for full charge (100% of SoC), and
Vb = Vs = 0 V for full depletion (0% of SoC). Further, the
SoC can be calculated by

SoC =
CbVb + CsVs
Cb + Cs

× 100%,

where Cb + Cs is the total capacity, and CbVb + CsVs the
available capacity.

The rest of this paper will center on assessing the predictive
performance of the NDC model. To achieve this, a parameter
identification method will be developed to determine the
model parameters using discharging data. This is followed by
applying the identified model to diverse experimental datasets.

III. PARAMETER IDENTIFICATION

This section is focused on one-shot parameter identification
for the NDC model. It begins with analyzing the voltage
response under constant discharge current and the local param-
eter identifiability. An identification method is then presented.

A. Terminal Voltage Response Analysis
Consider a battery fully charged and left idling for a long

period of time, and then fully discharge it using a constant
current I . According to (1a), Vs is

Vs(t) = Vs(0) +
It

Cb + Cs
+
Cb(RbCb −RsCs)I

(Cb + Cs)2

·
[
1 − exp

(
− Cb + Cs
CbCs(Rb +Rs)

t

)]
, (2)

where Vs(0) = 1 is the initial value of Vs at full charge state.
The response of the terminal voltage V then follows (1b).
However, as pointed out in [20], it is not possible to identify
Cb, Rb, Cs and Rs altogether. This issue can also be seen
from (2), where Vs depends on three combined parameters,
i.e., 1/(Cb +Cs), Cb(RbCb −RsCs)/(Cb + Cs)

2, and (Cb +
Cs)/ [CbCs(Rb +Rs)]. Even if they are determined, no one
can extract all the four individual RC parameters from them.
A straightforward way to avoid this issue is to assume Rs = 0,
as suggested and used in [20]. This assumption is tenable with
Rs � Rb for the NDC model. As a result, (2) becomes

Vs(t) = 1 +
It

Cb + Cs
+

RbC
2
b I

(Cb + Cs)2

·
[
1 − exp

(
−Cb + Cs
CbCsRb

t

)]
. (3)

Further, it is reasonable to assume that Vs(tend) = V s = 0 V
when the terminal voltage V hits the lower cut-off threshold,
where tend is the end time of discharging. For most batteries,
if the discharging current is not extremely large and tend is
long enough, then

exp

(
−Cb + Cs
CbCsRb

tend

)
≈ 0.

Hence, one has
RbC

2
b I

(Cb + Cs)2
≈ −1 − Itend

Cb + Cs
. (4)

As a result, (3) can further reduce to

Vs(t) = 1 + β1It− (1 + β1Itend)
(
1 − e−β2t

)
,

where
β1 =

1

Cb + Cs
, β2 =

Cb + Cs
CbCsRb

.

When obtained, β1 and β2, together with (4) can be used to
calculate Cb, Cs and Rb as follows:

Cb =
1

β1(β3 + 1)
, Cs =

β3
β1(β3 + 1)

, Rb =
β1(β3 + 1)2

β2β3
,

where
β3 = − β1I

β2 + β1β2Itend
.

An additional piece of information is worth noting here.
That is, the initial terminal voltage V (0) satisfies V (0) =
h(Vs(0) = 1) =

∑5
i=0 αi in the considered setting. Then, by

letting α0 by α0 = V (0)−
∑5
i=1 αi, one can take off α0 from

identification, reducing one parameter to be estimated.
The above analysis leads us to the following characterization

of the terminal voltage V under constant-current discharging:

V (θ; t) = V (0) −
5∑
i=1

θi +
5∑
i=1

θiV
i
s (θ; t) + Iθ8, (5)

where

θ =
[
α1 α2 α3 α4 α5 β1 β2 R0

]>
,

Vs(θ; t) = 1 + θ6It− (1 + θ6Itend)
(
1 − e−θ7t

)
.

Note that θi for i = 1, 2, . . . , 8 and its corresponding param-
eter will be used interchangeably in sequel.



B. Identifiability Analysis and Identification

Identifiability analysis is to determine whether the parame-
ters of a model can be uniquely extracted from measurement
data. Loosely speaking, parameters are called globally identifi-
able if there do not exist two different parameter sets anywhere
in the parameter space to satisfy a same data sequence,
implying the parameter sets are “differentiable”. They are
locally identifiable if the differentiability only holds in the
neighborhood of a nominal point. A rigorous definition of local
identifiability can be found in [21]. A common method for
investigating identifiability is performing sensitivity analysis,
which, as indicated in [21], [22], is to check if the sensitivity
matrix S(θ) has full rank. If so, θ is considered to be locally
identifiable. From (5), S(θ) can be derived as follows

S(θ) =


...

...
...

...
∂V (θ;tk)
∂θ1

∂V (θ;tk)
∂θ2

· · · ∂V (θ;tk)
∂θ8

...
...

...
...


N×8

,

where
∂V (θ; tk)

∂θi
= V is (θ; tk) − 1, for i = 1, 2, · · · , 5,

∂V (θ; tk)

∂θ6
=

 5∑
j=1

jθjV
j−1
s (θ; tk)


·
(
Itk − Itend + Itende

−θ7tk
)
,

∂V (θ; tk)

∂θ7
= −

 5∑
j=1

jθjV
j−1
s (θ; tk)


· (1 + θ6Itend)tke

−θ7tk ,

∂V (θ; tk)

∂θ8
= I.

In above, tk denotes the sampling time instants, and the total
number is N . By observation, one can see that the columns of
S(θ) are linearly independent if given a nominal point θ = θ0,
implying that the matrix is of full rank. This observation is
further verified through numerical simulation in Section IV.
Hence, θ is concluded to be locally identifiable.

Consider identification of θ using the prediction-error
method, which means to find out the parameters to minimize
the model-based prediction error. Hence, the following opti-
mization problem can be formulated:

θ̂ = min
θ

J(θ) =
1

2
[y − V (θ)]

>
Q−1 [y − V (θ)] ,

where y is the noise-contaminated measurement vector, Q a
symmetric positive definite matrix interpretable as the covari-
ance of noise additive to V (θ), and

y =
[
y(t1) y(t2) · · · y(tN )

]>
,

V (θ) =
[
V (θ; t1) V (θ; t2) · · · V (θ; tN )

]>
.

The above minimization problem can be solved using nu-
merical optimization methods, e.g., the trust-region method.
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Figure 2: Evaluation of the parameter estimation covariance.

Meanwhile, it is noted as a nonlinear and nonconvex problem.
This may put the optimal parameter search at a risk of
converging to physically incorrect parameters especially when
the initial parameter guess is far from the truth. One way to
address it is to constrain the parameter search by setting up
the rough upper and lower bounds of certain parameters when
they can be decided using some prior knowledge [23].

Consider the nominal parameter vector as θ0 and suppose
that θ̂ minimizes J(θ) successfully. Its covariance in the
Gaussian case is given by

Cov
(
θ̂
)

= E

[ ∂2J(θ)

∂θ2

∣∣∣∣
θ0

]−1 =
[
S>(θ0)Q−1S(θ0)

]−1
,

from which the variance of the estimate θ̂i, for i = 1, 2, · · · , 8,
is the i-th diagonal element of Cov

(
θ̂
)

, i.e.,
[
Cov

(
θ̂
)]

ii
.

When evaluating the covariance relative to the parameters’
magnitude, one can consider the scale-normalized covariance:

Cov
(
Γ−1θ0

θ̂
)

= Γ−1θ0
Cov

(
θ̂
)
Γ−1θ0

, (6)

with Γθ0
= diag (θ0).

IV. NUMERICAL SIMULATION

This section presents numerical simulation to assess the
effectiveness of the identifiability analysis and identification
method in Section III.

Assume a battery with Cb = 10, 068 F, Cs = 1, 124 F,
Rb = 0.0366 Ω, Rs = 0 Ω, R0 = 0.113 Ω, and h(Vs) follows

h(Vs) = 2.88 + 6.144Vs − 23.39V 2
s + 48.5V 3

s

− 46.86V 4
s + 16.87V 5

s . (7)

The corresponding parameter vector is

θ =
[
6.144 −23.39 48.5 −46.86 16.87

8.935 × 10−5 0.027 0.113
]>
. (8)

Suppose that the battery at first is fully charged with the
terminal voltage V = 4.144 V. Then it is discharged using a
constant current of 3 A until Vs = 0 V. The measurement V is
subject to zero-mean Gaussian additive noise with covariance
of Q = 10−4I .
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Figure 3: Normalized root-mean-square error for θ.

Computational verification shows that the sensitivity matrix
S(θ) for this battery around the true parameters has full rank,
confirming that θ is locally identifiable. Then, one can use (6)
to calculate the expected parameter estimation error covari-
ance, which is depicted in Figure 2. The covariance can be
interpreted as ratio-based parameter estimation error relative
to the parameter magnitude, thus indicating the estimation
accuracy. From Figure 2, it is seen that estimation error is
below 2% for all parameter except θ7.

Monte Carlo simulation is performed to further evaluate the
accuracy of parameter identification. In a simulation run, syn-
thetic I-V data is generated using the model with measurement
noise incorporated. The initial guess θguess is set to be

θguess =
[
1 1 1 1 1 8 × 10−5 0.03 0.1

]>
. (9)

The identification procedure proposed in Section III-B is then
applied to the data to identify the parameters. The simulation
is repeatedly run for M = 1000 times. The parameter estimate
of each run is recorded and used to calculate the normalized
root-mean-square error (NRMSE):

NRMSEi =

√√√√ 1
M

∑M
k=1

(
θ̂i[k] − θi

)2
θ2i

,

for i = 1, 2, . . . , 8, where k denotes the number of the Monte
Carlo run. Figure 3 shows the NRMSE of each parameter in
θ, which is consistent with the results presented by Figure 2.
All these results indicate the effectiveness of the identifiability
analysis and identification method in Section III.

V. EXPERIMENTAL VALIDATION

Based on the foregoing sections, this section presents ex-
perimental validation of the proposed NDC model.

Our experiments were conducted on a PEC R© SBT4050
battery tester. In the experiments, the sampling time interval
was 1 s. Using this facility, charging/discharging tests were
performed to generate data on a Panasonic NCR18650B Li-
ion battery cell, which has a rated capacity of 3.25 Ah. The
tests are of two types. The first type was meant to produce
a training dataset used to identify the parameters of an NDC
model. The training dataset was obtained by discharging the
fully charged cell to 2.5 V using a constant current of 3 A.
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o
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Figure 4: Comparison between the true and predicted voltage
under 3 A constant discharging current.

The second type was to yield multiple validation datasets, to
which the identified model is applied to assess the predictive
capability. The validation datasets were created by discharging
the cell using constant currents of 2 A, 2.5 A, 3.5 A, 4 A and
4.5 A and a varying current profile.

To begin with, the training dataset is processed by the
identification method in Section III-B to identify and prepare
the NDC model for the considered cell. The initial guess of
the parameters is set to be the same with that in (9), and
the resulting model parameter estimates are the ones shown
earlier in (8). That is, Cb = 10, 068 F, Cs = 1, 124 F, Rb =
0.0366 Ω, Rs = 0 Ω, R0 = 0.113 Ω, and h(Vs) follows (7). It
is seen that the parameters are practically reasonable and align
with our general knowledge of this cell. Besides, Figure 4
compares the model-predicted voltage against the measured,
which shows an excellent match between them.

Next, the identified model is applied to validation datasets.
The first datasets describe the cell’s terminal voltage under
constant-current discharging with the currents of 2 A, 2.5 A,
3.5 A, 4 A and 4.5 A. Figure 5 offers the comparison between
the measured and model-predicted voltage. One can observe
an overall excellent predictive performance. This is obvious
especially when the current load nears the current of 3 A used
to produce the training dataset. The second batch of datasets
demonstrates the voltage behavior under a current load profile
generated according to Urban Dynamometer Driving Schedule
(UDDS) [24], which is scaled to be between 2.5 A and 3.5 A,
see Figure 6(a). The fitting results are given in Figure 6(b),
which shows that the model predicted voltage is quite close
to the actual measurement.

VI. CONCLUSION

The emergence of real-time battery management has stimu-
lated a demand for battery models striking a balance between
fidelity and complexity, making ECMs a primary choice in this
field. Compared to many other ECMs, the double-capacitor
model promises a few unique advantages for capturing a
battery’s dynamics. However, its intrinsic linear dynamics
hinders a characterization of the nonlinear phenomena. This
paper was hence motivated to modify the original double-
capacitor model by adding a nonlinear-mapping-based voltage
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Figure 6: (a) Variable current profile; (b) comparison
between the true and predicted voltage.

source. This development was justified through an analogous
comparison with the SPM. The proposed new model was then
subjected to rigorous evaluation, which includes parameter
identification development and experimental validation. The
results demonstrated the competence of the proposed model
for predicting a battery’s behavior.
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