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Abstract

We consider semidefinite programs (SDPs) with equality constraints. The vari-

able to be optimized is a positive semidefinite matrix X of size n. Following the

Burer–Monteiro approach, we optimize a factor Y of size n× p instead, such that

X = YY⊤. This ensures positive semidefiniteness at no cost and can reduce the

dimension of the problem if p is small, but results in a non-convex optimiza-

tion problem with a quadratic cost function and quadratic equality constraints in

Y . In this paper, we show that if the set of constraints on Y regularly defines a

smooth manifold, then, despite non-convexity, first- and second-order necessary

optimality conditions are also sufficient, provided p is large enough. For smaller

values of p, we show a similar result holds for almost all (linear) cost functions.

Under those conditions, a global optimum Y maps to a global optimum X =YY⊤

of the SDP. We deduce old and new consequences for SDP relaxations of the

generalized eigenvector problem, the trust-region subproblem and quadratic op-

timization over several spheres, as well as for the Max-Cut and Orthogonal-Cut

SDPs which are common relaxations in stochastic block modeling and synchro-

nization of rotations.

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21830

1 Introduction

We consider semidefinite programs (SDPs) of the form

f ⋆ = min
X∈Sn×n

〈C,X〉 subject to A (X) = b, X � 0,(SDP)

where S
n×n is the set of real symmetric matrices of size n, C ∈ S

n×n is the cost

matrix, 〈C,X〉=Tr(C⊤X), A : Sn×n →R
m is a linear operator capturing m equality

constraints with right-hand side b ∈ R
m, and the variable X is symmetric, positive

http://arxiv.org/abs/1804.02008v2
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21830
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semidefinite. Let A1, . . . ,Am ∈ S
n×n be the constraint matrices such that A (X)i =

〈Ai,X〉, and let

C =
{

X ∈ S
n×n : A (X) = b and X � 0

}

(1.1)

be the search space of (SDP), assumed non empty.

Interior point methods solve (SDP) in polynomial time [23]. In practice how-

ever, for n beyond a few thousands, such algorithms run out of memory (and time),

prompting research for alternative solvers. Crucially, if C is compact, then (SDP)

admits a global optimum of rank at most r, where
r(r+1)

2
≤ m [24, 7]—we review

this fact in Section 2.2. Thus, if one restricts C to matrices of rank at most p

with
p(p+1)

2
≥ m, the optimal value remains unchanged. This restriction is easily

enforced by factorizing X = YY⊤ where Y has size n× p, yielding a quadratically

constrained quadratic program:

min
Y∈Rn×p

〈CY ,Y 〉 subject to A (YY⊤) = b.(P)

In general, (P) is non-convex because its search space

Mp =
{

Y ∈ R
n×p : A (YY⊤) = b

}

(1.2)

is non-convex. (When p is clear from context or unimportant, we just write M .)

Non-convexity makes it a priori unclear how to solve (P). Still, the benefits are

that M requires no conic constraint and can be lower dimensional than C . This has

motivated Burer and Monteiro [12, 13] to try to solve (P) using local optimization

methods, with surprisingly good results. They developed theory in support of this

observation (details below). About their results, Burer and Monteiro write:

“How large must we take p so that the local minima of (P) are

guaranteed to map to global minima of (SDP)? Our theorem as-

serts that we need only1 p(p+1)
2

>m (with the important caveat that

positive-dimensional faces of (SDP) which are ‘flat’ with respect

to the objective function can harbor non-global local minima).”

— End of Section 3 in [13], mutatis mutandis.

The caveat—the existence or non-existence of non-global local optima, or their

potentially adverse effect for local optimization algorithms—was not further dis-

cussed. How mild this caveat really is (as stated) is hard to gauge, considering C

can have a continuum of faces.

Contributions

In this paper, we identify settings where the non-convexity of (P) is benign, in

the sense that second-order necessary optimality conditions are sufficient for global

optimality—an unusual property for a non-convex problem. This paper extends a

1 The condition on p and m is slightly, but inconsequentially, different in [13].
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previous conference paper by the same authors [11]. Our core assumption is as

follows.

Assumption 1.1. For a given p such that M (1.2) is non-empty, constraints on (SDP)

defined by A1, . . . ,Am ∈ S
n×n and b ∈R

m satisfy at least one of the following:

a. {A1Y, . . . ,AmY} are linearly independent in R
n×p for all Y ∈ M ; or

b. {A1Y, . . . ,AmY} span a subspace of constant dimension in R
n×p for all Y

in an open neighborhood of M in R
n×p.

In either case, let m′ denote the dimension of the space spanned by {A1Y, . . . ,AmY}.

(By assumption, m′ is independent of the choice of Y ∈ M .)

Under Assumption 1.1, M is a smooth manifold, which is why we say such

an (SDP) is smooth. Furthermore, if the assumption holds for several values of p,

then m′ is the same for all. Formal statements follow; proofs are in Appendix A.

Proposition 1.2. Under Assumption 1.1, M is an embedded submanifold of Rn×p

of dimension np−m′.

Proposition 1.3. If Assumption 1.1 holds for some p, it holds for all p′ ≤ p such

that Mp′ is non-empty. Furthermore, if Assumption 1.1a holds for p = n, then it

holds for all p′ such that Mp′ is non-empty. In both cases, m′ is independent of p.

Examples of SDPs satisfying Assumption 1.1 are detailed in Section 5 (they all

satisfy Assumption 1.1a for p = n). The assumption itself is further discussed in

Section 6. Our first main result is as follows, where rankA can be replaced by m

if preferred. Optimality conditions are derived in Section 2.

Theorem 1.4. Let p be such that
p(p+1)

2
> rankA and such that Assumption 1.1

holds. For almost any cost matrix C ∈ S
n×n, if Y ∈ M satisfies first- and second-

order necessary optimality conditions for (P), then Y is globally optimal and X =
YY⊤ is globally optimal for (SDP).

The proof combines two intermediate results (Proposition 3.1 and Lemma 3.3

below):

(1) If Y is column-rank deficient and satisfies first- and second-order necessary

optimality conditions for (P), then it is globally optimal and X = YY⊤ is

optimal for (SDP); and

(2) If
p(p+1)

2
> rankA , then, for almost all C, every Y which satisfies first-

order necessary optimality conditions is column-rank deficient.

The first step is a variant of well-known results [12, 13, 17]. The second step is

new and crucial, as it allows to formally exclude the existence of spurious local

optima, thus resolving the caveat raised by Burer and Monteiro generically in C.

Theorem 1.4 is a statement about the optimization problem itself, not about

specific algorithms. If C is compact, then so is M and known algorithms for
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optimization on manifolds converge to second-order critical points,2 regardless of

initialization [10]. Thus, provided p is large enough, for almost any cost matrix C,

such algorithms generate sequences which converge to global optima of (P). Each

iteration requires a polynomial number of arithmetic operations.

In practice, the algorithm is stopped after a finite number of iterations, at which

point one can only guarantee approximate satisfaction of first- and second-order

necessary optimality conditions. Ideally, this should lead to a statement of approx-

imate optimality. We are only able to make that statement for large values of p.

We state this result informally here, and give a precise statement in Corollary 4.5

below.

Theorem 1.5 (Informal). Assume C is compact and Assumption 1.1 holds for p =
n+1. Then, for any cost matrix C ∈ S

n×n, if Y ∈Mn+1 approximately satisfies first-

and second-order necessary optimality conditions for (P), then it is approximately

globally optimal and X = YY⊤ is approximately globally optimal for (SDP), in

terms of attained cost value.

Theorem 1.4 does not exclude the possibility that a zero-measure subset of cost

matrices C may pose difficulties. Theorem 1.5 does apply for all cost matrices, but

requires a large value of p. A complementary result in this paper, which comes with

a more geometric proof, constitutes a refinement of the caveat raised by Burer and

Monteiro [13] in the excerpt quoted above. It states that a suboptimal second-order

critical point Y must map to a face FYY⊤ of the convex search space C whose

dimension is large (rather than just positive) when p itself is large. The facial

structure of C is discussed in Section 2.2. The following is a consequence of

Corollary 2.9 and Theorem 3.4 below.

Theorem 1.6. Let Assumption 1.1 hold for some p. Let Y ∈ M be a second-

order critical point of (P). If rank(Y ) < p, or if rank(Y ) = p and dimFYY⊤ <
p(p+1)

2
−m′+ p, then Y is globally optimal for (P) and X =YY⊤ is globally optimal

for (SDP).

Combining this theorem with bounds on the dimension of faces of C allows

us to conclude the optimality of second-order critical points for all cost matrices

C, with bounds on p that are smaller than n. Implications of these theorems for

examples of SDPs are treated in Section 5, including the trust-region subproblem,

Max-Cut and Orthogonal-Cut.

Notation

S
n×n is the set of real, symmetric matrices of size n. A symmetric matrix X is

positive semidefinite (X � 0) if and only if u⊤Xu ≥ 0 for all u ∈ R
n. For matrices

A,B, the standard Euclidean inner product is 〈A,B〉 = Tr(A⊤B). The associated

2 Points which satisfy first- and second-order necessary optimality conditions. Compactness of C

ensures a minimum is attained in (P), hence also that second-order critical points exist.
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(Frobenius) norm is ‖A‖=
√

〈A,A〉. Id is the identity operator and In is the identity

matrix of size n. The variable m′ ≤ m is defined in Assumption 1.1. The adjoint of

A is A ∗, such that A ∗(ν) = ν1A1 + · · ·+νmAm.

2 Geometry and optimality conditions

We first discuss the smooth geometry of (P) and the convex geometry of (SDP),

as well as optimality conditions for both.

2.1 For the non-convex problem (P)

Endow R
n×p with the classical Euclidean metric 〈U1,U2〉 = Tr(U⊤

1 U2), corre-

sponding to the Frobenius norm: ‖U‖2 = 〈U,U〉. As stated in Proposition 1.2,

under Assumption 1.1 for a given p, the search space M of (P) defined in (1.2)

is a submanifold of Rn×p of dimension dimM = np−m′. Furthermore, the tan-

gent space to M at Y is a subspace of Rn×p obtained by linearizing the equality

constraints.

Lemma 2.1. Under Assumption 1.1, the tangent space at Y to M , TYM , obeys

TYM =
{

Ẏ ∈ R
n×p : A (ẎY⊤+YẎ⊤) = 0

}

=
{

Ẏ ∈ R
n×p : 〈AiY ,Ẏ 〉= 0 for i = 1, . . . ,m

}

.(2.1)

Proof. By definition, Ẏ ∈ R
n×p is a tangent vector to M at Y if and only if there

exists a curve γ : R→ M such that γ(0) = Y and γ̇(0) = Ẏ , where γ̇ is the deriv-

ative of γ . Then, A (γ(t)γ(t)⊤) = b for all t. Differentiating on both sides yields

A (γ̇(t)γ(t)⊤+ γ(t)γ̇(t)⊤) = 0. Evaluating at t = 0 confirms TYM is included in

the subspace (2.1). To conclude, use the fact that both subspaces have the same

dimension under Assumption 1.1, by Proposition 1.2. �

Each tangent space is equipped with a restriction of the metric 〈·, ·〉, thus making

M a Riemannian submanifold of Rn×p. From (2.1), it is clear that the AiY span

the normal space at Y :

NY M = span{A1Y, . . . ,AmY}.(2.2)

An important tool is the orthogonal projector ProjY : Rn×p → TY M :

ProjY Z = argmin
Ẏ∈TY M

‖Ẏ −Z‖.(2.3)

We have the following lemma to characterize it.

Lemma 2.2. Under Assumption 1.1, the orthogonal projector is given by:

ProjY Z = Z−A
∗
(

G†
A (ZY⊤)

)

Y,

where A ∗ : Rm → S
n×n is the adjoint of A , G = G(Y ) is a Gram matrix defined

by Gi j =
〈

AiY ,A jY
〉

, and G† denotes the Moore–Penrose pseudo-inverse of G.
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Furthermore, if Y 7→ Z(Y ) is differentiable in an open neighborhood of M in R
n×p,

then Y 7→ ProjY Z(Y ) is differentiable at all Y in M .

Proof. Orthogonal projection is along the normal space, so that ProjY Z ∈ TY M

and Z −ProjY Z ∈ NYM (2.2). From the latter we infer there exists µ ∈ R
m such

that

Z −ProjY Z =
m

∑
i=1

µiAiY = A
∗(µ)Y,

since the adjoint of A is A ∗(µ) = µ1A1 + · · ·+ µmAm by definition. Multiply on

the right by Y⊤ and apply A to obtain

A (ZY⊤) = A (A ∗(µ)YY⊤),

where we used A (ProjY (Z)Y
⊤) = 0 since ProjY (Z) ∈ TY M . The right-hand side

expands into

A (A ∗(µ)YY⊤)i =

〈

Ai,
m

∑
j=1

µ jA jYY⊤
〉

=
m

∑
j=1

〈

AiY ,A jY
〉

µ j = (Gµ)i.

Thus, any µ satisfying Gµ = A (ZY⊤) will do. Without loss of generality, we pick

the smallest norm solution: µ = G†A (ZY⊤). The function Y 7→ G† is continuous

and differentiable at Y ∈M provided G has constant rank in an open neighborhood

of Y in R
n×p [16, Thm. 4.3], which is the case under Assumption 1.1. �

Problem (P) minimizes

g(Y ) = 〈CY ,Y 〉(2.4)

over M , where g is defined over R
n×p. Its classical (Euclidean) gradient at Y

is ∇g(Y ) = 2CY . The Riemannian gradient of g at Y , gradg(Y ), is defined as the

unique tangent vector at Y such that, for all tangent Ẏ , 〈grad g(Y ),Ẏ 〉= 〈∇g(Y ),Ẏ 〉.
This is given by the projection of the classical gradient onto the tangent space [3,

eq. (3.37)]:

gradg(Y ) = ProjY (∇g(Y )) = 2ProjY (CY ) = 2
(

C−A
∗
(

G†
A (CYY⊤)

))

Y.

This motivates the definition of S as follows, with Gi j =
〈

AiY ,A jY
〉

:

S = S(Y ) = S(YY⊤) =C−A
∗(µ) , with µ = G†

A (CYY⊤).(2.5)

This is indeed well defined since Gi j is a function of YY⊤. We get a convenient

formula for the gradient:

grad g(Y ) = 2SY.(2.6)

In the sequel, S will play a major role.

Turning toward second-order derivatives, the Riemannian Hessian of g at Y

is a symmetric operator on the tangent space at Y obtained as the projection of

the derivative of the Riemannian gradient vector field [3, eq. (5.15)]. The latter
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is indeed differentiable owing to Lemma 2.2. With D denoting classical Fréchet

differentiation, writing S = S(Y ) and Ṡ = D(Y 7→ S(Y ))(Y )[Ẏ ],

Hessg(Y )[Ẏ ] = ProjY
(

Dgradg(Y )[Ẏ ]
)

= 2ProjY
(

ṠY +SẎ
)

= 2ProjY
(

SẎ
)

.(2.7)

The projection of ṠY vanishes because Ṡ = A ∗(ν) for some ν ∈ R
m so that ṠY =

∑m
i=1 νiAiY is in the normal space at Y (2.2).

These differentials are relevant for their role in necessary optimality conditions

of (P).

Definition 2.3. Y ∈ M is a (first-order) critical point for (P) if

1

2
grad g(Y ) = SY = 0,(2.8)

where S is a function of Y (2.5). If furthermore Hessg(Y ) � 0, that is (using the

fact that ProjY is self-adjoint),

∀Ẏ ∈ TY M ,
1

2
〈Ẏ ,Hessg(Y )[Ẏ ]〉= 〈Ẏ ,SẎ 〉 ≥ 0,(2.9)

then Y is a second-order critical point for (P).

Proposition 2.4. Under Assumption 1.1, all local (and global) minima of (P) are

second-order critical points.

Proof. These are standard necessary optimality conditions on manifolds, see [31,

Rem. 4.2 and Cor. 4.2]. �

Thus, the central role of S in necessary optimality conditions for the non-convex

problem is clear. Its role for the convex problem is elucidated next.

2.2 For the convex problem (SDP)

The search space of (SDP) is the convex set C defined in (1.1), assumed non-

empty. Geometry-wise, we are primarily interested in the facial structure of C [27,

§18].

Definition 2.5. A face of C is a convex subset F of C such that every (closed)

line segment in C with a relative interior point in F has both endpoints in F . The

empty set and C itself are faces of C .

For example, the non-empty faces of a cube are its vertices, edges, facets and the

cube itself. By [27, Thm. 18.2], the collection of relative interiors of the non-empty

faces forms a partition of C (the relative interior of a singleton is the singleton).

That is, each X ∈ C is in the relative interior of exactly one face of C , called FX .

The dimension of a face is the dimension of the lowest dimensional affine subspace

which contains that face. Of particular interest are the zero-dimensional faces of

C (singletons).

Definition 2.6. X ∈ C is an extreme point of C if dimFX = 0.
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In other words, X is extreme if it does not lie on an open line segment included

in C . If C is compact, it is the convex hull of its extreme points [27, Cor. 18.5.1].

Of importance to us, if C is compact, (SDP) always attains its minimum at one of

its extreme points since the linear cost function of (SDP) is (a fortiori) concave [27,

Cor. 32.3.2]. The faces of C can be described explicitly as follows. The proof is in

Appendix B.

Proposition 2.7. Let X ∈ C have rank p and let FX be its associated face (that is,

X is in the relative interior of FX .) Then, with Y ∈ Mp such that X =YY⊤,

FX =
{

X ′ =Y (Ip +A)Y⊤ : A ∈ kerLX and Ip +A � 0
}

,(2.10)

where LX : Sp×p → R
m is defined by:

LX (A) = A (YAY⊤) =
(〈

Y⊤A1Y ,A
〉

, . . . ,
〈

Y⊤AmY ,A
〉)⊤

.(2.11)

Thus, the dimension of FX is the dimension of the kernel of LX . Since the

dimension of Sp×p is
p(p+1)

2
and rank(LX) ≤ m′, the rank-nullity theorem gives a

lower bound:

dimFX =
p(p+1)

2
− rankLX ≥ p(p+1)

2
−m′.(2.12)

For extreme points, dimFX = 0; then,
p(p+1)

2
= rankLX ≤ m′. Solving for p (the

rank of X ) shows extreme points have small rank, namely,

dimFX = 0 =⇒ rank(X)≤ p∗ ,

√
8m′+1−1

2
.(2.13)

Since (SDP) attains its minimum at an extreme point for compact C , we recover

the known fact that one of the optima has rank at most p∗. This approach to proving

that statement is well known [24, Thm. 2.1].

Optimality conditions for (SDP) are easily stated once S (2.5) is introduced—it

acts as a dual certificate, known in closed form owing to the underlying smooth

geometry of M . We need a first general fact about SDPs (Assumption 1.1 is not

required.)

Proposition 2.8. Let X ∈ C and let S = C −A ∗(ν) for some ν ∈ R
m (as is the

case in (2.5) for example). If S � 0 and 〈S,X〉= 0, then X is optimal for (SDP).

Proof. First, use S � 0: for any X ′ ∈ C , since X ′ � 0 and A (X) = A (X ′),

0 ≤ 〈S,X ′〉= 〈C,X ′〉− 〈A ∗(ν),X ′〉= 〈C,X ′〉− 〈ν ,A (X)〉.
Concentrating on the last term, use 〈S,X〉= 0:

〈ν ,A (X)〉= 〈A ∗(ν),X〉= 〈C,X〉− 〈S,X〉= 〈C,X〉 .
Hence, 〈C,X〉 ≤ 〈C,X ′〉, which shows X is optimal. �

Since (SDP) is a relaxation of (P), this leads to a corollary of prime importance.
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Corollary 2.9. Let Assumption 1.1 hold for some p. If Y is a critical point for (P)

as defined by (2.8) and S (2.5) is positive semidefinite, then X = YY⊤ is globally

optimal for (SDP) and Y is globally optimal for (P).

Proof. Since Y is a critical point, SY = 0; thus, 〈S,X〉 = 0 and Proposition 2.8

applies. �

A converse of Proposition 2.8 holds under additional conditions which are sat-

isfied by all examples in Section 5. Thus, for those cases, for a critical point Y , YY⊤

is optimal if and only if S is positive semidefinite. We state it here for completeness

(this result is not needed in the sequel.)

Proposition 2.10. Let X ∈ C be a global optimum of (SDP) and assume strong

duality holds. Let Assumption 1.1a hold with p = rank(X). Then, S � 0 and

〈S,X〉= 0, where S = S(X) is as in (2.5).

Proof. Consider the dual of (SDP):

max
ν∈Rm

〈b,ν〉 subject to C−A
∗(ν)� 0.(DSDP)

Since we assume strong duality and X is optimal, there exists ν optimal for the dual

such that 〈C,X〉= 〈b,ν〉. Using 〈b,ν〉 = 〈A (X),ν〉= 〈X ,A ∗(ν)〉, this implies

0 = 〈C,X〉− 〈b,ν〉= 〈C−A
∗(ν),X〉 .

Since both C−A ∗(ν) and X are positive semidefinite, (C−A ∗(ν))X = 0. As a

result, by definition of µ and G (2.5),

µ = G†
A (CX) = G†

A (A ∗(ν)X) = G†Gν = ν ,

where we used G† = G−1 under Assumption 1.1a and

(Gν)i =∑
j

Gi jν j = ∑
j

〈

Ai,A jX
〉

ν j = 〈Ai,A
∗(ν)X〉= A (A ∗(ν)X)i.

Thus, S =C−A ∗(µ) =C−A ∗(ν) has the desired properties. This concludes the

proof, and shows uniqueness of the dual certificate. �

3 Optimality of second-order critical points

We aim to show that second-order critical points of (P) are global optima, pro-

vided p is sufficiently large. To this end, we first recall a known result about rank-

deficient second-order critical points.3

Proposition 3.1. Let Assumption 1.1 hold for some p and let Y ∈ M be a second-

order critical point for (P). If rank(Y ) < p, then S(Y ) � 0 so that Y is globally

optimal for (P) and so is X = YY⊤ for (SDP).

3 Optimality of rank deficient local optima is shown (under different assumptions) in [13, 17],

with the proof in [17] actually only requiring second-order criticality.
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Proof. The proof parallels the one in [17]. By Corollary 2.9, it is sufficient to show

that S = S(Y ) (2.5) is positive semidefinite. Since rank(Y )< p, there exists z ∈R
p

such that z 6= 0 and Y z = 0. Furthermore, for all x ∈R
n, the matrix Ẏ = xz⊤ is such

that YẎ⊤= 0. In particular, Ẏ is a tangent vector at Y (2.1). Since Y is second-order

critical, inequality (2.9) holds, and here simplifies to:

0 ≤
〈

Ẏ ,SẎ
〉

=
〈

xz⊤,Sxz⊤
〉

= ‖z‖2 · x⊤Sx.

This holds for all x ∈ R
n. Thus, S is positive semidefinite. �

Corollary 3.2. Let Assumption 1.1 hold for some p ≥ n. Then, any second-order

critical point Y ∈ M of (P) is globally optimal, and X = YY⊤ is globally optimal

for (SDP).

Proof. For p > n (with p = n+ 1 being the most interesting case), points in M

are necessarily column-rank deficient, so that the corollary follows from Proposi-

tion 3.1. For p = n, if Y is rank deficient, use the same proposition. Otherwise, Y

is invertible and SY = 0 (2.8) implies S = 0, which is a fortiori positive semidefi-

nite. By (2.5), this only happens if C = A ∗(µ) for some µ , in which case the cost

function 〈C,X〉= 〈A ∗(µ),X〉= 〈µ ,b〉 is constant over C . �

In this paper, we aim to secure optimality of second-order critical points for

p less than n. As indicated by Proposition 3.1, the sole concern in that respect

is the possible existence of full-rank second-order critical points. We first give a

result which excludes the existence of full-rank first-order critical points (thus, a

fortiori of second-order critical points) for almost all cost matrices C, provided p

is sufficiently large. The argument is by dimensionality counting.

Lemma 3.3. Let p be such that
p(p+1)

2
> rankA and such that Assumption 1.1

holds. Then, for almost all C, all critical points of (P) are column-rank deficient.

Proof. Let Y ∈ M be a critical point for (P). By the definition of S(Y ) = C −
A ∗(µ(Y )) (2.5) and the first-order condition S(Y )Y = 0 (2.8), we have

rankY ≤ null(C−A
∗(µ(Y )))≤ max

ν∈Rm
null(C−A

∗(ν)),(3.1)

where null denotes the nullity (dimension of the kernel). This first step in the proof

is inspired by [30, Thm. 3]. If the right-hand side evaluates to ℓ, then there exists ν
and M =C−A ∗(ν) such that null(M) = ℓ. Writing C = M+A ∗(ν), we find that

C ∈ Nℓ+ im(A ∗),(3.2)

where Nℓ denotes the set of symmetric matrices of size n with nullity ℓ and the +
is a set-sum. The set Nℓ has dimension

dimNℓ =
n(n+1)

2
− ℓ(ℓ+1)

2
.(3.3)
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Assume the right-hand side of (3.1) evaluates to p or more. Then, a fortiori,

C ∈
⋃

ℓ=p,...,n

Nℓ+ im(A ∗).(3.4)

The set on the right-hand side contains all “bad” matrices C, that is, those for

which (3.1) offers no information about the rank of Y . The dimension of that set

is bounded as follows, using the fact that the dimension of a finite union is at most

the maximal dimension, and the dimension of a finite sum of sets is at most the

sum of the set dimensions:

dim

(

⋃

ℓ=p,...,n

Nℓ+ im(A ∗)

)

≤ dim (Np + im(A ∗))

≤ n(n+1)

2
− p(p+1)

2
+ rankA .

Since C ∈ S
n×n lives in a space of dimension

n(n+1)
2

, almost no C verifies (3.4) if

n(n+1)

2
− p(p+1)

2
+ rankA <

n(n+1)

2
.

Hence, if
p(p+1)

2
> rankA , for almost all C, critical points have rank(Y )< p. �

Theorem 1.4 follows as an easy corollary of Proposition 3.1 and Lemma 3.3.

In order to make a statement valid for all C, we further explore the implications

of second-order criticality on the definiteness of S. For large p (though still smaller

than n), we expect full-rank second-order critical points should indeed be optimal.

The intuition is as follows. If Y ∈M is a second-order critical point of rank p, then,

by (2.8), SY = 0 which implies S has a kernel of dimension at least p. Furthermore,

by (2.9), S has “positive curvature” along directions in TYM , whose dimension

grows with p. Overall, the larger p, the more conditions force S to have nonnegative

eigenvalues. The main concern is to avoid double counting, as the two conditions

are redundant along certain directions: this is where the facial structure of C comes

into play.

The following theorem refines this intuition. We use ⊗ for Kronecker products

and vec to vectorize a matrix by stacking its columns on top of each other, so that

vec(AXB) = (B⊤⊗A)vec(X). A real number a is rounded down as ⌊a⌋.

Theorem 3.4. Let p be such that Assumption 1.1 holds. Let Y ∈ M be a second-

order critical point for (P). The matrix X = YY⊤ belongs to the relative interior of

the face FX (2.10). If rank(Y ) = p, then S = S(X) (2.5) has at most
⌊

dimFX −∆

p

⌋

(3.5)

negative eigenvalues, where

∆ =
p(p+1)

2
−m′.(3.6)
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In particular, if dimFX < ∆+ p, then S is positive semidefinite and both X and Y

are globally optimal.

Proof. Consider the subspace vec(TY M ) of vectorized tangent vectors at Y : it has

dimension k , dimM . Pick U ∈ R
np×k with columns forming an orthonormal

basis for that subspace: U⊤U = Ik. Then, U⊤(Ip ⊗ S)U has the same spectrum as
1
2
Hessg(Y ). Indeed, for all Ẏ ∈ TYM there exists x ∈ R

k such that vec(Ẏ ) = Ux,

and, by (2.9),

1

2
〈Ẏ ,Hessg(Y )[Ẏ ]〉= 〈Ẏ ,SẎ 〉= 〈Ux,(Ip ⊗S)Ux〉= 〈x,U⊤(Ip ⊗S)Ux〉.

In particular, U⊤(Ip ⊗S)U is positive semidefinite since Y is second-order critical.

Let V ∈ R
np×p2

,V⊤V = Ip2 , have columns forming an orthonormal basis of

the space spanned by the vectors vec(Y R) for R ∈ R
p×p: such V exists because

rank(Y ) = p. Indeed, vec(Y R) = (Ip ⊗Y )vec(R) and Ip ⊗Y ∈R
np×p2

then has full

rank p2. Since Y is a critical point, SY = 0 by (2.8), which implies (Ip ⊗S)V = 0.

Let k′ denote the dimension of the space spanned by the columns of both U

and V , and let W ∈ R
np×k′ ,W⊤W = Ik′ , be an orthonormal basis for this space. It

follows that M = W⊤(Ip ⊗ S)W is positive semidefinite. Indeed, for any z, there

exist x,y such that W z =Ux+V y. Hence, z⊤Mz = x⊤U⊤(Ip ⊗S)Ux ≥ 0.

Let λ0 ≤ ·· · ≤ λn−1 denote the eigenvalues of S, and let λ̃0 ≤ ·· · ≤ λ̃np−1 denote

the eigenvalues of Ip ⊗ S. The latter are simply the eigenvalues of S repeated p

times, thus: λ̃i = λ⌊i/p⌋. Let µ0 ≤ ·· · ≤ µk′−1 denote the eigenvalues of M. The

Cauchy interlacing theorem states that, for all i,

λ̃i ≤ µi ≤ λ̃i+np−k′ .(3.7)

In particular, since M � 0, we have 0 ≤ µ0 ≤ λ⌊(np−k′)/p⌋. It remains to determine

k′.
From Proposition 1.2, recall that k = dimM = np−m′. We now investigate

how many new dimensions V adds to U . All matrices R ∈ R
p×p admit a unique

decomposition as

R = Rskew +RkerL +R(kerL )⊥ ,

where Rskew is skew-symmetric, RkerL is in the kernel of LX (2.11) and R(kerL )⊥

is in the orthogonal complement of the latter in S
p×p. Recalling the definition of

tangent vectors (2.1), it is clear that Ẏ = Y Rskew is tangent. Similarly, Ẏ = Y RkerL

is tangent because of the definition of LX (2.11). Thus, vectorized versions of

these are already in the span of U . On the other hand, by definition, Y R(kerL )⊥ is

not tangent at Y (if it is nonzero). This raises k′ (the rank of W ) by dim (kerLX )
⊥ =

p(p+1)
2

−dimkerLX . Since dimkerLX = dimFX , we have:

k′ = np−m′+
p(p+1)

2
−dimFX = np+∆−dimFX .(3.8)
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Thus, np− k′ = dimFX −∆. Combine with λ⌊(np−k′)/p⌋ ≥ 0 to conclude. �

Theorem 1.6 follows easily from Corollary 2.9 and Theorem 3.4.

Remark 3.5. What does it take for a second-order critical point Y ∈ M to be sub-

optimal? For local optima, the quote from Burer and Monteiro [13, §3] in the in-

troduction readily states that Y must have rank p, and the face FX (with X =YY⊤)

must be positive dimensional and such that the cost function 〈C,X〉 is constant over

FX . Here, under Assumption 1.1 for p, Theorem 3.4 states that if Y is second-

order critical and is suboptimal, then FX must have dimension ∆+ p or higher.

Since (2.12) suggests generic faces at rank p have dimension ∆, this further shows

thats suboptimal second-order critical points, if they exist, can only occur if the

cost function is constant over a high-dimensional face of C .

To use Theorem 3.4 in a particular application, one needs to obtain upper

bounds on the dimensions of faces of C . We follow this path for a number of

examples in Section 5.

4 Near optimality of near second-order critical points

Under Assumption 1.1, problem (P) is an example of smooth optimization over

a smooth manifold. This suggests using Riemannian optimization to solve it [3],

as already proposed by Journée et al. [17] in a similar context. Importantly, known

algorithms—in particular, the Riemannian trust-region method (RTR)—converge

to second-order critical points regardless of initialization [2]. We state here a recent

computational result to that effect [10].

Proposition 4.1. Under Assumption 1.1, if C is compact, RTR initialized with any

Y0 ∈ M produces in O(1/ε2
g εH +1/ε3

H) iterations a point Y ∈ M such that

g(Y )≤ g(Y0), ‖grad g(Y )‖ ≤ εg, and Hessg(Y )�−εH Id,

where g (2.4) is the cost function of (P).

Proof. Apply the main results of [10] using the fact that g has locally Lipschitz

continuous gradient and Hessian in R
n×p and M is a compact submanifold of

R
n×p. �

Importantly, only a finite number of iterations of any algorithm can be run in

practice, so that only approximate second-order critical points can be computed.

Thus, it is of interest to establish whether approximate second-order critical points

are also approximately optimal. As a first step, we give a soft version of Corol-

lary 2.9. We remark that the condition In ∈ imA ∗ is satisfied in all examples of

Section 5.
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Lemma 4.2. Let Assumption 1.1 hold for some p and assume C (1.1) is compact.

For any Y on the manifold M , if ‖grad g(Y )‖ ≤ εg and S(Y ) � − εH

2
In, then the

optimality gap at Y with respect to (SDP) is bounded as

0 ≤ 2(g(Y )− f ⋆)≤ εHR+ εg

√
R,(4.1)

where f ⋆ is the optimal value of (SDP) and R = maxX∈C Tr(X)< ∞ measures the

size of C .

If In ∈ im(A ∗), the right-hand side of (4.1) can be replaced by εHR. This holds

in particular if all X ∈ C have same trace and C has a relative interior point

(Slater condition).

Proof. By assumption on S(Y ) =C−A ∗(µ(Y )) (2.5) with µ(Y ) = G†A (CYY⊤),

∀X ′ ∈ C , −εH

2
Tr(X ′)≤ 〈S(Y ),X ′〉= 〈C,X ′〉− 〈A ∗(µ(Y )),X ′〉

= 〈C,X ′〉− 〈µ(Y ),b〉.

This holds in particular for X ′ optimal for (SDP). Thus, we may set 〈C,X ′〉= f ⋆;

and certainly, Tr(X ′)≤ R. Furthermore,

〈µ(Y ),b〉 = 〈µ(Y ),A (YY⊤)〉= 〈C−S(Y ),YY⊤〉= g(Y )−〈S(Y )Y ,Y 〉.
Combining the displayed equations and using grad g(Y ) = 2S(Y )Y (2.8), we find

0 ≤ 2(g(Y )− f ⋆)≤ εHR+ 〈gradg(Y ),Y 〉.(4.2)

In general, we do not assume In ∈ im(A ∗) and we get the result by Cauchy–

Schwarz on (4.2) and ‖Y‖=
√

Tr(YY⊤)≤
√

R:

0 ≤ 2(g(Y )− f ⋆)≤ εHR+ εg

√
R.

But if In ∈ im(A ∗), then we show that Y is a normal vector at Y , so that it is

orthogonal to gradg(Y ). Formally: there exists ν ∈ R
m such that In = A ∗(ν), and

〈grad g(Y ),Y 〉= 〈grad g(Y )Y⊤, In〉= 〈A (gradg(Y )Y⊤),ν〉= 0,

since grad g(Y ) ∈ TY M (2.1). This indeed allows us to simplify (4.2).

To conclude, we show that if C has a relative interior point X ′ (that is, A (X ′) =
b and X ′≻ 0) and if Tr(X) is constant for X in C , then In ∈ im(A ∗). Indeed, Sn×n =
im(A ∗)⊕kerA , so there exist ν ∈R

m and M ∈ kerA such that In = A ∗(ν)+M.

Thus, for all X in C ,

0 = Tr(X −X ′) =
〈

A
∗(ν)+M,X −X ′〉=

〈

M,X −X ′〉 .

This implies M is orthogonal to all X −X ′. These span kerA since X ′ is interior.

Indeed, for any H ∈ kerA , since X ′ ≻ 0, there exists t > 0 such that X , X ′ +
tH � 0 and A (X) = b, so that X ∈ C . Hence, M ∈ kerA is orthogonal to kerA .

Consequently, M = 0 and In = A ∗(ν). �
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The lemma above involves a condition on the spectrum of S. Next, we show

this condition is satisfied under an assumption on the spectrum of Hessg and rank

deficiency.

Lemma 4.3. Let Assumption 1.1 hold for some p. If Y ∈ M is column-rank defi-

cient and Hessg(Y )�−εH Id, then S(Y )�− εH

2
In.

Proof. By assumption, there exists z ∈ R
p, ‖z‖ = 1 such that Y z = 0. Thus, for

any x ∈ R
n, we can form Ẏ = xz⊤: it is a tangent vector since YẎ⊤= 0 (2.1), and

‖Ẏ‖2 = ‖x‖2. Then, condition (2.9) combined with the assumption on Hessg(Y )
tells us

−εH‖x‖2 ≤ 〈Ẏ ,Hessg(Y )[Ẏ ]〉= 2〈Ẏ ,SẎ 〉= 2〈xz⊤zx⊤,S〉= 2x⊤Sx.

This holds for all x ∈ R
n, hence S �− εH

2
In as required. �

We now combine the two previous lemmas to form a soft optimality statement.

Theorem 4.4. Assume C is compact and let R < ∞ be the maximal trace of any X

feasible for (SDP). For some p, let Assumption 1.1 hold for both p and p+1. For

any Y ∈ Mp, form Ỹ = [Y |0n×1] in Mp+1. The optimality gap at Y is bounded as

0 ≤ 2(g(Y )− f ⋆)≤
√

R‖grad g(Y )‖−Rλmin(Hessg(Ỹ )).(4.3)

If all X ∈ C have the same trace R and there exists a positive definite feasible X,

then the bound

0 ≤ 2(g(Y )− f ⋆)≤−Rλmin(Hessg(Ỹ ))(4.4)

holds. If p > n, the bounds hold with Ỹ = Y (and Assumption 1.1 only needs to

hold for p.)

Proof. Since ỸỸ⊤= YY⊤, S(Ỹ ) = S(Y ); in particular, we have g(Ỹ ) = g(Y ) and

‖grad g(Ỹ )‖= ‖grad g(Y )‖. Since Ỹ has deficient column rank, apply Lemmas 4.2

and 4.3. For p > n, there is no need to form Ỹ as Y itself necessarily has deficient

column rank. �

This works well with Proposition 4.1. Indeed, equation (4.3) also implies the

following:

λmin(Hessg(Ỹ ))≤−2(g(Y )− f ⋆)−
√

R‖grad g(Y )‖
R

.

That is, an approximate critical point Y in Mp which is far from optimal (for (SDP))

maps to a comfortably-escapable approximate saddle point Ỹ in Mp+1. This can

be helpful for the development of optimization algorithms.

For p= n+1, the bound in Theorem 4.4 can be controlled a priori: approximate

second-order critical points are approximately optimal, for any C.4

4 With p = n+1, problem (P) is no longer lower dimensional than (SDP), but retains the advan-

tage of not involving a positive semidefiniteness constraint.
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Corollary 4.5. Assume C is compact. Let Assumption 1.1 hold for p = n+ 1.

If Y ∈ Mn+1 satisfies both ‖grad g(Y )‖ ≤ εg and Hessg(Y ) � −εH Id, then Y is

approximately optimal in the sense that (with R = maxX∈C Tr(X)):

0 ≤ 2(g(Y )− f ⋆)≤ εg

√
R+ εHR.

Under the same condition as in Theorem 4.4, the bound holds with right-hand side

εHR instead.

Theorem 1.5 is an informal statement of this corollary.

5 Applications

In all applications below, Assumption 1.1a holds for all p such that the search

space is non-empty. For each one, we deduce the consequences of Theorems 1.4

and 1.6. For the latter, the key part is to investigate the facial structure of the

SDP. As everywhere else in the paper, ‖x‖ denotes the 2-norm of vector x and ‖X‖
denotes the Frobenius norm of matrix X .

5.1 Generalized eigenvalue SDP

The generalized symmetric eigenvalue problem admits a well-known extremal

formulation:

min
x∈Rn

x⊤Cx subject to x⊤Bx = 1,(EIG)

where C,B are symmetric of size n ≥ 2. The usual relaxation by lifting introduces

X = xx⊤ and discards the constraint rank(X) = 1 to obtain this SDP (which is also

the Lagrangian dual of the dual of (EIG)):

min
X∈Sn×n

〈C,X〉 subject to 〈B,X〉= 1, X � 0.(EIG-SDP)

Let C denote the search space of (EIG-SDP). It is non-empty and compact if and

only if B ≻ 0, which we now assume. A direct application of (2.13) guarantees

all extreme points of C have rank 1, so that it always admits a solution of rank

1: the SDP relaxation is always tight, which is well known. Under our assump-

tion, B admits a Cholesky factorization as B = R⊤R with R ∈ R
n×n invertible. The

corresponding Burer–Monteiro formulation at rank p reads:

min
Y∈Rn×p

〈CY ,Y 〉 subject to ‖RY‖2 = 1.(EIG-BM)

Let M denote its search space. Assumption 1.1a holds for any p ≥ 1 with m′ = 1.

Indeed, for all Y ∈ M , {BY} spans a subspace of dimension 1, since BY = R⊤RY ,

RY 6= 0 and R⊤ is invertible. Thus, Theorem 1.4 readily states that for p ≥ 2, for

almost all C, all second-order critical points of (EIG-BM) are optimal.

We can do better. The facial structure of C is easily described. Recalling (2.12),

for all X = YY⊤∈ C we have dimFX = p(p+1)
2

− 1, since Y⊤BY 6= 0. Hence, by

Theorem 1.6, for any value of p ≥ 1, all second-order critical points of (EIG-BM)
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are optimal (for any C). In particular, for p = 1 (EIG) and (EIG-BM) coincide and

we get:

Corollary 5.1. All second-order critical points of (EIG) are optimal.

This is a well-known fact, though usually proven by direct inspection of neces-

sary optimality conditions.

5.2 Trust-region subproblem SDP

The trust-region subproblem consists in minimizing a quadratic on a sphere,

with n ≥ 2:

min
x∈Rn

x⊤Ax+2b⊤x+ c subject to ‖x‖2 = 1.(TRS)

It is not difficult to produce (A,b,c) such that (TRS) admits suboptimal second-

order critical points. The usual lifting here introduces

X =

(

x

1

)

(

x⊤ 1
)

=

(

xx⊤ x

x⊤ 1

)

, and C =

(

A b

b⊤ c

)

.

The quadratic cost and constraint are linear in X , yielding this SDP relaxation:

min
X∈Sn×n

〈C,X〉 subject to Tr(X1:n,1:n) = 1, Xn+1,n+1 = 1, X � 0.(TRS-SDP)

Let C denote the search space of (TRS-SDP). It is non-empty and compact. Here

too, a direct application of (2.13) guarantees the SDP relaxation is always tight

(it always admits a solution of rank 1), which is a well-known fact related to the

S-lemma [25]. The Burer–Monteiro relaxation at rank p reads:

min
Y1∈Rn×p,y2∈Rp

〈CY ,Y 〉 subject to ‖Y1‖2 = 1, ‖y2‖2 = 1, with Y =

(

Y1

y⊤2

)

.

(TRS-BM)

Let M denote its search space. After verifying Assumption 1.1 holds (see below),

application of Theorem 1.4 guarantees that for p ≥ 2 and for almost all (A,b,c),
second-order critical points of (TRS-BM) are optimal. We can further strengthen

this result by looking at the faces of C , as we do now.

Lemma 5.2. Assumption 1.1a holds for any p ≥ 1 with m′ = 2. Furthermore, for

X ∈ C of rank p,

dimFX =

{

0 if p = 1,
p(p+1)

2
−2 if p ≥ 2.

Proof. The constraints of (SDP) are defined by

A1 =

(

In 0n×1

01×n 0

)

, b1 = 1, A2 =

(

0n×n 0n×1

01×n 1

)

, b2 = 1.
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For Y ∈ M , we have

A1Y =

(

Y1

01×p

)

, A2Y =

(

0n×p

y⊤2

)

.

These are nonzero and always linearly independent, so that dimspan{A1Y,A2Y}=
2 for all Y ∈ M , which confirms Assumption 1.1a holds with m′ = 2.

The facial structure of C is simple as well. Let X ∈C have rank p and consider

Y ∈ M such that X = YY⊤. To use (2.12), note that:

Y⊤A1Y =Y⊤
1 Y1, Y⊤A2Y = y2y⊤2 .

These are nonzero. For p = 1, they are scalars: they span a subspace of dimension

1. Then, dimFX = 1−1 = 0. For p > 1, we argue they are linearly independent.

Indeed, if they are not, there exists α 6= 0 such that Y⊤
1 Y1 = α · y2y⊤2 . If so, Y1

must have rank 1 with row space spanned by y2, so that Y1 = zy⊤2 for some z ∈ R
n,

and ‖z‖ = 1. As a result, Y itself has rank 1, which is a contradiction. Thus,

dimFX = p(p+1)
2

−2, as announced. �

Combining the latter with Theorem 1.6 yields the following new result, which

holds for all (A,b,c). Notice that for p = 1, the theorem correctly allows second-

order critical points to be suboptimal in general.

Corollary 5.3. For p ≥ 2, all second-order critical points of (TRS-BM) are glob-

ally optimal.

A second-order critical point Y of (TRS-BM) with p= 2 is thus always optimal.

If Y has rank 1, it is straightforward to extract a solution of (TRS) from it. If Y has

rank 2,5 it maps to a face of dimension 1. The endpoints of that face have rank 1

and are also optimal. The following lemma shows these can be computed easily

from Y by solving two scalar equations.

Lemma 5.4. Let Y ∈M be a second-order critical point of (TRS-BM) with p = 2,

and let z ∈ R
2 satisfy ‖Y1z‖2 = 1 and y⊤2 z = 1. Then, Y1z is a global optimum

of (TRS).

Proof. If rank(Y ) = 1, then Y1 = xyT
2 for some x ∈ R

n, and ‖Y1‖ = 1,‖y2‖ = 1

ensure ‖x‖= 1. Solutions to yT
2 z= 0 are of the form z= y2+u, where yT

2 u= 0. For

any such z, Y1z = x, which is indeed optimal for (TRS) since Y is globally optimal

for (TRS-BM) and x attains the same cost for the restricted problem (TRS).

Now assume rank(Y ) = 2. By (2.10), the one-dimensional face FYY⊤ contains

all matrices of the form Y (I2 −M)Y⊤ such that I2 −M � 0 and
〈

I2 −M,Y⊤
1 Y1

〉

= 0,
〈

I2 −M,y2y⊤2
〉

= 0. This face has two extreme points of rank 1, for which I2 −M

is a positive semidefinite matrix of rank 1, so that I2 −M = zz⊤ for some z ∈ R
2.

Given that Y is feasible, the conditions on z are ‖Y1z‖2 = 1 and y⊤2 z = ±1. These

5 This can happen, notably if (A,b,c) forms a so-called hard case TRS (details omitted.) This

observation shows that it is indeed necessary to exclude some non-trivial matrices C in Lemma 3.3.
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equations define an ellipse in R
2 and two parallel lines, totaling four intersections

±z,±z′ which can be computed explicitly. Fixing y⊤2 z = +1 allows to identify the

two extreme points of the face. Since the cost function is constant along that face,

either extreme point yields a global optimum in the same way as above. �

5.3 Optimization over several spheres

The trust-region subproblem generalizes to optimization of a quadratic function

over k spheres, possibly in different dimensions n1, . . . ,nk ≥ 2:

min
xi∈Rni ,i=1...k

x⊤Cx subject to ‖x1‖= · · ·= ‖xk‖= 1,(Spheres)

with x⊤=
(

x⊤1 · · · x⊤k 1
)

.

The variable x is in R
n+1, with n = n1 + · · ·+nk. Since the last entry of x is 1, this

indeed covers all possible quadratic functions of x1, . . . ,xk. The SDP relaxation by

lifting reads:

min
X∈R(n+1)×(n+1)

〈C,X〉 subject to Tr(X11) = · · ·= Tr(Xkk) = 1,

Xn+1,n+1 = 1,X � 0,(Spheres-SDP)

where Xi j denotes the block of size ni × n j of matrix X , in the obvious way. This

SDP has a non-empty compact search space and k + 1 independent constraints,

so that by (2.13) it always admits a solution of rank at most p∗ =
√

8k+9−1
2

. The

Burer–Monteiro relaxation at rank p reads:

min
Y∈R(n+1)×p

〈CY ,Y 〉 subject to ‖Y1‖= · · ·= ‖Yk‖= 1,‖y‖ = 1,

(Spheres-BM)

with Y⊤=
(

Y⊤
1 · · · Y⊤

k y
)

,

where Yi ∈ R
ni×p and y ∈ R

p. It is easily checked that Assumption 1.1a holds for

all p ≥ 1. Thus, Theorem 1.4 gives this result:

Corollary 5.5. For p >
√

8k+9−1
2

and for almost all C, all second-order critical

points of (Spheres-BM) are optimal and map to optima of (Spheres-SDP).

To apply Theorem 1.6, we first investigate the facial structure of the SDP.

Lemma 5.6. Let Y be feasible for (Spheres-BM) and have full rank p. The dimen-

sion of the face of the search space of (Spheres-SDP) at YY⊤ obeys:

dimFYY⊤ ≤ p(p+1)

2
−2

if p ≥ 2, and dimFYY⊤ = 0 if p = 1.

Proof. Following (2.12),

dimFYY⊤ =
p(p+1)

2
−dimspan

(

Y⊤
1 Y1, . . . ,Y

⊤
k Yk,yy⊤

)

.
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Since Y is feasible, each defining element of the span is nonzero, so that the dimen-

sion is at least 1. If p = 1, these elements are scalars: they span R. Now consider

p ≥ 2 and assume for contradiction that the span has dimension one. Then, all

defining elements are equal up to scaling. In other words: Y⊤
i Yi = αi ·yy⊤ for some

nonzero αi. If so, Yi has rank 1 and there exists zi ∈R
ni such that Yi = ziy

⊤. In turn,

this implies Y has rank 1, which is a contradiction. Thus, the span has dimension

at least two. �

Corollary 5.7. For p≥max(2,k), all second-order critical points of (Spheres-BM)

are optimal and map to optima of (Spheres-SDP) (for any C).

For k = 1, this recovers the main result about the trust-region subproblem. If

the cost function in (Spheres) is a homogeneous quadratic, then it can be written as

min
xi∈Rni ,i=1...k

x⊤Cx subject to ‖x1‖= · · ·= ‖xk‖= 1,(SpheresH)

with x⊤=
(

x⊤1 · · · x⊤k
)

.

The corresponding relaxation and Burer–Monteiro formulations read:

min
X∈Rn×n

〈C,X〉 subject to Tr(X11) = · · ·= Tr(Xkk) = 1,X � 0,
(SpheresH-SDP)

and:

min
Y∈Rn×p

〈CY ,Y 〉 subject to ‖Y1‖= · · ·= ‖Yk‖= 1,(SpheresH-BM)

with Y⊤=
(

Y⊤
1 · · · Y⊤

k

)

.

Assumption 1.1a holds for all p ≥ 1 with m′ = k. A similar analysis of the facial

structure yields the following corollary of Theorem 1.6.

Corollary 5.8. For almost all C, provided p >
√

8k+1−1
2

, all second-order critical

points of (SpheresH-BM) are optimal and map to optima of (SpheresH-SDP). If

p ≥ k, the result holds for all C.

For k = 1, this recovers the results of (EIG) with B = In.

5.4 Max-Cut and Orthogonal-Cut SDP

Let n = qd for some integers q,d. Consider the semidefinite program

min
X∈Sn×n

〈C,X〉 subject to sbd(X) = In, X � 0,(OrthoCut)

where sbd : Sn×n → S
n×n preserves the diagonal blocks of size d ×d and zeros out

all other blocks. Specifically, with Xi j denoting the (i, j)th block of size d × d in

matrix X ,

sbd(X)i j =

{

Xii if i = j,

0d×d otherwise.
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For example, with d = 1, the constraint sbd(X) = In is equivalent to diag(X) = 1

and this SDP is the Max-Cut SDP [15]. For general d, diagonal blocks of X of size

d × d are constrained to be identity matrices: this SDP is known as Orthogonal-

Cut [6, 9]. Among other uses, it appears as a relaxation of synchronization on

Z2 = {±1} [5, 21, 1] and synchronization of rotations [28, 14], with applications

in stochastic block modeling (community detection) and SLAM (simultaneous lo-

calization and mapping for robotics).

The Stiefel manifold St(p,d) is the set of matrices of size p×d with orthonor-

mal columns. The Burer–Monteiro formulation of (OrthoCut) is an optimization

problem over q copies of St(p,d):

min
Y1,...,Yq∈Rp×d

〈CY ,Y 〉 subject to Y⊤
k Yk = Id ∀k, Y⊤=

[

Y1 · · · Yq

]

.

(OrthoCut-BM)

For d = 1, this problem captures one side of the Grothendieck inequality [18,

eq. (1.1)]. Assumption 1.1a holds for all p ≥ d with m′ = q
d(d+1)

2
(which is the

number of constraints). Theorem 1.4 applies as follows.

Corollary 5.9. If p >

√
1+4n(d+1)−1

2
, for almost all C, any second-order critical

point Y of (OrthoCut-BM) is a global optimum, and X = YY⊤ is globally optimal

for (OrthoCut).

In order to apply Theorem 1.6, we must investigate the facial structure of

C = {X ∈ S
n×n : sbd(X) = In,X � 0}.

The following result generalizes a result in [19, Thm. 3.1(i)] to d ≥ 1.

Theorem 5.10. If X ∈ C has rank p, then the face FX (2.10) has dimension

bounded as:

p(p+1)

2
−n

d +1

2
≤ dimFX ≤ p(p+1)

2
− p

d +1

2
.(5.1)

If p is an integer multiple of d, the upper bound is attained for some X.

The proof is in Appendix C. Combining this with Theorem 1.6 yields the fol-

lowing result.

Corollary 5.11. If p> d+1
d+3

n, any second-order critical point Y for (OrthoCut-BM)

is globally optimal, and X =YY⊤ is globally optimal for (OrthoCut). In particular,

for Max-Cut SDP (d = 1), the requirement is p > n
2
.

Proof. If Y is rank deficient, use Proposition 3.1. Otherwise, since rank(X) = p,

Theorem 5.10 gives dimFX ≤ p(p+1)
2

− pd+1
2

and Theorem 1.6 gives optimality if

dimFX <
p(p+1)

2
−n

d +1

2
+ p.

This is the case provided (n− p)(d +1)< 2p, that is, if p > d+1
d+3

n. �
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6 Discussion of the assumptions

We now discuss the assumptions that appear in the main theorems.

The starting point of this investigation is the hope to solve (SDP) by solving (P)

instead. For smooth, non-convex optimization problems, even verifying local op-

timality is usually hard [22]. Thus, we wish to restrict our attention to efficiently

computable points, such as points which satisfy first- and second-order Karush–

Kuhn–Tucker (KKT) conditions for (P)—see [12, §2.2] and [29, §3]. This only

helps if global optima satisfy the latter, that is, if KKT conditions are necessary for

optimality.

A global optimum Y necessarily satisfies KKT conditions if constraint qualifi-

cations (CQs) hold at Y [29]. The standard CQs for equality constrained programs

are Robinson’s conditions or metric regularity (they are here equivalent). They

read as follows:

CQs hold at Y ∈ M if A1Y, . . . ,AmY are linearly independent in R
n×p.(CQ)

Considering all cost matrices C, global optima could, a priori, be anywhere in M .

Thus, we require CQs to hold at all Y in M rather than only at the (unknown)

global optima. This leads to Assumption 1.1a. Adding redundant constraints (for

example, duplicating 〈A1,X〉= b1) would break the CQs, but does not change the

optimization problem. This is allowed by Assumption 1.1b.

In general, (SDP) may not have an optimal solution. One convenient way to

guarantee that it does is to require C to be compact, which is why this assumption

appears in Theorem 1.5 to bound optimality gaps for approximate second-order

critical points. When C is compact, one furthermore gets the guarantee that at

least one of the global optima is an extreme point of C , which leads to the guaran-

tee that at least one of the global optima has rank p bounded as
p(p+1)

2
≤ m′ (2.13).

The other way around, it is possible to pick the cost matrix C such that the unique

solution to (SDP) is an extreme point of maximal rank, which can be as large as

allowed by (2.13). This justifies why, in Theorem 1.4, the bound on p is essen-

tially optimal. The compactness assumption could conceivably be relaxed, pro-

vided candidate global optima remain bounded. This could plausibly come about

by restricting attention to positive definite cost matrices C.

One restriction in particular in Theorem 1.4 merits further investigation: the

exclusion of a zero-measure set of cost matrices (“bad C”). From the trust-region

subproblem example in Section 5.2, we know that it is necessary (in general) to

allow the exclusion of a zero-measure set of cost matrices in Lemma 3.3. Yet,

in that same example, the excluded cost matrices do not give rise to suboptimal

second-order critical points (as we proved through a different argument involving

Theorem 1.6.) Thus, it remains unclear whether or not a zero-measure set of cost

matrices must be excluded in Theorem 1.4. Resolving this question is key to gain

deeper understanding of the relationship between (SDP) and (P).
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Finally, we connect the notion of smooth SDP used in this paper to the more

standard notion of non-degeneracy in SDPs as defined in [4, Def. 5]. Informally:

for linearly independent Ai, non-degeneracy at all points is equivalent to smooth-

ness. The proof is in Appendix D.

Definition 6.1. X is primal non-degenerate for (SDP) if it is feasible and TX +
kerA = S

n×n, where TX is the tangent space at X to the manifold of symmetric

matrices of rank r embedded in S
n×n, where r = rank(X).

Proposition 6.2. Let A1, . . . ,Am defining A be linearly independent. Then, As-

sumption 1.1a holds for all p such that Mp is non-empty if and only if all X ∈ C

are primal non-degenerate.

7 Conclusions and perspectives

We have shown how, under Assumption 1.1 and extra conditions (on p, com-

pactness, and the cost matrix), the Burer–Monteiro factorization approach to solv-

ing (SDP) is “safe”, despite non-convexity. For future research, it is of interest to

determine if the proposed assumptions can be relaxed. Furthermore, it is impor-

tant for practical purposes to determine whether approximate second-order critical

points are approximately optimal for values of p well below n (an example of this

for a specific context is given in [5]). One possible way forward is a smoothed

analysis of the type developed recently in [8, 26], though these early works leave

plenty of room for improvement.

Appendix A: Consequences and properties of Assumption 1.1

Proof of Proposition 1.2. The set M is defined as the zero level set of Φ : Rn×p →
R

m where Φ(Y ) = A (YY⊤)−b. The differential of Φ at Y , DΦ(Y ), has rank equal

to the dimension of the space spanned by {A1Y, . . . ,AmY}. Under Assumption 1.1a,

DΦ(Y ) has full rank m on M and the result follows from [20, Corollary 5.14].

Under Assumption 1.1b, DΦ(Y ) has constant rank m′ in a neighborhood of M and

the result follows from [20, Theorem 5.12]. �

Proof of Proposition 1.3. First, let Assumption 1.1a hold for some p, and consider

p′ < p such that Mp′ is non-empty. For any Y ′ ∈ Mp′ , form Y =
[

Y ′|0n×(p−p′)
]

∈
R

n×p. Clearly, Y is in Mp, so that

m = dimspan{A1Y, . . . ,AmY}= dimspan{A1Y
′, . . . ,AmY ′},

as desired. For p = n, we now consider the case p′ > n. Let Y ′ ∈Mp′ and consider

its full SVD, Y ′ =UΣV⊤, with Σ ∈ R
n×p′ . Then, Y ′V is in Mp′ as well. Since the

last p′−n columns of Σ are zero, we have Y ′V =UΣ =
[

Y |0n×(p′−n)

]

with Y ∈Mn.
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Thus, as desired,

dimspan{A1Y
′, . . . ,AmY ′}= dimspan{A1Y

′V, . . . ,AmY ′V}
= dimspan{A1Y, . . . ,AmY}
= m.

Second, let Assumption 1.1b hold for some p, and consider p′ < p such that

Mp′ is non-empty. For any Y ′ ∈ Mp′ , form Y =
[

Y ′|0n×(p−p′)
]

∈ Mp. By assump-

tion, there exists an open ball BY in R
n×p of radius ε = ε(Y )> 0 centered at Y such

that

dimspan{A1Ỹ , . . . ,AmỸ}= m′

for all Ỹ ∈ BY . Let BY ′ be the open ball in R
n×p′ of radius ε(Y ) and center Y ′. For

any Ỹ ′ ∈ BY ′ , form Ỹ =
[

Ỹ ′|0n×(p−p′)
]

. Since ‖Ỹ −Y‖ = ‖Ỹ ′−Y ′‖ ≤ ε , we have

Ỹ ∈ BY , so that

m′ = dimspan{A1Ỹ , . . . ,AmỸ}= dimspan{A1Ỹ ′, . . . ,AmỸ ′}.
Thus, Assumption 1.1b holds with the open neighborhood of Mp′ consisting of the

union of all balls BY ′ for Y ′ ∈ Mp′ as described above. �

Appendix B: The facial structure of C

Proof of Proposition 2.7. The construction follows [24] and applies for any linear

equality constraints. We first show that if X ′ is of the form in (2.10), then it must

be in FX . This is clear if X ′ = X . Otherwise, pick t > 0 such that Ip − tA � 0.

Then, X ′ and X ′′ = Y (Ip − tA)Y⊤ define a closed line segment in C whose relative

interior contains X . By Definition 2.5, this implies X ′ (and X ′′) are in FX .

The other way around, we now show that any point in FX must be of the form

of X ′ in (2.10). Let W ∈ S
n×n be such that X ′ = X +W . Since X is in the relative

interior of FX which is convex, there exists t > 0 such that X − tW ∈ FX . Let

Y⊥ ∈ R
n×(n−p) be such that M =

[

Y Y⊥
]

is invertible. We can express X = YY⊤

and W as

X = M

[

Ip 0

0 0

]

M⊤ and W = M

[

A B

B⊤ C

]

M⊤.

Then, explicitly, these two matrices must belong to C :

X +W = M

[

Ip +A B

B⊤ C

]

M⊤, and X − tW = M

[

Ip − tA −tB

−tB⊤ −tC

]

M⊤.

In particular, they must both be positive semidefinite, which implies C � 0 and

−tC � 0, so that C = 0. By Schur’s complement, it follows that B = 0. Thus, W =
YAY⊤ for some A∈ S

p×p such that Ip+A� 0. Furthermore, A (X ′)=A (X +W)=
b, so that A (W ) = 0. The latter is equivalent to LX(A) = 0 using (2.11). �
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Appendix C: Faces of the Ortho-Cut SDP

Proof of Theorem 5.10. Consider the definition of LX (2.11) and inequality (2.12):

the latter covers the lower bound and shows we need rankLX ≥ p(d+1)/2 for the

upper bound, that is, we need to show the condition LX (A) = 0 imposes at least

p(d +1)/2 linearly independent constraints on A ∈ S
p×p.

Let Y ∈ Mp be such that X = YY⊤, and let y1, . . . ,yn ∈ R
p denote the rows of

Y , transposed. Greedily select p linearly independent rows of Y , in order, such that

row i is picked iff it is linearly independent from rows y1 to yi−1. This is always

possible since Y has rank p. Write t = {t1 < · · · < tp} to denote the indices of

selected rows. Write sk = {((k−1)d +1), . . . ,kd} to denote the indices of rows in

slice Y⊤
k , and let ck = sk ∩ t be the indices of selected rows in that slice.

We make use of the following fact [19, Lem. 2.1]: for x1, . . . ,xp ∈ R
p linearly

independent, the p(p+1)/2 symmetric matrices xix
⊤
j + x jx

⊤
i form a basis of Sp×p.

Defining Ei j = yiy
⊤
j + y jy

⊤
i = E ji, this means E = {Etℓ ,tℓ′ : ℓ,ℓ′ = 1 . . . p} forms a

basis of Sp×p (E is a set, so that Ei j and E ji contribute only one element). Similarly,

since each slice Y⊤
k has orthonormal rows, matrices in {Ei j : i, j ∈ sk} are linearly

independent.

The constraint LX (A) = 0 means
〈

A,Ei j

〉

= 0 for each k and for each i, j ∈ sk.

To establish the theorem, we need to extract a subset T of at least p(d + 1)/2 of

these qd(d+1)/2 constraint matrices, and guarantee their linear independence. To

this end, let

T = {Ei j : k ∈ {1, . . . ,q} and i ∈ ck ⊆ sk, j ∈ sk}.(C.1)

That is, for each slice k, T includes all constraints of that slice which involve at

least one of the selected rows. For each slice k, there are |ck|d − |ck |(|ck |−1)
2

such

constraints—note the correction for double-counting the Ei j’s where both i and j

are in ck. Thus, using |c1|+ · · ·+ |cq|= p, the cardinality of T is:

|T |=
q

∑
k=1

[

|ck|d − |ck|(|ck|−1)

2

]

= p(d +1/2)− 1

2

q

∑
k=1

|ck|2.(C.2)

We first show matrices in T are linearly independent. Then, we show |T | is large

enough.

Consider one Ei j ∈T : i, j ∈ sk for some k and i = tℓ for some ℓ (otherwise, per-

mute i and j). By construction of t, we can expand y j in terms of the rows selected

in slices 1 to k, i.e., y j = ∑
ℓk

ℓ′=1 α j,ℓ′ytℓ′ , where ℓk = |c1|+ · · ·+ |ck|. As a result, Ei j

expands in the basis E as follows: Ei j = ∑
ℓk

ℓ′=1 α j,ℓ′Etℓ,tℓ′ . As noted before, Ei j’s in

T contributed by a same slice k are linearly independent. Furthermore, they ex-

pand in only a subset of the basis E , namely, E (k) = {Etℓ,tℓ′ : ℓk−1 < ℓ≤ ℓk, ℓ
′ ≤ ℓk}:

tℓ is a selected row of slice k and tℓ′ is a selected row of some slice between 1 and

k. For k 6= k′, E (k) and E (k′) are disjoint; in fact, they form a partition of E . Hence,

elements of T are linearly independent.
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It remains to lower bound (C.2). To this end, use |ck| ≤ d and |c1|+ · · ·+ |cq|= p

to get:

q

∑
k=1

|ck|2 ≤ max
x∈Rq:‖x‖∞≤d,‖x‖1=p

‖x‖2 =
⌊ p

d

⌋

d2 +
(

p−
⌊ p

d

⌋

d
)2

≤ pd.

Indeed, the maximum in x is attained by making as many of the entries of x as

large as possible, that is, by setting ⌊p/d⌋ entries to d and setting one other en-

try to p−⌊p/d⌋d if the latter is nonzero. This many entries are available since

p ≤ qd = n. That this is optimal can be verified using KKT conditions. In combi-

nation with (C.2), this confirms at least p(d + 1/2)− pd/2 = p(d + 1)/2 linearly

independent constraints act on A, thus upper bounding dimFX .

To conclude, we argue that the proposed upper bound is essentially tight. In-

deed, build Y ∈ Mp by repeating q times the d first rows of Ip, then by replacing

its p first rows with Ip (to ensure Y has full rank). If p/d is an integer, then ex-

actly the p/d first slices each contribute d(d + 1)/2 independent constraints, i.e.,

dimFYY⊤ = p(p+1)/2− p(d +1)/2. �

Appendix D: Equivalence of global non-degeneracy and smoothness

Proof of Proposition 6.2. By Proposition 1.3, it is sufficient to consider the case

p = n. Consider X ∈ C of rank r and a diagonalization X = QDQ⊤, where D =
diag(λ1, . . . ,λr,0, . . . ,0) and Q =

[

Q1 Q2

]

is orthogonal of size n with Q1 ∈
R

n×r. By [4, Thm. 6], since A1, . . . ,Am are linearly independent, X is primal non-

degenerate if and only if the matrices

Bk =

[

Q⊤
1 AkQ1 Q⊤

1 AkQ2

Q⊤
2 AkQ1 0

]

, k = 1 . . . ,m

are linearly independent. The Bk are linearly dependent if and only if there exist

α1, . . . ,αm not all zero such that α1B1 + · · ·+αmBm = 0. Considering the first r

columns of the Bk, the latter holds if and only if ∑k αkQ⊤AkQ1 = 0, which holds if

and only if ∑k αkAkQ1 = 0. For any Y ∈R
n×p such that X =YY⊤, since span(Y ) =

span(Q1), we have ∑k αkAkQ1 = 0 if and only if ∑k αkAkY = 0. This shows the

Bk are linearly dependent if and only if the AkY are linearly dependent. Thus, X

is primal non-degenerate if and only if {A1Y, . . . ,AmY} are linearly independent.

Overall, primal non-degeneracy holds at all X ∈ C if and only if Assumption 1.1a

holds. �

Acknowledgment.

NB was partially supported by NSF grant DMS-1719558. Part of this work was

done while NB was with the D.I. at Ecole normale supérieure de Paris and INRIA’s

SIERRA team. ASB was partially supported by NSF grants DMS-1712730 and

DMS-1719545. Part of this work was done while ASB was with the Mathematics

Department at MIT and partially supported by NSF grant DMS-1317308



GUARANTEES FOR BURER–MONTEIRO FACTORIZATIONS OF SMOOTH SDPS 27

Bibliography
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