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Abstract

We consider semidefinite programs (SDPs) with equality constraints. The vari-
able to be optimized is a positive semidefinite matrix X of size n. Following the
Burer—Monteiro approach, we optimize a factor Y of size n X p instead, such that
X =YY . This ensures positive semidefiniteness at no cost and can reduce the
dimension of the problem if p is small, but results in a non-convex optimiza-
tion problem with a quadratic cost function and quadratic equality constraints in
Y. In this paper, we show that if the set of constraints on Y regularly defines a
smooth manifold, then, despite non-convexity, first- and second-order necessary
optimality conditions are also sufficient, provided p is large enough. For smaller
values of p, we show a similar result holds for almost all (linear) cost functions.
Under those conditions, a global optimum ¥ maps to a global optimum X =YY T
of the SDP. We deduce old and new consequences for SDP relaxations of the
generalized eigenvector problem, the trust-region subproblem and quadratic op-
timization over several spheres, as well as for the Max-Cut and Orthogonal-Cut
SDPs which are common relaxations in stochastic block modeling and synchro-
nization of rotations.

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21830

1 Introduction

We consider semidefinite programs (SDPs) of the form

(SDP) - :Xngn (C,X) subjectto ' (X)=b,X =0,

G nxn
where S™" is the set of real symmetric matrices of size n, C € S™" is the cost
matrix, (C,X) =Tr(C'X), o7 : S"" — R™ is a linear operator capturing m equality
constraints with right-hand side » € R™, and the variable X is symmetric, positive
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semidefinite. Let Ay,...,A,, € S"*" be the constraint matrices such that <7 (X); =
(A;,X), and let

(1.1) ¢={XeS"": &(X)=band X = 0}

be the search space of (SDP), assumed non empty.

Interior point methods solve (SDP) in polynomial time [23]. In practice how-
ever, for n beyond a few thousands, such algorithms run out of memory (and time),
prompting research for alternative solvers. Crucially, if % is compact, then (SDP)
admits a global optimum of rank at most r, where @ < m [24, T]—we review
this fact in Section 2.2. Thus, if one restricts % to matrices of rank at most p
with @ > m, the optimal value remains unchanged. This restriction is easily
enforced by factorizing X =YY " where Y has size n x p, yielding a quadratically
constrained quadratic program:

(P) min (CY,Y) subjectto o/(YY')=h.
Y eRnxp

In general, (P) is non-convex because its search space
(1.2) My = {Y ER™P: o/ (YY) = b}

is non-convex. (When p is clear from context or unimportant, we just write .Z.)
Non-convexity makes it a priori unclear how to solve (P). Still, the benefits are
that .# requires no conic constraint and can be lower dimensional than €. This has
motivated Burer and Monteiro [12, 13] to try to solve (P) using local optimization
methods, with surprisingly good results. They developed theory in support of this
observation (details below). About their results, Burer and Monteiro write:

“How large must we take p so that the local minima of (P) are
guaranteed to map to global minima of (SDP)? Our theorem as-
serts that we need only' M > m (with the important caveat that
positive-dimensional faces of (SDP) which are ‘flat’ with respect

to the objective function can harbor non-global local minima).”

— End of Section 3 in [13], mutatis mutandis.
The caveat—the existence or non-existence of non-global local optima, or their
potentially adverse effect for local optimization algorithms—was not further dis-

cussed. How mild this caveat really is (as stated) is hard to gauge, considering 4
can have a continuum of faces.

Contributions

In this paper, we identify settings where the non-convexity of (P) is benign, in
the sense that second-order necessary optimality conditions are sufficient for global
optimality—an unusual property for a non-convex problem. This paper extends a

! The condition on p and m is slightly, but inconsequentially, different in [13].
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previous conference paper by the same authors [11]. Our core assumption is as
follows.

Assumption 1.1. For a given p such that .2 (1.2) is non-empty, constraints on (SDP)
defined by Ay, ...,A,, € S and b € R™ satisfy at least one of the following:

a. {A1Y,... A, Y} are linearly independent in R"*? for all Y € .#; or
b. {A1Y,...,A,Y} span a subspace of constant dimension in R"*? for all ¥
in an open neighborhood of .# in R"*7.

In either case, let m’ denote the dimension of the space spanned by {A,Y,...,A,,Y}.
(By assumption, m’ is independent of the choice of Y € .#.)

Under Assumption 1.1, .# is a smooth manifold, which is why we say such
an (SDP) is smooth. Furthermore, if the assumption holds for several values of p,
then m’ is the same for all. Formal statements follow; proofs are in Appendix A.

Proposition 1.2. Under Assumption 1.1, .# is an embedded submanifold of R"*?
of dimension np —m'.

Proposition 1.3. If Assumption 1.1 holds for some p, it holds for all p' < p such
that M,y is non-empty. Furthermore, if Assumption 1.1a holds for p = n, then it
holds for all p’ such that .#,y is non-empty. In both cases, m' is independent of p.

Examples of SDPs satisfying Assumption 1.1 are detailed in Section 5 (they all
satisfy Assumption 1.1a for p = n). The assumption itself is further discussed in
Section 6. Our first main result is as follows, where rank .2 can be replaced by m
if preferred. Optimality conditions are derived in Section 2.

Theorem 1.4. Let p be such that @ > rank .o/ and such that Assumption 1.1

holds. For almost any cost matrix C € S™", if Y € . satisfies first- and second-
order necessary optimality conditions for (P), then Y is globally optimal and X =
YY " is globally optimal for (SDP).

The proof combines two intermediate results (Proposition 3.1 and Lemma 3.3
below):

(1) IfY is column-rank deficient and satisfies first- and second-order necessary
optimality conditions for (P), then it is globally optimal and X = YY | is
optimal for (SDP); and

) If @ > rank .o/, then, for almost all C, every Y which satisfies first-
order necessary optimality conditions is column-rank deficient.

The first step is a variant of well-known results [12, 13, 17]. The second step is
new and crucial, as it allows to formally exclude the existence of spurious local
optima, thus resolving the caveat raised by Burer and Monteiro generically in C.
Theorem 1.4 is a statement about the optimization problem itself, not about
specific algorithms. If % is compact, then so is .# and known algorithms for
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optimization on manifolds converge to second-order critical points,® regardless of
initialization [10]. Thus, provided p is large enough, for almost any cost matrix C,
such algorithms generate sequences which converge to global optima of (P). Each
iteration requires a polynomial number of arithmetic operations.

In practice, the algorithm is stopped after a finite number of iterations, at which
point one can only guarantee approximate satisfaction of first- and second-order
necessary optimality conditions. Ideally, this should lead to a statement of approx-
imate optimality. We are only able to make that statement for large values of p.
We state this result informally here, and give a precise statement in Corollary 4.5
below.

Theorem 1.5 (Informal). Assume € is compact and Assumption 1.1 holds for p =
n+ 1. Then, for any cost matrix C € S™", if Y € M1 approximately satisfies first-
and second-order necessary optimality conditions for (P), then it is approximately
globally optimal and X = YY" is approximately globally optimal for (SDP), in
terms of attained cost value.

Theorem 1.4 does not exclude the possibility that a zero-measure subset of cost
matrices C may pose difficulties. Theorem 1.5 does apply for all cost matrices, but
requires a large value of p. A complementary result in this paper, which comes with
a more geometric proof, constitutes a refinement of the caveat raised by Burer and
Monteiro [13] in the excerpt quoted above. It states that a suboptimal second-order
critical point ¥ must map to a face %y, of the convex search space 4 whose
dimension is large (rather than just positive) when p itself is large. The facial
structure of ¥ is discussed in Section 2.2. The following is a consequence of
Corollary 2.9 and Theorem 3.4 below.

Theorem 1.6. Let Assumption 1.1 hold for some p. Let Y € .4 be a second-
order critical point of (P). If rank(Y) < p, or if rank(Y) = p and dim.Zyy+ <
p(pTH) —m' + p, then Y is globally optimal for (P) and X =YY " is globally optimal

for (SDP).

Combining this theorem with bounds on the dimension of faces of 4 allows
us to conclude the optimality of second-order critical points for all cost matrices
C, with bounds on p that are smaller than n. Implications of these theorems for
examples of SDPs are treated in Section 5, including the trust-region subproblem,
Max-Cut and Orthogonal-Cut.

Notation

S™" is the set of real, symmetric matrices of size n. A symmetric matrix X is
positive semidefinite (X > 0) if and only if «'Xu > 0 for all u € R". For matrices
A, B, the standard Euclidean inner product is (A,B) = Tr(A'B). The associated

2 Points which satisfy first- and second-order necessary optimality conditions. Compactness of ¢’
ensures a minimum is attained in (P), hence also that second-order critical points exist.
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(Frobenius) norm is ||A|| = \/(A,A). 1d is the identity operator and I, is the identity
matrix of size n. The variable m’ < m is defined in Assumption 1.1. The adjoint of
o/ is o/*, such that &7 (V) = VIA| + -+ + V,Ap.

2 Geometry and optimality conditions

We first discuss the smooth geometry of (P) and the convex geometry of (SDP),
as well as optimality conditions for both.

2.1 For the non-convex problem (P)

Endow R™*? with the classical Euclidean metric (U;,U,) = Tr(U,'U,), corre-
sponding to the Frobenius norm: [|U||> = (U,U). As stated in Proposition 1.2,
under Assumption 1.1 for a given p, the search space .# of (P) defined in (1.2)
is a submanifold of R"*? of dimension dim.# = np —m’. Furthermore, the tan-
gent space to .# atY is a subspace of R"*? obtained by linearizing the equality
constraints.

Lemma 2.1. Under Assumption 1.1, the tangent space atY to M, Ty #, obeys
Tyl = {Y ER™P o/ (VY +YY ) = o}
(2.1 ={Y eR"P:(AY,Y)=0fori=1,...,m}.

Proof. By definition, ¥ € R"*? is a tangent vector to .# at Y if and only if there
exists a curve ¥: R — .# such that ¥(0) =Y and y(0) =Y, where 7 is the deriv-
ative of 7. Then, <7 (y(¢)y(t)") = b for all ¢. Differentiating on both sides yields
A (7)y(t) "+ y()7(t)") = 0. Evaluating at ¢ = 0 confirms Ty.# is included in
the subspace (2.1). To conclude, use the fact that both subspaces have the same
dimension under Assumption 1.1, by Proposition 1.2. U

Each tangent space is equipped with a restriction of the metric (-, -), thus making
M a Riemannian submanifold of R"*”. From (2.1), it is clear that the A;Y span
the normal space at Y:

(2.2) Ny.# = span{A\Y,... A, Y}.
An important tool is the orthogonal projector Projy : R**? — Ty 4"
(2.3) Proj,Z = argmin ||Y — Z||.

YGTY‘///

We have the following lemma to characterize it.
Lemma 2.2. Under Assumption 1.1, the orthogonal projector is given by:
ProjyZ =Z — of* (GUZZ(ZYT)) Y,

where o/ : R™ — S"™" is the adjoint of </, G = G(Y) is a Gram matrix defined
by G;;j = <AiY AY > and G' denotes the Moore—Penrose pseudo-inverse of G.
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Furthermore, if Y — Z(Y) is differentiable in an open neighborhood of A in R"*?,
then'Y — ProjyZ(Y) is differentiable at all Y in A .

Proof. Orthogonal projection is along the normal space, so that ProjyZ € Ty .#
and Z — ProjyZ € Ny.# (2.2). From the latter we infer there exists u € R™ such
that

m
Z—ProjyZ =Y WAY = *(n)Y,
i=1
since the adjoint of .7 is &/*(u) = WA + - - + WnA, by definition. Multiply on
the right by Y " and apply .2 to obtain

A2V ) = A (S (YY),

where we used <7 (Proj, (Z)Y ") = 0 since Projy(Z) € Ty.#. The right-hand side
expands into

J

m m
JZ{(JZ{*(,LL)YYT)L = <A,‘, Z HjAjYYT> = <A,‘Y,AjY>ﬂj = (G,LL)[

j=1 j=1
Thus, any u satisfying Gu = .7 (ZY ") will do. Without loss of generality, we pick
the smallest norm solution: g = G'.e7(ZY ). The function Y — G is continuous
and differentiable at Y € . provided G has constant rank in an open neighborhood

of Y in R"*7 [16, Thm. 4.3], which is the case under Assumption 1.1. U
Problem (P) minimizes

(2.4) g(Y)=(Cr.Y)

over .Z, where g is defined over R"*”, Tts classical (Euclidean) gradient at Y

is Vg(Y) = 2CY. The Riemannian gradient of g at Y, gradg(Y ), is defined as the

unique tangent vector at ¥ such that, for all tangent ¥, (gradg(Y),Y) = (Vg(¥),Y).

This is given by the projection of the classical gradient onto the tangent space [3,
eq. (3.37)]:

gradg(Y) = Projy (Vg(Y)) = 2Projy (CY) =2 (c e (GW(CYYT))) Y.
This motivates the definition of S as follows, with G;; = <A[Y ,A‘,~Y>:
(2.5) S=8Y)=8SxY"h=C—o*(un), with pu=G"F(Cryr".

This is indeed well defined since G;; is a function of Y'Y T We get a convenient
formula for the gradient:

(2.6) gradg(Y) =28Y.

In the sequel, S will play a major role.

Turning toward second-order derivatives, the Riemannian Hessian of g at ¥
is a symmetric operator on the tangent space at Y obtained as the projection of
the derivative of the Riemannian gradient vector field [3, eq.(5.15)]. The latter
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is indeed differentiable owing to Lemma 2.2. With D denoting classical Fréchet
differentiation, writing S = S(Y) and S = D(Y ~ S(Y))(Y)[Y],

(2.7) Hessg(Y)[Y] = Proj, (Dgradg(Y)[Y]) = 2Projy(SY + SY) = 2Projy(SY).
The projection of SY vanishes because § = .<7*(v) for some v € R” so that SY =
Y™, ViAiY is in the normal space at ¥ (2.2).

These differentials are relevant for their role in necessary optimality conditions
of (P).

Definition 2.3. Y € .# is a (first-order) critical point for (P) if
1
(2.8) Egradg(Y) =8Y =0,

where S is a function of Y (2.5). If furthermore Hessg(Y) >~ 0, that is (using the
fact that Projy is self-adjoint),

) 1. . .
(2.9) VY € Ty A, E(Y,Hessg(Y)[YD =(Y,8Y) >0,
then Y is a second-order critical point for (P).

Proposition 2.4. Under Assumption 1.1, all local (and global) minima of (P) are
second-order critical points.

Proof. These are standard necessary optimality conditions on manifolds, see [31,
Rem. 4.2 and Cor. 4.2]. O

Thus, the central role of S in necessary optimality conditions for the non-convex
problem is clear. Its role for the convex problem is elucidated next.

2.2 For the convex problem (SDP)

The search space of (SDP) is the convex set % defined in (1.1), assumed non-
empty. Geometry-wise, we are primarily interested in the facial structure of € [27,

§18].

Definition 2.5. A face of % is a convex subset .% of € such that every (closed)
line segment in % with a relative interior point in .% has both endpoints in .%. The
empty set and € itself are faces of €.

For example, the non-empty faces of a cube are its vertices, edges, facets and the
cube itself. By [27, Thm. 18.2], the collection of relative interiors of the non-empty
faces forms a partition of 4 (the relative interior of a singleton is the singleton).
That is, each X € ¢ is in the relative interior of exactly one face of &, called .Zx.
The dimension of a face is the dimension of the lowest dimensional affine subspace
which contains that face. Of particular interest are the zero-dimensional faces of
€ (singletons).

Definition 2.6. X € % is an extreme point of ¢ if dim .%x = 0.
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In other words, X is extreme if it does not lie on an open line segment included
in €. If € is compact, it is the convex hull of its extreme points [27, Cor. 18.5.1].
Of importance to us, if 4" is compact, (SDP) always attains its minimum at one of
its extreme points since the linear cost function of (SDP) is (a fortiori) concave [27,
Cor. 32.3.2]. The faces of ¢ can be described explicitly as follows. The proof is in
Appendix B.

Proposition 2.7. Let X € € have rank p and let Fx be its associated face (that is,
X is in the relative interior of Fx.) Then, withY € //lP suchthat X =YY,

@10 Fx={X' =Y, +A)Y : A€ ker Ly and [, +A = 0},
where Ly . SP*P — R™ is defined by:
Q1) KA =FYAY) = ((YTAY,A),...,(YTA,Y,A)) .

Thus, the dimension of %y is the dimension of the kernel of %. Since the

dimension of SP*7 is M and rank (%) < m/, the rank-nullity theorem gives a

lower bound:

1 1
2.12) dim 7 = PP e g > @ —n.
For extreme points, dim.%x = 0; then, pp 2+ D _ rank Zx < m’. Solving for p (the
rank of X)) shows extreme points have small rank, namely,
Vem'+1—1
(2.13) dim.Zy =0 = rank(X) < p* & %

Since (SDP) attains its minimum at an extreme point for compact %, we recover
the known fact that one of the optima has rank at most p*. This approach to proving
that statement is well known [24, Thm. 2.1].

Optimality conditions for (SDP) are easily stated once S (2.5) is introduced—it
acts as a dual certificate, known in closed form owing to the underlying smooth
geometry of .Z. We need a first general fact about SDPs (Assumption 1.1 is not
required.)

Proposition 2.8. Let X € ¢ and let S = C — a/*(v) for some v € R™ (as is the
case in (2.5) for example). If S = 0 and (S,X) = O, then X is optimal for (SDP).

Proof. First, use S = 0: for any X’ € ¢, since X’ = 0 and «7 (X) = &/ (X'),
0<(S,X")=(C.X")—(*(v),X") = (C.,X") — (v, (X)).
Concentrating on the last term, use (S,X) = 0:
(v, (X)) = ("(v),X) = (C.X) = (5,X) = (C,X).
Hence, (C,X) < (C,X’), which shows X is optimal. O

Since (SDP) is a relaxation of (P), this leads to a corollary of prime importance.
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Corollary 2.9. Let Assumption 1.1 hold for some p. IfY is a critical point for (P)
as defined by (2.8) and S (2.5) is positive semidefinite, then X =YY " is globally
optimal for (SDP) and Y is globally optimal for (P).

Proof. Since Y is a critical point, SY = 0; thus, (S,X) = 0 and Proposition 2.8
applies. U

A converse of Proposition 2.8 holds under additional conditions which are sat-
isfied by all examples in Section 5. Thus, for those cases, for a critical point Y, YY T
is optimal if and only if S is positive semidefinite. We state it here for completeness
(this result is not needed in the sequel.)

Proposition 2.10. Let X € € be a global optimum of (SDP) and assume strong
duality holds. Let Assumption 1.1a hold with p = rank(X). Then, S = 0 and
(S,X) =0, where S = S(X) is as in (2.5).
Proof. Consider the dual of (SDP):
(DSDP) max (b,Vv) subjectto C— o/ (v) = 0.
veR™
Since we assume strong duality and X is optimal, there exists v optimal for the dual
such that (C,X) = (b, V). Using (b,v) = (</(X),Vv) = (X,o/*(V)), this implies
0=(C,X)— (b,v)=(C—F"(v),X).

Since both C — &7*(v) and X are positive semidefinite, (C —.o/*(v))X =0. As a
result, by definition of y and G (2.5),

=G (CX)=G'o(7*(V)X) =G Gv=v,
where we used G = G~! under Assumption 1.1a and
(GV),' = ZGUV/’ = Z<A,‘,ij> Vj= <A,,JZ{*(V)X> = JZ{(JZ{*(V)X),
J J
Thus, S =C — /() = C— &/*(V) has the desired properties. This concludes the
proof, and shows uniqueness of the dual certificate. U

3 Optimality of second-order critical points

We aim to show that second-order critical points of (P) are global optima, pro-
vided p is sufficiently large. To this end, we first recall a known result about rank-
deficient second-order critical points.>

Proposition 3.1. Let Assumption 1.1 hold for some p and let Y € .4 be a second-
order critical point for (P). If rank(Y) < p, then S(Y) = 0 so that Y is globally
optimal for (P) and so is X = YYTfor (SDP).

3 Optimality of rank deficient local optima is shown (under different assumptions) in [13, 17],
with the proof in [17] actually only requiring second-order criticality.
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Proof. The proof parallels the one in [17]. By Corollary 2.9, it is sufficient to show
that S = S(Y) (2.5) is positive semidefinite. Since rank(Y) < p, there exists z € R”
such that z # 0 and Yz = 0. Furthermore, for all x € R”, the matrix ¥ = xz' is such
that YY" = 0. In particular, Y is a tangent vector at ¥ (2.1). Since Y is second-order
critical, inequality (2.9) holds, and here simplifies to:

0<(¥,S7)=(xz",Sxz") = ||z]|* - x"Sx.
This holds for all x € R". Thus, S is positive semidefinite. U

Corollary 3.2. Let Assumption 1.1 hold for some p > n. Then, any second-order
critical point Y € A of (P) is globally optimal, and X =YY " is globally optimal
for (SDP).

Proof. For p > n (with p =n+ 1 being the most interesting case), points in .#
are necessarily column-rank deficient, so that the corollary follows from Proposi-
tion 3.1. For p =n, if Y is rank deficient, use the same proposition. Otherwise, Y
is invertible and SY = 0 (2.8) implies S = 0, which is a fortiori positive semidefi-
nite. By (2.5), this only happens if C = &7*(u) for some p, in which case the cost
function (C,X) = («/*(u),X) = (u,b) is constant over % O

In this paper, we aim to secure optimality of second-order critical points for
p less than n. As indicated by Proposition 3.1, the sole concern in that respect
is the possible existence of full-rank second-order critical points. We first give a
result which excludes the existence of full-rank first-order critical points (thus, a
fortiori of second-order critical points) for almost all cost matrices C, provided p
is sufficiently large. The argument is by dimensionality counting.

Lemma 3.3. Let p be such that @ > rank .o/ and such that Assumption 1.1

holds. Then, for almost all C, all critical points of (P) are column-rank deficient.

Proof. LetY € ./ be a critical point for (P). By the definition of S(Y) =C —
&/ (u(Y)) (2.5) and the first-order condition S(Y)Y = 0 (2.8), we have

3.1 rankY <null(C— " (u(Y))) < max null(C — &7*(v)),
veR™

where null denotes the nullity (dimension of the kernel). This first step in the proof
is inspired by [30, Thm. 3]. If the right-hand side evaluates to ¢, then there exists v
and M = C — &/*(v) such that null(M) = £. Writing C = M + o/*(v), we find that

(3.2) C € N +im(a7*),

where .47 denotes the set of symmetric matrices of size n with nullity ¢ and the +
is a set-sum. The set .47 has dimension
nin+1) £({+1)

(3.3) dim .4 = 7 -
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Assume the right-hand side of (3.1) evaluates to p or more. Then, a fortiori,

(3.4) Ce |J A+im(a™).

The set on the right-hand side contains all “bad” matrices C, that is, those for
which (3.1) offers no information about the rank of Y. The dimension of that set
is bounded as follows, using the fact that the dimension of a finite union is at most
the maximal dimension, and the dimension of a finite sum of sets is at most the
sum of the set dimensions:

dim< U J%—I—im(d*)) < dim (A}, +im(/))
l

=p,....n
1 1
gn@+)_p@+)+wﬁd.
2 2
Since C € S"™" lives in a space of dimension @, almost no C verifies (3.4) if
1 1 1
n(n2+ ) - p(pz—l- ) +rank .o/ < Ln;— )

Hence, if w > rank .7, for almost all C, critical points have rank(Y) < p. O

Theorem 1.4 follows as an easy corollary of Proposition 3.1 and Lemma 3.3.

In order to make a statement valid for a/l C, we further explore the implications
of second-order criticality on the definiteness of S. For large p (though still smaller
than n), we expect full-rank second-order critical points should indeed be optimal.
The intuition is as follows. If Y € . is a second-order critical point of rank p, then,
by (2.8), SY = 0 which implies S has a kernel of dimension at least p. Furthermore,
by (2.9), S has “positive curvature” along directions in Ty.#, whose dimension
grows with p. Overall, the larger p, the more conditions force S to have nonnegative
eigenvalues. The main concern is to avoid double counting, as the two conditions
are redundant along certain directions: this is where the facial structure of 4 comes
into play.

The following theorem refines this intuition. We use & for Kronecker products
and vec to vectorize a matrix by stacking its columns on top of each other, so that
vec(AXB) = (B"®A)vec(X). A real number a is rounded down as |a|.

Theorem 3.4. Let p be such that Assumption 1.1 holds. Let Y € .# be a second-
order critical point for (P). The matrix X =YY | belongs to the relative interior of
the face Fx (2.10). If rank(Y') = p, then S = S(X) (2.5) has at most

dim Zx — A
(3.5) \‘lmixJ
p
negative eigenvalues, where
_ p(p+1) /

(3.6) A
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In particular, if dim %y < A+ p, then S is positive semidefinite and both X and Y
are globally optimal.

Proof. Consider the subspace vec(Ty.# ) of vectorized tangent vectors at Y: it has
dimension k £ dim.#. Pick U € R"** with columns forming an orthonormal
basis for that subspace: U 'U = Ii. Then, U'(I, ® S)U has the same spectrum as
IHessg(Y). Indeed, for all ¥ € Ty.# there exists x € R¥ such that vec(Y) = Ux,
and, by (2.9),

%(Y,Hess g(V)[V]) = (V,87) = (Ux, (I, © S)Ux) = (x, U (I, @ S)Ux).

In particular, U (I, ® S)U is positive semidefinite since Y is second-order critical.

LetV € R””Xl’z,VTV = 1,2, have columns forming an orthonormal basis of
the space spanned by the vectors vec(YR) for R € RP*P: such V exists because
rank(Y) = p. Indeed, vec(YR) = (I, ®Y)vec(R) and [, ®Y € R"7*P" then has full
rank p?. Since Y is a critical point, SY = 0 by (2.8), which implies (I, ® S)V = 0.

Let K’ denote the dimension of the space spanned by the columns of both U
and V, and let W € R"? Xk,,WTW = Iy, be an orthonormal basis for this space. It
follows that M = W (I, ® S)W is positive semidefinite. Indeed, for any z, there
exist x,y such that Wz = Ux+Vy. Hence, z' Mz =x"U (I, ® S)Ux > 0.

Let A9 < --- <A, denote the eigenvalues of S, and let Qo< < i,,p_l denote
the eigenvalues of I, ® S. The latter are simply the eigenvalues of S repeated p
times, thus: A; = Ali/p|- Let go < --- < w1 denote the eigenvalues of M. The
Cauchy interlacing theorem states that, for all i,

(3.7) Ai < Wi < ii—«—np—k"

In particular, since M = 0, we have 0 < 1o < A|(,p—k)/p|- It remains to determine
k/

From Proposition 1.2, recall that k = dim.# = np —m’. We now investigate
how many new dimensions V adds to U. All matrices R € R”*? admit a unique
decomposition as

R = Rskew + Rier.z +R(ker.§f)i7

where Rgew 1S skew-symmetric, Rye  is in the kernel of %y (2.11) and R(ker 2)
is in the orthogonal complement of the latter in SP*”. Recalling the definition of
tangent vectors (2.1), it is clear that Y = YRyew is tangent. Similarly, Y =YRyer
is tangent because of the definition of %y (2.11). Thus, vectorized versions of
these are already in the span of U. On the other hand, by definition, YR, &)1 is

not tangent at ¥ (if it is nonzero). This raises k' (the rank of W) by dim (ker %y )+ =

_p(p2+1) — dimker.%. Since dimker %y = dim .%y, we have:

(p+1)

(3.8) K'=np—m+ P 5 —dim. %y = np+ A —dim Fy.
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Thus, np — k' = dim #x — A. Combine with A,,,,_x)/,| > 0 to conclude. O

Theorem 1.6 follows easily from Corollary 2.9 and Theorem 3.4.

Remark 3.5. What does it take for a second-order critical point Y € .# to be sub-
optimal? For local optima, the quote from Burer and Monteiro [13, §3] in the in-
troduction readily states that ¥ must have rank p, and the face .#x (with X =YY D
must be positive dimensional and such that the cost function (C,X) is constant over
Zx. Here, under Assumption 1.1 for p, Theorem 3.4 states that if Y is second-
order critical and is suboptimal, then .#x must have dimension A+ p or higher.
Since (2.12) suggests generic faces at rank p have dimension A, this further shows
thats suboptimal second-order critical points, if they exist, can only occur if the
cost function is constant over a high-dimensional face of %’.

To use Theorem 3.4 in a particular application, one needs to obtain upper
bounds on the dimensions of faces of 4. We follow this path for a number of
examples in Section 5.

4 Near optimality of near second-order critical points

Under Assumption 1.1, problem (P) is an example of smooth optimization over
a smooth manifold. This suggests using Riemannian optimization to solve it [3],
as already proposed by Journée et al. [17] in a similar context. Importantly, known
algorithms—in particular, the Riemannian trust-region method (RTR)—converge
to second-order critical points regardless of initialization [2]. We state here a recent
computational result to that effect [10].

Proposition 4.1. Under Assumption 1.1, if € is compact, RTR initialized with any
Yo € A produces in ﬁ(l/egeH +1/&})) iterations a point Y € .4 such that

g(Y) <g(Yo), |lgradg(Y)|| < &, and Hessg(Y) = —ep 1d,

where g (2.4) is the cost function of (P).

Proof. Apply the main results of [10] using the fact that g has locally Lipschitz
continuous gradient and Hessian in R"*? and .# is a compact submanifold of
R™P, U

Importantly, only a finite number of iterations of any algorithm can be run in
practice, so that only approximate second-order critical points can be computed.
Thus, it is of interest to establish whether approximate second-order critical points
are also approximately optimal. As a first step, we give a soft version of Corol-
lary 2.9. We remark that the condition I, € im.</* is satisfied in all examples of
Section 5.
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Lemma 4.2. Let Assumption 1.1 hold for some p and assume € (1.1) is compact.
For any Y on the manifold ./, if ||gradg(Y)|| < & and S(Y) = —%1,, then the
optimality gap at Y with respect to (SDP) is bounded as

(4.1) 0<2(g(Y)—f*) < euR+&VR,

where f* is the optimal value of (SDP) and R = maxyc¢ Tr(X) < oo measures the
size of 6.

If I, € im(o7™), the right-hand side of (4.1) can be replaced by eyR. This holds
in particular if all X € € have same trace and € has a relative interior point
(Slater condition).

Proof. By assumption on S(Y) = C —.o7*(u(Y)) (2.5) with u(Y) = G'.eZ(CYY "),
VX' €€, —%HTY(X/) < (S(¥),X") =(C.X") — (/" (u(Y)),X')

=(C.X") = (u(¥),b).

This holds in particular for X’ optimal for (SDP). Thus, we may set (C,X")
and certainly, Tr(X") < R. Furthermore,

((),b) = (u(Y), (YY) = (C—=S¥),YYT) =g(Y) — (S(X)Y.Y).

5

Combining the displayed equations and using gradg(Y) = 2S(Y)Y (2.8), we find
(4.2) 0<2(g(Y)—f*) < eyR+ (gradg(Y),Y).

In general, we do not assume 7, € im(2/*) and we get the result by Cauchy—
Schwarz on (4.2) and ||Y|| = /Tr(YYT) < VR:

0<2(g(Y)—f*) < enR+&VR.

But if 7, € im(e7*), then we show that Y is a normal vector at Y, so that it is
orthogonal to grad g(Y'). Formally: there exists v € R™ such that [, = &/*(Vv), and

(gradg(Y),Y) = (gradg(Y)Y ", 1,) = (o (gradg(Y)Y ), v) =0,

since gradg(Y) € Ty.# (2.1). This indeed allows us to simplify (4.2).

To conclude, we show that if ¢ has a relative interior point X’ (that is, </ (X') =
band X' > 0) and if Tr(X) is constant for X in ¢, then [,, € im(/*). Indeed, S"*"" =
im(.e/*) @ ker <7, so there exist v € R™ and M € ker <7 such that I, = &/*(v) + M.
Thus, for all X in &,

0=Tr(X —X") = (" (V) + M, X - X") = (M, X - X").

This implies M is orthogonal to all X — X’. These span ker <7 since X' is interior.
Indeed, for any H € ker .o/, since X’ = 0, there exists > 0 such that X = X’ +
tH = 0 and </ (X) = b, so that X € €. Hence, M € ker.</ is orthogonal to ker.o7.
Consequently, M = 0 and I, = o/* (V). O
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The lemma above involves a condition on the spectrum of S. Next, we show
this condition is satisfied under an assumption on the spectrum of Hess g and rank
deficiency.

Lemma 4.3. Let Assumption 1.1 hold for some p. If Y € A is column-rank defi-
cient and Hess g(Y) = —ey 1d, then S(Y) = —4L1,.

Proof. By assumption, there exists z € R”, ||z|| = 1 such that Yz = 0. Thus, for
any x € R”, we can form ¥ = xz': it is a tangent vector since YY" =0 (2.1), and
|¥]|?> = ||x||*>. Then, condition (2.9) combined with the assumption on Hess g(¥)
tells us

—ey||x]|> < (¥, Hessg(Y)[¥]) = 2(¥,SY) = 2(xz"zx",§) = 2x ' Sx.
This holds for all x € R", hence S —%Hln as required. OJ
We now combine the two previous lemmas to form a soft optimality statement.

Theorem 4.4. Assume € is compact and let R < oo be the maximal trace of any X
feasible for (SDP). For some p, let Assumption 1.1 hold for both p and p+ 1. For
anyY € M#,, form Y =[Y]04x1] in Mps1. The optimality gap at Y is bounded as

(43 0<2(g(Y)— f) < VRlgradg(Y) | — Rhmin(Hess g(7)).

If all X € € have the same trace R and there exists a positive definite feasible X,
then the bound

(4.4) 0<2(8(Y) = f*) < —RAmin(Hess g(Y))

holds. If p > n, the bounds hold with Y =Y (and Assumption 1.1 only needs to
hold for p.)

Proof. Since YYT =YY, S(Y) = S(Y); in particular, we have g(¥) = g(¥) and
|lgradg(¥)|| = ||grad g(Y)||. Since ¥ has deficient column rank, apply Lemmas 4.2
and 4.3. For p > n, there is no need to form ¥ as Y itself necessarily has deficient
column rank. U

This works well with Proposition 4.1. Indeed, equation (4.3) also implies the

following:
- 2(g(Y) — — V/R||grad g(Y
Fon(Heso (7)) < - 280V~ VElgradg )],

That is, an approximate critical point Y in .#), which is far from optimal (for (SDP))
maps to a comfortably-escapable approximate saddle point ¥ in .#,.1. This can
be helpful for the development of optimization algorithms.

For p =n+1, the bound in Theorem 4.4 can be controlled a priori: approximate
second-order critical points are approximately optimal, for any C.*

4 With p =n+ 1, problem (P) is no longer lower dimensional than (SDP), but retains the advan-
tage of not involving a positive semidefiniteness constraint.
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Corollary 4.5. Assume € is compact. Let Assumption 1.1 hold for p = n+ 1.
IfY € My satisfies both ||gradg(Y)|| < & and Hessg(Y) = —ey1d, then Y is
approximately optimal in the sense that (with R = maxyc¢ Tr(X)):

0<2(g(Y)— f*) < & VR+euR.

Under the same condition as in Theorem 4.4, the bound holds with right-hand side
eyR instead.

Theorem 1.5 is an informal statement of this corollary.

5 Applications

In all applications below, Assumption 1.1a holds for all p such that the search
space is non-empty. For each one, we deduce the consequences of Theorems 1.4
and 1.6. For the latter, the key part is to investigate the facial structure of the
SDP. As everywhere else in the paper, ||x|| denotes the 2-norm of vector x and || X ||
denotes the Frobenius norm of matrix X.

5.1 Generalized eigenvalue SDP

The generalized symmetric eigenvalue problem admits a well-known extremal
formulation:

(EIG) rn]%nxTCx subject to x'Bx = 1,
xeR”

where C, B are symmetric of size n > 2. The usual relaxation by lifting introduces
X = xx" and discards the constraint rank(X) = 1 to obtain this SDP (which is also
the Lagrangian dual of the dual of (EIG)):

(EIG-SDP) XrnSin (C,X) subjectto (B,X)=1,X>0.
e nxn

Let ¢ denote the search space of (EIG-SDP). It is non-empty and compact if and
only if B > 0, which we now assume. A direct application of (2.13) guarantees
all extreme points of ¢ have rank 1, so that it always admits a solution of rank
1: the SDP relaxation is always tight, which is well known. Under our assump-
tion, B admits a Cholesky factorization as B = R 'R with R € R"™" invertible. The
corresponding Burer—-Monteiro formulation at rank p reads:
(EIG-BM) min (CY,Y) subjectto |[RY|?*=1.
YeRmP

Let .# denote its search space. Assumption 1.1a holds for any p > 1 with m’' = 1.
Indeed, for all Y € .#, {BY} spans a subspace of dimension 1, since BY = R'RY,
RY #£ 0 and R is invertible. Thus, Theorem 1.4 readily states that for p > 2, for
almost all C, all second-order critical points of (EIG-BM) are optimal.

We can do better. The facial structure of % is easily described. Recalling (2.12),
for all X = YYT € % we have dim.Zy = 2&-) 1, since Y TBY # 0. Hence, by
Theorem 1.6, for any value of p > 1, all second-order critical points of (EIG-BM)
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are optimal (for any C). In particular, for p = 1 (EIG) and (EIG-BM) coincide and
we get:

Corollary 5.1. All second-order critical points of (EIG) are optimal.

This is a well-known fact, though usually proven by direct inspection of neces-
sary optimality conditions.

5.2 Trust-region subproblem SDP

The trust-region subproblem consists in minimizing a quadratic on a sphere,
with n > 2:

(TRS) minx'Ax+2b"x ¢ subjectto [lxf* = 1.
xeR”?

It is not difficult to produce (A,b,c) such that (TRS) admits suboptimal second-
order critical points. The usual lifting here introduces

<X::<T>(xT 1)::<§ﬂ T), and C::<;¥ ﬁ).

The quadratic cost and constraint are linear in X, yielding this SDP relaxation:

(TRS-SDP) mSin (C,X) subjectto Tr(Xi,im) =1, Xpr1041 =1, X = 0.
Xe nxn

Let % denote the search space of (TRS-SDP). It is non-empty and compact. Here
too, a direct application of (2.13) guarantees the SDP relaxation is always tight
(it always admits a solution of rank 1), which is a well-known fact related to the
S-lemma [25]. The Burer—-Monteiro relaxation at rank p reads:

(TRS-BM)

Y,

min CcY,Y subject to Y| = I, 2= 1, withY = .
L Or) b W2 =1, s (y;)

Let .# denote its search space. After verifying Assumption 1.1 holds (see below),
application of Theorem 1.4 guarantees that for p > 2 and for almost all (A,b,c),
second-order critical points of (TRS-BM) are optimal. We can further strengthen
this result by looking at the faces of %, as we do now.

Lemma 5.2. Assumption 1.1a holds for any p > 1 with m' = 2. Furthermore, for
X € € of rank p,

: 0 ifp=1,
dim 7x = {p(p+1>_2 ifp>2
) p =<

Proof. The constraints of (SDP) are defined by

o In On><1 o o On><n On><1 o
A= <01><n 0 >7 bl _17 Ay = <01><n 1 >7 b2_1
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ForY € ., we have

Y 0
AY = , A = P .
: <01Xp> ? < sz >

These are nonzero and always linearly independent, so that dimspan{AY,A,Y } =
2 for all Y € .#, which confirms Assumption 1.1a holds with m’ = 2.

The facial structure of ¢’ is simple as well. Let X € % have rank p and consider
Y € .# such that X =YY . To use (2.12), note that:

Y'AY =17, YA =y,y,.
These are nonzero. For p = 1, they are scalars: they span a subspace of dimension
1. Then, dim.%x = 1 —1 = 0. For p > 1, we argue they are linearly independent.
Indeed, if they are not, there exists a # 0 such that YITY1 =a- yzsz . If so, I
must have rank 1 with row space spanned by ys, so that ¥; = zy, for some z € R",
and ||z|]| = 1. As a result, Y itself has rank 1, which is a contradiction. Thus,
dim.%y = w — 2, as announced. O

Combining the latter with Theorem 1.6 yields the following new result, which
holds for all (A,b,c). Notice that for p = 1, the theorem correctly allows second-
order critical points to be suboptimal in general.

Corollary 5.3. For p > 2, all second-order critical points of (TRS-BM) are glob-
ally optimal.

A second-order critical point Y of (TRS-BM) with p =2 is thus always optimal.
If Y has rank 1, it is straightforward to extract a solution of (TRS) from it. If Y has
rank 2,% it maps to a face of dimension 1. The endpoints of that face have rank 1
and are also optimal. The following lemma shows these can be computed easily
from Y by solving two scalar equations.

Lemma 5.4. LetY € .# be a second-order critical point of (TRS-BM) with p =2,
and let 7 € R? satisfy |Y1z||*> = 1 and y;z = 1. Then, Y\z is a global optimum
of (TRS).

Proof. 1f rank(Y) = 1, then ¥; = xy] for some x € R”, and [|Y1| = 1, y2]| = 1
ensure ||x|| = 1. Solutions to yJ z = 0 are of the form z = y; +u, where yJ u = 0. For
any such z, Y1z = x, which is indeed optimal for (TRS) since Y is globally optimal
for (TRS-BM) and x attains the same cost for the restricted problem (TRS).

Now assume rank(Y) = 2. By (2.10), the one-dimensional face .%yy contains
all matrices of the form Y (I, — M)Y " such that I, — M = 0 and <12 - M, YlTY1> =0,
<Iz -M ,yzsz > = (. This face has two extreme points of rank 1, for which I, — M
is a positive semidefinite matrix of rank 1, so that I, — M = zz' for some z € R.
Given that Y is feasible, the conditions on z are ||Y;z||*> = 1 and y,z = £1. These

5 This can happen, notably if (A,b,c) forms a so-called hard case TRS (details omitted.) This
observation shows that it is indeed necessary to exclude some non-trivial matrices C in Lemma 3.3.
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equations define an ellipse in R? and two parallel lines, totaling four intersections
+z,+7 which can be computed explicitly. Fixing szz = +1 allows to identify the
two extreme points of the face. Since the cost function is constant along that face,
either extreme point yields a global optimum in the same way as above. U

5.3 Optimization over several spheres

The trust-region subproblem generalizes to optimization of a quadratic function

over k spheres, possibly in different dimensions ny,...,n; > 2:
(Spheres) min  x'Cx subjectto x| =---=|x] =1,
x€RM i=1..k
ST (T T
with x —(x1 X 1).

The variable x is in R"*!, with n = n; + - - - +ny. Since the last entry of x is 1, this
indeed covers all possible quadratic functions of xy,...,x;. The SDP relaxation by
lifting reads:

min  (C,X) subjectto Tr(Xj;)=--=Tr(Xu) =1,
X cRat1)x(nt1)
(Spheres-SDP) Xpr1ne1=1,X =0,

where X;; denotes the block of size n; x n; of matrix X, in the obvious way. This
SDP has a non-empty compact search space and k4 1 independent constraints,
so that by (2.13) it always admits a solution of rank at most p* = L]‘Jf—l. The

Burer—Monteiro relaxation at rank p reads:
(Spheres-BM)

min (CY,Y) subjectto [|Vi]|=---=|%] =1L/ =1,
YeR@m+1)xp
withY "= (v, - vl ),

where ¥; € R"%*?P and y € R”. It is easily checked that Assumption 1.1a holds for
all p > 1. Thus, Theorem 1.4 gives this result:

Corollary 5.5. For p > Lk;%l and for almost all C, all second-order critical

points of (Spheres-BM) are optimal and map to optima of (Spheres-SDP).

To apply Theorem 1.6, we first investigate the facial structure of the SDP.
Lemma 5.6. Let Y be feasible for (Spheres-BM) and have full rank p. The dimen-
sion of the face of the search space of (Spheres-SDP) at YY " obeys:

pp+1)
2

if p>2, and dim Fyyr=0if p=1.
Proof. Following (2.12),

p(p+1)

dlm gny - 2

— dim span (YlTYl,. . ,YkTYk,WT) .
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Since Y is feasible, each defining element of the span is nonzero, so that the dimen-
sion is at least 1. If p = 1, these elements are scalars: they span R. Now consider
p > 2 and assume for contradiction that the span has dimension one. Then, all
defining elements are equal up to scaling. In other words: Y'Y, = ¢;-yy " for some
nonzero ;. If 5o, ¥; has rank 1 and there exists z; € R™ such that ¥; = z;y". In turn,
this implies Y has rank 1, which is a contradiction. Thus, the span has dimension
at least two. t

Corollary 5.7. For p > max(2,k), all second-order critical points of (Spheres-BM)
are optimal and map to optima of (Spheres-SDP) (for any C).

For k = 1, this recovers the main result about the trust-region subproblem. If
the cost function in (Spheres) is a homogeneous quadratic, then it can be written as

(SpheresH) min  x'Cx subjectto x| =---=|x| =1,
X ERM i=1...k
T
withx = (xlT ka)

The corresponding relaxation and Burer—Monteiro formulations read:
(SpheresH-SDP)

Xn}Rjn (C,X) subjectto Tr(Xj)=---=Tr(Xwx)=1,X =0,
e nxn
and:
(SpheresH-BM) Yn%Rin (CY,Y) subjectto [[Yi||=--=|¥|=1,
cRnxp
withY "= (v," -+ Y).

Assumption 1.1a holds for all p > 1 with m’ = k. A similar analysis of the facial
structure yields the following corollary of Theorem 1.6.

Corollary 5.8. For almost all C, provided p > 7%171, all second-order critical

points of (SpheresH-BM) are optimal and map to optima of (SpheresH-SDP). If
p >k, the result holds for all C.

For k = 1, this recovers the results of (EIG) with B = I,.

5.4 Max-Cut and Orthogonal-Cut SDP

Let n = gd for some integers g,d. Consider the semidefinite program

(OrthoCut) XmSin (C,X) subjectto sbd(X)=1I, X >0,
e nxn

where sbd: §"*" — S"*" preserves the diagonal blocks of size d x d and zeros out
all other blocks. Specifically, with X;; denoting the (i, j)th block of size d x d in
matrix X,

Xi; if i = j,
O4xq otherwise.

sbd(X);; = {
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For example, with d = 1, the constraint sbd(X ) = I, is equivalent to diag(X) =1
and this SDP is the Max-Cut SDP [15]. For general d, diagonal blocks of X of size
d x d are constrained to be identity matrices: this SDP is known as Orthogonal-
Cut [6, 9]. Among other uses, it appears as a relaxation of synchronization on
Zy = {%1} [5, 21, 1] and synchronization of rotations [28, 14], with applications
in stochastic block modeling (community detection) and SLAM (simultaneous lo-
calization and mapping for robotics).

The Stiefel manifold St(p,d) is the set of matrices of size p x d with orthonor-
mal columns. The Burer—-Monteiro formulation of (OrthoCut) is an optimization
problem over ¢ copies of St(p,d):

(OrthoCut-BM)

min  (CY,Y) subjectto Y'Y, =1I;Vk, ¥ = v Y.
Vi, Y €RPXd

For d = 1, this problem captures one side of the Grothendieck inequality [18,

eq. (1.1)]. Assumption 1.1a holds for all p > d with m' = d+1 (which is the
number of constraints). Theorem 1.4 applies as follows.

Corollary 5.9. If p > Y————— L4 d+1 for almost all C, any second-order critical

point Y of (OrthoCut-BM) is a global optimum, and X =YY " is globally optimal
for (OrthoCut).

In order to apply Theorem 1.6, we must investigate the facial structure of
€ ={XeS"":sbd(X)=1,,X = 0}.
The following result generalizes a result in [19, Thm.3.1(1)] tod > 1.

Theorem 5.10. If X € € has rank p, then the face Fx (2.10) has dimension
bounded as:

) d+l ) d+1
(5.1) p@;')—n ; 5;mm9&5;p“g')—p ;.

If p is an integer multiple of d, the upper bound is attained for some X.

The proof is in Appendix C. Combining this with Theorem 1.6 yields the fol-
lowing result.

Corollary 5.11. Ifp > ’éién any second-order critical point Y for (OrthoCut-BM)
is globally optimal, and X =YY " is globally optimal for (OrthoCut). In particular;

for Max-Cut SDP (d = 1), the requirement is p > 5.
Proof. If Y is rank deficient, use Proposition 3.1. Otherwise, since rank(X) = p,
Theorem 5.10 gives dim.Zy < 2 (” +1) — p%£! and Theorem 1.6 gives optimality if
plp+1) d+1

I

d+1,
This is the case provided (n — p)(d + 1) < 2p, thatis, if p > F5n O

dim %y <
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6 Discussion of the assumptions

We now discuss the assumptions that appear in the main theorems.

The starting point of this investigation is the hope to solve (SDP) by solving (P)
instead. For smooth, non-convex optimization problems, even verifying local op-
timality is usually hard [22]. Thus, we wish to restrict our attention to efficiently
computable points, such as points which satisfy first- and second-order Karush—
Kuhn—-Tucker (KKT) conditions for (P)—see [12, §2.2] and [29, §3]. This only
helps if global optima satisfy the latter, that is, if KKT conditions are necessary for
optimality.

A global optimum Y necessarily satisfies KKT conditions if constraint qualifi-
cations (CQs) hold at Y [29]. The standard CQs for equality constrained programs
are Robinson’s conditions or metric regularity (they are here equivalent). They
read as follows:

(CQ) CQsholdatY € . ifAY,...,A,Y are linearly independent in R"*7.

Considering all cost matrices C, global optima could, a priori, be anywhere in .Z.
Thus, we require CQs to hold at all Y in .# rather than only at the (unknown)
global optima. This leads to Assumption 1.1a. Adding redundant constraints (for
example, duplicating (A,X) = b;) would break the CQs, but does not change the
optimization problem. This is allowed by Assumption 1.1b.

In general, (SDP) may not have an optimal solution. One convenient way to
guarantee that it does is to require % to be compact, which is why this assumption
appears in Theorem 1.5 to bound optimality gaps for approximate second-order
critical points. When % is compact, one furthermore gets the guarantee that at
least one of the global optima is an extreme point of %’, which leads to the guaran-
tee that at least one of the global optima has rank p bounded as @ <m' (2.13).
The other way around, it is possible to pick the cost matrix C such that the unique
solution to (SDP) is an extreme point of maximal rank, which can be as large as
allowed by (2.13). This justifies why, in Theorem 1.4, the bound on p is essen-
tially optimal. The compactness assumption could conceivably be relaxed, pro-
vided candidate global optima remain bounded. This could plausibly come about
by restricting attention to positive definite cost matrices C.

One restriction in particular in Theorem 1.4 merits further investigation: the
exclusion of a zero-measure set of cost matrices (“bad C”). From the trust-region
subproblem example in Section 5.2, we know that it is necessary (in general) to
allow the exclusion of a zero-measure set of cost matrices in Lemma 3.3. Yet,
in that same example, the excluded cost matrices do not give rise to suboptimal
second-order critical points (as we proved through a different argument involving
Theorem 1.6.) Thus, it remains unclear whether or not a zero-measure set of cost
matrices must be excluded in Theorem 1.4. Resolving this question is key to gain
deeper understanding of the relationship between (SDP) and (P).
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Finally, we connect the notion of smooth SDP used in this paper to the more
standard notion of non-degeneracy in SDPs as defined in [4, Def. 5]. Informally:
for linearly independent A;, non-degeneracy at all points is equivalent to smooth-
ness. The proof is in Appendix D.

Definition 6.1. X is primal non-degenerate for (SDP) if it is feasible and Ty +
ker.oZ = S"™" where Ty is the tangent space at X to the manifold of symmetric
matrices of rank r embedded in S"*", where r = rank(X).

Proposition 6.2. Ler Ay,...,A,, defining &/ be linearly independent. Then, As-
sumption 1.1a holds for all p such that .#), is non-empty if and only if all X € ¢
are primal non-degenerate.

7 Conclusions and perspectives

We have shown how, under Assumption 1.1 and extra conditions (on p, com-
pactness, and the cost matrix), the Burer—Monteiro factorization approach to solv-
ing (SDP) is “safe”, despite non-convexity. For future research, it is of interest to
determine if the proposed assumptions can be relaxed. Furthermore, it is impor-
tant for practical purposes to determine whether approximate second-order critical
points are approximately optimal for values of p well below n (an example of this
for a specific context is given in [5]). One possible way forward is a smoothed
analysis of the type developed recently in [8, 26], though these early works leave
plenty of room for improvement.

Appendix A: Consequences and properties of Assumption 1.1

Proof of Proposition 1.2. The set .# is defined as the zero level set of ®: R"*? —
R™ where ®(Y) = o/ (YY ") — b. The differential of ® at Y, D®(Y), has rank equal
to the dimension of the space spanned by {A,Y,...,A,,Y }. Under Assumption 1.1a,
D®(Y) has full rank m on .# and the result follows from [20, Corollary 5.14].
Under Assumption 1.1b, D®(Y) has constant rank m’ in a neighborhood of .# and
the result follows from [20, Theorem 5.12]. O

Proof of Proposition 1.3. First, let Assumption 1.1a hold for some p, and consider
p’ < p such that .#, is non-empty. For any Y’ € .4, form Y = [Y'|0,(,— )] €
R"™P. Clearly, Y is in .#,, so that

m = dimspan{AY,...,A,Y} =dimspan{AY’,... A, Y},

as desired. For p = n, we now consider the case p’ > n. Let Y’ € .#,; and consider
its full SVD, Y’ = ULV, with £ € R"*”". Then, Y'V is in .#, as well. Since the
last p' — n columns of X are zero, we have Y'V = UL = [Y [0, (y_n)| With Y € .4,
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Thus, as desired,

dimspan{A;Y’ ... A, Y'} = dimspan{AY'V,... A, Y'V}
= dimspan{AY,...,A,Y}

=m.

Second, let Assumption 1.1b hold for some p, and consider p’ < p such that
Ay is non-empty. For any Y' € .4y, formY = [Y'|0,(,— )| € #,. By assump-
tion, there exists an open ball By in R"*? of radius € = €(Y) > 0 centered at ¥ such
that

dimspan{AY,... A,,Y} =m'

for all ¥ € By. Let By be the open ball in R"*?" of radius €(Y) and center Y'. For
any ¥’ € By, form ¥ = [V'|0,(,—,»)]. Since |V —Y|| = |[¥' —Y'|| < &, we have
Y € By, so that

m' = dimspan{AY,...,A,,Y} = dimspan{A,Y’,... A, Y'}.

Thus, Assumption 1.1b holds with the open neighborhood of .#), consisting of the
union of all balls By: for Y' € .#,, as described above. O

Appendix B: The facial structure of ¢

Proof of Proposition 2.7. The construction follows [24] and applies for any linear
equality constraints. We first show that if X’ is of the form in (2.10), then it must
be in Fx. This is clear if X’ = X. Otherwise, pick 7 > 0 such that I, —tA = 0.
Then, X" and X" =Y (I, —tA)Y " define a closed line segment in 6" whose relative
interior contains X. By Definition 2.5, this implies X’ (and X") are in .Zy.

The other way around, we now show that any point in .%y must be of the form
of X" in (2.10). Let W € S"*" be such that X’ = X +W. Since X is in the relative
interior of .%y which is convex, there exists t > 0 such that X —tW € %y. Let
Y, € R™("=P) pe such that M = [Y Y] is invertible. We can express X =YY"
and W as

1, 0], r A B] -+
X_M[O O]M and W_M[BT oM

Then, explicitly, these two matrices must belong to 4

I,+A B

BT C

} M', and X—tW=M [If’ —i _IB} M.

In particular, they must both be positive semidefinite, which implies C > 0 and
—tC > 0, so that C = 0. By Schur’s complement, it follows that B = 0. Thus, W =
YAY " for some A € SP*P such that I, +A = 0. Furthermore, <7 (X') = o/ (X + W) =
b, so that o7 (W) = 0. The latter is equivalent to .Zx (A) = 0 using (2.11). O
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Appendix C: Faces of the Ortho-Cut SDP

Proof of Theorem 5.10. Consider the definition of . (2.11) and inequality (2.12):
the latter covers the lower bound and shows we need rank %y > p(d+ 1)/2 for the
upper bound, that is, we need to show the condition %x(A) = 0 imposes at least
p(d +1)/2 linearly independent constraints on A € SP*7.

LetY € .#, be such that X = YY", and let yi,...,y, € R” denote the rows of
Y, transposed. Greedily select p linearly independent rows of Y, in order, such that
row i is picked iff it is linearly independent from rows y; to y;—;. This is always
possible since ¥ has rank p. Write t = {f; < --- <1,} to denote the indices of
selected rows. Write sy = {((k—1)d +1),...,kd} to denote the indices of rows in
slice YkT, and let ¢, = s, Nt be the indices of selected rows in that slice.

We make use of the following fact [19, Lem. 2.1]: for xy,...,x, € R? linearly
independent, the p(p+ 1)/2 symmetric matrices x,-ij—l—xjxl-T form a basis of SP*7.
Defining E;; = yl-ij+yjyiT = Ej;, this means & = {E,;, : {,{' = 1...p} forms a
basis of SP*7 (&’ is a set, so that E;; and E j; contribute only one element). Similarly,
since each slice ¥;" has orthonormal rows, matrices in {E;; : i,/ € sx} are linearly
independent.

The constraint Z (A) = 0 means (A, E;;) = 0 for each k and for each i, j € s.
To establish the theorem, we need to extract a subset .7 of at least p(d + 1)/2 of
these gd(d + 1) /2 constraint matrices, and guarantee their linear independence. To
this end, let

(C.1) T ={Eij:ke{l,...,q} andi € c; C s¢, ] € i}

That is, for each slice k, .7 includes all constraints of that slice which involve at
least one of the selected rows. For each slice k, there are |ci|d — M such
constraints—note the correction for double-counting the E;;’s where both i and j
are in ¢x. Thus, using |c1| + -+ |c,4| = p, the cardinality of .7 is:

J —1
(C.2) (T =Y |lexld — %

1 q
=p(d+1/2) =3 Y |l
k=1 2

k=1
We first show matrices in .7 are linearly independent. Then, we show |.7 | is large
enough.

Consider one E;j € 7 : i, j € s for some k and i = t, for some ¢ (otherwise, per-
mute i and j). By construction of z, we can expand y; in terms of the rows selected
inslices 1 to k, i.e., y; = Zﬁ,kzl Qj ¢y, where £ = |ci|+ -+ [cr|. As aresult, Ej;
expands in the basis & as follows: E;; = ng‘: 1 0.0 Ey 4, As noted before, Ej;’s in
< contributed by a same slice k are linearly independent. Furthermore, they ex-
pand in only a subset of the basis &, namely, &*) = {Eys, 1 <L< O, 0 < i}
tp is a selected row of slice k and #,/ is a selected row of some slice between 1 and
k.Fork#k,& ®) and &%) are disjoint; in fact, they form a partition of &’. Hence,
elements of .7 are linearly independent.
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It remains to lower bound (C.2). To this end, use |c| < d and |c1|+---+|cy| =p
to get:

Vo< ma =] 2]+ (p-|2]d) < pa
&N sereploza— T Ld PLalf) =P
Indeed, the maximum in x is attained by making as many of the entries of x as
large as possible, that is, by setting |p/d] entries to d and setting one other en-
try to p — | p/d|d if the latter is nonzero. This many entries are available since
p < gd = n. That this is optimal can be verified using KKT conditions. In combi-
nation with (C.2), this confirms at least p(d +1/2) — pd /2 = p(d + 1)/2 linearly
independent constraints act on A, thus upper bounding dim .%.

To conclude, we argue that the proposed upper bound is essentially tight. In-
deed, build Y € .#,, by repeating g times the d first rows of /,, then by replacing
its p first rows with I, (to ensure Y has full rank). If p/d is an integer, then ex-
actly the p/d first slices each contribute d(d + 1)/2 independent constraints, i.e.,
dim Fyyr=p(p+1)/2—p(d+1)/2. O

Appendix D: Equivalence of global non-degeneracy and smoothness

Proof of Proposition 6.2. By Proposition 1.3, it is sufficient to consider the case
p = n. Consider X € % of rank r and a diagonalization X = QDQ, where D =
diag(A,...,4,,0,...,0) and Q = [Ql Qz] is orthogonal of size n with Q) €
R™ ", By [4, Thm. 6], since Ay,...,A,, are linearly independent, X is primal non-
degenerate if and only if the matrices

_[oiAQr Q[AQY]
0,410 0 ’

are linearly independent. The By are linearly dependent if and only if there exist
ay,..., 0, not all zero such that oy By + --- + o, B, = 0. Considering the first r
columns of the By, the latter holds if and only if } 040 "A;Q; = 0, which holds if
and only if ¥, 04A;Q1 = 0. For any Y € R™” such that X =YY ', since span(Y) =
span(Q;), we have ¥, ¢ AxQ; = 0 if and only if ¥, axAxY = 0. This shows the
By are linearly dependent if and only if the AzY are linearly dependent. Thus, X
is primal non-degenerate if and only if {A;Y,...,A,, Y} are linearly independent.
Overall, primal non-degeneracy holds at all X € ¢ if and only if Assumption 1.1a
holds. U

By
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