Journal of Mathematical Imaging and Vision (2019) 61:1-20
https://doi.org/10.1007/s10851-018-0821-1

@ CrossMark

Pointwise Besov Space Smoothing of Images

Gregery T. Buzzard' - Antonin Chambolle? - Jonathan D. Cohen3* . Stacey E. Levine - Bradley J. Lucier’

Received: 1 October 2017 / Accepted: 8 May 2018 / Published online: 21 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

We formulate various variational problems in which the smoothness of functions is measured using Besov space semi-norms.
Equivalent Besov space semi-norms can be defined in terms of moduli of smoothness or sequence norms of coefficients
in appropriate wavelet expansions. Wavelet-based semi-norms have been used before in variational problems, but existing
algorithms do not preserve edges, and many result in blocky artifacts. Here, we devise algorithms using moduli of smoothness
for the Béo (L1(1)) Besov space semi-norm. We choose that particular space because it is closely related both to the space of
functions of bounded variation, BV (/), that is used in Rudin—Osher—Fatemi image smoothing, and to the B 11 (L1(I)) Besov
space, which is associated with wavelet shrinkage algorithms. It contains all functions in BV (1), which include functions with
discontinuities along smooth curves, as well as “fractal-like” rough regions; examples are given in an appendix. Furthermore,
it prefers affine regions to staircases, potentially making it a desirable regularizer for recovering piecewise affine data. While
our motivations and computational examples come from image processing, we make no claim that our methods “beat” the
best current algorithms. The novelty in this work is a new algorithm that incorporates a translation-invariant Besov regularizer
that does not depend on wavelets, thus improving on earlier results. Furthermore, the algorithm naturally exposes a range
of scales that depends on the image data, noise level, and the smoothing parameter. We also analyze the norms of smooth,
textured, and random Gaussian noise data in Béo (L1(I)), Bll(Ll (1)), BV(I) and L2(I ) and their dual spaces. Numerical
results demonstrate properties of solutions obtained from this moduli of smoothness-based regularizer.

Keywords Image smoothing - Besov spaces - Variational image smoothing - Norms of image features—noise, smooth
regions, textures—in smoothness spaces and duals of smoothness spaces
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In particular, we build algorithms around the B (L} (1))
Besov space semi-norm. We chose that particular space
because it is closely related both to the space of functions
of bounded variation (incorporated in Rudin—Osher—Fatemi
(ROF) image smoothing) and to the B 11 (L1(I)) Besov space,
which is associated with wavelet shrinkage algorithms.

While our motivations and computational examples come
from image processing, we make no claim that our methods
“beat” the best current algorithms in these areas. Perhaps
others can improve our results.

We give further background and motivation in Sect. 2.
Section 3 introduces the modulus of smoothness definition
of the Béo (L1(1)) semi-norm and discusses its properties.
Section 4 introduces discrete versions of Besov space and
BV semi-norms based on moduli of smoothness. Section 5
discusses previously introduced algorithms for minimizing
various variational problems and how they can be adapted
to our circumstances. Section 6 gives an algorithm for a
projection needed in our algorithms. The very brief Sect. 7
summarizes our main algorithm. We then examine the norms
of smooth features, Gaussian noise, and periodic textures in
various function spaces in Sect. 8. We provide computational
examples in Sect. 9. Finally, an Appendix contains a one-
parameter family of bounded, self-similar functions whose
variation tends to infinity while the BéO(L(I )) norms are
bounded.

2 Background and Motivation

In this section, we discuss some past image smoothing meth-
ods and motivations for the approach taken here.

Rudin et al. [20] introduced an image smoothing method
that is equivalent to the following: given a noisy image f,
represented as a function on the unit square / = [0, 1]%, and
a positive smoothing parameter A, find the function f that
achieves the minimum of the functional

. 1
K(f,») =12f <§||f—g||%2(1)+)»||g||BV(1)>, (1

where | gllgv(s) is the bounded variation semi-norm of g.
(We will not give precise definitions here, see the references
for details.) Around the same time, Sauer and Bouman [21]
used a discrete version of the BV (/) semi-norm to regularize
a tomography inversion problem.

Not much later, Donoho and Johnstone [15] introduced
the notion of wavelet shrinkage/ for image smoothing. Here
one calculates an orthogonal wavelet decomposition of the
function f,

f= 2

j>0, keZ?, yew

Ciky ¥jks
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where ¥} 1 (x) = 2Ky (2% x — j) = 2Ky (2% (x — j/2%)) with
2% the dyadic scale, j/2* a dyadic translation, and ¥ a basic
set of wavelet functions (often three functions in two dimen-
sions). Given a positive parameter A, one then smooths f by
shrinking the wavelet coefficients to calculate

- ¥

JEZ2, k>0, yew

Sa(Cjky) Vi (2)

where
t— A, A <t,

S,() =40, —A <t <A, 3)
t+ A, r < —A

They derived similar results when using hard thresholding
I() =40, —

instead of S, (¢) to calculate the wavelet coefficients of f .

In 1992, DeVore and Lucier [11] related both variational
image smoothing as in (1) and wavelet shrinkage as in (2)
to interpolation of function spaces using so-called (power)
K -functionals: given two (quasi-)normed function spaces X
and Y and any p, g > 0, one can consider

K(f 0 X, ¥y =inf (If = gl% +2lgly) @)

for any function f and smoothing parameter A > 0. One sees
that (up to a constant) (1) is of the form (4) with X = L, (1),
p =2,and Y = BV(/), g = 1. It is noted in DeVore and
Lucier [11], however, that because Sobolev spaces and Besov
spaces have topologies that can be defined by norms of the
wavelet coefficients of functions in those spaces, we have
that for appropriately chosen Ay, k > 0,

- ¥

JEZ2?, k>0, Yew

T, (cjhw) ¥k ©)

is, to within a constant, a minimizer of K(f, A, Lo([),Y)
whenever Y is one of a family of Sobolev spaces W*(L» (1)),
a > 0, or Besov spaces Bg(Lq(I)), withae > 0and 1/q =
a/2+1/2.

There was speculation in DeVore and Lucier [11] that
because BV (/) satisfies the strict inclusion

B (L\(I)) C BV(I) C BA(Li(I))

between the Besov spaces Bl1 (L1(I)) and Bgo(Ll(l)),
wavelet shrinkage or wavelet thresholding will likely give a
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solution “similar” to the minimizer of (1). However, because
the Besov space Bll(Ll (1)) does not include functions that
are discontinuous across one-dimensional curves, what we
shall call images with edges, the minimizing image f of

1 2
S = 8lzya) + Mgllsiw -

cannot have such discontinuities, i.e., it cannot have edges.
Later, Chambolle et al. [7] noted that because

2 2
L 1,0 = D ikl

Joky

for an orthonormal wavelet transform, and the topology of
B; (L1 (1)) is generated by the wavelet sequence norm

q
1 1B wry = Z(Z |Cj,k,w|> . 0<gq<oo0,

k=0 *j.¢

and

1A gL zray = s9p D Iejkul,
k=057

when ¥ contains smooth enough functions (smoother than
Haar wavelets), one can derive algorithms for exact mini-
mizers of

1 2 q
E“f - g”Lz(l) + )\'”g”B(}(Ll(I)) ©

forg = 1 and 2 and

1
I = gl + Mgl @ 7

We’ll call the latter problem Béo (L1 (1)) smoothing.

It was noted in Chambolle et al. [7] that when ¢ = 1,
wavelet shrinkage by A gives the exact minimizer of (6).
Further algorithms were suggested for ¢ = 2 and ¢ = oo;
basically, the minimizer of (6) and (7) is given by

f= Z Z Sue (Cjiey) Uk,

k jk

where now the shrinkage parameter Ay is not constant, but
depends on the scale k of the wavelet term ¢; x y ¥ k. The
case g = oo was also discussed in Haddad and Meyer [16].

Because Béo (L1(I)) contains BV (), Béo (L1(I)) cer-
tainly contains images with edges, and it must contain
functions that are more singular than functions in BV (/),
i.e., it contains functions with certain fractal-like structures
that are not of bounded variation. Indeed, in the Appendix
we give an example of a one-parameter family of bounded,

self-similar, “fractal”, functions whose norms in B;o (L1(I))
are bounded but whose norms in BV (/) tend to oco.

Béo (L1(I)) smoothing should have another nice property.
Minimizers of (1) applied to noisy images generally exhibit
staircasing or terrace-like effects because the BV (/) semi-
norm does not distinguish between a staircase or a plane that
rises the same distance, while the Béo(Ll (I)) semi-norm of
a plane is zero, and the B;O(L 1(I)) semi-norm of a staircase
is nonzero. Thus, the terracing effects should not appear in
otherwise smooth regions of minimizers of (7).

In practice, however, if one applies the wavelet shrinkage
algorithm for (7) to images, one finds that the minimizers do
not generally look much different, qualitatively, than mini-
mizers of (6) with g = 1.

This leads to the natural question about whether other,
equivalent, norms for Béo(Ll (I)) would give different
results. Perhaps such B;O (L1(I)) minimizers will have not
only edges but also fractal-like structures that are not seen in
BV (I) smoothing.

As it happens, Besov spaces have norms defined via mod-
uli of smoothness, what we’ll call “pointwise” norms for
Besov spaces. In this paper, we develop image smoothing
algorithms based on the pointwise Besov space norm for the
space Béo(Ll(I )). As we’ll see, the resulting images have
properties that are qualitatively different from the proper-
ties of minimizers of both BV (/) smoothing and wavelet
Bl (L1(I)) smoothing.

Previous work by Bredies et al. [4] has been motivated
by similar considerations. In their variational problem, they
use what they call the Total Generalized Variation (TGV),
which includes, roughly speaking, the variation of higher-
order derivatives, not just of the function itself. We include
comparisons of their techniques with ours in Sect. 9.

3 Pointwise Norms for Besov Spaces

We begin by defining the Besov space By (L, (1)), where
I = [0, 1]? is the domain of our images. Roughly speak-
ing, functions in this space have o “derivatives” in L ,([);
the parameter ¢ is useful in measuring finer gradations of
smoothness.

The rth-order forward difference at the point x € [ in
the direction & € R? of a function f: I — R is defined for
nonnegative integers r by

A%f(x,h) = f(x),

r—+l1 r r (8)
AT f(x,h)=A"f(x+h,h) — A" f(x, h).

The difference A" f(x, h) is defined for those x € [ for
which all of f(x), f(x + h),..., f(x + rh) are defined,
we’ll denote this setby I,, = {x € [ | x +rh € I}.

@ Springer
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For 0 < p < o0, the rth-order modulus of smoothness in
L (1) is defined by

wr(f 1) = sup 1A £ L, - (€
<t

Given parameters 0 < @« < oo and 0 < p,g < oo, we
choose the integer r such that r — 1 < o < r and define the
B(‘; (L (1)) semi-norm as

o0 dt 1/q
Ile;;(Lp(l))=</0 [ %o (f, 1),p]" )

i
for0 < g < oo and
|f|Bg‘O(L],(1)) =supt “w,(f, Bp-
t>0
The B(‘]" (L, (1)) norm we use is then
IfllBe L,y = 1fIBaw ) + 1 fllL,a)-

In particular, the semi-norm for Béo (Li(D))is

1
[fIBL (L 1)) = sug ;wz(f, N1 (10)
1>

Combining (10) and (9), we have

1
|FlsL iy = sup == 1A% FC MLy (11)
1|0 1Al

and

I fBL iy = W Loy + 1F gL iy

Note that we are not dividing by |2|?; if we were, the func-
tions in the space would consist of functions whose second
derivatives are measures. More to the point, because

oy (f, )y < nwr(f, 01,

(see Chapter 2 of DeVore and Lorentz [10]) we have

1 1
sz(f’”t)l < t_sz(f’ D1,

SO

1 1
- .01 = lim = D1
fggtzwz(f ) zI_%ﬂM(f )

The supremum in (10) is generally not taken in the limit
as t — 0, however. For example, if f has two continuous
derivatives in L{(I), then as 8 — 0, [8h|"2A% f(x, 8h) —

@ Springer

Dﬁ f(x), the second directional derivative of f in the direc-
tion A at x, and

1 vy 0
—on(foon =1(ea(f.01) =

ast — 0, as the quantity in parentheses is finite. So computa-
tions with the Béo (L1(I)) semi-norm must take into account
all the values of || > 0, not just the limit as [#] — 0. On
the other hand, we have that o, (f,1), < 2’||f||Lp(1) for
1 < p < o0, 50 t‘la)z(f,t)l — 0 ast — o00. So the
supremum in (11) is found on some finite interval [0, #*].

Note also that BV (1), the space of functions of bounded
variation on / is contained in Bgo(Ll (1)), because an equiv-
alent semi-norm for BV (/) is

1 |
[ flBvy =sup —wi1(f, 1)1 = lim —w((f, 1)1,
>0t 10t

and because wy(f, 1)1 < 2wi(f,t); by (8), functions in
Béo (L1(I)) can be “more singular” than functions in BV (7).

The supremum in (11) is taken over all directions /4, and
we cannot compute over all directions. For effective compu-
tations, we note as a consequence of a result of Ditzian and
Ivanov [14] that an equivalent semi-norm | f| 5 1 (Ly(1)) arises
if we replace the set of all directions % in (11) by multiples of
any three of the directions (1, 0), (0, 1), (1, 1), and (1, —1).
For the sake of symmetry, we use all four directions.

4 Discrete Norms, Spaces, and Variational
Problems

We consider a number of variational approaches to noise
removal and image smoothing in general.

The first model uses the L, (/) norm as a measure of the
difference between the original and smooth function: Given
a function f defined on / and a parameter A > 0, find the
minimizer over all g with f —g € Lo([)and g € Béo (L1(I))
of

1
E@) =3I/ = &li,a) + I8lsL@ia- (12)

One could replace the L, (/) norm in the previous expres-
sion with an L1 (/) norm, and so come up with the second
model: Given a function f defined on / and a parameter
A > 0, find the minimizer over all g with f —g € L{(/) and
g € BL(Li(I)) of

1
E(g) = X”f —&llyay + 18181 (L, (1)) (13)

We discuss algorithmic issues related to this model, but leave
discussion of computational results to others.
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The existence of minimizers of energies (12) and (13)
is not a difficult issue. For (12), one just needs to observe
that a minimizing sequence has weakly converging subse-
quences in Ly(/) and that both terms of the energy are
lower semicontinuous with respect to this convergence.
For (13), minimizing sequences are bounded in L(/) and
in theory their limits could be measures; however, the Besov
semi-norm term prevents this from happening. In fact, sub-
level sets of energy (13) are compact subsets of L, (/) for
any p < 2; this is easily seen by adapting the arguments of
the proof of Theorem 7.1 in DeVore and Popov [12].

One could wonder whether this extends to linear inverse
problems (recover g from f = Kg + noise, where K is a
linear operator), for which one would for instance minimize
energies such as

1
E(g) = ﬁ”f - Kg||2L2(1) + |g|Béo(L1(1))' (14)

Again, if one assumes that K is continuous from L ,([)
to Lo(I) for some 1 < p < 2 (in which case it is also
weakly continuous), existence can be deduced by the classi-
cal direct method.

4.1 Discrete L, and Besov Norms

For computations, we want to extend the idea of spaces,
semi-norms, etc., from the continuous domain to the dis-
crete domain. So for discrete functions f, g defined for
IT={i =(,i2) | 0=<i1,ip < N},h=1/N, we define a
discrete inner product,

gy =Y figih’

i€l
and the discrete L,(Z) norm for 1 < p < o0

= lail” i’

ieZ

P
lgllz, )

‘We need a discrete Bgo (L1 (1)) semi-norm. For notational
convenience we introduce the translation operator 7; defined
forany j = (j1, j2) by (7;8)i = gi+j-

Then for any pixel offset j we define discrete divided
second differences

Vig= |h|(szg 2T;g +g),

which is defined only fori € 7%/ = {i e T | i +2j € T}
(which will be empty if |j| is large enough). Pointwise, we
have

Vg = (12j8)i = 2(Tjg)i + &i _ 8i+2j = 28i+j + &
= ljhl Lihl

Following (11), our discrete Béo(Ll(I)) semi-norm is
|g|Bl (L(D) = = max max

then
n
k>0 j=(k,0).(0,k), Z | /g"
(k.k), (k,—k) i€T*

The sum is zero if 72/ is empty. As shorthand we write
V2 ={V2g | j=(k0), (0.k). (kk), (k,~k); k > 0)
= {Vigi e R|j = (k,0), (0,k), (k,K), (k, —k);
k>0;ieI%).

If we introduce a sequence of scalar fields
p={p’ 1k>0; j=(k0), (0,k), k k), (k, —k)}

={p] €R|j =k 0), 0.k, (k). k —k);

k>0; ieI)}

with the inner product

)OS DD DAY

k=1 j=(k, 0) (0 k), ieT?
(k. k), (k,—k)

(p.q) =

we can consider the operator adjoint in this inner product to
V2g, which we denote by V2 - p. One sees immediately that

Viep=D, o )

k>0 j=(k,0),(0,k),
(k,k), (k,—k)

Tojp) =27 ;p/ + p’
ljhl ’

which is defined now wherever any of 7; p;./ , etc., are defined.
(Equivalently, assume that each scalar field p/ is extended
as zero outside its domain.) Thus

P=) )

k>0 j=(k,0),(0,k),
(k,k), (k,—k)

=2 2

k>0 j=(k,0),(0,k),
(k. k), (k,—k)

(T2 p))i = 2(T_; p)i + )
Ll

—2p/_;+p]
ljhl

J
Di_aj

Then we can write

2 2
= max max “oi|h
181BL (L1 (1)) nax X e, E IV5gil
(k,k), (k,—k) ieZ?i

= . Sup (V2g5 P)
170, 22y ey (py =1
= sup (g, V2 . p),

P71, 2y ey (py =1
where the £ norm is taken over the (finite) set

@ Springer
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k> 0; 7% + ¢}

We note that our formulation doesn’t incorporate any
notion of “boundary conditions.” Each scalar field p/ is
defined on its own distinct subdomain Z%/ of Z. Even for
a fixed k, the four scalar fields for j = (k, 0), (0, k), (k, k),
and (k, —k) are defined on different domains, so there is no
“vector field” on a common domain as is usually defined
for discrete BV (1) (sometimes two-dimensional, sometimes
four or more—see, e.g., Chambolle et al. [8]).

Our discrete version of (12) is then: Given a discrete func-
tion f and a positive parameter A, find the minimizer over
all g of the functional

1
ENg) = If = gl ) + 18lLa @y (15)

Similarly, our discrete version of (13) is: Given a discrete
function f and a positive parameter A, find the minimizer
over all g of the functional

1
ENg) = SIS = gl + 1815y, i @)- (16)

5 Discrete Algorithms

We can formulate our discrete variational problems (15) and
(16) as saddle point problems that can readily be solved
by algorithms from Chambolle and Pock [6]. In this set-
ting, we consider two Hilbert spaces X and Y and the
bounded linear operator K : X — Y with the usual norm
K|l = supjg<1 I Kgll. We consider the general saddle point
problem

minmax((K'g, p) + G(g) — F*(p)), (17)
geX peY

where G and F* are lower semicontinuous (l.s.c.), proper,
convex functions from X and Y (respectively) to [0, +o0];
F* is itself the convex conjugate of a convex l.s.c. function
F'. This saddle point problem is a primal-dual formulation of
the nonlinear primal problem

min(F(Kg) + G(g))
geX

and of the corresponding dual problem

max —(G*(—=K*p) + F*(p)),
peY

where K*: Y — X is the adjoint of K. An overview of
these concepts from convex analysis can be found in Rock-
afellar [19]. We use the notation d F for the (multi-valued)
subgradient of a l.s.c. function F.

@ Springer

A number of algorithms are given in Chambolle and Pock
[6] to compute approximate solutions to (17); whether a par-
ticular algorithm is appropriate depends on properties of F*
and G. That paper also includes comparisons between the
algorithms introduced there and competing algorithms. Our
focus here is not on that comparison, but just to indicate that
relatively efficient algorithms exist to solve the discrete min-
imization problems in the following sections.

Algorithm 1 in Chambolle and Pock [6] is appropriate for
completely general F and G; a special case can be stated as
follows.

Algorithm 1 General F and G
1. Let L = ||K|. Choose positive T and o with tol? < 1,
&% p®) € X x Y and set g% = g0.
2. For n > 0, update g", p", and g" as follows:

P = +0dFH) T (p" +oKE"),
gn+l =+ raG)*l(g" _ ,[K*pn+l)’

gn+1 — 2gn+1 _ gn.

Then, there exists a saddle point (g*, p*) such that g" —
g" and p" — p*. This algorithm exhibits O(1/N) conver-
gence after N steps.

Algorithm 2 in Chambolle and Pock [6] is appropriate
when G (or F*) is uniformly convex, which means that there
exists ¥ > 0 such that for any g in the domain of 3G, w €
0G(g),and g’ € X,

G(g) = G(g) + (w. g — g) + gug — g

Algorithm 2 can then be written as follows.

Algorithm 2 G (or F*) is uniformly convex

1. Let L = ||K||. Choose positive 79 and op with r000L2 < 1,
(g% p% € X x Y and set 3° = ¢°.
2. Forn > 0, update g", p”, g" and 0y, Ty, 6, as follows:
P =+ o PO T " + 0K R,
¢ = (I +1,06) 7" (¢" — nK*p"h,
Op =1/ 14+2yT, Tat1 = OnTn, Ont1 = 0n/bn,
gnJrl — gn+] +9n(gn+l _gn).

Then, there exists a unique saddle point (g*, p*) such that
gn — g* and pn — p*.

These algorithms can directly be applied to solve problems
(15) and (16). For example, we can rewrite (15) as

1
E' @ = swp((Vs. )+ 5715 = 8l — 500
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where

0, if I/l i e <1,
00, otherwise.

§(p) =

This matches formula (17) with
Kg=V’g, K*'p=V?.p,

1
G(®) = I/ = 8llL,z)> and F*(p) = 8(p).

We know that G is uniformly convex with y = A~!, so
Algorithm 2 applies. In fact, we have that the iterates g"” and
K*p" in Algorithm 2 converge to a pair u and V2 - p that
satisfy

u:f—AVZ-p.

For (16), we can rewrite

1
E"(g) = sup(<V2g, p)+ Xllf =&l — 5(17)).
p

This matches formula (17) with
Kg=V’g, K*p=V>.p,

1
G(g) = ~If = gl and F*(p) = 8(p).

Neither F* nor G are uniformly convex, so in contrast to
problem (15), where we can use Algorithm 2, we are limited
to using Algorithm 1 for (16).

The function F* is the same for both problems, and for any
o > 0 wehave (I + 0dF*)~!(p) = Pc(p), the projection
of p onto the set

={p | 1P/ Il .2 Hlespy < 1} (18)

Although this projection is nontrivial, it is reasonable to com-
pute; we give an algorithm for this operation in the next
section.

For both (15) and (16), computing (I + 7dG)~! involves
simple, pointwise operations. For the first case, we have

i A fi
(I +19G)" (g); = %

while for (16) we have

(I +7130G) " (g)i = Sepn(ai — fi) + fis

where S/, is given by (3).

To apply Algorithms 1 and 2, we need a bound on L =
| K ||. We have (using (a + 2b + ¢)? < 6(a® + b* + ¢?))

2 2 2
> Vil k< h|2 Z(g,+,+g, +g2,)h
ieZ?

= 8 .
|]h|2 Ly(Z)

Because, for each k > 0, j = (k,0), (0,k), (k, k), and
(k, —k), for which |j| = k, k, 2k, and ~/2k, respectively,
we have

54
IV2gl? = (V2. V2e) = 3 55 lgllE, )
k>0
9 2
= h2 ”g”Lz(I)

SoL = ||K|| <3n/h ~9.4248/h.

Theorem 2 of Chambolle and Pock [6] gives an a priori
error bound for the iterates of Algorithm 2 of the following
form: Choose 79 > 0, 09 = 1/(1:0L2). Then for any € > 0
there is a Ny (depending on € and y tp) such that for any
N > Ny

. L+ellg—gI?
g - & 17 = —5(

TER e yz oy - p"I1%).
Computational results are given in Chambolle and Pock [6]
that indicate that Ny is quite moderate (= 100) in many
situations.

In our case, we just want ||g —
we take

gV S e greyscales. So
18— &"I _
vl

or (because [|g — g°| < 256 greyscales, as pixel values lie
between 0 and 256)

256
— < 1.
Yé

Then, we take

mﬁuﬁ—ponz
but p° =0 and || p| < 1, so
L/(ye) <N

We choose the least tp and N that satisfy these two
inequalities.
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6 Computing Py

It remains to give the algorithm for Py, where C is given
by (18). The problem can be formulated as: Given the
sequence of scalar fields p = {pi] |ieZI?, jeP =
{(k,0), (0,k), (k,k), (k,—k) | k > 0}} find g = {qij} that
minimizes
% S 1y - g with ZE% /] < 1. (19)
i€Z?,jeP JEP
The set P has at most 2N elements j (0 < k < N/2, four js
for each k), but in practice we compute pi/ for only a finite
number of scales k < kmax, Where kmax is defined in Sect. 7.
Instead of directly solving (19), we introduce variables
u', j € P, and search for ¢ = {g]} that minimizes

1 . . ] . .
5 2_Ipl —af P with lg]| <
L (20)
Z/ﬂ <1, and/ﬂ > 0.
j

If u = {u’} is known, we know that at a minimizer, g satisfies

j

. p; . ;

i = <apll,
q; = .|P,-| .
pl, w > |pll.

21

Therefore, we aim to find appropriate 1, a problem that can be
simplified even further. To this end, denote the characteristic
function on the set {i € 7% | u/ < |pij |} as

1, ifu/ < |pl.j|,

0, otherwise,

W <Ip/l:= {
so at a minimum we have

%ZIP{—qu%Z
i

i
pi_pi_j| [M]<|pi|]

i,j P;

1 = w \? . .
=32 1p}l (1——.) [/ < |pl1l.

J
i.j |Pi |

The Karush—Kuhn-Tucker (KKT) theorem states that there
are nonnegative Lagrange multipliers 1/ and v such that the
projector Py p can be computed from the & that minimizes

1 . w\? . .
§Z|p{|2<1 - W) [/ < 1p]1]
i,j

1

_;Mj,,j _ <1 _ ;Mj),,_
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Note that for each i, j the expression
(p! 1= ) 1! < 1pf1]

is continuously differentiable with respect to i/, so the previ-
ous displayed expression is continuously differentiable with
respect to .

Differentiating with respect to u/ gives

. i\ =1 . : .
Z|p{|2(1 - “—j)—jw <lpin=n' +v=0
i |Pl-| |Pi|

or

Y pl 1= whHiw <1pin+n' —v=o. (22)

1

The sum is nonnegative and the KKT theorem says that v >
0=,/ =landn/ >0=p/ =0.

Thus, if v = 0, then (22) implies that nj = O forall j and
wl > |pij| for all i, j, so (21) implies ¢ = p.

If v > O then Zj w = 1.If n/ > 0 for some j, then
1/ =0 and so ql'.j =0 for all i by (21). If n/ = 0 then (22)
implies

> pl = uhiud < 1pin=v. (23)

Note that as v increases, /Lj decreases, so each of the /,Lj can
be considered a function of v: wl =l (v).

Ifweset A(n) = {i | |p;.’| >}, the left-hand side of (23)
can be written for general u as

Gy =Y (pl1—w =Y Ip}I— 14w x p,

A(p) Ap)

where |A(u)| is the number of items in A(u).

G is a continuous, decreasing, piecewise linear function
of /. In Algorithm 4, we describe how to find the solution 1/
of G(u) = v. We do this by precomputing a table of values
G(|p]|) for i € T%. For each v, we use binary search to
find adjacent values in this table for which the linear func-
tion G (u), restricted to lie between these two adjacent values,
takes on the value v precisely once. Linear interpolation gives
the proper value of /. Note that 11/ is a continuous, piece-
wise linear function of v, being the inverse of G.

Once Algorithm 4 is established, the projection (Px p)’
can be computed using Algorithm 3. The function F(v) in
Algorithm 3 is, yet again, a continuous, piecewise linear
function of v, being a sum of functions of the same type.
Except in the trivial case where F is a first-degree polyno-
mial, it does not have any higher-order smoothness. To find
the unique zero of F, we employ an algorithm from Ridders
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[18] that requires the evaluation of no derivatives, yet which
has second-order convergence properties for smooth F'.

Algorithm 3 Computing the projection (P p)’

LIf H{||Pj||Lx(1'2/)}||ll(P) <1, then Pcp = p.
2. Otherwise, do the following:
(a) Find a root v of

Fy=1-) n ).

jepP

which guarantees the constraint »_ j w! = 1. This can be
done in a number of ways. We chose to use the algorithm
from Ridders [18], and this part of the algorithm takes an
immeasurably small amount of time.

(b) With this value of ¥ we can calculate i/ = u/ (v) for j € P
and subsequently calculate g’ = (Pcp)! using (21).

Algorithm 4 Computing 1/ (v) for any v > 0

1. Sort the numbers {| pij | | i € Z%7} into nonincreasing order and
add asingle element 0 at the end; call this sequence {a g }. There are
at most N2 elements of {aé }, so this takes at most O (N2 log N)
time. )

2. Calculate the sequence {b'é} by

J_ J Jj
bz_Zak—Zxag.
k<t

For each j, this takes at most O (N 2) time. Note that bg increases
as ¢ increases, and if v = bi, then p’/ (v) = az, i.e., the pairs
(bj R a'ei ) lie on the graph of the one-to-one relation (23) between
w’ and v.
3. Given any v > 0, we have the following mechanism for calcu-
lating p/ (v):
(a) If v > b';;]z, set u/ (v) = 0.
(b) Otherwise, use binary search to calculate an index ¢ such
that bi < v < bi_H.
wn’ and v in (23) is linear between any two consecutive

pairs (bj,af) and (bgﬁ,

Since the relationship between

az +‘A)’ we can interpolate lin-

early between (bj, az’) and (bz_H, aZ_H) to find the point
(v, @ (v)):
w V) = aj + ———(aj,, — a}).

+1 Y

This takes O (log N) time.

7 The Main Iteration

The iterations of Algorithms 1 or 2 must estimate kpyax as n
increases. Here, we have no theoretical justification for our

argument, and possibly in pathological cases we could get it
wrong.

1. We pick an initial value of kpax (typically 4) and set p/
to be zero scalar fields for j € P.

2. We iterate Algorithm 1 or 2 a fixed number of times.

3. We have a parameter zpi, (we’ve used 4), and we want
the scalar fields p/, j = (k, 0), (0, k), (k, k), (k, —k), to
be zero for the zy;, largest values of k. Heuristically, if
we have zero scalar fields pj for the 7, largest values of
k, then we think it unlikely that at a minimizer of (15) or
(16) any scalar fields pj with k > kmax will be nonzero.
So we adjust kpmax so that the all scalar fields pj for the
Zmin largest values of k are zero.

4. We then decide whether to stop the iteration or go back
to step 2.

8 Norms of Image Features

Generally speaking, image features are classified as: smooth
regions; edges; textures; and noise. We follow the framework
of Aujol et al. [3] to compute some sample solutions to the
following problem.

One goal of image processing is to separate an image into
its various features or components. In this section, we show
that one can separate smooth regions, texture, and noise by
looking at the asymptotic behavior of various norms applied
to these features. Because edge features have components at
all wavelengths, parts of edges may appear as texture, noise,
or smooth regions.

In this section, we operate on the (two-dimensional) unit
interval [0, 1]? with N x N images, with N = 2X for some K
reasonably large. We seth = 1/N and deal with the weighted
L>(I) norm || |12 = > fi2h2, where f; is the value of the
pixel ati = (i1, i2).

8.1 Smooth Features

Basically, if a function is smooth (a broad Gaussian, say),
then all its norms, in Lo(I), Bl (L1(1)), Bl (L1(I))*, or
other spaces, will be of moderate size. (If X is a Banach
space, we denote its dual by X*.) If we’re to distinguish
among smooth features, noise, and textures, then we’ll need
to find spaces for which the norms of noise and textures either
tend to infinity or tend to zero as a parameter (the frequency
of a texture, the size of pixels, etc.) changes.

8.2 Gaussian Noise

We consider here issues that are similar to those considered
in Section 3.6 of Aujol and Chambolle [2].
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We begin by studying the behavior of Gaussian pixel
noise. Then the pixel values f; = ¢; are i.i.d. Gaussian ran-
dom variables with mean zero and variance o2, and

E(lel},q) =Y E(€)h* =0,
i

since there are N2 pixels and N2h? = 1.

We consider the orthonormal wavelet transform of € with
wavelets ¥ k(x) = 29 2% — j), k = 0, j = (j1, j2)s
Y € W, that are smoother than Haar (so that the following
norm equivalences work). Then, we can write

€= Zan,k,wﬁj,k.

k¥

Because the transform is orthonormal (so |/} kllL,) = 1),
the 1 x,y are i.i.d. Gaussian with mean zero and

o> =E(elH=>_Y Elnjry¥irl® = NEM} ;)

ko j.
for any n; k. y, s0 E(n? X ¢) = 0’2/N2. For similar reasons,

2
o o
E(njiyl) = Clﬁ and Var(|n; r,yl) = sz 24

for some known C; and C5.
We also note that if X1, X», ..., X, arei.i.d. N(O, 1) ran-
dom variables, then for large n [9, p. 374],

og( "
E(max X;) ~ 0g< )
i 2 log("—z)

T

}12
= [2logn —1 (21 (-)
ogn — log( 27 log( —— )
~ /2logn.

Wavelet-based Besov semi-norms have the following
characterizations:

(25)

l€lgry = D Injkyland
Jky

lelpl (L) = Sl}:PZ 1.kl
j’w

and the norms in the dual spaces (for finite images) are

|E|BII(L1)* = Ssup |7}j’k’1/,| and
e

J
|6|Béo(L1)* = ZSUP M k,wl
v JY

@ Springer

Now, we take expectations. Because sup; , (1) ky| =
max(supj’w Njkw,—inf; y njky), we use formulas (24)
and (25) to see

o
E (Ieljry) = N* x €15 = CiNo,

o
E(|6|311(L|)*) =E (SEI?// |77j,k,1//|) ~ \/410gNN
J oK,

We note that there are 3 x 22% coefficients njky at level
k, and because the 7 k,y are independent, 3, . 11 k,y | is
asymptotically a Gaussian random variable with

o
E(Z Inj,k,w|> =3x 22kC1N and
X

2
o
Var<z |77j,k,1p|> =3x 22"C2m_

i

When k = K — 1, a maximum, we have 2% = N2/4 and
3
E(%:mj,kw) = 7CioN and
Var(Z 7.k 1pl) = EC202.
jv h 4

When k = K — 2, we get the same expressions divided by
4. So the mean when k = K — 1 is four times the mean
when k = K — 2, and that difference is roughly N times
the standard deviation of the two random variables; a similar
argument holds for smaller k.

Thus

E(elg) (1) = E(slklpz |n,»,k,¢,|)
B4

will most likely occur for k = K — 1, so
3
E(|€|Béo(Ll)) ~ ZCIUN
Finally, we want to estimate
lelpt Ly = ZSUP kvl
PR
Again we have

E(sup [n; .y |) ~ c% 210g 2% = cﬁ%,
B4
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1"

So
K—1 o
E(elgypp) ~ ) CVk—
k=0

~ CKW% — C(log, N)3/2%.
Thus, because of the continuous inclusions
Bl (L) c BV c Bl (L))
and
Bl (L1)* ¢ BV* C B} (L))",
we find that
CNo < E(|e|BV) < CNo,
and
CViogN 3, =< E(lelpy+) = Cllog M) 2.
8.3 Periodic Textures

We compute some norms of the function f(x1,x2) =
sin(2rnxy),n = 1,2, ..., which we use as a model for peri-
odic textures.

Note that because f is constant in x3, a second difference
of f at x in any direction & = (h, h;) takes the same value
as the second difference of f at x in direction (k, 0) and
[(h1, hy)| = |(h1,0)], so the supremum in (11) occurs for
some h = (h1, 0). We take a centered second difference in
the horizontal direction, and abuse notation a bit with x; = x
and h| = h:

sinnm(x + h)) — 2sin(2nwx) + sin(2nw (x — h))
= (sin(2n7tx) cos(2nmh) + cos(2nmx) sin(2nrrh))
— 2sin(2nmx)

+ (sin(2nmx) cos(2nmh) — cos(2nmx) sin(2nmh))
. 1 —cos(2nmh)
=—4 sm(2nnx)f
= —4sin(2nrx) sin” 2nh).

So the L (I) norm of the second difference is
4sin’>(2nwh) f | sin(2n7x))| dx; dxz.
I

The value of the integral, which we’ll call I, doesn’t depend
on 7.

We see that sin?(2nwh) /h takes a maximum value when

0=h x 2sin(2nmh) cos(2nmh)2nmw — sin2(2n7th)
= sin(2nnh)(4nnh cos(2nmh) — sin(2nnh)).

So this is a maximum when £ satisfies tan(2nth) = 4nmh,
i.e, if we take yq to be the smallest positive solution of tan y =
2y, then yg = 2nmh, or h = yg/(2nm) and

|flBL iy = supt™ on(sin@rnxy), D)1
t>0

2nmw
_ X 4sin2(yo)lo = Cn.
Yo

A trivial calculation shows that L, (/) norm of f is V2.

We know of no rigorous argument to estimate the size of
f in the dual space of B;O (L1(I)). We will note, however,
that if we write g in a Fourier basis of a product of sines and
cosines in x| and x», then

| f1BL (L1(1y)* = Sup |f1—fg

8By
and for f(x1,x2) = sin(2wnx;), the only nonzero term
in g that contributes to the integral in the numerator is
the sin(2wnx;) term. Trying only g = sin(2mwnx;) gives
a numerator of 1/2 and a denominator that is < n.

So unless adding extra Fourier terms to g = sin(2wnxy)
(which will not affect the numerator) decreases the norm
in the denominator (which we doubt), we expect that
(Al @iy = A/n).

These calculations support what one might suspect heuris-
tically: If the frequency n of a texture is small, a smoothness
norm cannot distinguish between that texture and a smooth
function of the same amplitude. And if the frequency of a
texture is large (so the wavelength is on the order of a small
power of log N in an N x N image), then the dual of a
smoothness norm cannot distinguish that texture from Gaus-
sian noise whose standard deviation is the amplitude of the
texture. Similarly, the dual of a smoothness norm will not
distinguish low-contrast textures of moderate frequency from
Gaussian noise with standard deviation much higher than the
contrast of the texture.

9 Computational Examples
9.1 Noise Removal, Smoothing

We compute the minimizers of
1 2
ﬁ”f —ullp, ) + lulpl (@) (26)
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Fig. 1 Top left: original 480 x 321 image; top right: noisy image,
RMSE = 12.34, SSIM = .4979. (All RMSE in greyscales.) Middle
left: ROF, RMSE = 6.29, SSIM = .8710; middle right: L2—TGV§,

In Fig. 1, we begin with a 481 x 321 natural image from
Bredies et al. [4] together with their noisy input image “con-
taining zero-mean Gaussian noise with standard deviation =
0.05.” We measured the RMS difference between the clean
image and the noisy as 12.34 greyscales, less than the
256 x 0.05 = 12.8 greyscales one might expect because
of limiting pixel values to between 0 and 255.

We computed our Lz(I)—BCI,O(L 1(Z)) smoothing with
parameter values A = 1/64, 3/128, 1/32, 3/64, and 1/16.
Because this image is not square, we had to decide whether to
take / to be the inverse of the number of pixels in the smaller
or larger side; we chose the smaller. Algorithm 2 applies.
We applied Formula (12) of Chambolle [5] to ensure that the

@ Springer

RMSE = 6.17, SSIM = .8844. Bottom left: L,(Z)-B_ (L1 (Z)) with
A = 3/64, RMSE = 5.66, SSIM = .9030; bottom right: L, (Z)—
BL(L1(T)) with & = 1/32, RMSE = 5.43, SSIM = .9022

bound on the final error was less than 1/4 greyscale (The
final error could be much less than that, the error bound was
< 1/4 greyscale.).

In Table 1, we show how more scales are involved in the
computation as A increases. We include all the nonzero lim-
iters ;u/ of Sect. 6 when the computation ended (with our
error bound < 1/4). Our computations always involve sec-
ond differences over a distance of k = 1 pixels, and as A
increases to 1/16, computations incorporate second differ-
ences over k = 2, ..., 6 pixels.

We show the results of Bredies et al. [4] using ROF and
L2—TGV§[ smoothings, where the authors report choosing
a experimentally to achieve the best RMSE results. We
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Table 1 Nonzero limiters ./ of the vector fields p/ for various values
of A for the image in Fig. 1

A k w®0 ) ukh w&=h
1/64 1 .3944 .3381 1358 1316
3/128 1 2567 .2425 .2059 .2049
2 .0901 .0000 .0000 .0000
1/32 1 1773 1725 1597 1561
2 1559 .0745 .0433 .0606
3/64 1 1078 1138 .0977 .0972
2 .0930 .0688 1357 1204
3 .0078 .0000 .0000 .0561
4 .0000 .0000 .0000 .0565
5 .0000 .0000 .0000 .0453
1/16 1 .0782 .0854 .0737 .0732
2 .0622 .0579 .1054 .0935
3 .0000 .0000 .0353 .0721
4 .0000 .0000 .0000 .0000
5 .0000 .0000 .0000 .0807
6 .0000 .0000 .0000 1823

Table 2 Image difference measures in subregions shown in Fig. 2 for
Rudin—Osher—Fatemi, LZ—TGVg, and Lz(Z)—B;O(L] (7)) smoothing
for the image in Fig. 1

ROF TGV} BL(L\(T)),  BL(Li(D)),
A =3/64 A=1/32

Smooth

RMSE 29824 22243 26488 2.9861

SSIM 09521 09735  0.9694 0.9521
Rough

RMSE  6.5958  6.6423  5.8526 5.3570

SSIM 0.6727  0.6617  0.7426 0.7895
Near beak

RMSE 59354 58434 58347 6.4221

SSIM 09596 09725  0.9654 0.9682

also show our Lz(I)—Béo (L1(Z)) smoothing with param-
eter values A = 3/64 and . = 1/32; these parameter values
produced the best RMS error (A = 1/32) and SSIM index
Wang et al. [24] and Wang [23] (A = 3/64) from among our
choices of A.

In Table 2, we report for various smoothing methods mea-
sures of image differences in a smooth subregion, a rough
subregion, and a subregion with a relatively sharp edge, of
the image in Fig. 1; these subregions are shown in Fig. 2.
As might be expected, methods that smooth more (L, (/)—
TGV? and Ly(Z)-BL (L1(Z)) with A = 3/64) do better
in the smooth region and worse in the rough region than
methods that smooth less (ROF and Ly (Z)-BL (L1 (Z)) with
A = 1/32, respectively). What may be of more interest is that

Fig. 2 Smooth subregion of image in Fig. 1, beginning at row 10,
column 10, of size 140 x 140; rough subregion beginning at row 250,
column 10, of size 140 x 50; region near beak beginning at row 30,
column 220, of size 60 x 30

smoothing with the largest space B;O(Ll (I) D BV() =
TGVg (I) leads to the best results in the fractal-like rough
regions.

We next present some results that indicate the qualita-
tive nature of the smoothed images produced by our method,
including the style of artifacts when noise levels and smooth-
ing parameters are large.

In Fig. 3, we started with a 512 x 512 image of a girl;
we then added i.i.d. Gaussian noise with mean zero and stan-
dard deviation 16 greyscales, so 99.7% of the noise added
to pixels takes values within three standard deviations, or
between — 48 and 48 greyscales. For our image, the added
noise caused many of the noisy pixels to be “clipped” to either
0 or 255. We see that even when removing high noise lev-
els there are relatively sharp edges, and in areas where noise
was added to smooth regions, smooth reconstructions appear.
The image with the smaller A shows an intermediate state
where noise has been smoothed but not entirely removed.
Higher-contrast textures in the sweater survive smoothing
that removes the noise, while lower-contrast textures are
removed.

We now apply pointwise Besov smoothing to a synthetic
image found in Papafitsoros and Schonlieb [17] with different
smoothing parameters to indicate the scale space generated
by the method. We take (26) with A = 3/32,1/8,1/4, 1.
Results are in Fig. 4.

While B;O (L1(Z)) minimizers do not suffer from stair-
casing, the example in Fig. 4 also demonstrates their poten-
tial lack of smoothness. This is not so surprising, since
Béo (L1(2)) is a “weak” smoother and in particular, weaker
than both BV and TGV. While Béo (L1(Z)) minimizers
do not suffer from staircasing, they are also not required
to have even the gradient a bounded measure, like BV
and TGV. The image quality metrics reported in Papafit-
soros and Schonlieb [17] for the BV —L? and TGV — L2
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Fig.3 Top left: original 512 x 512 image; top right: noisy 512 x 512 image. Bottom left: smoothed image with A = 1/32; bottom right: smoothed

image with A = 3/64

minimizers of the noisy image in Fig. 4 were SSIM =
0.8979 and SSIM = 0.9429, as opposed to the peak we
experimentally obtained with Béo(Ll (Z)) — L? of SSIM =
0.8801 for A = 1/8, also indicative of this lack of smooth-
ness.

9.2 Separating Smooth Features, Periodic Textures,
and Noise

We follow the framework of Section 3.2 of Aujol and Cham-
bolle [2] to compute some sample solutions to the following
problem.

Informally speaking, given an image f and positive
parameters A and u, we wish to find functions # and 9 that
minimize over all ¥ and v the functional
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1
o I ==l + lullx + 8k @),

where X is a “smoothness space” and K = {v | ||[v]ly < 1}
for some “dual smoothness space” Y, and §s(v) = 0ifv € S
and 400 otherwise.

We take X to be the (discrete) Besov space Béo (L1(D))
and Y to be the dual of the same space. We use the 512 x 512
synthetic image whose pixels are given by

f; = round(64 + 128~ 16*—(3. 1)
+16sin(2 (x2 — 1/2) x 16 x 4°271/2) 4 16¢;),

where i = (i1,i2), x = i/512, and ¢; are i.i.d. N(0, 1)
random variables. As usual, we “clip” the values of f; so they
cannot go above 255 or below 0, but the choice of parameters
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Fig. 4 Top left: original 300 x 200 image; top right: noisy 300 x
200 image. Middle left: LZ(Z)—B;O(Ll(I)) smoothed image with
A = 3/32: SSIM=0.8640 and RMSE=7.751; middle right: L,(Z)-
Béo(Ll(Z)) smoothed image with A = 1/8: SSIM=0.8801 and

means that ¢; would need to be at least 3 standard deviations
away from the mean (depending on the phase of the sinusoid
and the value of the Gaussian at that point) for a pixel to be
clipped, so clipping happens rarely.

The sinusoidal part of this image has wavelength 1/16
near the center, 1/8 near the top, and 1/32 near the bottom
of the image.

In Aujol and Chambolle [2], the authors set A to be “very
small”, to achieve “a maximum norm of f — u — v of about
0.5 (for values ranging from O to 255).” Their goal was to
have very little in the f — u — v component.

Our goal here is different—to have a nontrivial component
of the image in f —u —v. Weuse A = 1/4, u = 1/32 (the

RMSE=8.0484. Bottom left: Lg(l')—Bé<> (L1(Z)) smoothed image with
A = 1/4: SSIM=0.8784 and RMSE=9.6573; bottom right: L,(Z)—
BL(L1(Z)) smoothed image with » = 1: SSIM = 0.7936 and
RMSE = 20.97744

standard deviation of the noise divided by N), and apply
Algorithm 5.1.1 of Aujol and Chambolle [2] (equivalently,
Algorithm 2.5 of Aujol et al. [3]) with e = 1/4 (so we expect
results to be accurate to within about 1/4 RMS greyscales).
We also use Formula (12) from Chambolle [5] to ensure that
each iterated solution u”, v" has an error of < 1/4 RMS
greyscales (Again we note that this just bounds the error
from above, the true error could be much smaller).

We make several comments about the results. First, we
find the noise contained in v (the “dual smoothness space”
term) and the texture in f — u — v (the L>(Z) term). This
allocation of noise and texture corresponds to the calculations
in Section 8. Second, the calculations in Section 8 suggest

@ Springer



Journal of Mathematical Imaging and Vision (2019) 61:1-20

Fig.5 Top left: composite 512 x 512 image; top right: smooth part «. Bottom left: texture f — u — v plus 128; bottom right: noise v plus 128

that when the frequency of a texture is small, one cannot
distinguish it from a smooth feature, and when the frequency
of atexture is large, one cannot separate it from the noise. This
computation supports the theory—in the images of Fig. 5,
low-frequency texture can be found in the smooth part and is
absent from the noise image, while high-frequency texture is
(mostly) absent from the smooth image while “ghosting” into
the noise image. The texture image has small contributions
from both the smooth Gaussian and the noise.

The relative amount of this contribution can be observed
in Fig. 6. This is the vertical slice of all four images with
i1 = 250.

We hesitated to include slice images for a number of
reasons. Functions in BV (/) can be discontinuous across a
vertical line in 7, functions in Béo (L1(I)) are less smooth,

@ Springer

and “natural” images have significantly less smoothness still,
see DeVore et al. [13]. So, mathematically, the notion of the
value of the original image, or even of the smooth part u,
along a line is subtle, and practically it means that the value
along one vertical line may have little relationship with the
value along an adjacent or nearby line.

The value of an image f along a slice is related the bound-
ary values along 952 of a function in a smoothness space
defined on 2 itself, or so-called “trace theorems”—each
vertical line divides [ into two subdomains, and one-sided
“traces” may exist, determined by the value of f on each of
the subdomains. One may consider “the” value along a verti-
cal line to be the average of these two one-sided traces. Given
an arbitrary function u in Béo (L1(1)), the value of u along a
vertical slice S, the trace of the function of that slice, is not in
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Fig.6 Cross section of the middle column of the images in Fig. 5. From left to right, top to bottom: composite 512 x 512 image; smooth part u,

periodic texture f — u — v; noise v

general in L1 (S), but only in L ,(S) for p < 1. This can be
proved using techniques similar to those in Schneider [22];
for u € BV(I), the trace of u is in L{(S)—see Anzellotti
and Giaquinta [1].

The situation for noise € on two adjacent vertical slices
is even worse—the expected value of their inner product is
zero (they’re orthogonal, in expectation). We can expect no
relationship between the noise on two different slices. The
relationship between the texture part on two adjacent slices is
between that of the smooth part u and the extracted noise—
it’s not as strong as the “smooth” part, but certainly stronger
than noise.

So we chose a vertical line near the center of the image
where the values of the components of f along that line
illustrated a few points, at least a bit better than some of the
nearby vertical lines.

First, we note that because the Human Visual System is
very good at seeing patterns in images, one can see “ghost-
ing” of the high-frequency oscillatory texture part in the
smooth part of the image, but the slice of the smooth part
u shows that the actual high-frequency oscillations in u are
very small—one hardly notices them in the slice of u.

Second, one can get an idea of the magnitude of the low-
frequency oscillation that is included in the smooth part u.

And finally, one can see that the amplitude of the oscilla-
tory texture f — u — v is largest in the middle of the slice
and smaller at the ends, where the texture has partially “bled”
into the smooth part # and the noise v.

Acknowledgements The authors would like to thank Kristian Bredies
for providing the penguin images in Fig. 1 and for confirming the TGV
experiments related to Fig. 4.
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Appendix

Here we describe a family of self-similar functions with
fractal-like properties that illustrate some of the differences
between membership in the Besov space B;o (L1(I)) and the
space of functions of bounded variation BV (/).

We begin with the function @ that is continuous on R2,
zero outside of 7, with 45((%, %)) = 1, and a linear polyno-
mial on the triangles in / delineated by the boundary of 7,
the line xo = x1, and the line x; + x, = 1. The graph of @
is a pyramid with base I and height 1.

We define ¢ (x) = l<1>(2x), so ¢ is a scaled dyadic dilate
of @ with support [0, 1/2]°.

We construct the sequence of functions fy(x) = ¢ (x) and

2
Jer1(x) = ¢ (x) + g[fk(Zx —(1,0)
+/c2x = (0, D) + fi2x — (1, 1))]. 27)

We see that f; consists of f;_1 plus 3% dyadically dilated
translates ¢; ¢ (x) = ¢(2kx — j) for some multi-indices j =
(j1, j») with coefficients (2/3)¥. The supports of all the ¢ ik
are essentially disjoint.

Finally, we let f = lim_, o fx. We can write

f= chj’kqu,k(x), Cik = (;)k (28)

k=0 j

Thus, f is an infinite sum of scaled, dilated, and translated
versions of the single pyramid @; Fig. 7 illustrates the graph

of f.

Fig.7 Graph of the function f in (28) that is in Béo (L1(I)) but not in
BV(I)

@ Springer

The arguments in DeVore and Popov [12]! show that for
any 0 < p,g <ooand ¢ < min(2, 1 + 1/p) we have

q
k A
IfllBe L, ) = (Z(Z[Z"‘ ||Cj,k¢j,k||L1,(1)]p) ) ,

ko>

with the usual changes when p or g are co. In our case, we
have

2k
1A BL iy = sngf‘(g) bj kllLycr)s
J

where for each k there are 3% different offsets ;.
We note that [|¢; «llL, ) = 4”‘||¢>||L1(1); because there
are 3* terms in the sum for each k,

k(2\*
>24(5) Iesklieiy = 1810
J

and we have ”f”Bgo(Ll(l)) = @llL, ) < 0.

We’ll now see that f is not in BV (/). Denoting the vari-
ation of f by V(f), a simple scaling argument shows that
Vgjr) = 27kV (¢). Since the supports of all the ¢; x in the
definition of f are essentially disjoint, the co-area formula
shows that

vin =2 () v
ko
2\ k
= Z) x3* x27Fv(¢)
>()
=) V($) =o0.
k

In other words, there is a constant C such that for all
h e R?,

IfC+2h) =2fC+hm)+ fliL,am = Clhl,

but there is no constant C such that for all & € R2,

IfC+h) = fllLyay = Clhl.

Note that by replacing 2/3 in (27) with any 0 < r <
2/3, the resulting limit f is in both B;o(Ll (I)) and BV(I)
(indeed, it’s in Bll(Ll (I)) c BV(1)). In this case, we have

! The crucial point is to see that we can take the local polynomial
approximation in formula (4.18) of DeVore and Popov [12] to be iden-
tically zero on dyadic subsquares that are not entirely contained in the
support of a single ¢; x—the self-similarity of f means that the local
error with approximation zero is a fixed multiple of the error with the
best linear polynomial approximation on each subsquare, and hence is
near optimal with a constant that doesn’t depend on the scale.
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V(f)=

mv(@,

so the variation of f tends to oo as r — 2/3 (as one might
expect), while ”f”Bcl)o(Ll(I)) remains bounded.

And if r > 2/3, the function f is in neither BV (/) nor

BL(Li(D)).

Thus both BV(/) and Béo(L1(I )) contain fractal-like

functions, but their norms in Béo (L1(1)) can be arbitrarily
smaller than their norms in BV (7).
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