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NOTES ON COMPUTATIONAL-TO-STATISTICAL GAPS:
PREDICTIONS USING STATISTICAL PHYSICS

AFONSO S. BANDEIRA, AMELIA PERRY, AND ALEXANDER S. WEIN

In memory of Amelia Perry, and her love for learning and teaching.

ABSTRACT. In these notes we describe heuristics to predict computational-to-
statistical gaps in certain statistical problems. These are regimes in which the
underlying statistical problem is information-theoretically possible although
no efficient algorithm exists, rendering the problem essentially unsolvable for
large instances. The methods we describe here are based on mature, albeit
non-rigorous, tools from statistical physics.

These notes are based on a lecture series given by the authors at the Courant
Institute of Mathematical Sciences in New York City, on May 16**, 2017.

1. INTRODUCTION

Statistics has long studied how to recover information from data. Theoretical
statistics is concerned with, in part, understanding under which circumstances such
recovery is possible. Oftentimes recovery procedures amount to computational
tasks to be performed on the data that may be computationally expensive, and so
prohibitive for large datasets. While computer science, and in particular complexity
theory, has focused on studying hardness of computational problems on worst-case
instances, time and time again it is observed that computational tasks on data can
often be solved far faster than the worst case complexity would suggest. This is
not shocking; it is simply a manifestation of the fact that instances arising from
real-world data are not adversarial. This illustrates, however, an important gap
in fundamental knowledge: the understanding of “computational hardness of
statistical estimation problems”.

For concreteness we will focus on the case where we want to learn a set of param-
eters from samples of a distribution, or estimate a signal from noisy measurements
(often two interpretations of the same problem). In the problems we will consider,
there is a natural notion of signal-to-noise ratio (SNR) which can be related to the
variance of the distribution of samples, the strength of the noise, the number of
samples or measurements obtained, the size of a hidden planted structure buried
in noise, etc. Two “phase transitions” are often studied. Theoretical statistics
and information theory often study the critical SNR below which it is statistically
impossible to estimate the parameters (or recover the signal, or find the hidden
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structure), and we call this threshold SNRg¢at. On the other hand, many algorithm
development fields propose and analyze efficient algorithms to understand for which
SNR levels different algorithms work. Despite significant effort to develop ever bet-
ter algorithms, there are various problems for which no efficient algorithm is known
to achieve recovery close to the statistical threshold SNRgtat. Thus we are inter-
ested in the critical threshold SNRcomp > SNRgtat below which it is fundamentally
impossible for an efficient (polynomial time) algorithm to recover the information
of interest.

Statistically Impossible Statistically Possible but Computational by Hard Computationally Easy
| |

T T
SR sy SNRgamp

There are many problems believed to exhibit computational-to-statistical gaps.
Examples include community detection [HLL83, DKMZ11, AS15, BMNN16], planted
clique [AKS98, DM15, BHK*16], sparse principal component analysis [BR12, BR13,
LKZ15b], structured spiked matrix models [LKZ15a, PWBM16b, KXZ16, BDM ™16,
LM16], spiked tensor models [RM14, HSS15, PWB16, LML*17, KBG17], and syn-
chronization problems over groups [Sinll, PWBM16b, PWBM16a].

In these notes we will be concerned with predicting the locations of the thresh-
olds SNRgtat and SNRcomp for Bayesian inference problems. In particular, we will
focus on a couple of heuristics borrowed from statistical physics and illustrate them
on two example problems: the Rademacher spiked Wigner problem (Example 2.1)
and the related problem of community detection in the stochastic block model (Ex-
ample 2.2). While we focus on these problems, we will try to cover the techniques
in a way that conveys how they are broadly applicable.

At first glance, it may seem surprising that statistical physics has anything to do
with Bayesian inference problems. The connection lies in the Gibbs (or Boltzmann)
distribution that is widely used in statistical physics to model disordered systems
such as magnets. It turns out that in many Bayesian inference problems, the
posterior distribution of the unknown signal given the data also follows a Gibbs
distribution, and thus many techniques from statistical physics can be applied.
More specifically, many inference problems follow similar equations to spin glasses,
which are physical systems in which the interaction strength between each pair of
particles is random. The techniques that we borrow from statistical physics are
largely non-rigorous but yield extremely precise predictions of both the statistical
and computational limits. Furthermore, the predictions made by these heuristics
have now been rigorously verified for many problems, and thus we have good reason
to trust them on new problems. See the survey [ZK16] for more on the deep
interplay between statistical physics and inference.

Many techniques have been developed in order to understand computational-to-
statistical gaps. We now give a brief overview of some of these methods, both the
ones we will cover in these notes and some that we will not.
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Reductions. A natural approach to arguing that a task is computationally hard is
via reductions, by showing that a problem is computationally hard conditioned on
another problem being hard. This technique is extremely effective when studying
the worst-case hardness of computational problems (a famous example being the
list of 21 NP-hard combinatorial problems of Karp [Kar72]). There are also some
remarkable successes in using this idea in the context of average-case problems
(i.e. statistical inference on random models), starting with the work of Berthet
and Rigollet on sparse PCA [BR12, BR13| and including also some conditional
lower bounds for community detection with sublinear sized communities [MW13,
HWX14]. These works show conditional hardness by reduction to the planted clique
problem, which is widely believed to be hard in certain regimes. Unfortunately this
method of reductions has so far been limited to problems that are fairly similar to
planted clique.

Sum-of-squares hierarchy. Sum-of-squares [Las01, Par00, Nes00, Sho87, BS14] is
a hierarchy of algorithms to approximate solutions of combinatorial problems, or
more generally, polynomial optimization problems. For each positive integer d, the
algorithm at level d of the hierarchy is a semidefinite program that relaxes the
notion of a distribution over the solution space by only keeping track of moments
of order < d. As you go up the hierarchy (increasing d), the algorithms get more
powerful but also run slower: the runtime is n°(@ . The level-2 relaxation coincides
with the algorithms in the seminal work of Goemans and Williamson [GW95] and
Lovasz [Lov79]. The celebrated unique games conjecture of Khot implies that the
level-2 algorithm gives optimal worst-case approximation ratio for a wide class
of problems [Kho02, Rag08, Khol0]. Sum-of-squares algorithms have also seen
many success stories for average-case inference problems such as planted sparse
vector [BKS13, HSSS16], dictionary learning [BKS15], tensor PCA [HSS15], tensor
decomposition [BKS15, GM15, HSSS16, MSS16], and tensor completion [BM16,
PS17]. One way to argue that an inference problem is hard is by showing that the
sum-of-squares hierarchy fails to solve it at a particular level d (or ideally, at every
constant value of d). Such lower bounds have been shown for many problems such as
planted clique [BHK"16] and tensor PCA [HSS15]. There is also recent work that
gives evidence for computational hardness by relating the power of sum-of-squares
to the low-degree moments of the posterior distribution [HS17].

Belief propagation, approximate message passing, and the cavity method. Another
important heuristic to predict computational thresholds is based on ideas from
statistical physics and is often referred to as the cavity method [MPV86]. It is
based on analyzing an iterative algorithm called belief propagation (BP) [Pea86], or
its close relative approzimate message passing (AMP) [DMMO09]. Specifically, BP
has a trivial fixed point wherein the algorithm fails to perform inference. If this
fixed point is stable (attracting) then we expect inference to be computationally
hard. In these notes we will cover this method in detail. For further references, see
[MMO09, ZK16].

Replica method and the complexity of the posterior. Another method borrowed from
statistical physics is the replica method (see e.g. [MMO09]). This is a mysterious non-
rigorous calculation from statistical physics that can produce many of the same
predictions as the cavity method. One way to think about this method is as a
way to measure the complexity of the posterior distribution. In particular, we
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are interesting in whether the posterior distribution resembles one big connected
region or whether it fractures into disconnected clusters (indicating computational
hardness). We will cover the replica method in Section 5 of these notes.

Complezity of a random objective function. Another method for investigating com-
putational hardness is through the lens of non-convex optimization. Intuitively, we
expect that “easy” optimization problems have no “bad” local minima and so an
algorithm such as gradient descent can find the global minimum (or at least a point
whose objective value is close to the global optimum). For Bayesian inference prob-
lems, maximum likelihood estimation amounts to minimizing a particular random
non-convex function. One tool to study critical points of random functions is the
Kac-Rice formula (see [ATO7] for an introduction). This has been used to study
optimization landscapes in settings such as spin glasses [ABACl?)], tensor decom-
position [GM17], and problems arising in community detection [BBV16]. There
are also other methods to show that there are no spurious local minima in certain
settings, e.g. [GJZ17, BVB16, LV18§].

2. SETTING AND VOCABULARY

Throughout, we’ll largely focus on Bayesian inference problems. Here we have a
signal ¢* € R™ viewed through some noisy observation model. We present two ex-
amples, and examine them simultaneously through the parallel language of machine
learning and statistical physics.

Example 2.1 (Rademacher spiked Wigner). The signal ¢* is drawn uniformly at
random from {£1}". We observe the n x n matrix

A 1
Y =Zo*(0")T + —=W,
Do) W,
where \ is a signal-to-noise parameter, and W is a GOE matrix!. We wish to
approximately recover ¢* from Y, up to a global negation (since o* and —o* are
indistinguishable).

This problem is motivated by the statistical study of the spiked Wigner model
from random matrix theory (see e.g. [PWBM16b]). This model has also been
studied as a Gaussian variant of community detection [DAM16] and as a model for
synchronization over the group Z/2 [JMRT16].

Example 2.2 (Stochastic block model). The signal o* is drawn uniformly at ran-
dom from {+1}". We observe a graph G with vertex set [n] = {1,...,n}, with
edges drawn independently as follows: for vertices u, v, we have u ~ v with proba-
bility a/n if 0,0, = 1, and probability b/n if 0,0, = —1. We will restrict ourselves
to the case a > b. We imagine the entries o, as indicating membership of vertex u
in either the +1 or —1 ‘community’; thus vertices in the same community are more
likely to share an edge. We wish to approximately recover the community structure
o* (up to global negation) from G.

This is a popular model for community detection in graphs. See e.g. [Abbl7,
Mool7] for a survey. Here we consider the sparse regime, but other regimes are
also considered in the literature.

lGaussian orthogonal ensemble: symmetric with the upper triangle drawn i.i.d. as N'(0, 1).
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There is a key difference between the two models above. The Rademacher spiked
Wigner model is dense in the sense that we are given an observation for every pair
of variables. On the other hand, the stochastic block model is sparse (at least in the
regime we have chosen) because essentially all the useful information comes from
the observed edges, which form a sparse graph. We will see that different tools are
needed for dense and sparse problems.

2.1. Machine learning view. We are interested in inferring the signal ¢*, so
it is natural to write down the posterior distribution. For the Rademacher spiked
Wigner problem (Example 2.1), we can compute the posterior distribution explicitly
as follows:

Pro | Y] o< Pr[Y | o] o [ [ exp (‘Z (Yij - 20i0j>2>

i<j

N2 Ao,
= Hexp *EYz‘j + AYj0505 — 57,0195
i<j
X H exp ()\Yvij(TiO'j) .
i<j
(Here o hides a normalizing constant which depends on Y but not o; it is chosen so
that 3, c41y. Prlo | Y] = 1.) The above factorization over edges defines a graph-
ical model: a probability distribution factoring in the form Pr(o] = J[gc(, ¢s(os)
into potentials g that each only depend on a small (constant-size) subset S of

the entries of 0. (For instance, in our example above, S ranges over all subsets of
size 2.)

2.2. Statistical physics view. The observation Y defines a Hamiltonian, or
energy function, H(o) =), <j Y;;0;0;, consisting of two-spin interactions; we refer
to each entry of ¢ as a spin, and to o as a state. A Hamiltonian together with
a parameter T = %, called the temperature, defines a Gibbs distribution (or
Boltzmann distribution):

Pr[o] o< e AH(),
Thus low-energy states are more likely than high-energy states; moreover, at low
temperature (large ), the distribution becomes more concentrated on lower en-
ergy states, becoming supported entirely on the minimum energy states (ground
states) in the limit as § — co. On the other hand, in the high-temperature limit
(8 — 0), the Gibbs distribution becomes uniform.

Connecting the ML and physics languages, we observe that the posterior dis-
tribution on o is precisely the above Gibbs distribution, at the particular inverse-
temperature § = A. (This is often referred to as lying on the Nishimori line
[Nis80, Nis81, Nis01], or being at Bayes-optimal temperature.)

2.3. Optimization and statistical physics. A common optimization viewpoint
on inference is maximum likelihood estimation, or the maximization task of
finding the state o that maximizes the posterior likelihood. This optimization
problem is frequently computationally hard, but convex relaxations or surrogates
may be studied. To rephraze this optimization task in physical terms, we wish to
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minimize the energy H (o) over states o, or equivalently sample from (or otherwise
describe) the low-temperature Gibbs distribution in the limit 8 — oco.

This viewpoint is limited, in that the MLE frequently lacks any a priori guaran-
tee of optimality. On the other hand, the Gibbs distribution at the true temperature
B = X enjoys optimality guarantees at a high level of generality:

Claim 2.3. Suppose we are given some observation Y leading to a posterior dis-
tribution on o. For any estimate ¢ = o(Y), define the (expected) mean squared
error (MSE) E||G — o||3. The estimator that minimizes the expected MSE is given
by o = Elo | Y], the posterior expectation (and thus the expectation under the Gibbs
distribution at Bayes-optimal temperature).

Remark 2.4. In the case of the Rademacher spiked Wigner model, there is a
caveat here: since o* and —o* are indistinguishable, the posterior expectation is
zero. Our objective is not to minimize the MSE but to minimize the error between
o and either o or —o (whichever is better).

Thus the optimization approach of maximum likelihood estimation aims for too
low a temperature. aggregate likelihood. Intuitively, MLE searches for the single
state with highest individual likelihood, whereas the optimal Bayesian approach
looks for a large cluster of closely-related states with a high aggregate likelihood.

Fortunately, the true Gibbs distribution has an optimization property of its own:

Claim 2.5. The Gibbs distribution with Hamiltonian H and temperature T > 0 is
the unique distribution minimizing the (Helmholtz) free energy

F=EH TS,
where S denotes the Shannon entropy S = —E, log Pr(o).

Proof. Entropy is concave with infinite derivative at the edge of the probability
simplex, and the expected Hamiltonian is linear in the distribution, so the free
energy is convex and minimized in the interior of the simplex. We find the unique
local (hence global) minimum with a Lagrange multiplier:

const - 1 =VF =V Zp(a)(H(U) + Tlogp(o))

const = H(o) + T log p(o)

—H(o)/T

const - e = p(o),

which we recognize as the Gibbs distribution. (]

This optimization approach is willing to trade off some energy for an increase in
entropy, and can thus detect large clusters of states with a high aggregate likelihood,
even when no individual state has the highest possible likelihood. Moreover, the
free energy is convex, but it is a function of an arbitrary probability distribution
on the state space, which is typically an exponentially large object.

We are thus led to ask the question: is there any way to reduce the problem of
free energy minimization to a tractable, polynomial-size problem? Can we get a
theoretical or algorithmic handle on this problem?



NOTES ON COMPUTATIONAL-TO-STATISTICAL GAPS 7

3. THE CAVITY METHOD AND BELIEF PROPAGATION

3.1. BP as an algorithm for inference. Belief propagation (BP) is a general
algorithm for inference in graphical models, generally credited to Pearl [Pea86] (see
e.g. [MMO9] for a reference). As we’ve seen above, the study of graphical models
is essentially the statistical physics of Hamiltonians consisting of interactions that
each only depend on a few spins. Quite often, we care about the average case
study of random graphical models that describe a posterior distribution given some
noisy observation of a signal, such as in the Rademacher spiked Wigner example
discussed above. Much of statistical physics is concerned with disorder and random
systems, and indeed the concept of belief propagation appeared in physics as the
cavity method—mnot only as an algorithm but as a theoretical means to make
predictions about systems such as spin glasses [MPV86].

To simplify the setting and notation, let us consider sparse graphical models
with only pairwise interactions:

Prfo] « H Yo (Owy 04,
u~v
where each vertex v has only relatively few “neighbors” u (denoted u ~ v).

Belief propagation is an iterative algorithm. We think of each spin o, as a
vertex and each pair of neighbors as an edge. Each vertex tracks a “belief” about
its own spin (more formally, an estimated posterior marginal). These beliefs are
often initialized to something like a prior distribution, or just random noise, and
then iteratively refined to become more consistent with the graphical model. This
refinement happens as follows: each vertex u transmits its belief to each neighbor,
and then each vertex updates its belief based on the incoming beliefs of its neighbors.
If we let m,_,, denote the previous beliefs sent from neighbors u to a vertex v, we
can formulate a new belief for v in a Bayesian way, assuming that the incoming
influences of the neighbor vertices are independent (more on this assumption below):

my(00) o< [ D Yun(0u, 00)musu(ow)
UNV Oy
Each message m.,_,, is a probability distribution (over the possible values for o),
with the proportionality constant being determined by probabilities summing to 1
over all values of .

This is almost a full description of belief propagation, except for one detail. If
the belief from vertex v at time ¢t — 2 influences the belief of neighbor u at time ¢ —1,
then neighbor u should not parrot that influence back to neighbor v, reinforcing its
belief at time ¢ without any new evidence. Thus we ensure that the propagation of
messages does not immediately backtrack:

(1) mg;t)aw(gv) X H Zwuv(au’gv)mgt;p (ou).-

uU~NY g,

uFw
This formula is the iteration rule for belief propagation.

The most suspicious aspect of the discussion above is the idea that neighbors of a
vertex v exert probabilistically independent influences on v. If the graphical model
is a tree, then the neighbors are independent after conditioning on v, and in this
setting it is a theorem (see e.g. [MMO09]) that belief propagation converges to the
exact posterior marginals. On a general graphical model, this independence fails,
and belief propagation is heuristic. In many sparse graph models, neighborhoods of
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most vertices are trees, with most loops being long, so that independence might ap-
proximately hold. BP certainly fails in the worst case; outside of special cases such
as trees it is certainly only suitable in an average-case setting. However, on many
families of random graphical models, belief propagation is a remarkably strong ap-
proach; it is general, efficient, and often yields a state-of-the-art statistical estimate.
It is conjectured in many models that belief propagation achieves asymptotically
optimal inference, either among all estimators or among all polynomial-time esti-
mators, but most rigorous results in this direction are yet to be established.

To connect to the previous viewpoint of free energy minimization: belief prop-
agation is intimately connected with the Bethe free energy, a heuristic proxy
for the free energy which may be described in terms of the messages m,_., (see
[ZK16], Section III.B). It can be shown that the fixed points of BP are precisely
the critical points of the Bethe free energy, justifying the view that BP is roughly a
minimization procedure for the free energy. Again, rigorously the situation is much
worse: the Bethe free energy is non-convex, and BP is not guaranteed to converge,
let alone guaranteed to find the global minimum.

3.2. The cavity method for the stochastic block model. The ideas of belief
propagation above appear as the cavity method in statistical physics, owing to
the idea that the Bethe free energy is believed to be essentially an accurate model
for the true (Helmholtz) free energy on a variety of models of interest. In passing
to the Bethe free energy, we can pass from studying a general distribution (an
exponentially complicated object) to studying node and edge marginals, which are
theoretically much simpler objects and, crucially, can be studied locally on the
graph. Local neighborhoods of sparse graphs as in the SBM (stochastic block
model) look like trees, and so we are drawn to studying message passing on a tree.

Much as for the Rademacher spiked Wigner model above, we derive a Hamilton-
ian from the block model posterior:

H(o)= Z 00,05 + Z 0_oc0j,
i~ i
where u ~ v denotes adjacency in the observed graph, and 6, > 0 > 6_ are
constants depending on a and b; 0, is of constant order, while 6_ is of order 1/n.
In expressing belief propagation, we will make a small notational simplification:
instead of passing messages m that are distributions over {+, —}, it suffices to pass
the expectation m(4) — m(—). The reader can verify that rewriting the belief
propagation equations in this notation yields

m{?), = tanh Z atanh(0,m{ 1)) + Z atanh(6_m{=1)
w~U wolbu
w#v wHkv
where tanh is the hyperbolic tangent function tanh(z) = (e* —e™*)/(e* + e~ %), and
atanh is its inverse.

The first term inside the tanh represents strong, constant-order attractions with
the few graph neighbors, while the second term represents very weak, low-order
repulsions with the multitude of non-neighbors. The value of the second term thus
depends very little on any individual spin, but rather on the overall balance of
positive and negative spins in the graph, with the tendency to cause the global
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spin configuration to become balanced. As we are only interested in a local view
of message passing, we will assume here that the global configuration is roughly
balanced and neglect the second term:

m{t),, ~ tanh Z atanh(6,m{i=1)

w—ru
w~u

wH#v
As this message-passing only involves the graph edges, it now makes sense to
study this on a tree-like neighborhood. We now discuss a generative model for
(approximate) local neighborhoods under the stochastic block model.

Model 3.1 (Galton—Watson tree). Begin with a root vertex, with spin + or —
chosen uniformly. Recursively, each vertex gives birth to a Poisson number of child
nodes: Pois((1 — €)k) vertices of the same spin and Pois(ek) vertices of opposite
spin, up to a total tree depth of d.

As shown in [MNS12], the Galton—-Watson tree with k¥ = (a +b)/2 and ¢ =
b/(a +b) is distributionally very close to the radius-d neighborhood of a vertex in
the SBM with its true spins, so long as d = o(logn). Thus we will study belief
propagation on a random Galton-Watson tree.

Let us consider only the BP messages passing toward the root of the tree. The
upward message from any vertex v is computed as:

(2) m, = tanh (Z atanh((1 — 25)mu)>

u

where u ranges over the children of v. We now imagine that the child messages
m,, are independently drawn from some distribution DE:_l) for children with spin
+, and (leveraging symmetry) from the distribution Dt = —DS:*D for children
with spin —; this distribution represents the randomness of our BP calculation below
each child, over the random subtree hanging off each one. Then, from equation (2),
together with the fact that there are Pois((1 —¢)k) same-spin children and Pois(ek)

opposite-spin children, the distribution D(it) of the parent message m is determined!

Thus we obtain a distributional recurrence for Dgf).

The calculation above is independent of n, and the radius of validity of the tree
approximation grows with n, so we are interested in the behavior of the recurrence
above as t — 00, i.e. fixed points of the distributional recurrence above and their
stability.

Typically one initializes BP with small random messages, a perturbation of the
trivial all-0 fixed point that represents our prior. For small messages, we can
linearize tanh and atanh, and write m, ~ (1 —2¢))_, m,. Then if the child

distribution DE:*D has mean p and variance o2, it is easily computed that the

parent distribution Dgf) has mean k(1 — 2¢)?p and variance k(1 — 2¢)202. Thus
if k(1 — 2¢)? < 1, then perturbations of the all-0 fixed point decay, or in other
words, this fixed point is stable, and BP is totally uninformative on this typical
initialization. If k(1 — 2¢)? > 1, then small perturbations do become magnified
under BP dynamics, and one imagines that BP might find a more informative fixed
point (though this remains an open question!).
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This transition is known as the Kesten—Stigum threshold [KS66], and calcu-
lations of this form are loosely conjectured to describe the computational thresh-
old beyond which no efficient algorithm can perform inference, for sparse models
such as the SBM. In this particular form of the SBM, this idea has been rigor-
ously vindicated using techniques slightly different from BP: inference is known
to be statistically impossible when k(1 — 2¢)? < 1 (meaning that any estimator
has zero correlation with the truth as n — oo) [MNS12], and efficiently possible
when k(1 — 2¢)? > 1 (meaning that asymptotically nonzero correlation is possible)
[Mas14, MNS13].

One might also endeavor to study the other fixed points of BP, not just the
trivial fixed points. This is a difficult undertaking in most situations, as the BP
recurrence lacks convexity properties, but it is expected to give an understanding of
the statistical threshold of the problem, i.e. the limit below which even inefficient
inference techniques fail. This has been rigorously proven for some variants of
the stochastic block model [COKPZ16]. Intuitively, exploring the BP landscape
by brute force for the best (in terms of Bethe free energy) BP fixed point is a
statistically optimal inference technique. For more general stochastic block models
with 4 or more communities, there exists a gap between the statistical threshold
and the analogous Kesten—Stigum bound [DKMZ11, AS15, BMNN16].

4. APPROXIMATE MESSAGE PASSING

4.1. AMP as a simplification of BP. Our cavity analysis of the block model
above was well-adapted to sparse models, in which the analysis localizes onto a
tree of constant average degree. But many models, such as the Rademacher spiked
Wigner model, are dense and their analysis cannot be local. Thankfully, many of
these models are amenable to analysis for different reasons: as each vertex is acted
on by a large number of individually weak influences, the quantities of interest
in belief propagation are subject to central limit theorems and concentration of
measure. In this section we will demonstrate this on the Rademacher spiked Wigner
example.

Recall the Hamiltonian H = Zi <j Y;jo;0; and inverse temperature A. As in
the SBM discussion above, we can summarize BP messages by the expectation
m(+) — m(—). Then BP for this model reads as

sy = tanh Z atanh (Y, m{{=1)

m(t) w—ru
wH#v

We next exploit the weakness of individual interactions. Note that the values mﬁ}f;iB

lie in [—1, 1], while Y,,, is of order n~1/2 in probability. Taylor-expanding atanh,
we simplify:

ml),,

= tanh Z AYypumi=Y | +0(n~1/?) w.h.p.

w—u
wH#v

We next simplify the non-backtracking nature of BP. Naively, one might expect
that we can simply drop the condition w # v from the sum above, as the contribu-
tion from vertex v in the above sum should be only of size n='/2. As our formula

for m&tLU would then no longer depend on v, we could write down messages indexed
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by a single vertex:

m{) = tanh <Z )\Ywumf]fl)> ,

or in vector notation,
(3) m® = tanh(A\Y m~D),

where tanh applies entrywise. This resembles the “power iteration” iterative algo-
rithm to compute the leading eigenvector of Y:

m® = ymt-D,

but with tanh(\ e ) providing some form of soft projection onto the interval [—1, 1],
exploiting the entrywise £1 structure.

Unfortunately, the non-backtracking simplification above is flawed, and equation
(3) does not accurately summarize BP or provide as strong an estimator. The prob-
lem is that the terms we have neglected add up constructively over two iterations.

Specifically: consider that vertex v exerts an influence /\Yvum(ut_Q) on each neighbor

u; this small perturbation translates directly to a perturbation of mgf -b (scaled

by a derivative of tanh). At the next iteration, vertex u influences mq(}t) according

to )\Yvumq(f 71); the total contribution from backtracking here is thus AQYUQUmq(}t*Q),
scaled through some derivatives of tanh. This influence is a random, positive, order
1/n multiple of mgt_Q). Summing over all neighbors u, we realize that the aggregate
contribution of backtracking over two steps is in fact of order 1.

Thankfully, this contribution is also a sum of small random variables, and ex-
hibits concentration of measure. The solution is thus to subtract off this aggregate
backtracking term in expectation, adding a correction called the Onsager reaction

term:
W m® = tanh (Ym®D — X2(1— [m3/nym ).

This iterative algorithm is known as approximate message passing (AMP).
The simplifications above to BP first appeared in the work of Thouless, Anderson,
and Palmer [TAP77], who used it to obtain a theoretical handle on spin glasses
at high temperature. The first AMP algorithm [DMMO09] appeared in the context
of compressed sensing. The AMP algorithm (4) for this problem can be found
in [DAM16], and AMP has been applied to many other problems such as rank-one
matrix estimation [FR12], sparse PCA [DM14], non-negative PCA [MR16], planted
clique [DM15], and synchronization over groups [PWBM16a] (just to name a few).

4.2. AMP state evolution. In contrast to belief propagation, approximate mes-
sage passing (AMP) algorithms tend to be amenable to exact analysis in the limit
n — oo. Here we introduce state evolution, a simple heuristic argument for the
analysis of AMP that has been proven correct in many settings. The idea of state
evolution was first introduced by [DMMO09], based on ideas from [Bol12]; it was
later proved correct in various settings [BM11, JM13].

We will focus again on the Rademacher spiked Wigner model: we observe

A 1
V=0T 4w
nmc Vn
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where € {£1}" is the true signal (drawn uniformly at random) and the n x n
noise matrix W is symmetric with the upper triangle drawn i.i.d. as N(0,1). In
this setting, the AMP algorithm and its analysis are due to [DAM16].

We have seen above that the AMP algorithm for this problem takes the form

v =Y f(v') + [Onsager]

where f(v) denotes entrywise application of the function f(v) = tanh(\v). (Here
we abuse notation and let f refer to both the scalar function and its entrywise
application to a vector.) The superscript ¢ indexes timesteps of the algorithm (and
is not to be confused with an exponent). The details of the Onsager term, discussed
previously, will not be important here.

The state evolution heuristic proceeds as follows. Postulate that at timestep ¢,
AMP’s iterate v? is distributed as
(5) v = px + o9 where g ~ N(0,1).
This breaks down v! into a signal term (recall z is the true signal) and a noise
term, whose sizes are determined by parameters i € R and oy € R>g. The idea
of state evolution is to write down a recurrence for how the parameters u; and oy
evolve from one timestep to the next. In performing this calculation we will make
two simplifying assumptions that will be justified later: (1) we drop the Onsager
term, and (2) we assume the noise W is independent at each timestep (i.e. there
is no correlation between W and the noise g in the current iterate). Under these
assumptions we have

V=Y f(vt) = <2xarT + %W) f(wh

= 2 D)+ =W I)

which takes the form of (5) with a signal term and a noise term. We therefore have

pes = 20 £0) = 2o S + 1)
~ )\XEG[Xf(;LtX + 0:G)] with scalars X ~ Unif{£1},G ~ N(0,1)
= AE[f (e + )] since f(—v) = —f(v).

For the noise term, think of f(v') as fixed and consider the randomness over W.
Each entry of the noise term ﬁW f(v') has mean zero and variance

1 1
(") = Z ﬁf(”f)z = Z ﬁf(ﬂtwi +019:)
~\ E [f(u:X +0,G)?] with scalars X, G as above
be

= E[f(us +0:G)?] again by symmetry of f.
G

We now have “state evolution” equations for p41 and o411 in terms of py and oy.
Since we could arbitrarily scale our iterates v* without adding or losing information,
we really only care about the parameter v £ (u/0)2. It is possible (see [DAM16])
to reduce the state evolution recurrence to this single parameter:

(6) Y1 =X E  tanh(y + 7% G)
G~N(0,1)
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(where we have substituted the actual expression for f).

We can analyze AMP as follows. Choose a small positive initial value v and
iterate (6) until we reach a fixed point ... We then expect the output v>° of AMP
to behave like

(7) UV = loo + 000g

where g ~ N(0,1), fico = Yoo/, and 02, = 75 /A2, For the Rademacher spiked
Wigner model, this has in fact been proven to be correct in the limit n — oo
[BM11, JM13]. Namely, when we run AMP (with the Onsager term and without
fresh noise W at each timestep), the output behaves like (7) in a particular formal
sense.

State evolution reveals a phase transition at A = 1: when A < 1 we have v,, =0
(so AMP has zero correlation with the truth as n — oco) and when A > 1 we have
Yoo > 0 (so AMP achieves nontrivial correlation with the truth). Furthermore, from
(7) we can deduce the value of any performance metric (e.g. mean squared error)
at any signal-to-noise ratio A. It has in fact been shown (for Rademacher spiked
Wigner) that the mean squared error achieved by AMP is information-theoretically
optimal [DAM16].

It is perhaps surprising that state evolution is correct, given the seemingly-
questionable assumptions we made in deriving it. This can be understood as follows.
Recall that we eliminated the Onsager term and assumed independent noise W at
each timestep. Also recall that the Onsager term is a correction that makes the
update step non-backtracking: a message sent across an edge at one iteration does
not affect the message sent back across the edge (in the opposite direction) at the
next iteration. It turns out that to leading order, using fresh noise at each timestep
is equivalent to using a non-backtracking update step. This is because the largest
effect of fresh noise is to terms where a particular noise entry W;; is used twice in a
row, i.e. backtracking steps. So the two assumptions we made actually cancel each
other out! Note that both of the two assumptions are crucial in making the state
evolution analysis tractable, so it is quite spectacular that we are able to make both
of these assumptions for free (and still get the correct answer)!

One caveat in the rigorous analysis of AMP is that it assumes an initialization
that has some nonzero correlation with the truth [DAM16]. In other words, we need
to assume that we start with some nonzero v because if we start with v = 0 we will
remain there forever. In practice this is not an issue; a small random initialization
suffices.

4.3. Free energy diagrams. In this section we will finally see how to predict
computational-to-statistical gaps (for dense problems)! Above we have seen how
to analyze a particular algorithm: AMP. In various settings it has been shown
that AMP is information-theoretically optimal. More generally, it is believed that
AMP is optimal among all efficient algorithms (for a wide class of problems). We
will now show how to use AMP to predict whether a problem should be easy,
(computationally) hard or (statistically) impossible. The ideas here originate from
[LKZ15a, LKZ15b].

Recall that the state of AMP is described by a parameter v, where larger ~y
indicates better correlation with the truth and v = 0 means that AMP achieves
zero correlation with the truth. Also recall that the Bethe free energy is the quantity
that belief propagation (or AMP) is locally trying to minimize. It is possible to
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analytically write down the function f(v) which gives the (Bethe) free energy of
the AMP state corresponding to «y; in the next section, we will see one way to
compute f(v). AMP can be seen as starting near v = 0 and naively moving in
the direction of lowest free energy until it reaches a local minimum; the  value at
this minimum characterizes AMP’s output. The information-theoretically optimal
estimator is instead described by the global minimum of the free energy (and this
has been proven rigorously in various cases [BDM'16, LM16]); this corresponds to
the inefficient algorithm that uses exhaustive search to find the AMP state which
globally minimizes free energy. Figure 1 illustrates how the free energy landscape
f(v) dictates whether the problem is easy, hard, or impossible at a particular A
value.

-1.845

-1.850

S
10 -1.855
=12
-1.860
14
16 -1.865
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.2 0.4 0.6 0.8 1.0 12 14 1.6
Y
(a) impossible (b) impossible
-2.6
-1.896
=27
-1.898
-1.900 238
Ly -1.902 S -2
-1.904
-3.0
-1.906
=31
-1.908
-1.910 32
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 16 o 1 2 3 4 5
v v
(c) hard (d) easy

FiGure 1. (a) The global minimizer is v = 0 so no estimator achieves
nontrivial recovery. (b) A new local minimum in the free energy has ap-
peared, but the global minimum is still at v = 0 and so nontrivial recovery
remains impossible. (c) AMP is stuck at v = 0 but the (inefficient) sta-
tistically optimal estimator achieves a nontrivial v (the global minimum).
AMP is not statistically optimal. (d) AMP achieves nontrivial (in fact
optimal) recovery. The above image is adapted from [PWBM16a] (used
with permission).

For Rademacher spiked Wigner, we have phase (a) (from Figure 1) when A <1
and phase (d) when A > 1, so there is no computational-to-statistical gap. However,
for some variants of the problem (for instance if the signal z is sparse, i.e. only a
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small constant fraction of entries are nonzero) then we see phases (a),(b),(c),(d)
appear in that order as \ increases; in particular, there is a computational-to-
statistical gap during the hard phase (c).

Although many parts of this picture have been made rigorous in certain cases,
the one piece that we do not have the tools to prove is that no efficient algorithm
can succeed during the hard phase (c¢). This is merely conjectured based on the
belief that AMP should be optimal among efficient algorithms.

There are a few different ways to compute the free energy landscape f(v). One
method is to use the replica method discussed in the next section. Alternatively,
there is a direct formula for Bethe free energy in terms of the BP messages, which
can be adapted to AMP (see e.g. [LKZ15a]).

5. THE REPLICA METHOD

The replica method is an alternative viewpoint that can derive many of the same
results shown in the previous section. We will again use the example of Rademacher
spiked Wigner to illustrate it. A general introduction to the replica method can
be found in [MMO09]. The calculations of this section are carried out in somewhat
higher generality in Appendix B of [PWB16].

Recall again the setup: we observe Y = 2227 + ﬁW with € {£1}" and
Wz‘j = Wji ~ N(O, 1).

The posterior distribution of = given Y is

2
Pr[z|Y] x Hexp (—Z (:\inxj — Yz> > X exp )\Z}ijixj

i<j i<
and so we are interested in the Gibbs distribution over o € {£1}™ given by
Prlo | Y] o< exp(—BH (o)) with energy (Hamiltonian) H(o) = —3,_; Yi;j0:0; and
inverse temperature 8 = A.
The goal is to compute the free energy density, defined as f = —l%nﬂﬂog Z where

Z= Y exp(-BH(0)).

ce{£1}n

(This can be shown to coincide with the notion of free energy introduced earlier.)
The idea of the replica method is to compute the moments E[Z"] of Z for r € N
and perform the (non-rigorous) analytic continuation

(8) Ellog Z] = lim 11ogIE[Z"].
r—0 7r

Note that this is quite bizarre — we at first assume r is a positive integer, but then
take the limit as r tends to zero! This will require writing E[Z"] in an analytic form
that is defined for all values of . An informal justification for the correctness of
(8) is that when r is close to 0, Z" is close to 1 and so we can interchange log and
E on the right-hand side.

The moment E[Z"] can be expanded in terms of r ‘replicas’ o',..., 0" with
o € {£1}™

E[Z"] =Y Eexp B Yy > ofof

{oo} i<j  a=l
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After applying the definition of Y and the Gaussian moment-generating function
(to compute expectation over the noise W) we arrive at

T )‘2 2 )‘2 2
]E[Z}:E exp |n 35 CG+Z§ Qab
{o} a a,b

where q.p = %ZZ Ufaff is the correlation between replicas ¢ and b, and ¢, =
% >, ofx; is the correlation between replica a and the truth.

Without loss of generality we can assume (by symmetry) the true spike is z = 1
(all-ones). Let @ be the (r+1) x (r + 1) matrix of overlaps (gq and ¢,), including
x as the zeroth replica. Note that @ is the average of m i.i.d. matrices and so
by the theory of large deviations (Cramér’s Theorem in multiple dimensions), the
number of configurations {c®} corresponding to given overlap parameters gup, ¢, is
asymptotically

(9)
inf exXp (| — Z VaCq — % Z Habqab + IOg Z exp Z Vo0 + % Z HabTaO0b

v
a#b oce{£1}" a#b

We now apply the saddle point method: in the large n limit, the expression for
E[Z"] should be dominated by a single value of the overlap parameters gup, ¢o. This
yields

1 r * * * *
g log E[Z ] = *G(Qabv Cas Hab> Va)

*

where (g}, ¢k, nk,, vk) is a critical point of

A2 A2 1
G(Qab; Cas Hab, Va) = - 3 Z Cz - Z quzb + Z}/aca * 5 ;Mabqab
a a, a a

- lOg Z €xXp Z VaOq + % Z HabTa0b

oe{x1}" a a#b

We next assume that the dominant saddle point takes a particular form: the so-
called replica symmetric ansatz. The replica symmetric ansatz is given by q.q = 1,
Cq = ¢, Vg = v, and for a # b, qup = q and uep = p for constants ¢, ¢, u,v. This

yields
(10)
A2, A2 )2

1 , 1
lim [ Glg. ) = ~ 5=+ et ves julg-1)- B log(2eosh(vyi2)
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where the last term is handled as follows:

}% % 1Og Z exXp Z VaOa + 5 Z HabTaOb

oe{x1}" a;ﬁb

:}ii%%log Z exp VZUa—i- Zoaab

oe{£1}" a#b
:limllog E exp 1/5 a—l—ﬁg 0a0b — —
r—0 7T @ 2 @
oe{x1}" a a,b

2
:}i_%%log Z exp(—ru/2) exp ZU“ (Zaa>

oe{£1}"

2
:_§+}1—I>nr10g Z exp VZO‘a <¥aa>

oce{£1}"

@—%—Frlii%%log Z ]E7 exp( Zaa—l—fzzaa)

oe{£1}" 2N (0

P md
=— 5 +lm_log E > eXp<(V+\/ﬁZ)za:0a>

2~N(0,1) ce{t1}"

,u . 1 r
=—" 4 1lim =1 E 4 —
2 50 r o8 2~N(0,1) (exp(v + Viiz) + exp(= o + Viz))]

1
=— 21 lim=-1lo E 2cosh(v + /uz))"
lim log B (2cosh(v+ V)

E log(2cosh(v + \/pz))
z~N(0,1)

where (a) uses the Gaussian moment-generating function and (b) uses the replica
trick (8).

We next find the critical points by setting the derivatives of (10) (with respect
to all four variables) to zero, which yields

v =\, uw= M\, ¢ =E, tanh(v + /puz), qg=E, tanhQ(z/ + nz).

Recall that the replicas are drawn from the posterior distribution Pr[z|Y] and
so the truth = behaves as if it is a replica; therefore we should have ¢ = q. Using
the identity E. tanh(y + /7z) = E. tanh?(y + V%) (see e.g. [DAMI16]), we obtain
the solution ¢ = ¢ and v = p where ¢ and p are solutions to

(11) = Nq, g= E tanh(p+ /12).

2~N(0,1)
The solution ¢ to this equation tells us about the structure of the posterior dis-
tribution; namely, if we take two independent draws from this distribution, their
overlap will concentrate about g. (Equivalently, the true signal x and a draw from
the posterior distribution will also have overlap that concentrates about g.) Note
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that (11) exactly matches the state evolution fixed-point equation (6) with u in
place of v and ¢ = v/\2.
The free energy density of a solution to (11) is given by

2

1. 1 1 A 1
7 lm ~Glg e pv) = £ —=(?+ 1)+ sp(g+ 1) — E;log(2 cosh(u + /12))

fzﬁrﬁo 24 2

This is how one can derive the free energy curves such as those shown in Figure 1.
If there are multiple solutions to (11), we should take the one with minimum free
energy.

Above, we had a Gibbs distribution corresponding to the posterior distribution
of a Bayesian inference problem. In this setting, the replica symmetric ansatz is
always correct; this is justified by a phenomenon in statistical physics: “there is no
static replica symmetry breaking on the Nishimori line” (see e.g. [ZK16, Nis01]).

More generally, one can apply the replica method to a Gibbs distribution that
does not correspond to a posterior distribution (e.g. if the ‘temperature’ of the
Gibbs distribution does not match the signal-to-noise of the observed data). This
is important when investigating computational hardness of random non-planted or
non-Bayesian problems. In this case, the optimal (lowest free energy) saddle point
can take various forms, which are summarized below; the form of the optimizer
reveals a lot about the structure of the Gibbs distribution. An important property
of a Gibbs distribution is its overlap distribution: the distribution of the overlap
between two independent draws from the Gibbs distribution (in the large » limit).

e RS (replica symmetric): The overlap matrix is ¢, = 1 and ¢ = ¢ for
some g € [0,1]. The overlap distribution is supported on a single point
mass at value q. The Gibbs distribution can be visualized as having one
large cluster where any two vectors in this cluster have overlap ¢. This
case is “easy” in the sense that belief propagation can easily move around
within the single cluster and find the true posterior distribution.

e 1RSB (1-step replica symmetry breaking): The r x r overlap matrix takes
the following form. The r replicas are partitioned into blocks of size m.
We have quq = 1, gup = q1 if a,b are in the same block, and g, = g2
otherwise (for some ¢1,q2 € [0,1]). The overlap distribution is supported
on ¢; and ¢o. The Gibbs distribution can be visualized as having a constant
number of clusters. Two vectors in the same cluster have overlap g; whereas
two vectors in different clusters have overlap ¢». This case is “hard” for
belief propagation because it gets stuck in one cluster and cannot correctly
capture the posterior distribution. The idea of replica symmetry breaking
was first proposed in a groundbreaking work of Parisi [Par79].

e 2RSB (2-step replica symmetry breaking): Now we have “clusters of clus-
ters.” The overlap matrix has sub-blocks within each block. The overlap
distribution is supported on 3 different values (corresponding to “same sub-
block”, “same block (but different sub-block)”, “different blocks”). The
Gibbs distribution has a constant number of clusters, each with a constant
number of sub-clusters. This is again “hard” for belief propagation.

e FSRB (full replica symmetry breaking): We can define kRSB for any % as
above (characterized by an overlap distribution supported on k + 1 values);
FRSB is the limit of kRSB as k — co. Here the overlap distribution is a
continuous distribution.
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e d1RSB (dynamic 1RSB): This phase is similar to RS and (unlike kRSB for
k > 1) can appear in Bayesian inference problems. The overlap matrix is
the same as in the RS phase (and so the replica calculation proceeds exactly
as in the RS case). However, the Gibbs distribution has exponentially-many
small clusters. The overlap distribution is supported on a single point mass
because two samples from the Gibbs distribution will be in different clusters
with high probability. This phase is “hard” for BP (or AMP) because it
cannot easily move between clusters. For a Bayesian inference problem, you
can tell whether you are in the RS (easy) phase or 1dRSB (hard) phase by
looking at the free energy curve; 1dRSB corresponds to the “hard” phase
(¢) in Figure 1.
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