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The cellular responses to abiotic and biotic stress rely on the

regulation of vesicle trafficking to ensure the correct

localization of proteins specialized in sensing stress stimuli and

effecting the response. Several studies have implicated the

plant trans-Golgi network (TGN)-mediated trafficking in

different types of biotic and abiotic stress responses; however,

the underlying molecular mechanisms are poorly understood.

Further, the identity, specialization and stress-relevant cargo

transported by the TGN subcompartments involved in stress

responses await more in depth characterization. This review

presents TGN trafficking players implicated in stress and

discusses potential avenues to understand the role of this

dynamic network under such extreme circumstances.
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The plant trans-Golgi network (TGN) is an intriguingly

versatile organelle orchestrating the traffic of transport

vesicles between Golgi, plasma membrane (PM), late

endosomes and vacuoles [1–3]. We stand far from finaliz-

ing a map that functionally contextualizes the multiple

players of TGN mediated trafficking under resting and

stress conditions. TGN’s apparent heterogeneity, intense

dynamics and internal functional overlaps represent, per-

haps, the greatest obstacles.

The main molecular players of TGN mediated trafficking

can be functionally categorized into SNAREs, small

GTPases, tethering factors and various types of regula-

tors, such as guanine nucleotide exchange factors (GEF),

GTPase activating proteins (GAP) and guanine dissocia-

tion inhibitors (GDI). SNARE proteins assemble into
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complexes that catalyze the fusion between a donor

and a target membrane. Tethering factors, amongst other

proposed functions, aid bring the membranes into close

proximity for an efficient SNARE activity. Finally, the

selective recruitment of tethers during membrane fusion

is controlled by different small GTPases, such as those in

the RAB family, whose activity is, in turn, regulated by

GEFs, GAPs and GDIs. Excellent articles review the

biochemistry and trafficking functions of these players [4–

8]; here we focus on their involvement in TGN mediated

intracellular trafficking associated with plant stress

responses (Figure 1, Table 1).

SNARE proteins and RAB GTPases function in
compartmentalized TGN mediated trafficking
of stress response cargo
The SNARE Syntaxin of Plants 61 (SYP61) defines a

TGN compartment transporting essential cargo along

both the secretory and endocytic pathways [9�,10]. An

Arabidopsis mutant of SYP61, osm1 (for osmotic stress-

sensitive mutant), is hypersensitive to salt and osmotic

stress, demonstrating a role for the syntaxin or the SYP61

vesicle cargo in abiotic stress responses [11�] (Figure 1a).

The SYP61 vesicle’s proteome revealed the presence of

cell wall components, such as Cellulose Synthase Com-

plexes (CSC) [9�]. Examples of cellulose deficient

mutants displaying enhanced sensitivity to salt stress

include the recently characterized she1 and she2, affecting

Cellulose Synthase 6 and Cellulose Synthase-Interactive

Protein CSI1, respectively [12]. Whether the salt pheno-

type of osm1 is caused, at least partly, by an altered CSCs

transport to/recycling from the PM or it is the result of

altered deposition of cell wall components is yet to be

determined. More direct, cargo-centered evidence for a

potential, specialized role of the SYP61 compartment in

post-Golgi trafficking during responses to salinity and

other stresses thus warrants verification.

The TGN resident syntaxins SYP42 and SYP43 were also

identified in the SYP61 proteome [9�] and the syp42 syp43
double mutants are hypersensitive to salt and osmotic

stress [13]. Interestingly, SYP42 and SYP43 have also

been implicated in plant responses to both non-adapted

and host-adapted fungi (Figure 1b). When inoculated

with non-adapted Erysiphe pisi, leaves of the mutant

display more secondary hyphae formation, compared to

wild type plants, suggesting a role for SYP42 and SYP43 in

secretion of cargo relevant to disease resistance responses.

Intriguing observations were made upon inoculation of

syp42 syp43 mutants with the host-adapted Golovinomyces
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Simplified illustration of potential roles for selected SYP61-associated TGN/EE players in plant abiotic (a) and biotic (b) stress responses.

(a) Roles for the TGN resident syntaxins SYP61, SYP42 and SYP43, the small GTPase RABA1A and the putative tethering factor TNO1, in

trafficking of salt stress response effectors have been suggested. Cellulose Synthase Complexes (CSC) are SYP61 compartment cargo and their

activity at the PM is necessary not only for growth under normal conditions but also for stress tolerance. Aquaporins regulate water flow across

www.sciencedirect.com Current Opinion in Plant Biology 2018, 46:122–129
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Table 1

TGN trafficking players involved in plant stress responses

Protein Category Function Localization Abiotic Biotic

SYP61 Q-SNARE membrane fusion TGN/EE, PM

[9�,10]
salt, mannitol, drought [11�] –

SYP42/43 Q-SNARE membrane fusion TGN/EE [9�,13] salt, osmotic stress [13] Erysiphe pisi,

Golovinomyces

orontii [14]

SYP121 Q-SNARE membrane fusion TGN/EE, PM

[9�,16]
drought [15] Blumeria graminis

f.sp. hordei [16]

RABA1A-D small GTPase regulation of vesicle trafficking TGN/EE [20] salt [20] –

TNO1 long-coiled coil

tethering factor

membrane tethering TGN/EE [9�,43�] salt, ionic, mannitol [43�] –

ROG2 MTC (putative

TRAPP complex subunit)

membrane tethering TGN/EE [9�]a salta oligogalacturonide

response [48]

HIT1/

AtVPS53

MTC (subunit of

GARP and EARP)

membrane tethering TGN/EE, Golgi

[49]

heat, mannitol [49,50] –

VHA-a1 V-ATPase H+ pump TGN/EE [26�] salt [38] –

NHX5/6 antiporter exchange H+/Na+ or K+ TGN/EE, Golgi,

PVC [40,41�]
salt [40,41�] –

PVC: Prevacuolar Compartment.
a Rosquete, Worden, Drakakaki, unpublished results.
orontii. The striking leaf chlorosis, compared to wild type

plants, hinted at a function of SYP42 and SYP43 in a

pathogen-inducible and SA-dependent pathway required

for chloroplast function during biotic stress [14].

SYP121 is a PM SNARE protein that also partially colo-

calizes with SYP61 and is present in the SYP61 proteome

[9�]. Nicotiana tabacum SYP121 (SYR1) was identified in

a screen for signaling factors associated with response to

abscisic acid and drought [15]. Further, Arabidopsis

mutants of SYP121 (PEN1) showed increased penetra-

tion by barley powdery mildew Blumeria graminis f.sp.
hordei [16]. The specific interaction of SYP121 with TGN/

EE-associated VAMP721/722 in plant cells implies that

VAMP721/722 vesicles carry defense cargo [17]

(Figure 1b). More recently, the interaction of SYP121

with SYP61, likely within a SNARE complex, was shown

to be required for the delivery of the aquaporin PIP2;7 to

the PM [18�]. Aquaporins, major regulators of water flux

through the PM, play a key role in maintaining water

homeostasis and balance under different environmental

stress conditions (reviewed in [19]). An involvement of

SYP121 in salt stress responses, through its interaction

with SYP61 or a SYP61 mediated trafficking pathway,

seems possible.
(Figure 1 Legend Continued) the PM, which is critical during the salt stres

and retrograde trafficking of the aquaporin PIP2;7.

(b) A role for SYP42 and SYP43 in limiting the formation of fungal hyphae th

The putative Arabidopsis TRAPP protein ROG2, depicted as part of an elus

signaling (dashed blue arrow) triggered by the wall associated kinase recep

The SNAREs SYP121 and VAMP72 transiently associate with the SYP61 co

membrane. TGN: trans-Golgi Network.
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TGN associated Arabidopsis GTPases in the RABA1 sub-

family are involved in secretory trafficking [20]. Quadruple

mutants of the RABA1A–D isoforms as well as those

expressing the dominant-negative mutant of RABA1B

are hypersensitive to salinity [20]. A role in the salt stress

response has also been demonstrated for endosomal

RABF1 (ARA6) [21,22]. ARA6 has not been localized to

TGN in Arabidopsis [21]; however, its homologue in Chara
australis, CaARA6, displays TGN, PM and multivesicular

endosomes localization, suggesting an involvement of the

small GTPase in TGN/EE-mediated transport [23].

Although several GTPases have been identified in TGN

proteomes [9�,24�,25�], more studies are necessary to verify

whether they define different TGN subcompartments and

how they may regulate stress responses.

The plant TGN not only operates along the secretory

pathway but it also acts as an early endosome (EE)

[26�,27�] and endocytic processes are activated as part

of the cellular response to a variety of stresses including

salinity, high extracellular boron, ammonium and iron

[28–31]. The endosome-PM recycling rates of the aqua-

porins AtPIP1;2 and AtPIP2;1 but not their overall endo-

somal localization, experience a boost in root cells under

salt stress, as shown with a combination of FRAP and
s response. The SYP61 compartment has been implied in anterograde

rough a secretory function of these syntaxins has been suggested.

ive TGN-localized TRAPP tethering complex, regulates the intracellular

tor WAK2 upon recognition of oligogalacturonides during biotic stress.

mpartment and are involved in pathogen responses. PM: plasma

www.sciencedirect.com
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trafficking inhibitors [32]. Also, stress-induced, clathrin-

mediated endocytosis is involved in the transport of

AtPIP2;1 to the vacuole, under salinity [33]. A recent

excellent review describes the roles of endomembrane

trafficking in biotic stress responses [34].

TGN pH homeostasis is critical for the cellular
response to stress
Luminal pH along the endomembrane system is tightly

regulated by the coordinated function of vacuole-type

H+-ATPases (V-ATPases), NHX antiporters specialized

in the exchange of H+ for Na+ or K+ and counter anion

transporters, exemplified by the TGN associated AtCLC-

d (reviewed in [35,36]). Interfering with TGN luminal

pH leads to secretory and recycling defects, as shown by

det3, an Arabidopsis mutant of the cytosolic V-ATPase

subunit C (VHA-C), required for V-ATPase activity at the

TGN/EE. These plants display defective TGN/EE acid-

ification, defective recycling of the brassinosteroid recep-

tor BRI1 and reduced cellulose content [37�]. Mutants of

the TGN localized H+ pump VHA-a1 are sensitive to salt

stress [38]. It is likely that the salt sensitivity of vha-a1
arises from a disturbed trafficking of salt stress protectors,

mediated by the VHA-a1 TGN/EE compartment. Inter-

estingly, two recently characterized components of the

Cellulose Synthase Complex, CC1 and CC2 (for com-

panion of Cellulose Synthase) were proposed to

‘safeguard’ CSCs activity during salt stress by promoting

the assembly of a ‘salt-tolerant microtubules array’. In

doing so, CC1/2 counteract the salt-induced depolymeri-

zation of cortical microtubules, which are necessary for

CSCs presence at the PM. CC1/2 colocalized with the

TGN marker VHA-a1 in this study [39�]. It would be thus

interesting to explore how salt stress responses alter the

dynamics and/or the cargo transported by the VHA-a1

compartment.

NHX5 and NHX6 localize to Golgi, TGN and prevacuo-

lar compartments and are required for cell elongation,

growth and vacuolar trafficking [40,41�]. Double nhx5
nhx6 knockouts contain a more acidic TGN, as indicated

by in vivo pH measurements, and are salt hypersensitive

[40]. In line with these results, overexpression of

AtNHX5 leads to enhanced salt tolerance [42]. Interest-

ingly, gene ontology analysis of the Arabidopsis nhx5 nhx6
transcriptome revealed an enrichment of stress-related

factors, such as abscisic acid (ABA) receptors, ABA signal

transducers and cell wall modifying enzymes, in compar-

ison with wild type plants [41�], suggesting a role of TGN

/EE not only in salt stress response but also in its

perception.

Roles of TGN tethering factors in the stress
response. Versatile TRAPPs might prove
pivotal
Tethering factors facilitate vesicle fusion events

upstream of SNAREs. In the subclass of long coiled-coil
www.sciencedirect.com 
tethers, only the putative TNO1 (for TGN-localized

SYP41-interacting protein) has been so far described in

plant TGN, where it is required for efficient vacuolar

trafficking [43�]. tno1 mutants display increased sensitiv-

ity to salt and osmotic stress, and SYP61 mislocalization. It

is thus plausible that the altered SYP61 trafficking

observed in tno1 results in defective transport to the

PM of salt stress response effectors, such as cation trans-

porters, a hypothesis also advanced for osm1 mutants’ salt

hypersensitivity [11�,43�].

In addition to TNO1, several Arabidopsis orthologues in

the TRAPP family of multisubunit tethering complexes

(MTC) (reviewed in [7,8]) are enriched in the TGN

proteome [9�,24�,25�]. TRAPPs have been well charac-

terized in yeast and mammalian cells, where they mediate

processes such as endoplasmic reticulum (ER)-to-Golgi

traffic, Golgi-mediated trafficking and autophagy [7,8,44].

Regarding plant TRAPPs, very little is known about their

functions and organization into complexes; however, their

evolutionary conservation in Arabidopsis suggests their

involvement in multiple plant trafficking pathways. The

only plant TRAPP subunits characterized to date are

AtTRS33, AtTRS120 and AtTRS130, which localize to

TGN and whose corresponding mutants exhibit secretion

and cytokinesis defects [45–47]. So far, no direct involve-

ment of these plant TRAPPs in stress responses has been

reported. At5g65950 is a putative Arabidopsis TRAPP

overrepresented in the SYP61 proteome [9�], which was

also identified in a response to oligogalacturonide (OG), a

pectin oligosaccharide normally elicited as part of patho-

gen defense [48]. rog2 (for response to oligogalacturo-

nides), a mutant of this putative TRAPP, suppressed the

curly leaf and stunted growth phenotypes caused by a

hyperactive dominant allele of the wall associated kinase

WAK2, involved in the OG response [48]. Such result

implicates ROG2 in signaling during biotic stress

(Figure 1b). In addition, the same mutant is hypersenti-

tive to salinity (Rosquete, Worden and Drakakaki,

unpublished results), suggesting a role of this putative

TRAPP member also in abiotic stress responses. Alto-

gether, this shows the amazing plasticity of the multi-

subunit tethering complexes in the regulation of plant

development and plant stress responses.

TGN associated lipids. Stress response cargo
and beyond
Homologues for mammalian genes encoding different

subunits of the TGN localized MTC GARP exist in

the Arabidopsis genome. The plasma membrane of

hit1/atvps53, a mutant of the putative Arabidopsis ortho-

logue GARP subunit, is unstable under heat stress, indi-

cating a role for GARP-regulated retrograde trafficking to

Golgi, via TGN/EE, in heat tolerance [49,50]. Plant cells

readjust the relative abundance of saturated versus unsat-

urated lipids at the PM to better cope with elevated

temperatures [51]. Given that fatty acids synthesis is
Current Opinion in Plant Biology 2018, 46:122–129
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confined to the plastids and the endoplasmic reticulum,

such readjustments most likely require transport of lipids

to the PM [52]. Interestingly, a recent approach combin-

ing vesicle isolation and lipidomics revealed that the

SYP61 subcompartment, unlike the RABA2A, is enriched

in sphingolipids with a-hydroxylated acyl-chains of at

least 24 carbon atoms [53��]. Although Wattelet-Boyer

et al. examined the physiological relevance of the SYP61

population’s distinctive lipid composition in the context

of PM protein polar sorting (PIN2 auxin carrier), their

findings opened avenues for the study of unexplored roles

of TGN compartments in trafficking of PM lipids impli-

cated in stress response. Equally exciting, changes in

membrane lipid composition are known to trigger signal-

ing events, which in turn are indispensable for the

orchestration of stress responses. Currently, lipid-medi-

ated signaling at the plant Golgi/TGN interphase has not

been reported; however, phosphatidic acid levels and the

activity of Phospholipase D have been shown to play roles

in the release of secretory vesicles from the mammalian

TGN [54,55]. It is tempting to speculate that the forma-

tion and budding of plant TGN vesicles transporting

stress cargo are subjected to regulation by stress. It is

known, for example, that Golgi-independent TGN sub-

populations are highly abundant in the root differentia-

tion zone, in contrast with the meristematic region [56]. It

is possible that similarly to developmental cues, environ-

mental factors determine changes in the relative abun-

dance of different TGN subpopulations and these are

tuned to meet specific trafficking demands during stress

responses.

Cell wall modification in response to stress. A
plant-specific, specialized trafficking role for
TGN
The TGN/EE fulfills a specialized function in plant cells,

that is, coordinating the secretion of cell wall components,

including structural polysaccharides (pectins, hemicellu-

loses), cell wall structural proteins, cellulose synthase

complexes and enzymes that modify the cell wall

[57,58]. The protein cargo of the SYP61 TGN compart-

ment includes Cellulose Synthases, Callose Synthases

and cell wall modifying enzymes, and its polysaccharide

cargo profile is currently being characterized (Drakakaki

lab, unpublished results). Defective xyloglucan and pec-

tin secretion are observed in mutants of the SYP61

associated, trafficking regulators ECHIDNA and the

RAB GTPase-interacting proteins YIP4A and YIP4B,

demonstrating the involvement of the SYP61 TGN com-

partment in trafficking of cell wall material [59,60]. In

addition, defective recycling of CSCs to the PM and

reduced cellulose content were observed in the Arabi-

dopsis mutant det3 (discussed above), correlating with

perturbed TGN motility [37�]. Cell wall polysaccharides

are modified during stress [61]. For example, in wheat,

increased size of the pectic polymers rhamnogalacturonan

I and II correlates with drought tolerance [62] while
Current Opinion in Plant Biology 2018, 46:122–129 
enhanced secretion of wall modifying beta-glucanases

wass observed in a drought-sensitive cultivar [63]. Fur-

ther, TGN cargo GSL5, a member of the Arabidopsis

family of Callose Synthases, is implied in the deposition

of callose at sites of fungal infection [9�,24�,25�,64],
indicating a prominent role of the TGN in plant stress

responses through the sorting and transport of cell wall

components.

Dissecting the roles of TGN in the plant stress
response
Tools for plant glycomics, including carbohydrate micro-

arrays, have rapidly developed [65,66] and vesicle glyco-

protein profiling starts to emerge in the mammalian field,

as shown in a recent glycome analysis of extracellular

vesicles derived from human stem cells [67]. Plant vesicle

glycomes, such as that of the SYP61 compartment, and

the availability of new probes for dynamic glycan imaging

([68], reviewed in [69]) could help shed light on a likely

differential Golgi/TGN sorting and transport of polysac-

charides during stress responses

Several examples of proteomic studies in crop plants,

aiming to unravel the contribution of organelle-specific

proteins to stress responses and covering stress stimuli as

diverse as drought and heavy metals exist [reviewed in

Ref. [70]]; however, TGN as an organelle has received

scarce attention in those approaches likely due to its

complex dynamics and nature. Vesicle isolation and

proteomic analyses with focus on the plant endomem-

brane system and its different compartments have started

to illuminate TGN populations’ cargo [71]. While still

emerging, their potential future use in combination with

transcriptomics, lipidomics, glycomics and metabolomics

techniques, offers great promise for the elucidation of

TGN cargo selectively transported as part of the different

plant stress responses as well as stress-related trafficking

regulators.

In addition to sorting of specialized cargo, the plant

response to stress includes reprogramming of TGN/EE

vesicle trafficking dynamics along existing routes, illus-

trated by the enhanced endosome-PM recycling rates of

the aquaporins AtPIP1;2 and AtPIP2;1 under salt stress

[32]. Other similar dynamic readjustments likely verify in

stressed cells and include fine tuning of the activity of

TGN trafficking regulators but are currently uncharacter-

ized. Recent advances, such as the generation of a FRET

(Förster resonance energy transfer)-based probe for the in
vivo, spatiotemporal monitoring of changes in the activity

of a rice small GTPase in response to stress [72], are

paving the way.

Mathematical and biophysical approaches that exploit

high resolution 4D imaging transport data could also

reveal very valuable to describe stress-triggered traffick-

ing dynamics readjustments. Computational modelling
www.sciencedirect.com
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has proved useful to study biophysical aspects of intra-

cellular trafficking, such as membrane remodeling

[73,74]. Recently, the use of Spatio-Temporal Image

Correlation Spectroscopy, a technique that measures

the directed transport or flow of proteins inside living

cells, in combination with computer simulations enabled

the establishment of a time course of cell plate formation

that included the spatial and temporal pattern of vesicle

incorporation to the forming plate [75]. This, and similar

approaches offer great potential for the assessment of

global and pathway-specific TGN dynamic fluctuations

associated with plant physiological responses, still poorly

explored.
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