FIOOOResearch

F1000Research 2019, 8(F1000 Faculty Rev):153 Last updated: 17 MAY 2019

REVIEW

'.) Check for updates

Recent advances in gene function prediction using
context-specific coexpression networks in plants [version 1;

peer review: 2 approved]

Chirag Gupta =, Andy Pereira

Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA

V1 First published: 05 Feb 2019, 8(F1000 Faculty Rev):153 (
https://doi.org/10.12688/f1000research.17207.1)

Latest published: 05 Feb 2019, 8(F1000 Faculty Rev):153 (
https://doi.org/10.12688/f1000research.17207.1)

Abstract

Predicting gene functions from genome sequence alone has been difficult,
and the functions of a large fraction of plant genes remain unknown.
However, leveraging the vast amount of currently available gene
expression data has the potential to facilitate our understanding of plant
gene functions, especially in determining complex traits. Gene
coexpression networks—created by integrating multiple expression
datasets—connect genes with similar patterns of expression across
multiple conditions. Dense gene communities in such networks, commonly
referred to as modules, often indicate that the member genes are
functionally related. As such, these modules serve as tools for generating
new testable hypotheses, including the prediction of gene function and
importance. Recently, we have seen a paradigm shift from the traditional
“global” to more defined, context-specific coexpression networks. Such
coexpression networks imply genetic correlations in specific biological
contexts such as during development or in response to a stress. In this
short review, we highlight a few recent studies that attempt to fill the large
gaps in our knowledge about cellular functions of plant genes using
context-specific coexpression networks.
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The most important utility of gene coexpression networks
(GCNs) is in expanding the current state of functional annota-
tions of plant genes. The time-honored technique of genetic
screens and loss-of-function mutant analyses for gene function
characterization has obvious limitations' and has mapped the
functions of only about 24% of all genes in the model plant
Arabidopsis thaliana (The Arabidopsis Information Resource
(TAIR) portal: https://bit.ly/2Ak85Zu). The most alarming fact
is that less than 1% of all known genes in important crops like
maize and rice have experimentally identified functions>’. The less
precise orthology-based function assignments are still the
default method for newly sequenced plant genomes‘. However,
despite having a great degree of similarity in sequence or protein
domains, genes can evolve for divergent functions’, especially
those involved in specialized metabolism (SM)°, leaving younger
plant genes less annotated’. Nevertheless, homology-based
function annotations are coupled with other experimentally
derived manual annotations® and made available as Gene
Ontologies (GOs) for several plant species’. The plant GO and
other function annotation catalogs'*'" provide excellent leads, or
a priori evidence, to enhance the development of GCNs that
offer a scalable and dynamic framework for prediction of gene
functions in silico.

GCNs are constructed by connecting pairs of genes if they
have high (statistically determined) correlation in their expres-
sion profiles across a large set of samples (Figure 1 legend).
Coexpressed gene pairs often represent functional coupling, such
as through coordinate regulation of specific pathways. Identi-
fying and connecting gene pairs at the genome-wide level are
ultimately what reconstruct a network, which is a graphical and
mathematical abstraction of functional associations among genes
in the cellular states being examined. Much like in commu-
nity analysis of human social networks'’, extraction of densely
connected gene communities becomes the next step in gene
network analysis. The general idea is that because the genes in
each community have a higher degree of coexpression, they
are more likely to be under the same regulatory program that
dictates their expression and therefore might also be function-
ally related"”. These communities are broadly referred to as
“clusters” or “modules” of coexpressed genes.

Biological insights from the resulting clustering data can be
gained by using well-established computational approaches
in gene set analysis (GSA). A wide variety of GSA methods
are available that can be used to evaluate whether a predicted
module is significantly over-represented with genes already
annotated for certain functional categories representing biologi-
cal processes or pathways'*"'. These predefined functional gene
sets for plants can be obtained from annotation catalogs like
the GO', the MapMan bins"”, and other pathway databases™.
GSA therefore enables propagation of known function infor-
mation from already annotated genes within each module to
genes yet unannotated. However, this technique has several cave-
ats’’, and the strength of gene function prediction in this man-
ner depends largely on the quality and expanse of available
annotations for the species under consideration. Additionally, a
well-designed statistical framework for detecting familiar DNA
motifs, or a de novo motif search, in the promoters of module
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genes potentially links transcription factors (TFs) as putative
regulators of module expression®*.

Coexpressed gene modules: a treasure trove for plant
development and stress biologists

The typical steps involved in construction of GCNs are shown
in Figure 1. Some studies report pre-computed global plant
gene networks in the form of web applications that provide
excellent resources and tools for users to query and visualize
subnetworks of interest*~’. The popular methods, challenges,
and caveats associated with construction and use of GCNs are
reviewed by others’' .

Whereas the construction of a GCN is fairly simple and straight-
forward, partitioning of a coexpression network into seemingly
diverse functional modules is not a trivial task. Several approaches
of module detection from gene expression are proposed in the
literature and were comprehensively evaluated recently™. Of
these methods, weighted GCN analysis (WGCNA)* has been
embraced by plant biologists as the most popular method to
identify and analyze gene modules in specific developmental
phases of a variety of plant species.

In the context of seed development, Zhan er al.*® profiled gene
expression in different compartments of maize kernels at the
filling stage and identified a module specific to the basal endosperm
transfer layer (a tissue layer important for nutrient transport
during grain filling). This study also found a link to MRP-1 as
a likely regulator of this module by analyzing cis-regulatory
elements enriched in the promoter of genes in this module®.
Similarly, an analysis of modules in developing seeds of two
contrasting cultivars of soybean led to the identification of the
role of a cytochrome P450 family gene which increases seed
size and weight upon overexpression’’. In wheat, Wang et al.**
identified a module that showed strong association with spike-
related traits. The authors of this study validated this module
by characterizing three new member genes that showed altered
spike complexity when overexpressed in an elite variety of
wheat™. An attempt to identify modules of seed development
has also been made by using two cultivars of chickpea with
contrasting seed size and weight” and seeds of two different
species of cotton®’.

To study the development of woodland strawberry (Fragaria
vesca) fruits, Shahan et al.'' created three separate coexpres-
sion networks: one represented early-stage floral tissues,
another spanned the development of pre-fertilized flower to
fruits, and the third represented fruits at the ripening stages®'.
These networks were helpful in establishing the role of the
ghost tissue in iron transport post-fertilization’'. To mine these
networks, the authors of this study built an interactive web
interface, which is of value to other users in the field (www.
fv.rosaceaefruits.org).

These recent studies have highlighted the efficacy of the WGCNA
as a quick and easy method to process new, high-resolution
developmental transcriptomes and recover plant gene modules.
However, assessing the stability of predicted modules and per-
formance in terms of accuracy is highly desirable for generating
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Figure 1. Coexpression network analysis workfl w. A gene coexpression network is constructed by integrating gene expression profiles
from a large compendium of datasets. The datasets can be sampled from public repositories like the Gene Expression Omnibus* and quite
often are chosen in a manner that represents a unifying biological context (for example, response to abiotic stress or specific tissues/organs
of the plant). Correlations in expression profiles of all gene pairs across all samples then are calculated by using a similarity measure
such as PCC (Pearson’s correlation coefficient), Ml (mutual information), MR (mutual rank)*°, or HRR (highest reciprocal rank)*. Statistically
significant gene pairs then are linked to each other, and the resulting network is clustered by using a module detection algorithm such as
WGCNA (weighted gene coexpression network analysis) in R, HCCA (heuristic cluster chiseling algorithm)*, or the k-means clustering,
where k determines the number of clusters. These algorithms identify densely connected network neighborhoods, or modules, that may
harbor genes of a common function, pathway, or regulon of a transcription factor (TF) complex. These functional and regulatory attributes of
gene modules can be statistically tested by using gene sets from “gold standard” function annotation data. Most often, not all genes within
a predicted module have a function annotation, but if the module is significantly enriched with genes known for certain biological process,
the functions of other unknown genes can be imputed. Quite often, these data are organized as databases and presented as webtools.
(MySQL is a Structured Query Language-based database management system, and PHP is a server-side scripting language.) A community-
driven approach is taken to use the data and predict the function(s) of uncharacterized genes. Experimentally validated gene functions
then are added to the existing gold standard to further refine the computational predictions in future experiments. The whole process tends
to accelerate the process of identifying uncharacterized genes for specific biological processes. FET, Fisher’'s exact test; GSEA, gene set
enrichment analysis; HG, hypergeometric test; PAGE, parametric analysis of geneset enrichment.

new hypotheses*>*°. For example, Shahan et al.'' found little 10-20 modules per dataset) in a non-exhaustive manner under

overlap between clusters obtained by multiple WGCNA runs
each with a different subsampling of genes. Through various
numerical experiments, the authors suggest that a consensus
clustering scheme is much more robust in terms of predict-
ing true functional relationships between genes'. Also, the
WGCNA method implicitly decides on the number of modules
to produce from the dataset and, as evident from the afore-
mentioned studies, typically retrieves very few modules (about

default settings. It is still unclear whether this is due to the
nature of underlying datasets or whether other relevant modules
(or subnetworks within the identified WGCNA modules) still
exist in these development networks. We believe that a vast
majority of plant transcriptomes are still under-utilized in the
retrieval of biologically relevant information. Secondary analy-
ses of these datasets can reflect on new knowledge pertaining
to the originally assayed biological processes, especially the
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role of regulatory genes'**, which is often overlooked in terms
of the potential in typical GCN analysis.

In another type of module identification setting, the goal is to
cluster a GCN by using a graph clustering algorithm optimized to
detect a large number of dense modules. This type of study
aims to partition the GCN into many functionally cohesive gene
modules, typically in the range of a few hundred modules per
network. This is a desirable property of biological network
analysis, and several algorithms exist that allow the user to define
module size as desired"*". A large number of dense modules
would likely separate large metabolic pathways and biological
processes into their constituent parts. Intuitively, an impor-
tant cautionary aspect of such an analysis is controlling the
granularity of resulting modules®'. Very large modules will fail to
answer the fundamental question of why the genes are clustered
that way. It becomes difficult to explain the regulatory cohesive-
ness of large modules, as these will incorporate genes that lie
on distant bifurcated branches of large metabolic pathways that
show significant levels of correlation in expression®. Conversely,
a finer granularity will break the network into too many very
small modules (fewer than 10 genes), essentially hampering the
statistical process of establishing any functional or regulatory
context for these modules, rendering them unusable.

A balance between the number of modules, average module
size, and other network topological features such as separa-
tion (how functionally isolated each module is from other mod-
ules) and density (how well genes within each module form a
clique) should be carefully monitored by tuning parameters of
the clustering algorithm™>*. For example, modules in the Rice
Environment Coexpression Network (RECoN)* were identified
by optimizing the parameters of a graph-based clustering
algorithm that works under the principle that functionally related
genes have denser connections within a network™. With con-
trolled minimum cluster size and density threshold to partition
the network, 1744 dense abiotic stress—associated rice modules
were extracted from RECoN. Most of these modules contain
genes sharing related GO terms and thus can be used as gene sets
(in addition to gene sets from GO and other function databases)
in enrichment analysis of new differential expression profiles.
The RECoN webtool (available at https://bit.ly/2BOky7x) also
provides a window to mine undiscovered novel modules associ-
ated with tolerance to abiotic stresses in rice”.

An example of a graph-based clustering algorithm applied
to a developmental context in rice is the RiceAntherNet,
which delineated 545 modules related to anther and pollen
development™. Of these, 29 modules that contain differentially
expressed genes in nine previously known male sterile mutant
lines are regarded as important to anther development®. This
study also compared the rice anther modules to modules in
FlowerNet, a GCN for anther and pollen development in
Arabidopsis™, and found a significant amount of conservation of
gene coexpression between rice and Arabidopsis during anther
development.

GCNs have also been instrumental in the discovery of novel bio-
logical phenomena. For example, the conservation of a longevity
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module between Medicago truncatula and Arabidopsis suggests
conserved genetic pathways related to defense mechanisms™.
Phylogenetic conservation of coexpression modules was exam-
ined in greater detail recently for several model plants’. One
of the observations of this study was that genes from the same
phylostratum tend to be more frequently connected in GCNs’,
suggesting new uses of existing GCNs in extrapolating gene
functions of lesser-studied plant species. Moreover, it has been
shown that coexpression, rather than physical proximity on
chromosomes (biosynthetic gene clusters), is a more reliable
signal for predicting genes involved in SM”. Understanding the
mechanisms of SM is of great interest in the study of medicinal
plants™.

The curious case of transcription factors

Another desirable characteristic of coexpression network mod-
eling is incorporating information about regulatory interactions
in the process of module identification. This type of study leads
to the discovery of modular gene regulatory networks (GRNs).
GRNs are different from GCNs in the sense that GCNs treat
TF and non-TF nodes (genes) similarly whereas GRN involves
sophisticated reverse-engineering algorithms that operate on TFs
differently. The objective of a GRN is to capture direct, causal
edges between TF and their putative targets and filter spurious
indirect correlations that naturally arise in coexpression data.

Biological interpretations of predicted GRNs depend largely
on the type of transcriptional dataset used. A meta-analysis by
Marbach et al.”” shows that expression data from TF knockouts
or overexpression experiments can be very informative in
predicting targets but this type of data is useful mostly for
capturing downstream regulatory effects®”*’. On the other hand,
time-series expression data can capture temporal dynamics of
regulatory networks more systematically®>®. For example, a
time-series transcriptome dataset was used to predict GRNs
active for lateral root initiation in Arabidopsis, which revealed
genetic cascades involved in positive and negative feedback
loops as well as target genes of the AUXIN RESPONSE
FACTOR 7%. Steady-state expression data have also been very
useful in regulatory network analysis and predicting TF func-
tion. For example, using a collection of gene expression datasets
from Arabidopsis seeds, subnetworks associated with desicca-
tion tolerance (DT) were predicted, leading to the identification
of three novel TFs now confirmed for their roles in mediating
seed DT®.

Recently, de Luis Balaguer er al®® developed a dynamic
Bayesian network (DBN)-based framework which showed us
a broader picture of the spatiotemporal dynamics of stem cell
differentiation in the roots of Arabidopsis. Although DBNs are
able to unfold cyclic processes and dependencies in time-
course expression data, they are inherently limited by the
computational complexity which increases with the number of
genes®. The algorithm proposed by de Luis Balaguer et al.”®
seems to circumvent this limitation by applying DBNs to smaller
sets of genes within each spatially distinct coexpressed clus-
ter within the roots. This combination of spatial and temporal
expression data in GRN inference established a new role of PERI-
ANTHIA (PAN) as a stem cell regulator®.
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There are more than a dozen other published algorithms for
inference of GRNs from large-scale expression data. Several
concepts in GRN inference, available algorithms, and their limi-
tations and applications in plant studies are well summarized
by others as a primer to interested researchers® *-"**. An earlier
meta-analysis of some of the popular approaches suggests
integrating predictions from different algorithms to boost the
accuracy of the consensus GRN”. This technique was later
implemented in Arabidopsis stress datasets to predict an oxida-
tive-stress GRN® and was further explored in the development
of a secondary cell wall biosynthesis network”. The authors
of the former study used “coregulated” gene pairs instead of
“coexpressed” gene pairs into the k-means clustering framework
and recovered 572 stress-related modules®.

Because a large sample size can be obtained for Arabidopsis,
it has been a favorite model in many currently reported GRNs.
However, rapidly expanding data repositories allow selection
of interest-appropriate transcriptional datasets’!, encouraging
the application of standard GRN inference techniques to rela-
tively lesser-studied crop genomes. For example, Xiong et al.’’
re-analyzed the maize embryo and endosperm development
dataset’” and predicted modules and regulators involved in the
transport of nutrients to the developing seed*’.

Inference of GRNs can be further enhanced in a direct net-
work framework (non-modular GRNs), where the primary goal
is to explore regulatory targets of a few TFs of interest in more
detail as focused small-scale subnetworks. For example, a com-
bination of transcriptional and chromatin immunoprecipitation
data (ChIP-seq) revealed GRN components involved in coordinate
regulation of root hair growth in Arabidopsis”. Furthermore, an
integrative analysis of ChIP-seq, mRNA-seq, and miRNA-seq
data revealed SEP3 as an upstream regulator of MIR319a and
TCP4, which together form a feed-forward loop to regulate
petal development’®. In the context of GRNs that manifest
during abiotic stresses, Wilkins et al.”” employed the concept of
ERGINs (environmental gene regulatory influence networks) in
rice. They integrated chromatin accessibility data (ATAC-seq)
with the current state of knowledge about putative regulatory
interactions in rice and used these data points as priors to learn
a GRN from expression dataset of five tropical Asian rice
cultivars grown under abiotic-stress conditions in the field as
well as greenhouses. The study identified regulatory interactions
between 113 TFs and 4052 target genes of rice”.

Conclusions

The current state of accumulated plant gene expression data has
immense potential for the discovery of components involved
in complex traits. The property of modularity in gene networks
can be exploited and gene modules treated as fundamen-
tal biological units with dynamic expression and regulatory
properties. The techniques of module extraction have proven to
be very effective in experimental validations while also suggest-
ing a vast scope for improvement in terms of not only statisti-
cal methods used but also how gene networks are perceived and
evaluated for research. As noticed by Gillis and Pavlidis’', one
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has to consider that there are several caveats associated with using
prior knowledge from GO (and other such annotation catalogs)
for function prediction from GCN modules. Predictions can be
very biased toward genes and categories that are extremely well
annotated and can be driven solely by other computationally
predicted annotations rather than empirical evidence.

Transcriptome datasets integrated in a global manner capture
broad, constitutive functional relationships that might not vary
much with different tissues or organs, developmental phases, or
environmental cues like biotic or abiotic stress®’-®. On the other
hand, specifying an overarching biological theme in selection of
datasets offers intuitive concepts that can be objectively tested.
For example, just like individual transcriptomes, GCNs created
to study one particular biological process (for example, seed
development or response to abiotic stress) can be considered
static. Comparison of GCNs constructed from conditionally
distinct samples, or differential coexpression analysis, will
provide valuable information on how plant systems alter their
mechanisms in response to different developmental cues and
environmental perturbations’’’®. Moreover, a comparison of sets
of modules derived under different contexts should potentially
map and distinguish modules that are conserved throughout
growth and development from those that are under constant
rewiring.

One major question that remains is how to systematically pro-
duce a ranked list of genes most relevant to a given trait/process of
interest from these complex interconnected gene relationships
in networks. Information buried within hundreds of thousands
to sometimes millions of predicted functional relationships is
not intuitively tractable for researchers interested in selecting a
few actionable candidate genes relevant to a biological process
of interest. Research toward development of computational tools
capable of wusing gene networks to systematically enrich
gene prioritization pipelines’”” would be extremely useful for
integration with gene lists from genome-wide association
study (GWAS) datasets in a systems genetics approach to probe
complex agricultural traits®!,

It is important to recognize that gene expression data by itself
could have limited potential in deciphering cellular organization,
regulated at various levels. However, we are optimistic about
the future, as integrating signals from heterogeneous molecu-
lar datasets will enable training of smart algorithms to identify
genomic patterns of components already known to be associ-
ated with a phenotype of interest. The trained models then can
be used as predictive tools to discover new genes associated with
the phenotype® and study crop genetics as outlined in recent
reviews* ¥,
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