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Abstract
Predicting gene functions from genome sequence alone has been difficult,
and the functions of a large fraction of plant genes remain unknown.
However, leveraging the vast amount of currently available gene
expression data has the potential to facilitate our understanding of plant
gene functions, especially in determining complex traits. Gene
coexpression networks—created by integrating multiple expression
datasets—connect genes with similar patterns of expression across
multiple conditions. Dense gene communities in such networks, commonly
referred to as modules, often indicate that the member genes are
functionally related. As such, these modules serve as tools for generating
new testable hypotheses, including the prediction of gene function and
importance. Recently, we have seen a paradigm shift from the traditional
“global” to more defined, context-specific coexpression networks. Such
coexpression networks imply genetic correlations in specific biological
contexts such as during development or in response to a stress. In this
short review, we highlight a few recent studies that attempt to fill the large
gaps in our knowledge about cellular functions of plant genes using
context-specific coexpression networks.
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The most important utility of gene coexpression networks  
(GCNs) is in expanding the current state of functional annota-
tions of plant genes. The time-honored technique of genetic 
screens and loss-of-function mutant analyses for gene function  
characterization has obvious limitations1 and has mapped the 
functions of only about 24% of all genes in the model plant  
Arabidopsis thaliana (The Arabidopsis Information Resource 
(TAIR) portal: https://bit.ly/2Ak85Zu). The most alarming fact 
is that less than 1% of all known genes in important crops like 
maize and rice have experimentally identified functions2,3. The less  
precise orthology-based function assignments are still the 
default method for newly sequenced plant genomes4. However, 
despite having a great degree of similarity in sequence or protein  
domains, genes can evolve for divergent functions5, especially 
those involved in specialized metabolism (SM)6, leaving younger 
plant genes less annotated7. Nevertheless, homology-based  
function annotations are coupled with other experimentally  
derived manual annotations8 and made available as Gene  
Ontologies (GOs) for several plant species9. The plant GO and 
other function annotation catalogs10,11 provide excellent leads, or  
a priori evidence, to enhance the development of GCNs that 
offer a scalable and dynamic framework for prediction of gene  
functions in silico.

GCNs are constructed by connecting pairs of genes if they 
have high (statistically determined) correlation in their expres-
sion profiles across a large set of samples (Figure 1 legend).  
Coexpressed gene pairs often represent functional coupling, such 
as through coordinate regulation of specific pathways. Identi-
fying and connecting gene pairs at the genome-wide level are  
ultimately what reconstruct a network, which is a graphical and 
mathematical abstraction of functional associations among genes 
in the cellular states being examined. Much like in commu-
nity analysis of human social networks12, extraction of densely  
connected gene communities becomes the next step in gene  
network analysis. The general idea is that because the genes in  
each community have a higher degree of coexpression, they 
are more likely to be under the same regulatory program that  
dictates their expression and therefore might also be function-
ally related13. These communities are broadly referred to as  
“clusters” or “modules” of coexpressed genes.

Biological insights from the resulting clustering data can be 
gained by using well-established computational approaches 
in gene set analysis (GSA). A wide variety of GSA methods 
are available that can be used to evaluate whether a predicted  
module is significantly over-represented with genes already 
annotated for certain functional categories representing biologi-
cal processes or pathways14–17. These predefined functional gene 
sets for plants can be obtained from annotation catalogs like 
the GO18, the MapMan bins19, and other pathway databases20.  
GSA therefore enables propagation of known function infor-
mation from already annotated genes within each module to  
genes yet unannotated. However, this technique has several cave-
ats21, and the strength of gene function prediction in this man-
ner depends largely on the quality and expanse of available 
annotations for the species under consideration. Additionally, a 
well-designed statistical framework for detecting familiar DNA 
motifs, or a de novo motif search, in the promoters of module 

genes potentially links transcription factors (TFs) as putative  
regulators of module expression22,23.

Coexpressed gene modules: a treasure trove for plant 
development and stress biologists
The typical steps involved in construction of GCNs are shown 
in Figure 1. Some studies report pre-computed global plant 
gene networks in the form of web applications that provide  
excellent resources and tools for users to query and visualize  
subnetworks of interest24–30. The popular methods, challenges, 
and caveats associated with construction and use of GCNs are  
reviewed by others31–33.

Whereas the construction of a GCN is fairly simple and straight-
forward, partitioning of a coexpression network into seemingly  
diverse functional modules is not a trivial task. Several approaches 
of module detection from gene expression are proposed in the 
literature and were comprehensively evaluated recently34. Of  
these methods, weighted GCN analysis (WGCNA)35 has been 
embraced by plant biologists as the most popular method to  
identify and analyze gene modules in specific developmental  
phases of a variety of plant species.

In the context of seed development, Zhan et al.36 profiled gene 
expression in different compartments of maize kernels at the  
filling stage and identified a module specific to the basal endosperm 
transfer layer (a tissue layer important for nutrient transport  
during grain filling). This study also found a link to MRP-1 as 
a likely regulator of this module by analyzing cis-regulatory  
elements enriched in the promoter of genes in this module36.  
Similarly, an analysis of modules in developing seeds of two 
contrasting cultivars of soybean led to the identification of the  
role of a cytochrome P450 family gene which increases seed 
size and weight upon overexpression37. In wheat, Wang et al.38  
identified a module that showed strong association with spike-
related traits. The authors of this study validated this module 
by characterizing three new member genes that showed altered 
spike complexity when overexpressed in an elite variety of  
wheat38. An attempt to identify modules of seed development 
has also been made by using two cultivars of chickpea with  
contrasting seed size and weight39 and seeds of two different  
species of cotton40.

To study the development of woodland strawberry (Fragaria  
vesca) fruits, Shahan et al.41 created three separate coexpres-
sion networks: one represented early-stage floral tissues, 
another spanned the development of pre-fertilized flower to 
fruits, and the third represented fruits at the ripening stages41. 
These networks were helpful in establishing the role of the 
ghost tissue in iron transport post-fertilization41. To mine these  
networks, the authors of this study built an interactive web  
interface, which is of value to other users in the field (www.
fv.rosaceaefruits.org).

These recent studies have highlighted the efficacy of the WGCNA 
as a quick and easy method to process new, high-resolution 
developmental transcriptomes and recover plant gene modules.  
However, assessing the stability of predicted modules and per-
formance in terms of accuracy is highly desirable for generating  
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Figure 1. Coexpression network analysis workfl w. A gene coexpression network is constructed by integrating gene expression profiles 
from a large compendium of datasets. The datasets can be sampled from public repositories like the Gene Expression Omnibus42 and quite 
often are chosen in a manner that represents a unifying biological context (for example, response to abiotic stress or specific tissues/organs 
of the plant). Correlations in expression profiles of all gene pairs across all samples then are calculated by using a similarity measure 
such as PCC (Pearson’s correlation coefficient), MI (mutual information), MR (mutual rank)30, or HRR (highest reciprocal rank)43. Statistically 
significant gene pairs then are linked to each other, and the resulting network is clustered by using a module detection algorithm such as 
WGCNA (weighted gene coexpression network analysis) in R, HCCA (heuristic cluster chiseling algorithm)44, or the k-means clustering, 
where k determines the number of clusters. These algorithms identify densely connected network neighborhoods, or modules, that may 
harbor genes of a common function, pathway, or regulon of a transcription factor (TF) complex. These functional and regulatory attributes of 
gene modules can be statistically tested by using gene sets from “gold standard” function annotation data. Most often, not all genes within 
a predicted module have a function annotation, but if the module is significantly enriched with genes known for certain biological process, 
the functions of other unknown genes can be imputed. Quite often, these data are organized as databases and presented as webtools. 
(MySQL is a Structured Query Language–based database management system, and PHP is a server-side scripting language.) A community-
driven approach is taken to use the data and predict the function(s) of uncharacterized genes. Experimentally validated gene functions 
then are added to the existing gold standard to further refine the computational predictions in future experiments. The whole process tends 
to accelerate the process of identifying uncharacterized genes for specific biological processes. FET, Fisher’s exact test; GSEA, gene set 
enrichment analysis; HG, hypergeometric test; PAGE, parametric analysis of geneset enrichment.

new hypotheses45,46. For example, Shahan et al.41 found little 
overlap between clusters obtained by multiple WGCNA runs 
each with a different subsampling of genes. Through various  
numerical experiments, the authors suggest that a consensus  
clustering scheme is much more robust in terms of predict-
ing true functional relationships between genes41. Also, the 
WGCNA method implicitly decides on the number of modules 
to produce from the dataset and, as evident from the afore-
mentioned studies, typically retrieves very few modules (about  

10–20 modules per dataset) in a non-exhaustive manner under 
default settings. It is still unclear whether this is due to the  
nature of underlying datasets or whether other relevant modules 
(or subnetworks within the identified WGCNA modules) still 
exist in these development networks. We believe that a vast  
majority of plant transcriptomes are still under-utilized in the 
retrieval of biologically relevant information. Secondary analy-
ses of these datasets can reflect on new knowledge pertaining 
to the originally assayed biological processes, especially the 
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role of regulatory genes47,48, which is often overlooked in terms  
of the potential in typical GCN analysis.

In another type of module identification setting, the goal is to 
cluster a GCN by using a graph clustering algorithm optimized to  
detect a large number of dense modules. This type of study 
aims to partition the GCN into many functionally cohesive gene 
modules, typically in the range of a few hundred modules per  
network. This is a desirable property of biological network  
analysis, and several algorithms exist that allow the user to define 
module size as desired44,49,50. A large number of dense modules 
would likely separate large metabolic pathways and biological  
processes into their constituent parts. Intuitively, an impor-
tant cautionary aspect of such an analysis is controlling the  
granularity of resulting modules51. Very large modules will fail to 
answer the fundamental question of why the genes are clustered 
that way. It becomes difficult to explain the regulatory cohesive-
ness of large modules, as these will incorporate genes that lie 
on distant bifurcated branches of large metabolic pathways that  
show significant levels of correlation in expression52. Conversely, 
a finer granularity will break the network into too many very 
small modules (fewer than 10 genes), essentially hampering the  
statistical process of establishing any functional or regulatory  
context for these modules, rendering them unusable.

A balance between the number of modules, average module  
size, and other network topological features such as separa-
tion (how functionally isolated each module is from other mod-
ules) and density (how well genes within each module form a 
clique) should be carefully monitored by tuning parameters of 
the clustering algorithm34,53. For example, modules in the Rice  
Environment Coexpression Network (RECoN)26 were identified 
by optimizing the parameters of a graph-based clustering  
algorithm that works under the principle that functionally related 
genes have denser connections within a network50. With con-
trolled minimum cluster size and density threshold to partition 
the network, 1744 dense abiotic stress–associated rice modules 
were extracted from RECoN. Most of these modules contain  
genes sharing related GO terms and thus can be used as gene sets 
(in addition to gene sets from GO and other function databases) 
in enrichment analysis of new differential expression profiles. 
The RECoN webtool (available at https://bit.ly/2BOky7x) also  
provides a window to mine undiscovered novel modules associ-
ated with tolerance to abiotic stresses in rice26.

An example of a graph-based clustering algorithm applied 
to a developmental context in rice is the RiceAntherNet, 
which delineated 545 modules related to anther and pollen  
development54. Of these, 29 modules that contain differentially 
expressed genes in nine previously known male sterile mutant  
lines are regarded as important to anther development54. This 
study also compared the rice anther modules to modules in 
FlowerNet, a GCN for anther and pollen development in  
Arabidopsis55, and found a significant amount of conservation of 
gene coexpression between rice and Arabidopsis during anther  
development.

GCNs have also been instrumental in the discovery of novel bio-
logical phenomena. For example, the conservation of a longevity 

module between Medicago truncatula and Arabidopsis suggests 
conserved genetic pathways related to defense mechanisms56.  
Phylogenetic conservation of coexpression modules was exam-
ined in greater detail recently for several model plants7. One 
of the observations of this study was that genes from the same  
phylostratum tend to be more frequently connected in GCNs7, 
suggesting new uses of existing GCNs in extrapolating gene  
functions of lesser-studied plant species. Moreover, it has been 
shown that coexpression, rather than physical proximity on  
chromosomes (biosynthetic gene clusters), is a more reliable  
signal for predicting genes involved in SM57. Understanding the 
mechanisms of SM is of great interest in the study of medicinal  
plants58.

The curious case of transcription factors
Another desirable characteristic of coexpression network mod-
eling is incorporating information about regulatory interactions 
in the process of module identification. This type of study leads 
to the discovery of modular gene regulatory networks (GRNs). 
GRNs are different from GCNs in the sense that GCNs treat 
TF and non-TF nodes (genes) similarly whereas GRN involves  
sophisticated reverse-engineering algorithms that operate on TFs 
differently. The objective of a GRN is to capture direct, causal 
edges between TF and their putative targets and filter spurious  
indirect correlations that naturally arise in coexpression data.

Biological interpretations of predicted GRNs depend largely 
on the type of transcriptional dataset used. A meta-analysis by  
Marbach et al.59 shows that expression data from TF knockouts 
or overexpression experiments can be very informative in  
predicting targets but this type of data is useful mostly for  
capturing downstream regulatory effects60,61. On the other hand, 
time-series expression data can capture temporal dynamics of 
regulatory networks more systematically62,63. For example, a 
time-series transcriptome dataset was used to predict GRNs  
active for lateral root initiation in Arabidopsis, which revealed 
genetic cascades involved in positive and negative feedback  
loops as well as target genes of the AUXIN RESPONSE  
FACTOR 764. Steady-state expression data have also been very  
useful in regulatory network analysis and predicting TF func-
tion. For example, using a collection of gene expression datasets  
from Arabidopsis seeds, subnetworks associated with desicca-
tion tolerance (DT) were predicted, leading to the identification 
of three novel TFs now confirmed for their roles in mediating  
seed DT65.

Recently, de Luis Balaguer et al.66 developed a dynamic  
Bayesian network (DBN)-based framework which showed us 
a broader picture of the spatiotemporal dynamics of stem cell  
differentiation in the roots of Arabidopsis. Although DBNs are  
able to unfold cyclic processes and dependencies in time- 
course expression data, they are inherently limited by the  
computational complexity which increases with the number of 
genes61. The algorithm proposed by de Luis Balaguer et al.66  
seems to circumvent this limitation by applying DBNs to smaller 
sets of genes within each spatially distinct coexpressed clus-
ter within the roots. This combination of spatial and temporal  
expression data in GRN inference established a new role of PERI-
ANTHIA (PAN) as a stem cell regulator66.
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There are more than a dozen other published algorithms for 
inference of GRNs from large-scale expression data. Several  
concepts in GRN inference, available algorithms, and their limi-
tations and applications in plant studies are well summarized 
by others as a primer to interested researchers61,63,67,68. An earlier 
meta-analysis of some of the popular approaches suggests  
integrating predictions from different algorithms to boost the 
accuracy of the consensus GRN59. This technique was later  
implemented in Arabidopsis stress datasets to predict an oxida-
tive-stress GRN69 and was further explored in the development  
of a secondary cell wall biosynthesis network70. The authors 
of the former study used “coregulated” gene pairs instead of  
“coexpressed” gene pairs into the k-means clustering framework 
and recovered 572 stress-related modules69.

Because a large sample size can be obtained for Arabidopsis, 
it has been a favorite model in many currently reported GRNs. 
However, rapidly expanding data repositories allow selection 
of interest-appropriate transcriptional datasets71, encouraging 
the application of standard GRN inference techniques to rela-
tively lesser-studied crop genomes. For example, Xiong et al.47 
re-analyzed the maize embryo and endosperm development  
dataset72 and predicted modules and regulators involved in the 
transport of nutrients to the developing seed47.

Inference of GRNs can be further enhanced in a direct net-
work framework (non-modular GRNs), where the primary goal 
is to explore regulatory targets of a few TFs of interest in more  
detail as focused small-scale subnetworks. For example, a com-
bination of transcriptional and chromatin immunoprecipitation 
data (ChIP-seq) revealed GRN components involved in coordinate  
regulation of root hair growth in Arabidopsis73. Furthermore, an 
integrative analysis of ChIP-seq, mRNA-seq, and miRNA-seq 
data revealed SEP3 as an upstream regulator of MIR319a and  
TCP4, which together form a feed-forward loop to regulate  
petal development74. In the context of GRNs that manifest  
during abiotic stresses, Wilkins et al.75 employed the concept of  
ERGINs (environmental gene regulatory influence networks) in 
rice. They integrated chromatin accessibility data (ATAC-seq) 
with the current state of knowledge about putative regulatory  
interactions in rice and used these data points as priors to learn 
a GRN from expression dataset of five tropical Asian rice  
cultivars grown under abiotic-stress conditions in the field as 
well as greenhouses. The study identified regulatory interactions  
between 113 TFs and 4052 target genes of rice75.

Conclusions
The current state of accumulated plant gene expression data has 
immense potential for the discovery of components involved 
in complex traits. The property of modularity in gene networks  
can be exploited and gene modules treated as fundamen-
tal biological units with dynamic expression and regulatory  
properties. The techniques of module extraction have proven to 
be very effective in experimental validations while also suggest-
ing a vast scope for improvement in terms of not only statisti-
cal methods used but also how gene networks are perceived and  
evaluated for research. As noticed by Gillis and Pavlidis21, one 

has to consider that there are several caveats associated with using  
prior knowledge from GO (and other such annotation catalogs) 
for function prediction from GCN modules. Predictions can be 
very biased toward genes and categories that are extremely well  
annotated and can be driven solely by other computationally  
predicted annotations rather than empirical evidence.

Transcriptome datasets integrated in a global manner capture  
broad, constitutive functional relationships that might not vary 
much with different tissues or organs, developmental phases, or 
environmental cues like biotic or abiotic stress67,76. On the other 
hand, specifying an overarching biological theme in selection of 
datasets offers intuitive concepts that can be objectively tested. 
For example, just like individual transcriptomes, GCNs created 
to study one particular biological process (for example, seed  
development or response to abiotic stress) can be considered 
static. Comparison of GCNs constructed from conditionally  
distinct samples, or differential coexpression analysis, will  
provide valuable information on how plant systems alter their  
mechanisms in response to different developmental cues and  
environmental perturbations77,78. Moreover, a comparison of sets 
of modules derived under different contexts should potentially  
map and distinguish modules that are conserved throughout 
growth and development from those that are under constant  
rewiring.

One major question that remains is how to systematically pro-
duce a ranked list of genes most relevant to a given trait/process of  
interest from these complex interconnected gene relationships 
in networks. Information buried within hundreds of thousands 
to sometimes millions of predicted functional relationships is 
not intuitively tractable for researchers interested in selecting a 
few actionable candidate genes relevant to a biological process 
of interest. Research toward development of computational tools  
capable of using gene networks to systematically enrich 
gene prioritization pipelines79 would be extremely useful for  
integration with gene lists from genome-wide association 
study (GWAS) datasets in a systems genetics approach to probe  
complex agricultural traits80,81.

It is important to recognize that gene expression data by itself  
could have limited potential in deciphering cellular organization, 
regulated at various levels. However, we are optimistic about 
the future, as integrating signals from heterogeneous molecu-
lar datasets will enable training of smart algorithms to identify  
genomic patterns of components already known to be associ-
ated with a phenotype of interest. The trained models then can 
be used as predictive tools to discover new genes associated with 
the phenotype82 and study crop genetics as outlined in recent  
reviews83,84.
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