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Abstract
Key message  A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing 
pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-
copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was 
supported by FLPe/FRT site-specific recombination.
Abstract  Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced 
worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and 
stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus 
as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression 
cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when com-
pared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene 
was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable 
marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or 
genome editing tools.
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Introduction

Sugarcane (Saccharum spp.) is a perennial C4 grass that 
is grown in approximately all tropical, semi-tropical, and 
subtropical countries of the world (Tew and Cobill 2008). 
It is an important crop supplying approximately 80% of the 
world’s sugar, greatly exceeding sugar beet (Cordeiro et al. 

2007; Henry and Cole 2010). Sugarcane is also one of the 
most important feedstock for commercial production of bio-
fuel. In spite of success in improving sugar yield, disease 
resistance and ratooning ability, sugarcane breeding remains 
challenging due to its complex genome, poor fertility, and 
the long breeding/selection cycle (Altpeter and Oraby 2010). 
Transgenic technology, therefore, is expected to comple-
ment traditional breeding in the development of advanced 
cultivars and benefit the global sugar and cellulosic biofuel 
industries.
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Future transgenic strategies will aim at incorporating sev-
eral traits or entire pathways using transformation vectors 
harboring multiple transgene expression cassettes (Altpeter 
et al. 2016). Prediction of transgene performance, however, 
remains difficult due to its random insertion into the genome 
and associated position effects, as well as variegated, 
ectopic, and silenced gene expression (Giraldo et al. 2003). 
In addition, enhancer–promoter interference may disturb the 
specificity and strength of promoters (Singer et al. 2011) 
in gene stacking applications. The generation of transgenic 
sugarcane with high level and stable transgene expression 
is particularly difficult compared to other plants due to its 
large, complex, polyploidy, and highly redundant genome 
(Ingelbrecht et  al. 1999). A large number of transgenic 
events are needed in sugarcane to identify lines with the 
desired transgene expression level. Removing the selecta-
ble marker gene following transformation supports multiple 
cycles of re-transformation with the same selectable marker 
for stacking of multiple traits or multigenic pathways. Site-
specific recombination (SSR) systems support both targeted 
integration into plant genomes as well as selectable marker 
gene removal. The heterologous recombinase catalyzes 
highly specific recombination between its corresponding 
recombination sites and can produce insertions, inversions, 
and deletions, depending on the orientation of the recom-
bination sites (Lyznik et al. 2003; Grønlund et al. 2007; 
Gidoni et al. 2008; Thomson et al. 2009, 2010; Srivastava 
and Thomson 2016). In addition, ‘off-target’ recombination 
by SSR systems are generally undetectable in plant genomes. 
Establishing SSR technology for sugarcane, therefore, would 
streamline the development of elite transgenic sugarcane 
lines and facilitate gene stacking without position effects 
and may facilitate regulatory approval. To date, several SSR 
systems have been successfully used for site-specific inte-
gration of transgenes into crops including the bacteriophage 
P1 Cre-lox, yeast FLP-FRT, Streptomyces phage φC31-att 
system, and mycobacterio phage Bxb1large serine recombi-
nation system (Albert et al. 1995; De Paepe et al. 2013; Lutz 
et al. 2004; Srivastava and Ow 2001; Srivastava et al. 2004; 
Li et al. 2009, 2016; Fladung and Becker 2010; Nandy and 
Srivastava 2011; Hou et al. 2014).

Insulators can also contribute to reducing the position 
effects of transgenes. These DNA boundary elements pre-
vent influences from adjacent chromatin domains by estab-
lishing genomic barriers and thereby protecting genes from 
the influence of neighboring heterochromatin regions. Insu-
lators also block the activity of enhancers (West et al. 2002). 
Although many insulators have been identified in different 
eukaryotic systems, only a few insulators have been stud-
ied in plants. An 1 kilobase (kb) fragment from bacterio-
phage λ (EXOB) and 2 kb fragment from a petunia (TBS) 
matrix-attachment region were reported as effective insula-
tors for enhancer blocking in transgenic plants (Hily et al. 

2009; Singer et al. 2010; Yang et al. 2011). The properties of 
effective insulators make them desirable in transgenic vec-
tor construction to ensure the stable and high expression of 
transgenes by shielding them from neighboring enhancers.

In this study, we generated a landing pad for transgene 
stacking consisting of single-copy integration of a highly 
expressed selectable marker gene flanked by insulators. We 
also demonstrated removal of the selectable marker gene, 
which will facilitate retransformation for gene stacking.

Materials and methods

Plant material

The commercially important sugarcane cv. CP88-1762 was 
used for transformation in this study. The single node seg-
ments from mature stalks were transplanted into pots con-
taining Fafard No. 2 mix (Conrad Fafard, Agawam, MA) in 
an air-conditioned greenhouse with natural photoperiod and 
temperature at 28 °C/22 °C (day/night). The tops includ-
ing the shoot apex and the top visible node, were harvested 
when plants had 6 to 10 above ground nodes to obtain 
leaf whorl cross-section explants for induction of somatic 
embryogenesis.

Genetic constructs

Two genetic constructs pJKIS (Fig. 1a) and pJKIe (Fig. 1c), 
carrying FLP-FRT or FLPe-FRT systems respectively, 
were generated for gene transfer into sugarcane. FLPe is 
a thermostable variant of wild-type FLP generated by pro-
tein evolution for enhanced thermostability. The two con-
structs contain the same vector elements except for the vec-
tor backbone and for the recombinase genes. While pJKIS 
is a pUC57 derivative, which was used for biolistic gene 
transfer, pJKIe is a binary vector that was used for Agro-
bacterium tumefaciens-mediated transformation. In both 
vectors the expression cassettes were flanked by two insula-
tor sequences (EXOB and TBS; Singer et al. 2011, 2012). 
The selectable marker gene neomycin phosphotransferase 
II (nptII) was driven by CaMV 35S promoter. FLP or FLPe 
were cloned under transcriptional control of heat shock 
promoter to catalyze the recombination between two FRT 
sites in the same orientation flanking the FLP/FLPe expres-
sion cassette and nptII expression cassette. Maize ubiquitin 
promoter (Ubi) was inserted 5′ of a mutated lox76 site to 
support site-directed Cre/lox integration (Albert et al. 1995) 
in future experiments. A vector pJKNI (Fig. 1b) without 
insulator sequences was also constructed for comparison of 
transgene expression with and without insulators.
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Tissue culture and sugarcane transformation

The outermost leaf sheaths of the immature leaf whorl were 
wiped with 70% ethanol and removed under aseptic condi-
tions. About 1–2 mm thick cross-sections were cut from the 
region (1–10 cm) above the apical meristem, and placed 
onto direct embryogenesis medium (DEM) or calli induc-
tion medium (CI3) (Taparia et al. 2012b; Chengalrayan 
and Gallo-Meagher 2001). The explants on DEM for direct 
somatic embryo induction were cultured at 28 °C under light 
of 30 µmol m− 2 s− 1 intensity with 16 h/8 h (light/dark) pho-
toperiod and were sub-cultured weekly, while the explants 
on CI3 for callus induction were incubated in dark at 28 °C 
and were subcultured every 10 days.

Minimal expression cassettes (MC) for biolistic gene 
transfer were released from plasmids pJKIS and pJKNI by 
restriction enzyme digestion with I-SceI and PmeI (Fig. 1a, 
b), purified by gel electrophoresis and extraction using the 
QIAquick Gel Extraction kit (Qiagen, Valencia, CA). The 
minimal expression cassettes were quantified using Synergy 
H1 Hybrid Reader (Biotek, Winooski, VT) and then coated 
onto 1 µm diameter gold particles (Bio-Rad) as described 

by Altpeter et al. (2010). Biolistic gene transfer was con-
ducted as described by Taparia et al. (2012a). The plasmid 
pJKIe was transformed into Agrobacterium tumefaciens 
strain AGL1 under selection with 100  mg l− 1 kanamy-
cin. The Agrobacterium-mediated transformation method 
was described by Wu and Altpeter (2015a); and Wu et al. 
(2015b). Rooting plants were transferred to pots containing 
Fafard No. 2 mix (Conrad Fafard, Agawam, MA). Plants 
were grown in air-conditioned greenhouse with natural pho-
toperiod and temperature at 28 °C/22 °C (day/night).

ELISA to quantify NPTII expression

The NPTII ELISA analysis was conducted using the kit from 
Agdia Inc. (Elkhart, IN). Fifty milligrams of leaf material 
was collected and extracted with protein extraction buffer 
(PEB1) provided with the kit in a Tissuelyzer II (Qiagen, 
Valencia, CA). The extracted total proteins were quanti-
fied with the Bradford Assay (Bradford 1976), using the 
Coomassie Plus Protein Assay reagent (Thermo Fisher Sci-
entific Inc., Rockford, IL), on a Synergy H1 Hybrid Reader 
(Biotek, Winooski, VT). The ELISA plates containing 20 µg 

nptII 35ST35SPEXOB HSP FLP NosTFRT TBSFRT
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UbiP+Intron lox76

nptII 35ST35SPEXOB HSP FLPe NosTFRT TBSFRT UbiP+Intron lox76
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Fig. 1   Vector construction and strategies for FLP-FRT and FLPe-FRT 
mediated excision. a FLP-FRT system for excision (pJKIS). b FLP-
FRT system for excision without insulator flanking (pJKNI). c FLPe-
FRT system for excision (pJKIe). d Expected final genomic structure 
after excisions. The expression cassettes are flanked by insulator 
sequences (EXOB and TBS) to minimize position effects and block 

the influence from neighboring genes. lox76: right arm mutant lox 
site; ubiP: ubiquitin promoter and 1st intron from maize; the arrows 
represent the forward and reverse primers used for identifying the 
excision. FRT: wild-type FRT site; nptII: neomycin phosphotrans-
ferase gene; 35SP: CaMV 35S promoter; 35ST: CaMV 35S Termina-
tor; Nos: Nopaline synthase terminator
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total proteins in each well were read against NPTII positive 
control provided with the kit on the Synergy H1 Hybrid 
Reader at A650.

Taqman® qPCR analysis

About 200 mg of leaf material of selected pJKIS, pJKNI 
and pJKIe lines as well as wild-type plants were collected in 
four replicates for DNA isolation. The quantitative TaqMan® 
qPCR assay for determination of the copy number was per-
formed using the method described by Ingham et al. (2001). 
Different probes targeting different vector components 
(nptII, EXOB, TBS, and bla) were used. In each well of 
the 384-well plates, 3 µl of genomic DNA (gDNA), or the 
DNA samples for the copy control were loaded into 3 µl 
master mix (2X JumpStart Taq ReadyMix, primer for the 
crop-specific endogenous gene (Glyceraldehyde 3-phosphate 
dehydrogenase), and 2X primer set stock assay target) (Wu 
et al. 2015b). Controls for one and two copies were obtained 
from transgenic sugarcane events that were previously con-
firmed by Southern blot analysis (Wu et al. 2015b).

PCR amplification of transgenic nptII expression 
cassette

The gDNA from 200 mg leaf material of single-copy pJKNI 
transgenic lines was extracted using a modified CTAB pro-
tocol (Murray and Thompson 1980) and quantified by Syn-
ergy H1 Hybrid Reader (Biotek, Winooski, VT). One hun-
dred nanograms of gDNA was used for each PCR reaction. 
The primers (forward primer: 5′-AGGAT GAGAC TAATC 
CAATT GAGGA GTG-3′ and reverse primer: 5′-TCATT 
ATCTC TAGAG AGGGG CACGA C-3′) flanking the nptII 
expression cassette were used. The PCR reactions were per-
formed using hot start Taq DNA polymerase (New England 
Biolabs Inc., Ipswich, MA) with the following conditions: 
30 s at 95 °C, followed by 30 cycles of 95 °C for 20 s, 64 °C 
for 30 s, and 68 °C for 4 min, and final elongation at 68 °C 
for 5 min. No template control and plasmid positive control 
were included.

Southern blot analysis

Total genomic DNA was extracted from leaf tissue of single-
copy pJKIS transgenic lines using a modified CTAB pro-
tocol (Murray and Thompson 1980). Twenty microgram 
of genomic DNA was fully digested with XhoI, EcoRI, or 
KpnI (New England Biolabs, Ipswich, MA), respectively, for 
targeting EXOB, TBS, nptII and FLP region with different 
probes. The digestion products were separated by electro-
phoresis overnight on 0.8% agarose gel with 1X TAE buffer 
at low voltage, and transferred onto Hybond-N + nylon 
membranes (GE Healthcare Biosciences, Pittsburgh, PA) 

overnight with 10X SSC buffer. The membranes were rinsed 
with 6X SSC for 5 min, air-dried, and exposed to UV light in 
a crosslinker (Select™XLE-Series, Spectroline®, Westbury, 
NY). The following primers were designed to amplify the 
probes (EXOB forward primer: 5′-ACTTC TTTCC GGAGC 
GGGGT-3′, EXOB reverse primer: 5′-GCCTT AATCC 
GGTGG ACGAA AGA-3′, TBS forward primer: 5′-ACAAA 
ATGGT GTTGT GGAGA GAAAG-3′, TBS reverse primer: 
5′-TGTCA CAAAG TCCTT GAGCC AGAT-3′, nptII for-
ward primer: 5′-ATGGG GATTG AACAA GATGG ATT-
3′, and nptII reverse primer: 5′-AACTC GTCAA GAAGG 
CGATA GAAG-3′, FLP forward primer: 5′-TGCTT GTTCG 
TCAGT TTGTG G-3′, FLP reverse primer: 5′-GTCAA 
CTCCG TTAGG CCCTT C-3′). The probes were labeled 
using 32P-dCTP (Perkin Elmer Inc., Waltham, MA) with 
a Prime-It II Random Primer Labeling Kit (Stratagene 
Inc., La Jolla, CA). Pre-hybridization, hybridization and 
washing were performed according to the manufacturer’s 
instructions. The membranes were exposed onto X-ray film 
for two days at − 80 °C and visualized by autoradiography. 
The single-copy pJKIe lines were also analyzed by south-
ern blot for the FLPe gene copy numbers with KpnI diges-
tion and probe amplified by PCR (FLPe forward primer: 
5′-TCTTC AGAGG AGGCC GATAA-3′, FLPe reverse 
primer: 5′-TTGAA GGACT TTGGG TCCAC-3′).

Sequencing of cloned PCR amplicons of the highly 
expressed, single copy locus

Total genomic DNA of single-copy pJKIS lines confirmed 
by Southern blots was extracted from leaf tissue using a 
modified CTAB protocol (Murray and Thompson 1980). 
PCR amplification products of the region corresponding to 
Ubiquitin promoter, intron, and lox76 site (forward prim-
ers: 5′-CTGAC CGCTT CCTCG TGCTT TA-3′ and reverse 
primer: 5′-CCAAG AGAGG CCAGC AACTC ATTA-3′) 
and the region corresponding to the upstream 1 kb of the 
TBS insulator (forward primers: 5′-TATAC TTGGA TGATG 
GCATA TGCAG CAG-3′ and reverse primer: 5′-GGCCT 
TAAAC CTGTC AACTT CACCA TTA-3′) were separated 
by electrophoresis and purified using the QIAquick Gel 
Extraction kit (Qiagen, Valencia, CA). The PCR products 
were generated with the following primers (Primers for 
sequencing the Ubiquitin promoter, intron, and lox76 site: 
5′-ACAGG CTGGC ATTAT CTACT CGAA-3′, 5′-TGAAC 
AGTTA GACAT GGTCT AAAGG ACA-3′, 5′-CAAGC 
GAACA AAAAG CATCT CTGT-3′, 5′-ACTTG TTTGT 
CGGGT CATCT TTTCA-3′; primers for sequencing the 
upstream 1 kb of the TBS insulator: 5′-TGAAA CTCTC 
TGAAA ACTAC ATCCC TGC-3′, 5′-CCCAG AGCCT 
TTGTT CAGTG TCACA-3′, 5′-ATTCC TGACA ATGTA 
GAGAC CAATG AGG-3′). The sequencing results were 
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analyzed using ClustalW2 (http://www.ebi.ac.uk/Tools​/msa/
clust​alw2/) with the default parameters.

TAIL-PCR was carried out to identify the genomic DNA 
flanking the single copy transgene insertion as described 
by Singer and Burke (2003) using the following nested, 
insertion-specific primers LS1 5′ CGATG TGAGA GCTGT 
CGAAC AG 3′, LS3 5′ GTCCT ACTTC CACAC CCTGC 
3′, LS5 5′ TACGA GAACG ACGCC AGAAC 3′, RS1 5′ 
AGTGT CAACC CCAAT GGAAC AT 3′, RS3 5′ GGTGG 
GAAAG CTTCT CTACT TG 3′, RS5 5′ CTGGA AGCAG 
CATTG AGGGT TG 3′ together with the following arbitrary 
degenerate primers (AD primers) AD1 5′ NGTCG ASWGA 
NAWGA A 3′, AD2 5′ TGWGN AGSAN CASAG A 3′, 
AD3 5′ AGWGN AGWAN CAWAG G 3′, AD4 5′ STTGN 
TASTN CTNTG C 3′, AD5 5′ NTCGA STWTS GWGTT 
3′, AD6 5′ WGTGN AGWAN CANAG A 3′. One cloned 
PCR amplicon which included both vector and genomic 
sequences was blasted against the monoploid sugarcane 
genome reference sequence (Garsmeur et al. 2018) after 
trimming off the vector sequence component.

Quantitative real‑time RT‑PCR to evaluate inducible 
expression of FLP and FLPe

Quantitative real-time RT-PCR was performed on heat-
treated single-copy pJKIS (Ins20 and Ins62) and pJKIe 
(FLPe31, FLPe59 and FLPe92) lines as well as the non-heat-
treated groups grown in soil. Two biologically-replicated 
plants were tested per line for both treated and untreated 
groups. The mid-section of the youngest fully expanded leaf 
was collected at four time points: before heat-treatment, 0 h 
after heat-treatment, 4 h after heat-treatment and 8 h after 
heat-treatment. Total RNA was extracted with Trizol reagent 
(Invitrogen) and treated with RNase-Free RQ1 DNase (Pro-
mega) according to the manufacturer’s instruction. cDNA 
was synthesized from 1000 ng RNA with iScript cDNA Syn-
thesis kit (Bio-Rad). Primers (forward primer: 5′-CACAT 
AACGG AACAG CAATC A-3′ and reverse primer: 
5′-TTTAA ACTGC AGTGA CTTGT TGAC-3′) targeting 
FLP gene and primers (forward primer: 5′-AACGG CACAG 
CGATT AAGAG-3′ and reverse primer: 5′-CTGGG TCTTG 
TACTT GAACT GC-3′) targeting FLPe gene were designed 
to amplify the specific fragments. Another pair of primers 
(forward: 5′-CACGG CCACT GGAAG CA-3′ and reverse: 
5′-TCCTC AGGGT TCCTG ATGCC-3′) were used to 
amplify the specific fragment of the sugarcane GAPDH ref-
erence gene for normalization. Quantitative real-time PCR 
was performed in a MyiQ cycler (Bio-Rad) with SsoAd-
vanced™ Universal SYBR Green Supermix (Bio-Rad) 
under the following conditions: 95 °C for 3 min, followed 
by 39 cycles of 95 °C for 10 s and 58 °C for 30 s. Amplicon 
specificity was confirmed by melt curve analysis from 65 °C 
to 95 °C. FLP and FLPe expression levels in treated and 

untreated plants relative to GAPDH gene were calculated 
using the 2 −∆Ct method.

Heat treatment and detection of selectable marker 
gene removal

Heat treatment at 40  °C for 4  h was performed on the 
selected single-copy pJKIS lines and single-copy pJKIe 
lines. The single-copy pJKIS lines Ins20, Ins62, and the 
single-copy pJKIe line FLPe59 as well as two-copy pJKIe 
line FLPe13 were heat treated in sterile petri dishes with 
rooting medium in four replicates. One single-copy pJKIe 
line FLPe31 in soil was also tested. Genomic DNA of the 
plants before and after heat treatments was extracted accord-
ing to previously described method from tissue samples. 
Primers (forward primer: 5′-CAACG ATCAG TAATG 
CGATG AACTG-3′ and reverse primer: 5′-GTCTA TAAAA 
ACCAT TAACC CTAAA CC-3′) were designed to amplify 
the region between two FRT sites for detecting the excision. 
The PCR reactions were performed with the LongAmp® 
Taq DNA Polymerase (New England BioLabs Inc., Ipswich, 
MA) and with 94 °C for 30 s, followed by 30 cycles of 94 °C 
for 30 s, 60 °C for 60 s, and 65 °C for 5 min, and an addi-
tional 65 °C for 10 min. No template control and plasmid 
control were included. The 527-bp amplification products, 
which indicated the excision (Fig. 1d), were sequenced.

Statistical analysis

The Chi-square test with one degree of freedom was per-
formed to compare the frequency of single copy integra-
tion, backbone integration, and truncations at 5% probability 
level. The t test was performed for comparing means and 
values are considered as significantly different if P < 0.05. 
All statistical analyses were performed using SAS version 
9.4 (SAS Institute Inc., Cary, North Carolina, USA).

Results

Generation of transgenic sugarcane lines 
with site‑specific integration sites

Three vectors, pJKIS (Fig.  1a), pJKNI (Fig.  1b), and 
pJKIe (Fig. 1c), were constructed for sugarcane trans-
formation. The minimal expression cassettes of vectors 
pJKIS and pJKNI were bombarded into sugarcane direct 
somatic embryos 10 days after culture initiation (Fig. 2a). 
Regenerating plantlets were selected with 30 mgl− 1 gene-
ticin sulfate (Fig. 2b). Rooting plants (Fig. 2c) were trans-
ferred to soil (Fig. 2d). The pJKIe plasmid was trans-
formed into Agrobacterium strain AGL1 and introduced 
into sugarcane genome through Agrobacterium-mediated 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
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Fig. 2   Generation of transgenic 
plants: Biolistic transforma-
tion. a Cross sections prior 
bombardment. b Resistant shoot 
on 30 mg l− 1 geneticin sulfate 
containing media. c Rooting 
of resistant plantlets. d Plants 
growing in soil. Agrobacterium-
mediated transformation. e 
Selection of resistant callus on 
30 mg l− 1 geneticin sulfate con-
taining media. f Regeneration of 
shoots on 30 mg l− 1 geneticin 
sulfate containing media. g 
Rooting of resistant plantlets. h 
Propagation of elite single-copy 
target lines in large containers 
in green house
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transformation (Fig.  2e). Regenerating plantlets were 
selected with 30 mgl− 1 geneticin sulfate (Fig. 2f). Root-
ing plants (Fig. 2g) were transferred to soil and grown 
in the greenhouse (Fig. 2h). A total of 118 pJKIS, 98 
pJKNI, and 97 pJKIe plants were obtained (Table 1) with 
an average transformation efficiency of 6.5 transgenic 
lines per bombardment. Transformation efficiency did 
not differ significantly between the insulator containing 
pJKIS and non-insulator containing pJKNI transgenic 
lines (Table 1).

Identification of single‑copy transgenic lines

A total of 91 pJKNI, 86 pJKIS and 78 pJKIe lines were 
selected to perform Taqman® qPCR for determination of 
transgene copy number and backbone (bla gene) integration. 
Probes targeting the nptII gene, the insulators EXOB, TBS 
in the minimal cassette and the bla (beta-lactamase gene) 
on the backbone were used for testing pJKIS and pJKIe lines 
(Fig. 1a, c). Probes only targeting the nptII and bla genes 
were used for testing the non-insulator containing pJKNI 
lines. The evaluated lines were confirmed as positive for at 
least one of the nptII, EXOB or TBS sequences. Twenty-two 
pJKNI transgenic lines showed single-copy insertion of the 
nptII gene without bla sequence integration (Table 2). Seven 
pJKIS lines (Table 3) and six pJKIe lines (Table 4) showed 
a single-copy insertion of the nptII gene and a single-copy 
insertion of both insulators as well as the absence of the bla 
sequence. The frequency of these single copy integration 
events without backbone (bla) integration did not differ sig-
nificantly (P > 0.05) between biolistic transfer of the pJKIS 
(8.1%) and Agrobacterium tumefaciens-mediated transfer 
of pJKIe (7.7%). However, the frequency of single copy 
integration following biolistic transfer of the shorter pJKNI 
(24.2%) was significantly higher than the longer pJKIS 
(8.1%) or pJKIe (7.7%) constructs delivered by biolistics 
or Agrobacterium, respectively. The frequency of backbone 
integration, estimated by detection of bla sequence ampli-
cons was not significantly different (P > 0.05) between the 
two biolistic constructs (8.8% and 14.0%, respectively for 
pJKNI and pJKIS), but was significantly higher (P < 0.01) 
with Agrobacterium tumefaciens-mediated transfer (26.9%). 
The frequency of the truncation of the delivered constructs 
was estimated by different copy numbers for different vec-
tor elements and was significantly higher (P < 0.01) fol-
lowing biolistic transfer of pJKIS (88.4%) compared to 

Table 1   Transgenic pJKNI and pJKIS lines confirmed by NPTII 
ELISA

Constructs Biolistic gene 
transfer (shots)

Lines 
regener-
ated

NPTII-
ELISA 
(positive)

Number of 
lines per 
shot

pJKIS 19 118 107 5.6
pJKNI 12 98 93 7.8
Total 31 216 200 6.5

Table 2   Taqman® qPCR analysis of transgene copy number of pJKNI 
lines

Copy numbers Lines % of total lines

1 copy nptII, no bla insertion 22 24.2
1 copy nptII with bla insertion 1 1.1
2 copies nptII, no bla insertion 23 25.3
2 copies nptII with bla insertion 2 2.2
> 2 copies nptII, no bla insertion 38 41.8
> 2 copies nptII with bla insertion 5 5.5
Total 91

Table 3   Taqman® qPCR analysis of transgene copy number following biolistic delivery of vector pJKIS

# Events (76/86) with evidence of truncation of the delivered vector

Copy numbers Lines % of total lines

1 copy nptII, 1 copy EXOB, 1 copy TBS, no bla insertion 7 8.1
1 copy nptII, 1 copy of EXOB and/or TBS missing, no bla insertion# 15 17.4
1 copy nptII, 1 copy of EXOB and/or TBS missing with bla insertion # 3 3.5
1 copy nptII, > 1 copy of EXOB and/or TBS, no bla insertion# 1 1.2
2 copies nptII, 2 copies EXOB, 2 copies TBS, no bla insertion 1 1.2
2 copies nptII, 1 or 2 EXOB and/or TBS missing, no bla insertion# 17 19.8
2 copies nptII, 1 or 2 EXOB and/or TBS missing with bla insertion# 5 5.8
> 2 copies of nptII, EXOB and TBS, no bla insertion 2 2.3
> 2 copies with at least one copy missing of nptII, EXOB or TBS, no bla insertion# 30 34.9
> 2 copies with at least one copy missing of nptII, EXOB or TBS with bla insertion# 4 4.7
No nptII, 1 or 2 copies EXOB or TBS, no bla insertion# 1 1.2
Total 86
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Agrobacterium tumefaciens-mediated transfer of pJKIe 
(76.9%).

The identification of single-copy pJKIS and pJKNI lines 
provided the possibility to compare transgene expression 
levels with the same copy number. Nevertheless the identi-
fication of single-copy pJKNI lines by Taqman® qPCR only 
targeted the nptII region. Therefore, further investigation if 
the full length cassette is present or not was warranted. PCR 
analysis using oligonucleotides supporting the amplification 
of the entire nptII cassette including the 35S promoter and 
terminator was performed. A 3217-bp amplification product 
should be detected if the full-length nptII expression cassette 
is present. The PCR analysis confirmed that 11 out of 22 
single-copy pJKNI lines displaying the corresponding PCR 
product contain the full length nptII cassette (Fig. 3).

Comparison of NPTII protein levels 
between single‑copy pJKIS (with insulators) 
and pJKNI (without insulators) lines

The identification of both single-copy pJKIS lines and 
pJKNI lines with full length nptII expression cassettes pro-
vided the candidate lines for comparing transgene expression 
levels. Quantitative NPTII ELISA analysis was conducted on 

6 single-copy pJKIS lines and 11 single-copy pJKNI lines 
in two replicates. The single-copy pJKNI lines displayed 
an average NPTII level of 9.1 ng/10 µg soluble protein, 
ranging from 0.0 to 21.5 ng/10 µg soluble protein, while 
the single-copy pJKIS lines displayed an average NPTII 
level of 17.24 ng/10 µg soluble protein, ranging from 14.5 
to 20.5 ng/10 µg soluble protein (Fig. 4). The line-to-line 
variation of NPTII protein levels was reduced in single-copy 
transgenic lines shielded with insulators (pJKIS) compared 
to the lines without insulators (pJKNI) (Fig. 4). The NPTII 
protein level of single-copy lines with insulators (pJKIS) 
was significantly higher (P < 0.01) than that of lines without 
insulators (pJKNI).

Comparison of NPTII expression levels in single‑copy 
pJKIS and pJKNI lines between primary transgenic 
plants and their vegetative progeny

Quantitative NPTII ELISA analysis was conducted for com-
paring the NPTII protein levels between primary transgenic 
lines and their progeny. Six single-copy pJKIS and eight 
single-copy pJKNI primary transgenic and vegetative propa-
gated lines were analyzed in two replicates (Table 5). The 
average NPTII protein level of pJKIS vegetative progeny 

Table 4   Taqman® qPCR analysis of transgene copy number following Agrobacterium-mediated delivery of vector pJKIe

# Events (60/78) with evidence of truncation of the delivered vector

Copy numbers Lines % of total lines

1 copy nptII, 1 copy EXOB, 1 copy TBS, no bla insertion 6 7.7
1 copy nptII, 1 copy EXOB, 1 copy TBS with bla insertion 2 2.6
1 copy nptII, 1 copy of EXOB and/or TBS missing, no bla insertion # 6 7.7
1 copy nptII, > 1 copy of EXOB and/or TBS, no bla insertion # 4 5.1
1 copy nptII, > 1 copy of EXOB and/or TBS with bla insertion # 2 2.6
2 copies nptII, 2 copies EXOB, 2 copies TBS, no bla insertion 2 2.6
2 copies nptII, 2 copies EXOB, 2 copies TBS with bla insertion 1 1.3
2 copies nptII, 1 or 2 EXOB and/or TBS missing, no bla insertion # 5 6.4
2 copies nptII, 1 or 2 EXOB and/or TBS missing with bla insertion # 3 3.8
> 2 copies of nptII, EXOB and TBS, no bla insertion 6 7.7
> 2 copies with at least one copy missing of nptII, EXOB or TBS, no bla insertion # 27 34.6
> 2 copies with at least one copy missing of nptII, EXOB or TBS with bla insertion # 13 16.7
No nptII, 1 or more copies of EXOB and TBS, no bla insertion # 1 1.3
Total 78
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(20.61 ng/10 µg soluble protein) were similar to the primary 
generation (17.24 ng/10 µg soluble protein). Among these 
propagated lines, one was significantly higher (P < 0.05) 
than their primary lines, while the other five lines didn’t 
show significant difference (P > 0.05). The average NPTII 
protein level of pJKNI vegetative progeny (12.09 ng/10 µg 
soluble protein) did not differ significantly (P > 0.05) from 
the parental generation (10.8 ng/10 µg soluble protein). 
In addition, the line-to-line variation of the NPTII protein 
levels was consistently reduced in vegetatively propagated 
progenies of pJKIS lines in contrast to pJKNI lines.

Independent single‑copy pJKIS lines were confirmed 
by Southern Blot

The Taqman® qPCR assays indicated that 7 out of 86 
transgenic pJKIS lines were single copy events. Five 
pJKIS lines which displayed a growth vigor comparable 
to the non-transgenic sugarcane control were selected for 
Southern blot analysis with different probes for the dif-
ferent vector components (EXOB insulator, TBS insula-
tor, nptII gene, and FLP gene). Independent events with a 
single copy of both EXOB and TBS insulator and a single 
copy insert of the nptII were verified from all five analyzed 
lines (Fig. 5a–c). Two selected pJKIS lines were further 
confirmed to carry one insert of the FLP gene (Fig. 5d). 
Southern blot with FLPe probe detected that four selected 
single-copy pJKIe lines have one copy of FLPe (FLPe31, 
FLPe59, FLPe83 and FLPe92) and another line showed 

two copies of FLPe (FLPe13) (Fig. 6). Wild-type plant 
was included to verify that an extra band was caused by 
off-target hybridization (Fig. 6).

Sequencing and propagation of elite single‑copy 
pJKIS lines

The independent single-copy pJKIS sugarcane lines with 
stable and high level expression of nptII may be used 
for subsequent transgene stacking. Transgene stacking 
is facilitated in this highly expressed single copy locus 
as landing pad by the presence of the ubiquitin promoter 
upstream of the lox76 site, supporting site-specific integra-
tion of a promoter-less selectable marker construct with 
additional transgenes into the lox76 site. The presence of 
the promoter and insulator sequences flanking the lox76 
site in the transgenic locus was confirmed, with the region 
containing the ubiquitin promoter, intron, and lox76 site as 
well as the upstream 1 kb TBS region sequenced following 
PCR amplification from genomic DNA of three transgenic 
lines. Alignments with the plasmid pJKIS revealed that 
pJKIS lines (Ins20, Ins54, and Ins62) contain the identi-
cal sequence (Supplementary A1). The presence of two 
FRT sites was also confirmed in Ins20 and Ins62 lines by 
sequencing (Supplementary A3). These independent sin-
gle-copy pJKIS lines were selected to evaluate FLP/FRT 
mediated marker gene removal and as elite target lines for 
future transgene integration, propagated and maintained 
in the greenhouse (Fig. 2h).

Fig. 4   NPTII expression levels 
for mature transgenic sugarcane 
leaves tested by NPTII ELISA. 
The mid sections of the first 
dewlap leaves from two mature 
tillers were sampled for rep-
licated analysis. The standard 
error bars are shown. MAX: 
maximum NPTII expression 
level; MIN: minimum NPTII 
expression level; AVE: average 
NPTII expression level
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FLP and FLPe relative expression levels 
in single‑copy lines

The FLP and FLPe relative expression levels in single-
copy heat-treated and untreated plants were investigated 
with Quantitative real-time RT-PCR. The expression levels 
of FLP and FLPe of the treated plants, immediately tested 
after heat treatment, were significantly increased compared 
to the untreated groups (P < 0.01). Similar expression levels 
were observed in different FLP and FLPe lines with a trend 
to higher expression levels on average of all FLP lines. The 
expression levels gradually decreased after the heat treat-
ment measured at different time points (4 h and 8 h after) 
(Supplementary A5a, A5b). The untreated plants didn’t 
show significant variation (P > 0.05) of gene expression 
among the four time points (before heat treatment, 0 h after 
heat treatment, 4 h after heat treatment and 8 h after heat 
treatment) (Supplementary A5a, A5b). There was no sig-
nificant difference between the expression levels of treated 
and untreated plants before the heat treatment (P > 0.05) for 
FLP and FLPe.

Removal of nptII selectable marker gene

Two single-copy pJKIS lines containing the FLP gene and 
one single-copy pJKIe line containing the FLPe gene were 
compared for removing the nptII expression cassette flanked 
by FRT sites. Plantlets in petri dishes were subjected to heat 
treatment for induction of the FLP and FLPe expression. A 
5331-bp amplification product was obtained from the heat-
treated and untreated single-copy pJKIS lines (Ins20 and 
Ins62, Fig. 7a, b, c). This indicates that the FLP recombi-
nase-mediated recombination did not occur. The untreated 
single-copy pJKIe line FLPe59 displayed a 5197-bp PCR 
product (Fig. 7d), while the heat-treated FLPe59 line dis-
played a 527-bp PCR product, indicating the successful exci-
sion between the two FRT sites (Figs. 1d, 7e). The same 
result was obtained using root tissue for genomic DNA 
extraction and PCR analysis (Fig. 7f). Interestingly, another 
single-copy FLPe31 line which was heat-treated after estab-
lishment in soil showed both 5179-bp and 527-bp PCR prod-
ucts. This indicates that the cassette between two FRT sites 
was not completely excised in all cells of the plants (Fig. 7d). 
The FLPe13 line, which has been confirmed to contain two 
nptII cassettes, was selected to test the removal of nptII from 
its genome. Only the 527-bp amplification product could be 
detected after heat treatment, which most likely indicates 
the complete excision of two-copies of the selectable marker 
gene (Fig. 7g). The 527-bp amplicons from the single-copy 
and two-copy pJKIe lines were sequenced and analyzed. The 
sequencing results indicate that the cassette between the two 
FRT sites in single-copy as well as two-copy pJKIe lines Ta
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was successfully excised in the transformed sugarcane lines 
(Supplementary A2).

TAIL‑PCR analysis to identify the genomic sequence 
flanking the single copy lines with insulator

One cloned PCR amplicon from line FLPe83 which included 
both vector and 1763nt of flanking genomic sequences was 
confirmed by Sanger sequencing (Supplementary A5) from 
a total of 130 colonies from 13 PCR amplicons from 4 dif-
ferent transgenic lines (Ins20, Ins62, FLPe83, FLPe92) fol-
lowing TAIL-PCR. After trimming off the vector sequence 
component the 1763nt genomic sequence flanking the single 
copy transgene was blasted against the monoploid sugarcane 
genome reference sequence, which generated 143 potential 
gene hits. The longest region of alignment of the 1763nt 
flanking sequence with these potential 143 gene hits was 
335nt. Evaluation of the hits with the highest bit scores 
revealed alignment to an intron sequence which is similar 
across many genes and may also occur frequently in non-
genic regions or pseudogenes. The aligned sequence was 
mapped to a distance of 143 or more nucleotides from the 

intron–exon boundaries and at a distance of more than 100 
nt from the branch point.

Discussion

Prediction of transgene performance is complicated by 
the random insertion of transgenes into the plant genome 
and interaction among transgene copies with each other or 
the neighboring chromatin (Assaad et al. 1993; Ingelbre-
cht et al. 1994, 1999; Meyer and Saedler 1996; Angell and 
Baulcombe 1997; Cerutti et al. 1997; Kanno et al. 2000). 
To enhance the predictability of transgene performance we 
constructed and characterized a safe harbor transgene locus 
in sugarcane that is expected to support transgene stacking. 
The transgene expression cassettes and the lox76 recombi-
nation site for targeted integration of additional transgenes 
were flanked with insulators for improving the stability of 
transgene expression. Removal of the selectable marker gene 
by using the FLPe/FRT site-specific recombination system 
was also demonstrated.

Fig. 5   Southern blot of selected 
pJKIS lines using differ-
ent probes. a Southern blot 
with probe targeting EXOB 
(genomic DNA digested with 
XhoI). b Southern blot with 
probe targeting TBS (genomic 
DNA digested with EcoRI). 
c Southern blot with probe 
targeting nptII (genomic DNA 
digested with KpnI). d Southern 
blot with probe targeting FLP 
(genomic DNA digested with 
KpnI)
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Transgene stacking refers to the co-integration of mul-
tiple transgenes and supports metabolic engineering of 
crops (Karunanandaa et al. 2005; Naqvi et al. 2009; Zhu 
et al. 2008; Zale et al. 2016). Stacking of genes with differ-
ent modes of action introduces durable insect or herbicide 
resistance as the resistance conferred by a single transgene 
can break down more rapidly (Moellenbeck et al. 2001; 
Gatehouse 2008; Storer et al. 2012; Jiang et al. 2016; Heap 
2018). Further, stacking of multiple transgenic crop traits 
is accelerating crop improvement (Halpin 2005; Agapito-
Tenfen et al. 2014). Targeted integration of transgenes into 
a safe harbor locus requires site-specific recombination or 
genome editing approaches (Albert et al. 1995; Srivastava 
and Ow 2001; Nandy and Srivastava 2011; Forsyth et al. 
2016; Srivastava and Thomson 2016; Cermak et al. 2015). 
Recently, TALEN or CRISPR/Cas9-mediated targeted 
mutagenesis and precision nucleotide substitutions have 
been accomplished in sugarcane (Jung and Altpeter 2016; 
Kannan et al. 2018; Oz et al. 2019). A report demonstrat-
ing a site-specific recombination system in sugarcane is still 
missing. Targeted transgene integration technologies will 
not only facilitate gene stacking but should also stream-
line regulatory approval of transgenic events and enhance 

transgene performance. The genomic region adjacent to the 
transgene insertion site influences expression level and sta-
bility (Dobie et al. 1996; Iglesias et al. 1997; Ng and Bird 
1999; Clark et al. 1994; Bestor 2000; Fiering et al. 2000). 
Random transgene integration can also lead to insertional 
mutagenesis of genic regions (Jeon et al. 2000) but is more 
of concern in diploid species than in the highly polyploid 
sugarcane genome, where multiple alleles may provide 
functional redundancy. Transgene performance is also 
influenced by the transgene copy number (Jorgensen et al. 
1987, 1996; Hobbs et al. 1993; Depicher and Montagu 1997; 
Stam et al. 1997; Muskens et al. 2000; Wang and Water-
house 2000; Kohli et al. 2003; Akbudak et al., 2010). This 
can be addressed by selecting events with single-copy inser-
tion of transgenes (De Buck et al. 2007; Chawla et al. 2006; 
Srivastava and Gidoni 2010). In this study, we observed a 
similar frequency of single-copy and full-length integration 
events without backbone integration using biolistic (8.1%; 
7 out of 86 events) or Agrobacterium-mediated transforma-
tion (7.7%; 6 out of 78). Simple transgene integration pat-
terns following biolistic gene transfer are supported by the 
reduced amount of minimal expression cassette used during 
DNA coating of particles used for biolistic gene transfer as 

Fig. 6   Southern blot of selected 
pJKIe lines with probe targeting 
FLPe (genomic DNA digested 
with KpnI), WT: wild-type 
control
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reported earlier for sugarcane (Jackson et al. 2013; Wu et al. 
2015b) and other crops (Sandhu and Altpeter 2008; Lowe 
et al. 2009).

Agrobacterium-mediated transformation frequently 
causes undesired vector backbone integration (De 
Buck et al. 2000). We detected backbone integration in 
26.9% of the sugarcane events that were generated with 

Agrobacterium. However, despite the excision of expres-
sion cassettes by gel electrophoresis, backbone integration 
was also detected for 14% of the biolistic gene transfer 
events. This surprising finding may be caused by the con-
tamination with lagging backbone DNA fragments during 
gel electrophoresis. To overcome this problem, minicircle 

Fig. 7   PCR analysis of pJKIS 
(target lines with FLP recom-
binase gene) and pJKIe (target 
lines with FLPe recombinase 
gene) using genomic DNA 
extracted before and after 
heat treatment. a Single-copy 
pJKIS lines Ins20, Ins62 before 
heat treatment (leaf tissue). b 
Single-copy pJKIS line Ins20 
after heat treatment (leaf tissue). 
1, 2, 3, 4 represent the four 
replicates. c Single-copy pJKIS 
line Ins62 after heat treatment 
(leaf tissue). 1, 2, 3, 4 represent 
the four replicates. d Single-
copy pJKIe line FLPe59 before 
heat treatment (leaf tissue) and 
single-copy pJKIe line FLPe31 
in soil before (FLPe31) and 
after (FLPe31-1) heat treatment 
(leaf tissue). e Single-copy 
pJKIe line FLPe59 after heat 
treatment (leaf tissue). 1, 2, 3, 
4 represent the four replicates. f 
Single-copy pJKIe line FLPe59 
after heat treatment (root mate-
rial). 1, 2, 3, 4 represent the four 
replicates. g Two-copy pJKIe 
line FLPe13 before (FLPe13) 
and after (FLPe13-1) heat treat-
ment (leaf tissue). M: 1 kb plus 
DNA ladder; NTC: no template 
control
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technology can be applied as an alternative to plasmid 
derived minimal expression cassettes (Heinz et al. 2012).

Some of the earlier reports suggested that biolistic 
gene transfer results, in contrast to Agrobacterium medi-
ated transformation, in frequent truncation of transgenes 
associated with gene silencing (Dai et al. 2001; Travella 
et al. 2005; Kohli et al. 1999). In our study, the frequency 
of truncation of the constructs following biolistic transfer 
(88.4%) was only slightly higher compared to Agrobacte-
rium tumefaciens-mediated transfer (76.9%). Following 
Agrobacterium-mediated gene transfer in wheat, maize or 
barley, 44–97% of the events displayed T-DNA truncations 
(Cheng et al. 1997; Shou et al. 2004; Bartlett et al. 2008). 
Most of the truncations in Agrobacterium-mediated trans-
formation occur at the left T-DNA border (Wu et al. 2006) 
due to the lack of protection of the left border by covalently 
attached VirD2 (Tinland et al. 1995; Windels et al. 2008). 
Buffer sequences, for example insulators sequences, may be 
used to protect the expression cassette from truncation and 
may also reduce the effect of the transgene integration site 
on gene expression. In this study, TAIL-PCR identified a 
short 48 bp truncation, including the left T-DNA border of 
line FLPe83. However, this short truncation left both the 
expression cassette and the flanking insulator sequence fully 
intact. An alignment of the genomic sequence flanking the 
transgene with the monoploid sugarcane genome reference 
sequence (Garsmeur et al. 2018) suggested the absence of 
insertional mutagenesis. Grosveld et al. (1987) utilized the 
strong locus control regions (LCRs) in their construct for 
stable transgene expression in transgenic mice (Grosveld 
et al. 1987). Peterson et al. (1993) and Porcu et al. (1997) 
attempted to reduce position effects by making large con-
structs including all the required elements to form a native 
epigenetic structure. Nevertheless, those attempts turned out 
less effective than expected. Insulators have been reported to 
eliminate gene silencing and position effects in mammalian 
cells (Chung et al. 1993). A few effective insulators have 
been characterized in plants (Hily et al. 2009; Singer et al. 
2010, 2011, 2012; Yang et al. 2011; Zhang et al. 2012). 
A few insulators, including EXOB of bacteriophage λ and 
TBS, the transformation booster sequence from Petunia 
hybrida demonstrated enhancer blocking activity in plants, 
increased the transgene expression level and reduced the 
line-to-line variation in transgene expression (Singer et al. 
2011, 2012). Here, the combination of EXOB and TBS were 
evaluated for their ability to improve transgene expression 
stability in sugarcane. The nptII expression cassette flanked 
with EXOB and TBS were compared to an identical con-
struct missing the insulators. Similar to earlier reports 
(Singer et al. 2011, 2012) the insulator construct resulted 
in significantly reduced line-to-line variation of transgene 
expression in sugarcane when compared to lines without 
the insulators. In addition, a significant difference in the 

expression level between the lines with and without insula-
tors was detected. The average transgene expression level 
of insulator-containing lines was nearly two times higher 
compared to the lines without insulators. This result was in 
accordance with that of Singer et al. (2012), and was consist-
ent between the primary transgenic events and their vegeta-
tive progenies. Furthermore, only lines with a single-copy 
of the full length nptII expression cassette were compared 
to eliminate the influence of copy number or truncations. 
For future use, these lines with insulators could be used for 
site-directed stacking of transgenes into the lox76 site via 
Cre-mediated site-specific recombination or CRISPR/Cas9 
mediated homologous recombination.

Different types of site-specific recombinase proteins have 
been compared in rice (Akbudak and Srivastava 2011). In 
this study, we compared the efficiency of two different FLP 
variants, wild-type FLP and thermo-stable FLPe, to excise 
a selectable marker gene nptII between two FRT sites. We 
demonstrated that FLPe supported removal of the selectable 
marker gene in single and two-copy transgenic sugarcane 
lines in both leaf and root tissue of in vitro grown sugarcane 
plantlets. In contrast, wild-type FLP/FRT-mediated exci-
sion was not detectable in sugarcane lines. This is consist-
ent with previous reports on rice, which found that FLPe 
is superior to wild-type FLP in both extra-chromosomal 
transient expression and consistent stable expression from 
the genomic locus by heat-shock or constitutive promoters 
in excising FRT-flanked transgene from the rice genome 
(Akbudak and Srivastava 2011; Nguyen et  al. 2014). 
Although, inefficiency of FLPe in germline was noted, FLPe 
activity in somatic tissues was found to be robust in rice 
(Nguyen et al. 2014). Our study compared FLP and FLPe 
under heat-inducible promoter in the clonal segments of an 
asexually propagating plant species. As heat-induced expres-
sion levels were not significantly different in different lines, 
superior recombination efficiency of FLPe is likely resulting 
from its thermostability in the cells (Buchholz et al. 1998). 
Reports that describe the successful application of wild-type 
FLP for removal of a selectable marker have also been pub-
lished, e.g., in creeping bentgrass (Hu et al. 2006), rice (Hu 
et al. 2008), and dicots, such as tobacco (Davies et al. 1999; 
Gidoni et al. 2001; Woo et al. 2009), Arabidopsis (Kumar 
and Thompson 2009) and aspen (Fladung and Becker 2010).

In conclusion, we generated and characterized a landing 
pad for transgene stacking in sugarcane that consists of a 
highly and stably expressed single-copy transgene flanked 
by insulators. We also demonstrated marker gene removal 
using the FLPe/FRT site-specific recombination system, 
which will facilitate re-transformation.
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