
Time Series Analysis for Efficient Sample Transfers
Hemanta Sapkota

Computer Science and Engineering
Reno, Nevada

hsapkota@nevada.unr.edu

Bahadir A. Pehlivan
Computer Science and Engineering

Reno, Nevada
bpehlivan@nevada.unr.edu

Engin Arslan
Computer Science and Engineering

Reno, Nevada
earslan@unr.edu

ABSTRACT
Real-time transfer optimization approaches offer promising
solutions as they can discover optimal transfer configuration
in the runtime without requiring an upfront work or making
assumptions about underlying system architectures. On the
other hand, existing implementations suffer from slow con-
vergence speed due to running many sample transfers with
suboptimal configurations. In this work, we evaluate time-
series models to minimize the impact of sample transfers with
suboptimal configurations by shortening the transfer dura-
tion without degrading the accuracy. The results gathered in
various networks with rich set of transfer configurations indi-
cate that, in most cases, Autoregressive model can accurately
estimate sample transfer throughput in less than 5 seconds
which is up-to 4x improvement over the state-of-the-art solu-
tion. We also realized that while the most common transfer
applications report transfer throughput at most once a sec-
ond, decreasing the reporting interval is the key to further
reduce the impact of sample transfers by quickly determining
their performance.

ACM Reference Format:
Hemanta Sapkota, Bahadir A. Pehlivan, and Engin Arslan. 2019.
Time Series Analysis for Efficient Sample Transfers. In Systems
and Network Telemetry and Analytics (SNTA’19), June 25, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3322798.3329256

1 INTRODUCTION
Large scientific experiments such as environmental and coastal
hazard prediction [17], climate modeling [15], and high-energy
physics simulations [9] generate data volumes reaching petabytes
per year. This huge volume of data is often moved to remote
sites for various purposes such as processing, collaboration,
and archival. Even though the existing high speed networks
with up-to 100 Gbps network bandwidth have been estab-
lished, many users still experience difficulty reaching the
theoretical maximum throughput, causing underutilization
of resources [7]. A common way to address low-performance

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SNTA’19, June 25, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6761-5/19/06. . . $15.00
https://doi.org/10.1145/3322798.3329256

problems is tuning the application level transfer configura-
tions such as pipelining [10], parallelism [11], concurrency [18],
buffer size [13], block size [23], and striping [2]. While sig-
nificant performance gains can be achieved by tuning these
parameters [6, 10, 23], the optimal configuration depends on
many factors including dataset (i.e., file size and the number
of files), network (i.e., bandwidth, round-trip-time, and back-
ground traffic on network), and end-system characteristics
(i.e., file system and transport protocol). Thus, finding the
best parameter combination is a challenging task due to large
search space and prohibitive cost of exhaustive profiling.

There have been several attempts to tune some of these
application-layer parameters to maximize transfer throughput
using heuristic [3, 6, 7], supervised [14, 21], semi-supervised [4,
5], and unsupervised [20, 23, 24, 28] models. Since heuristic,
supervised, and semi-supervised models require a significant
upfront work and re-adjustments when system configuration
changes, unsupervised methods such as online optimization
are favored as they can adapt to changing network conditions
by discovering the optimal transfer settings in the real-time.
They do this by running a series of sample transfers to evalu-
ate different parameter configurations and swiftly converge
to the optimal setting. Thus, their success heavily rely on the
accuracy and cost of sample transfers. Yet, shared nature of
high performance networks and end system resources leads
to significant fluctuations in transfer throughput, hinder-
ing fast and accurate estimation of average sample transfer
throughput. In addition to its importance for real-time trans-
fer parameter tuning algorithms, sample transfers are also
used in network monitoring [12], workflow scheduling [22],
and adaptive video streaming [19].

Current solutions to conduct sample transfers include
fixed data size [25], fixed-time duration [1], and adaptive
approach [5]. In the fixed data size approach, a pre-calculated
amount of an original dataset (e.g., 10%) is used to run sample
transfers, however it requires an up-front work to determine
the optimal data size which may not be feasible in every
network [25]. On the other hand, the fixed-time approach
requires a fine tuning of time duration that sample transfers
will run, otherwise it may also result in poor accuracy or
take too long to finish. Adaptive sampling initiates whole
dataset transfer and keeps track of throughput periodically
(e.g., once a second). It assumes that transfer throughput is
converged to a value when throughput ratio of two consec-
utive intervals is closer than a defined threshold. Finally, it
stops the transfer and takes average of last two throughput
results as the throughput of the sample transfer. Among
them, adaptive approach promises fast convergence with the

https://doi.org/10.1145/3322798.3329256
https://doi.org/10.1145/3322798.3329256
https://doi.org/10.1145/3322798.3329256

SNTA’19, June 25, 2019, Phoenix, AZ, USA Hemanta Sapkota, Bahadir A. Pehlivan, and Engin Arslan

highest accuracy, however we found that it can fail to con-
verge when transfer throughput exhibit fluctuations due to
network instability or inaccurate throughput measurements.

In this paper, we propose time-series models to predict
sample transfer performance in the runtime expeditiously
and accurately. As opposed to previous work, we neither rely
on historical data nor low-level TCP metrics. Instead, the
models rely on real-time throughput observations to predict
throughput of sample transfers upon convergence, minimizing
the cost of sample transfers without sacrificing estimation
accuracy. Contributions of this paper are as follows:

∙ We introduce several time-series models to process
real-time throughput metrics to predict convergence
throughput of sample transfers in short time duration
with high estimation accuracy.

∙ We investigate the impact of measuring transfer through-
put more frequently in attempt to reduce time to derive
time-series models and estimate convergence through-
put in less than a second.

∙ We conduct extensive experiments using two local area
and two wide area networks with various dataset, net-
work, and transfer configurations to evaluate the pro-
posed models in wide range of scenarios.

The rest of paper is organized as follows: Section 2 explains
the motivation and presents related work in the area of sam-
ple transfer optimization. Section 3 describes the proposed
models as well as the state-of-the-art solutions. Section 3
explains experimental setup and Section 5 discusses the eval-
uation results. Finally, Section 6 concludes the paper with
the summary and potential future directions.

2 MOTIVATION AND RELATED WORK
As pointed out by previous works, the throughput of a data
transfer in shared networks rely on various factors including
dataset characteristics, network settings, transfer configura-
tions, and background load [5–7, 14, 16]. Hence, it is hard to
predict transfer throughput of a dataset in advance. Sample
transfers are used to estimate transfer throughput by probing
network with a given transfer configuration and are used to
identify a configurations that yields the maximum transfer
throughput. The most common way to run sample trans-
fers is to use a portion of original dataset such that sample
transfers could also contribute to actual transfer. However,
there is no consensus on how to schedule sample transfers as
obtaining accurate and timely results is a difficult task due
to unpredictable nature of resource interference.

Figure 1 demonstrates throughput fluctuations over time
for several transfers in different networks. It is clear in the fig-
ure that some transfers experience sharp changes in observed
throughput. In addition, transfer throughput stabilizes at
different times in different networks. While one transfer can
reach to maximum throughput in as short as 3 seconds, it
can take up-to 20 seconds for another one. Although run-
ning sample transfers for the worst-case scenario is possible
to guarantee reaching to maximum possible throughput, it
would significantly increase the search time for real-time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Time (s)

Figure 1: Convergence behavior of file transfers throughput
follows distinct pattern based on network settings, dataset
characteristics and background traffic.
transfer optimization algorithms that aim to find the op-
timal transfer configuration by running a series of sample
transfers. Thus, it is nontrivial to schedule sample transfers
that can capture fast and accurate results without impos-
ing significant overhead. Researchers proposed fixed-size [25],
fixed-duration [1, 8], adaptive [4], and modelling-based [25]
techniques to conduct sample transfers.

Yildirim et al. developed a model to estimate percentage
of dataset size to be used in sample transfers [25]. They first
run extensive experiments to collect accuracy statistics for
various sampling sizes and then runs regression analysis to
extract the relationship between sampling size and transfer
conditions such as bandwidth, RTT, and average file size.
The model is then used to predict optimal sampling size for
future transfers. As the model’s accuracy heavily depends on
the collected data logs, it requires a significant upfront work
to perform well. Moreover, the model estimates sampling size
to be between 10% and 23% of dataset size which would incur
too much delay for large datasets and result in inaccurate
sampling size for small datasets. Moreover, real-time transfer
optimization algorithms would end up transferring the most,
if not all, of the dataset during search phase, turning the
identification of the optimal configuration hardly useful.

In another work, throughput of sample transfers are deter-
mined by running them for a fixed time duration [1]. The goal
is to evaluate different transfer configurations and determine
the one with the highest throughput to energy consumption
ratio. The authors concluded that 5 seconds is sufficient to
predict the performance of any transfer configuration in their
test networks. However, running sample transfers for a fixed
time period involves sensitive tuning of the duration based
on network conditions since a single value could be too short
for some networks and too long for others. Indeed, we have
observed in our experiments that transfer convergence speed
could take up to 20 seconds in some networks due to slow
connection setup and high bandwidth-delay product.

In a previous work [4], we proposed an adaptive sampling
in which we start transferring an entire dataset and monitor
throughput periodically. If throughput of two consecutive
monitor intervals are closer than a defined threshold, we stop

Time Series Analysis for Efficient Sample Transfers SNTA’19, June 25, 2019, Phoenix, AZ, USA

the transfer and take the average throughput of last two
intervals as the throughput of the sample transfer. Adap-
tive approach works well if the throughput does not exhibit
much fluctuations upon convergence. However, our experi-
ments showed that this assumption may not hold true in
shared networks with unpredictable network and end system
congestion.

3 PROPOSED MODELS
We aim to estimate the transfer throughput of sample trans-
fers quickly and accurately in the runtime. To achieve this
goal, we experiment with following time-series and regression
based models:

∙ Negative polynomial model
∙ Auto Regressive (AR) model
∙ Auto Regressive Moving Average (ARMA) Model
∙ Auto Regressive Integrated Moving Average (ARIMA)

model
∙ Adaptive Sampling by Arslan et al. [5]
∙ Fixed data size mode by Yildirim et al. [25]

3.1 Negative Polynomial Model
The negative polynomial model leverages TCP slow start
behavior in which throughput of a transfer starts with small
values and quickly converges to available network bandwidth.
Thus, it relates transfer time to transfer throughput as shown
in Equation 1. In the model, 𝑋𝑡 refers to the throughput, 𝑡
refers to the time since start of transfer, 𝑎 and 𝑏 are coeffi-
cients. Nonlinear least squared method is used to calculate
the value of 𝑎 and 𝑏. Instead of deriving one model for all
networks and transfers using historical data, we solve the
equation (aka finding the 𝑎 and 𝑏 values) in the run-time for
each transfer as transfers exhibit unique behavior based on
network settings and dataset characteristics. Let’s assume
we started a transfer and observed throughput values 250,
1250, 1980 Mbps in the first three seconds, then nonlinear
least square method is used to estimate the coefficient values
that minimizes the difference between estimated and actual
throughput values. Figure 2 visualizes the negative polyno-
mial models with respect to actual transfer throughput. The
model is derived based on first four throughput data1. After
deriving the equation and finding corresponding 𝑎 and 𝑏 val-
ues, future values are estimated by plugging increasing time
values in Equation 1. As it can be seen in the figure that
the negative polynomial function can accurately estimate
average throughput value when transfer throughput follows
a predictable and stable pattern.

𝑋𝑡 = 𝑎 − 𝑏

𝑡2 (1)

3.2 Autoregressive (AR) Model
In Autoregressive model uses observations from previous time
steps as input to predict the value at the next time step as
shown in Equation 2. 𝑋𝑡 is a predicted value, 𝑐 is a constant,
1Unless specified throughput values are obtained once a second, making
this data collection to run four seconds

Figure 2: Negative polynomial function.

and 𝜙𝑝 is the coefficient for the lagged variable. Since time
series data can evolve over time, AR model only considers
recent previous data to quickly adapt to changing conditions.
In Equation 2, it considers last 𝑝 data points (i.e., throughput
results) when estimating the value of current time, 𝑋𝑡. In
case of estimating sample transfer throughput estimation,
throughput values from first few seconds are given as input
to AR to generate 𝑐 and 𝜙𝑖 which are then used to predict
𝑖𝑡ℎ’s second throughput. AR might be a good fit to sampling
problem since it can capture throughput behavior of TCP
flows. TCP uses packet sent in previous steps to calculate
the number of packets to send in next step (true even in
the case of packet loss events), so AR can correctly capture
TCP window size regulation process when 𝑝 is set properly.
In addition, it also performs well when throughput results
exhibit predictable stable fluctuations by means of error
factor, 𝜀𝑡.

𝑋𝑡 = 𝑐 +
𝑝

𝑖=1
𝜙𝑖𝑋𝑡−𝑖 + 𝜀𝑡. (2)

3.3 AutoRegressive Moving Average (ARMA)
Model

AutoRegressive Moving Average (ARMA) model is composed
of two parts as autoregression (AR) and moving average
(MA). In the equation 3, the first part with 𝑋𝑡 belongs
to AR and the second part with 𝜀𝑡−𝑖 belongs to MA. The
AR part makes regression on past values of throughput and
the MA part constructs an error term using previous error
values which represents noise in data. Compared to AR,
ARMA is more robust to recent fluctuations in data as a
result of capturing lagged error rate. The ARMA model can
capture throughput fluctuations as a result of congestion
and packet loss. When TCP is exposed to a packet loss,
its throughput will experience a sharp decrease followed
by a recovery phase. Thus, while instant throughput may
exhibit fluctuating behavior, average throughput is expected
to smooth out sharp increase and decreases.

𝑋𝑡 = 𝑐 + 𝜀𝑡 +
𝑝

𝑖=1
𝜙𝑖𝑋𝑡−𝑖 +

𝑞

𝑖=1
𝜃𝑖𝜀𝑡−𝑖. (3)

3.4 Autoregressive Integrated Moving Average
(ARIMA) Model

Autoregressive Integrated Moving Average (ARIMA) model
projects the future values of a series based entirely on its own

SNTA’19, June 25, 2019, Phoenix, AZ, USA Hemanta Sapkota, Bahadir A. Pehlivan, and Engin Arslan

Specs Storage CPU Memory (GB) Bandwidth (Gbps) RTT (ms) Transfer Count

XSEDE (Stampede2-Comet) Lustre 28 x Intel Xeon Gold 6132 @ 2.60 GHz
24 x Intel Xeon E5-1660 @ 3.20 GHz

96
64 10 40 28,209

ESnet RAID-0 12 x Intel Xeon E5-2643 @3.40GHZ 128 100 89 5,218
Pronghorn GPFS 16 x Intel Xeon E5-2683 @2.10GHz 192 10 0.1 2,316
HPCLab NVMe SSD 16 x Intel Xeon E5-2623 @2.60GHz 64 40 0.1 16,383

Table 1: System specification of experiment networks.

inertia. AR part of ARIMA is similar to the AR model which
uses 𝑝 fixed previous observations to extract dependence to
past observations. Integrated (I) part allows to eliminate the
trend and seasonality and stabilizing the mean of the time
series. Finally, MA is used to smooth out short-term fluctua-
tions and highlight longer-term trends or cycles. Compared
to AR and ARMA, ARIMA performs better when there is
seasonal fluctuation in dataset.

3.5 Adaptive Sampling
Adaptive approach relies on the assumption that throughput
will stabilize upon convergence [5]. Thus, it compares con-
secutive throughput values to determine if a given transfer
has reached to convergence point. It stops when the last
observed throughput is 𝑥% closer to throughput of previous
time step. For example, if throughput of a transfer returned
10,20,30,35,45 values in the first five seconds and 𝑥 is set
to = 8%, then adaptive sampling will stop after observing
the value of 35 as the ratio between 30 and 35 is less than
8%. Adaptive sampling achieves good performance if the
transfer throughput exhibits small fluctuations upon conver-
gence. However, it is susceptible to early termination when
throughput of a transfer increases slowly but steadily, poten-
tially because of consecutive packet losses at the beginning
of the transfer. It will also perform poorly when throughput
does not stabilize significantly after reaching to the maxi-
mum which can happen when transferring many files since
throughput may experience sharp changes when finishing one
file and starting to another one due to disk I/O overhead.

3.6 Fixed Data Size Sampling
Yildirim et al. proposed a model to determine the size of
dataset to use in the sample transfers [25]. Unlike the models
that we discussed thus far which rely on throughput results to
e captured in the runtime to stop sample transfers, fixed-data
size solution transfers a small portion of a dataset to run
sample transfers. Once the transfer is completed, it measures
time which is then used to calculate sampling throughput. To
determine the optimal size for sample transfers, Yildirim et al.
collected historical data and run regression analysis to derive
a linear model that relates sampling data size to file size and
bandwidth-delay-product. On average, the model estimates
data size to be between 10% and 23% of original dataset size.
While this is a promising step to avoid fluctuation in real-
time throughput values, it has two major drawbacks. First,
it relies on historical data to be collected in each network for
each distinct datasets to accurately derive a model. Second,
sample data size could be significantly large for bulk transfers.

For example, when transferring 1 TB of data, sample transfer
would require 100-230 GB of data to be used which will
unnecessarily take a long time to finish.

4 DATA COLLECTION
To evaluate the described models in realistic traffic scenarios,
we ran file transfers in various local and wide area networks
as shown in Table 1 and collected throughput reports periodi-
cally. The models are then given a portion of these reports to
evaluate their accuracy in predicting actual transfer through-
put. For local area experiments, we used HPCLab servers at
University of Nevada, Reno (UNR) and UNR campus clus-
ter, Pronghorn. While HPCLab servers have direct attached
NVMe SSDs, Pronghorn is supported by distributed file sys-
tem, GPFS. XSEDE and ESnet transfers represent wide-area
network conditions with 40 ms and 89 ms delay between end
points. In total we ran 52,126 transfers using various file sizes
(i.e, in a range of 1 MB - 100 GB) and counts. We also tested
different transfer configurations by tuning application-layer
parameters, concurrency and parallelism. Concurrency sets
the number of concurrent file transfers whereas parallelism
defines the number of network connections for single file
transfer. These parameters have proven to be effective in in-
creasing transfer throughput by mitigating network and end
system bottlenecks [5, 14, 26, 27]. We used custom GridFTP
client to run transfers in XSEDE since data transfer nodes
in XSEDE sites only support GridFTP protocol. We config-
ured GridFTP transfers to report transfer progress in once
a second and saved the reported throughput values of each
transfer to a separate file. We used FTP and GridFTP trans-
fers to collect transfer logs in HPCLab, Pronghorn, and ESnet.
While GridFTP only supports throughput to be reported
at most once a second, our custom FTP protocol allowed
us to measure transfer throughput more frequently. Thus,
while a majority of experiments in this paper relies on trans-
fer throughput collected in every one second, we evaluated
sub-second data collection frequency in Section 5.1.

After running transfers and collecting throughput periodi-
cally, we calculate average throughput of each transfer which
is used to compare against the estimations of the models.
Except Yildirim’s model which does not process real-time
throughput values, the accuracy of other models is measured
as follows. A model is given first three data points from
throughput log file to train them. Once the model is trained,
it predicts the next data point, which is compared against
fourth data point from throughput log file. If they are closer
than a certain threshold, then the models is assumed to be
converged and its convergence time is marked as three sec-
onds. If the estimation is not close enough, then the models

Time Series Analysis for Efficient Sample Transfers SNTA’19, June 25, 2019, Phoenix, AZ, USA

 2

 4

 6

 8

 10

 12

 14

ESnet HPCLab Pronghorn XSEDE

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

s
)

Testbed

5%
10%

20%
30%

40%

(a) Convergence Time

 0

 5

 10

 15

 20

 25

 30

 35

 40

ESnet HPCLab Pronghorn XSEDE

E
rr

o
r

R
a
te

 (
%

)

Testbed

5%
10%

20%
30%

40%

(b) Error Rate

Figure 3: Evaluation of Optimal solution in terms of time and accuracy for various stopping conditions.

 14

 16

 18

 20

 22

 24

 26

 28

AR
IM

A

AR
M

A

Ada
pt

iv
e

Aut
or

eg
re

ss
iv
e

Pol
yn

om
ia
l

Yild
iri
m

E
rr

o
r

R
a
te

 (
%

)

(a) Error Rate

 5

 6

 7

 8

 9

 10

 11

 12

AR
IM

A

AR
M

A

Ada
pt

iv
e

Aut
or

eg
re

ss
iv
e

Pol
yn

om
ia
l

Yild
iri
m

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

s
)

(b) Convergence Time

Figure 4: Convergence time and error rate comparison of algorithms for all network results when 10% stopping threshold is used
except for fixed data size approach [25]

is retrained with four data points and its convergence is eval-
uated based on its estimation of fifth data point. The model
is trained with more throughput data points until their next
data point estimation is close enough to actual data point
for the corresponding time. Once the model is able to make
accurate estimation of the next data point, the model pre-
dicts average throughput, typically through estimating more
data points and taking average of them. Finally, the model’s
average throughput estimation is compared against actual
average throughput of transfer to calculate its accuracy.

4.1 Optimal Solution
As shown in Figure 1, throughput behavior of transfers in
different networks differ in terms of convergence time and
stability. Thus, before evaluating the performance of the mod-
els in estimating sample transfer throughput, we first define
Optimal solution that can be used to evaluate the success of
models. We first calculate average throughput of previously
executed transfers by dividing the datasize to transfer time.
Then, the Optimal solution scans time-series throughput data
and determines the time in which throughput is within cer-
tain range of actual average throughput. By comparing the
models’ performance against the optimal solution, we can
see if a model performs poorly due to its design or inherent
nature of the test environment. For example, if throughput of
a transfer converges at 20𝑡ℎ second, then none of the models
are expected to converge earlier as it would lead to inaccurate

estimation of average throughput. We defined the Optimal
solution as follows: It calculate the throughput of last four
data points and compares against actual average throughput.
If they are closer than a threshold, we call the last time data
point as the optimal convergence time. To give an example,
when instantaneous throughput of a file transfer is observed
as 100, 300, 120, 610, 550, 600, 450, 400, 650, 310 Mbps,
average throughput becomes 409 Mbps. When threshold is
defined as 10%, the Optimal solution takes the average of
the last four data points and stops at 5𝑡ℎ since average of
300, 120, 610, 550 becomes 395 Mbps, falls within the range
of 10% error rate of average throughput. Its error in this
example becomes |395−409|

409 = 3.4%.
We evaluated various threshold cases in Figure 3. It is clear

that as the threshold increases, it takes longer to convergen
in exchange of lower error rate. It is interesting to observe
that average error rate for threshold 10% is around 5% as
one might expect it to be close to 10%. However, this is due
to the fact that threshold defines the upper bound for the
error rate, letting actual error rates to vary between 0-10%
which averages to 5%. Moreover, 40% threshold leads up-to
30% error rate while keeping convergence rate less than 5
seconds. On the other hand, 5% threshold lead to 12 seconds
convergence time while keeping error rate less than 3%. Since,
we want to find a model that can estimate sample transfer
throughput within a reasonable time and error rate values,

SNTA’19, June 25, 2019, Phoenix, AZ, USA Hemanta Sapkota, Bahadir A. Pehlivan, and Engin Arslan

we used 10% threshold to compare against the models in the
next section.

5 EVALUATIONS
In this section, we evaluate the performance of different mod-
els in terms of convergence time and estimation accuracy.
Convergence time is determined by setting a threshold for
each model as a stopping condition. We define stopping con-
dition for the algorithms as follows: Adaptive sampling model
stops when last two consecutive throughput values are close
than a certain percentage, thus the threshold defines the
percentage of closeness. For example, 5% stopping condition
for Adaptive model will stop sample transfer when it ob-
serves two consecutive throughput values that are within 5%
range of each other. Negative Polynomial model (shown as
Polynomial in the figures) starts to read the transfer logs
one by one and trains its model using least square regres-
sion. Then, the derived model is used to estimate next data
point which is compared against the actual data point from
throughput data. It stops when estimation and actual values
are within 5% range. Similarly, Autoregressive model reads
instantaneous throughput data one by one and trains the
model. Then, the model is used to predict the next data
point to compare against actual data for corresponding time
value. If the prediction is 5% close to actual value, then it
stops and marks the sample transfer as completed. In the
case of Yildirim’s model, we did not define stopping condition
since it transfers fixed data size to predict sample transfer
throughput, thus its error rate and accuracy values are fixed
across different threshold values. Finally, we also added result
from optimal solution as given in Figure 3 to understand how
close each algorithm to the optimal solution.

Figure 4 shows the performance comparison of the models
when evaluated against all transfer logs collected in all net-
works. It is clear that ARIMA and Yildirim’s model causes
up-to 40% higher error rate without no significant improve-
ment in convergence time. While ARMA can obtain around
10% lower error rate compared to Autoregressive and Polyno-
mial models, its convergence time is almost 50% higher than
the other two models. Autoregressive and Polynomial models
appear to yield the best performance when both time and
error rate considered considered at the same time. Hence, in
the following results, we omit ARMA and ARIMA and focus
on the performance evaluations of Autoregressive model.

Figure-5 shows error rate and convergence time of the
models in HPCLab testbed. Autoregressive model yields the
lowest error rate for all threshold values. As the stopping
condition increases from 5% to 30%, the error rate for Autore-
gressive model increase slightly due to fairly stable transfer
throughput in this network. On the other hand, average con-
vergence time of all transfers in HPCLab network decreases
from around 7 seconds to around 4 seconds since the model
can find a throughput value to satisfy stopping condition
earlier. These results indicate that, throughput of transfers
in HPCLab experiments converges quickly and exhibit fair
amount of fluctuations upon the convergence. Consequently,
large stopping threshold values yield up-to 80% quick decision

with only 10% worse error rate compared to low stopping
condition cases. On the other hand, Yildirim’s model achieves
12.5% error rate with 7.8s convergence time. Compared to
other models, its accuracy is mostly better but convergence
time is nearly twice large than others for increased stopping
threshold case. It is also important to note that, Yildirim’s
approach requires an up-front work to derive a model that
can estimate optimal sampling size. Adaptive model performs
the worst of all in all stopping thresholds which can be at-
tributed to its inability to leverage from complete history as
it only considers last two data points. Finally, polynomial
model has the fastest convergence time but its error rate is
higher than Autoregressive model. Figure 5(c) shows cumu-
lative distribution function for convergence time with 20%
convergence rate where the slow convergence behaviour of
Yildirim’s model can be observed.

Figure 6 shows the evaluation results for Pronghorn testbed.
Similar to HPCLab network, Pronghorn experiments are con-
ducted between two servers in same local area network. While
Yildirim’s model has the lowest error rate with 6%, its con-
vergence time is nearly 4x higher than other models. Again,
Autoregressive model yields the lower error rate compared
to Adaptive and Polynomial models with less than 10% in
all thresholds values. Its convergence time is also similar to
Polynomial model which has the lowest convergence time
in all threshold values except 5%. Adaptive sampling again
falls behind of Autoregressive and Polynomial models both
in terms of convergence time and error rate.

Figure 7 shows the results for ESnet testbed where source
and destination end points are connected with 100 Gbps
bandwidth and 89 ms RTT. Yildirim’s model achieves as
low as 5% error rate which is close to optimal solution. In
exchange, it leads to significantly higher time to converge as
shown in Figure 7(b). Polynomial and Autoregressive models
perform similar in most cases with less than 15% error rate
and less than 5 seconds convergence time. However, Polyno-
mial model takes 25% more time to converge in 5% threshold
case. On the other hand, Adaptive approach achieves less
than 4 seconds convergence time at all threshold conditions
but yields 20-25% higher error rate compared to Autore-
gressive and Polynomial models. CDF of convergence time
again reveals that Yildirim’s model leads to significantly high
convergence time. Autoregressive, Polynomial, and Adaptive
models, however, perform similar with Polynomial model
converging slightly better.

As opposed to other testbeds, XSEDE causes significantly
higher error rates due to its shared nature of end system
and network resources as shown in Figure 8. While error
rates for HPCLab, Pronghorn, and ESnet for Autoregressive
were below 15% for all threshold levels, it exceeds to 30%
in 30% threshold case in XSEDE. Polynomial model yields
10-20% lower error rate compared to Autoregressive and
Adaptive models. In return, its convergence time is 10-15%
higher. Autoregressive model yields the lowest convergence
time in all threshold values. In overall, Autoregressive model
performs consistent across all testbed with reasonably well
accuracy and convergence time values. Moreover, Although

Time Series Analysis for Efficient Sample Transfers SNTA’19, June 25, 2019, Phoenix, AZ, USA

 0

 5

 10

 15

 20

 25

 30

5 10 20 30

E
rr

o
r

R
a
te

 (
%

)

Stopping Threshold (%)

Optimal
Autoregressive

Polynomial
Adaptive

Yildirim et al.

(a) Error Rate

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

5 10 20 30

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

s
)

Stopping Threshold (%)

Optimal
Autoregressive

Polynomial
Adaptive

Yildirim et al.

(b) Convergence Time

 0

 20

 40

 60

 80

 100

 0 10 20 30

C
D

F
 P

e
rc

e
n

ta
g

e

Time (s)

Adaptive
Autoregressive

Polynomial
Yildirim et al.

(c) CDF Time

Figure 5: Performance comparison of algorithms in HPCLab network transfers. Autoregressive model keeps the error rate below
12% and convergence time below 7 seconds.

Yildirim’s model achieves low error rate in all networks, its
convergence time is prohibitively high, making it infeasible to
use for real-time optimization. While Polynomial model can
also offer comparable performance in most cases, its error
rate can be up-to 20% worse than Autoregressive.

5.1 Throughput Calculation Frequency
In this section, we investigate the impact of collecting through-
put results in sub-second intervals in attempt to achieve faster
convergence time which is critical to be able to run many
sample transfers in a timely manner. While GridFTP servers
do not support populating instantaneous throughput values
in sub-second intervals, we configured our custom FTP client
report transfer throughput in every 100ms in HPCLab and
Pronghorn networks. Then, we evaluate the models and to
calculate the convergence time and error rate as shown in
Figure 9(c). Yildirim’s model is not shown in the average
convergence time and CDF of convergence time figures (Fig-
ure 9(b) and 9(c)) as it takes nearly 10x more time than
other models as it does not benefit from real-time throughput
values and transfers large portion of dataset to run sample
transfers.

Figure 9(b) shows that all models converge in less than a
second. On the other hand, this leads to increased error rate.
While Autoregressive model achieves less than 12% error rate
for HPCLab and Pronghorn networks as shown in Figure 5
and 6, its error rate reaches to 20% when tested with more
granular throughput data. However, this can be a reasonable

trade-off when compared to 4-6x reduction in convergence
time.

6 CONCLUSION AND FUTURE WORK
In this work, we propose and evaluate time-series models
to estimate throughput of sample transfers and alleviate
sampling overhead for real-time transfer optimization. The
results indicate that time-series analysis using Autoregressive
model can achieve less than 12% error rate in most cases
with less than 5 seconds convergence time. However, the error
rate and convergence time increase in shared networks due to
resource interference at the storage, server, and network levels.
Moreover, we found that calculating transfer throughput more
often than once a second can help to lower convergence time
over 6 times while deteriorating error rate by 5-10%. As a
potential direction in the future work, we aim to investigate
the models in controlled congestion environment to find out
how they are affected as background traffic intensifies.

ACKNOWLEDGEMENT
The work in this study was supported in part by the NSF
grant OAC-1850353.

REFERENCES
[1] Ismail Alan, Engin Arslan, and Tevfik Kosar. 2015. Energy-aware

data transfer algorithms. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage
and Analysis. ACM, 44.

[2] William Allcock, John Bresnahan, Rajkumar Kettimuthu, Michael
Link, Catalin Dumitrescu, Ioan Raicu, and Ian Foster. 2005. The
Globus striped GridFTP framework and server. In Proceedings

SNTA’19, June 25, 2019, Phoenix, AZ, USA Hemanta Sapkota, Bahadir A. Pehlivan, and Engin Arslan

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

5 10 20 30

E
rr

o
r

R
a

te
 (

%
)

Stopping Threshold (%)

Optimal
Autoregressive

Polynomial
Adaptive

Yildirim et al.

(a) Error Rate

 0

 5

 10

 15

 20

 25

 30

5 10 20 30

C
o

n
v
e

rg
e

n
c
e

 T
im

e
 (

s
)

Stopping Threshold (%)

Optimal
Autoregressive

Polynomial
Adaptive

Yildirim et al.

(b) Convergence Time

 0

 20

 40

 60

 80

 100

 0 10 20 30 40

C
D

F
 P

e
rc

e
n

ta
g

e

Time (s)

Adaptive
Autoregressive

Polynomial
Yildirim et al.

(c) CDF Stopping Time

Figure 6: Performance comparison of algorithms in Pronghorn campus cluster. Autoregressive model yields the lower error rate
compared to Adaptive and Polynomial models with less than 10% in all thresholds values.

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 20 30

E
rr

o
r

R
a

te
 (

%
)

Stopping Threshold (%)

Optimal
Autoregressive

Polynomial
Adaptive

Yildirim et al.

(a) Error Rate

 0

 5

 10

 15

 20

 25

 30

5 10 20 30

C
o

n
v
e

rg
e

n
c
e

 T
im

e
 (

s
)

Stopping Threshold (%)

Optimal
Autoregressive

Polynomial
Adaptive

Yildirim et al.

(b) Stopping Time

 0

 20

 40

 60

 80

 100

 0 10 20 30 40

C
D

F
 P

e
rc

e
n

ta
g

e

Time (s)

Adaptive
Autoregressive

Polynomial
Yildirim et al.

(c) CDF Convergence Time

Figure 7: Performance comparison of algorithms in ESnet network transfers. While polynomial model performs similar to Au-
toregressive model is most cases, its convergence time for 5% threshold is 25% worse.

Time Series Analysis for Efficient Sample Transfers SNTA’19, June 25, 2019, Phoenix, AZ, USA

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 20 30

E
rr

o
r

R
a

te
 (

%
)

Stopping Threshold (%)

Optimal
Autoregressive

Polynomial
Adaptive

Yildirim et al.

(a) Error Rate

 2

 4

 6

 8

 10

 12

 14

 16

 18

5 10 20 30

C
o

n
v
e

rg
e

n
c
e

 T
im

e
 (

s
)

Stopping Threshold (%)

Optimal
Autoregressive

Polynomial
Adaptive

Yildirim et al.

(b) Convergence Time

 0

 20

 40

 60

 80

 100

 0 10 20 30 40

C
D

F
 P

e
rc

e
n

ta
g

e

Time (s)

Adaptive
Autoregressive

Polynomial
Yildirim et al.

(c) CDF Stopping Time

Figure 8: Performance comparison of algorithms in XSEDE network. As opposed to other testbeds, XSEDE causes significantly
higher error rates due to its shared nature of end system and network resources.

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 20 30

E
rr

o
r

R
a

te
 (

%
)

Stopping Threshold (%)

Optimal
Autoregressive

Polynomial
Adaptive

Yildirim et al.

(a) Error Rate

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

5 10 20 30

C
o

n
v
e

rg
e

n
c
e

 T
im

e
 (

s
)

Stopping Threshold (%)

Optimal
Autoregressive

Polynomial
Adaptive

(b) Stopping Time

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
D

F
 P

e
rc

e
n

ta
g

e

Time (s)

Adaptive
Autoregressive

Polynomial

(c) CDF Stopping Time

Figure 9: Collecting throughput reports at higher granularity can help to significantly reduce sample transfer time.

SNTA’19, June 25, 2019, Phoenix, AZ, USA Hemanta Sapkota, Bahadir A. Pehlivan, and Engin Arslan

of the 2005 ACM/IEEE conference on Supercomputing. IEEE
Computer Society, 54.

[3] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy,
R. Kettimuthu, J. Kordas, M. Link, S. Martin, K. Pickett, and S.
Tuecke. 2012. Software as a Service for Data Scientists. Commun.
ACM 55:2 (2012), 81–88.

[4] Engin Arslan, Kemal Guner, and Tevfik Kosar. 2016. HARP:
Predictive Transfer Optimization Based on Historical Analysis
and Real-time Probing. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage
and Analysis (SC ’16). IEEE Press, Piscataway, NJ, USA, Article
25, 12 pages. http://dl.acm.org/citation.cfm?id=3014904.3014938

[5] Engin Arslan and Tevfik Kosar. 2018. High-Speed Transfer Op-
timization Based on Historical Analysis and Real-Time Tuning.
IEEE Transactions on Parallel and Distributed Systems 29, 6
(2018), 1303–1316.

[6] Engin Arslan, Bahadir A Pehlivan, and Tevfik Kosar. 2018. Big
data transfer optimization through adaptive parameter tuning. J.
Parallel and Distrib. Comput. 120 (2018), 89–100.

[7] Engin Arslan, Brandon Ross, and Tevfik Kosar. 2013. Dynamic
Protocol Tuning Algorithms for High Performance Data Transfers.
In Proceedings of the 19th International Conference on Parallel
Processing (Euro-Par’13). Springer-Verlag, Berlin, Heidelberg,
725–736.

[8] Prasanna Balaprakash, Vitali Morozov, Rajkumar Kettimuthu,
Kalyan Kumaran, and Ian Foster. 2016. Improving data transfer
throughput with direct search optimization. In Parallel Processing
(ICPP), 2016 45th International Conference on. IEEE, 248–257.

[9] CMS. [n. d.]. The US Compact Muon Solenoid Project.
http://uscms.fnal.gov/. ([n. d.]).

[10] N. Freed. [n. d.]. SMTP service extension for command pipelining.
http://tools.ietf.org/html/rfc2920. ([n. d.]).

[11] T. J. Hacker, B. D. Noble, and B. D. Atley. 2005. Adaptive Data
Block Scheduling for Parallel Streams. In Proceedings of HPDC

’05. ACM/IEEE, 265–275.
[12] Andreas Hanemann, Jeff W Boote, Eric L Boyd, Jérôme Durand,

Loukik Kudarimoti, Roman Łapacz, D Martin Swany, Szymon
Trocha, and Jason Zurawski. 2005. Perfsonar: A service oriented ar-
chitecture for multi-domain network monitoring. In International
conference on service-oriented computing. Springer, 241–254.

[13] T. Ito, H. Ohsaki, and M. Imase. 2008. On parameter tuning
of data transfer protocol GridFTP for Wide-Area Networks. In-
ternational Journal of Computer Science and Engineering 2(4)
(Sept. 2008), 177–183.

[14] Rajkumar Kettimuthu, Gayane Vardoyan, Gagan Agrawal, and P
Sadayappan. 2014. Modeling and optimizing large-scale wide-area
data transfers. In Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on. IEEE, 196–
205.

[15] J.T. Kiehl, J. J. Hack, G. B. Bonan, B. A. Boville, D. L.
Williamson, and P. J. Rasch. 1998. The National Center for
Atmospheric Research Community Climate Model: CCM3. Jour-
nal of Climate 11:6 (1998), 1131–1149.

[16] Youngjae Kim, Scott Atchley, Geoffroy R Vallée, and Galen M
Shipman. 2015. {LADS}: Optimizing Data Transfers Using
Layout-Aware Data Scheduling. In 13th {USENIX} Conference
on File and Storage Technologies ({FAST} 15). 67–80.

[17] Richard J. T. Klein, Robert J. Nicholls, and Frank Thomalla.
2003. Resilience to natural hazards: How useful is this concept?
Global Environmental Change Part B: Environmental Hazards
5, 1-2 (2003), 35 – 45. https://doi.org/DOI:10.1016/j.hazards.
2004.02.001

[18] T. Kosar and M. Balman. 2009. A New Paradigm: Data-Aware
Scheduling in Grid Computing. Future Generation Computing
Systems 25, 4 (2009), 406–413.

[19] Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj. 2011. Rate
adaptation for adaptive HTTP streaming. In Proceedings of the
second annual ACM conference on Multimedia systems. ACM,
169–174.

[20] Zhengchun Liu, Rajkumar Kettimuthu, Ian Foster, and Peter H
Beckman. 2018. Toward a smart data transfer node. Future
Generation Computer Systems (2018).

[21] MD S. Q. Zulkar Nine, Kemal Guner, and Tevfik Kosar. 2015.
Hysteresis-based Optimization of Data Transfer Throughput. In
Proceedings of the Fifth International Workshop on Network-
Aware Data Management (NDM ’15). ACM, New York, NY, USA,
Article 5, 9 pages. https://doi.org/10.1145/2832099.2832104

[22] Suraj Pandey and Rajkumar Buyya. 2012. Scheduling work-
flow applications based on multi-source parallel data retrieval
in distributed computing networks. Comput. J. 55, 11 (2012),
1288–1308.

[23] Nageswara SV Rao, Qiang Liu, Satyabrata Sen, Greg Hinkel,
Neena Imam, Ian Foster, Rajkumar Kettimuthu, Bradley W Set-
tlemyer, Chase Q Wu, and Daqing Yun. 2016. Experimental
analysis of file transfer rates over wide-area dedicated connections.
In IEEE 18th High Performance Computing and Communica-
tions. IEEE, 198–205.

[24] E. Yildirim, E. Arslan, J. Kim, and T. Kosar. 2015. Application-
Level Optimization of Big Data Transfers Through Pipelining,
Parallelism and Concurrency. Cloud Computing, IEEE Transac-
tions on PP, 99 (2015), 1–1.

[25] Esma Yildirim, Jangyoung Kim, and Tevfik Kosar. 2013. Modeling
throughput sampling size for a cloud-hosted data scheduling and
optimization service. Future Generation Computer Systems 29,
7 (2013), 1795–1807.

[26] Esma Yildirim and Tevfik Kosar. 2011. Network-aware end-to-
end data throughput optimization. In Proceedings of the first
international workshop on Network-aware data management
(NDM ’11). ACM, New York, NY, USA, 21–30. https://doi.org/
10.1145/2110217.2110221

[27] E. Yildirim, D. Yin, and T. Kosar. 2011. Prediction of Optimal
Parallelism Level in Wide Area Data Transfers. IEEE TPDS
22(12) (2011).

[28] Daqing Yun, Chase Q Wu, Nageswara SV Rao, Qiang Liu, Ra-
jkumar Kettimuthu, and Eun-Sung Jung. 2017. Data Transfer
Advisor with Transport Profiling Optimization. In Local Com-
puter Networks (LCN), 2017 IEEE 42nd Conference on. IEEE,
269–277.

http://dl.acm.org/citation.cfm?id=3014904.3014938
https://doi.org/DOI: 10.1016/j.hazards.2004.02.001
https://doi.org/DOI: 10.1016/j.hazards.2004.02.001
https://doi.org/10.1145/2832099.2832104
https://doi.org/10.1145/2110217.2110221
https://doi.org/10.1145/2110217.2110221

	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 Proposed Models
	3.1 Negative Polynomial Model
	3.2 Autoregressive (AR) Model
	3.3 AutoRegressive Moving Average (ARMA) Model
	3.4 Autoregressive Integrated Moving Average (ARIMA) Model
	3.5 Adaptive Sampling
	3.6 Fixed Data Size Sampling

	4 Data Collection
	4.1 Optimal Solution

	5 Evaluations
	5.1 Throughput Calculation Frequency

	6 Conclusion and Future Work
	References

