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Abstract—Scientific applications generate large volumes of
data that often needs to be moved between geographically
distributed sites for collaboration or backup which has led to
a significant increase in data transfer rates. As an increasing
number of scientific applications are becoming sensitive to
silent data corruption, end-to-end integrity verification has been
proposed. It minimizes the likelihood of silent data corruption
by comparing checksum of files at the source and the destination
using secure hash algorithms such as MD5 and SHA1. In
this paper, we investigate the robustness of existing end-to-end
integrity verification approaches against silent data corruption
and propose a Robust Integrity Verification Algorithm (RIVA)
to enhance data integrity. Extensive experiments show that unlike
existing solutions, RIVA is able to detect silent disk corruptions
by invalidating file contents in page cache and reading them
directly from disk. Since RIVA clears page cache and reads file
contents directly from the disk, it incurs delay to execution time.
However, by running transfer, cache invalidation, and checksum
operations concurrently, RIVA is able to keep its overhead below
15% in most cases compared to the state-of-the-art solutions in
exchange of increasing the robustness to silent data corruption.
We also implemented dynamic transfer and checksum parallelism
to overcome performance bottlenecks and observed more than
5x increase in RIVA’s speed.

I. INTRODUCTION

Large scientific experiments such as environmental and
coastal hazard prediction [1], climate modeling [2], genome
mapping [3], and high-energy physics simulations [4], [5]
generate data volumes reaching petabytes per year. This mas-
sive amount of data often needs to be moved for various
purposes including processing, collaboration, and archival.
While most of earlier works focused on optimization of data
transfers [6]–[8], the integrity of transfers are also critical for
many applications such as Dark Energy Survey [9] and Sky
Survey Simulation [10] as they rely on correctness of data to
operate.

As data transfer rates are rapidly increasing, legacy in-
tegrity verification mechanisms fall short to detect corruption.
Although some of data transfer components have built-in
integrity verification mechanisms, they are either weak or

applicable to a subset of available systems. For example, TCP
uses 16-bit checksum to capture data corruption but it fails
to detect errors once in 16 million to 10 billion packets [11],
which is not rare for big scientific data transfers.

In addition to network, data corruption can also happen
at storage systems during file read and write operations as
disk drives suffer from a significant number of silent data
corruptions, referred as undetected disk error (UDE) [12]–[14].
UDEs occur mainly due to firmware or hardware malfunctions
in disk drives, and silently corrupt data without being detected
by the disk. Storage systems implement several approaches to
detect and recover from UDEs through file system scrubbing,
RAID reconstruction, however these are costly operations
and recovery may not always be possible [13]. UDEs are
categorized into two groups, undetected write error (UWE)
and undetected read error (URE). UREs manifest as transient
errors, and are unlikely to affect system state beyond causing
transfer repetitions. UWEs, on the other hand, are persistent
errors which are only detectable during a read operation
subsequent to the faulty write, and thus posing a significant
threat to data reliability [12].

Li et al. estimate that the probability of an UWE is between
10−12 and 10−14, once in every 1-100 terabytes [15]. While
parity-enabled RAID architectures are more resilient against
disk failures and latent sector errors, previous studies found
that existing implementations are also susceptible to silent
data corruption [12]–[14]. Although several techniques have
been proposed to prevent silent errors in RAID systems, the
empirical results show that they incur up-to 43% performance
overhead [16]. Moreover, even if disks are error-proof, data
corruption can still happen during data transmission from
memory to disk due to faulty cables or firmware bugs. In
fact, researchers observed up-to 5% checksum mismatch when
one petabyte data is transferred between two HPC clusters
with parti-enabled RAID filesystem, where existing integrity
measures failed to detect/recover [17].

Application-layer end-to-end integrity check is proved to
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Fig. 1: RIVA extends end-to-end integrity verification coverage to ensure data integrity between receiver memory and disk.

be a robust solution to detect and recover from UDEs as
it covers complete path of operations [18]–[22]. A typical
implementation of end-to-end integrity verification for data
transfers works as follows: Sender first reads the file from
the disk and sends it to the destination. Once data transfer
is completed, the sender reads the file again to compute
checksum using a hash algorithm such as MD5 and SHA1.
At the receiver side, the file is first streamed from network
interface and written to the storage. The file is read back to
compute its checksum, which is sent to the sender. Finally, the
sender compares the destination’s checksum against its own
copy to verify integrity. If the checksum values of source and
destination servers are the same, then the transfer is marked as
successful. Otherwise, the file at the destination is assumed to
be corrupt and the transfer is restarted. If the dataset consists
of multiple files, then the transfer of next file will begin
only after the current file’s integrity verification is completed
successfully.

Several approaches are proposed to optimize the execu-
tion time of transfers when end-to-end integrity verification
is enabled including file-level pipelining [23], block-level
pipelining [24], and FIVER [25]. However, we find that
existing implementations of end-to-end integrity verification
for data transfers are vulnerable to receiver-side UWEs due
to calculating checksum using cached copy of files. When a
file is recently written or read, the OS kernel keeps the file
blocks in the main memory to optimize subsequent accesses.
This causes file reads to operate on cached copies of file pages,
which might be different than the disk copies in case of UWE.
Even though file system scrubbing and RAID re-construction
techniques could potentially catch such errors, they can only
be executed in the order of days or weeks due to incurred
overhead, causing file transfers to miss UWEs and accept files
with corruption.

In this paper, we propose a Robust Integrity Verification
Algorithm (RIVA) to ensure that checksum calculations of
transferred files operate on disk copy to detect silent data
corruption that may occur when flushing data from memory to
disk. It works as follows: When transfer of a file is completed,
RIVA first finds the virtual address space range of the file.
Then, it deletes the mappings for the specified address range
such that further references to the address range will generate
invalid memory references (i.e., page faults). Finally, the file is

read to calculate its checksum which requires I/O operations to
go to the disk, allowing the detection of UWEs. It is important
to note that by invalidating cached copy of files before end-
to-end integrity verification, RIVA extends the coverage of
end-to-end integrity verification mechanism without losing
existing error-detection capabilities (e.g., capturing network
errors) as showed in Figure 1. We conducted extensive ex-
periments using different network, storage subsystem, and
dataset configurations and observed that unlike state-of-the-
art solutions, RIVA always captures faults and offers robust
end-to-end integrity verification of file transfers. On the other
hand, invalidating memory copy of the files and forcing the
OS kernel to read data from the disk increases the execution
time of transfers. RIVA minimizes its overhead by overlapping
transfer and checksum operations for different blocks of files
and offloading memory unmapping (i.e., cache eviction) to a
separate thread.

Contributions of this paper are as follows:

• We introduce RIVA to enhance resilience of end-to-end
integrity verification for data transfers against UWEs by
enforcing checksum calculations to read files directly
from disk. Although RIVA can also capture errors that
may happen while transmitting data from memory to disk,
this work, without loss of functionality, only evaluates its
capability in detecting silent disk errors.

• We introduce a fault injection approach to reproduce un-
detected write errors and evaluate state-of-the-art integrity
verification approaches in terms of the reliability against
data corruption.

• We introduce dynamic parallelism to identify and mitigate
performance bottlenecks in integrity verification enabled
file transfers.

• We conduct extensive experiments using variety of net-
work, dataset, and fault injection scenarios to evaluate
robustness and performance of RIVA.

The rest of paper is organized as follows: Section II de-
scribes integrity verification of data transfer and silent corrup-
tion scenarios. Section III presents related work and Section IV
details design principles of the proposed algorithm. Section V
discusses experimental results and Section VI concludes the
paper with the summary.
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Fig. 2: Undetected disk errors could happen during read (a) and write (b) operations. When undetected read errors happen
at sender or receiver, it will cause checksum mismatch and re-transfer of the file. On the other hand, when undetected write
errors happen for small files, it will be missed since checksum will be computed based on memory copy of pages.

II. BACKGROUND AND MOTIVATION

In this section, we provide background on the end-to-end
integrity verification and undetected disk errors.

A. Undetected Disk Errors

There are two classes of undetected disk errors; undetected
read error (URE) and undetected write error (UWE) as shown
in Figure 2. UREs causes applications to see a different version
of data than the one stored on the disk. In Figure 2(a), while
disk hosts correct file page, URE leads to corrupted file page
n to be served to the data transfer application. When UREs
happen during the checksum operation at the sender or the
receiver, it will trigger an integrity verification failure as the
checksum calculated by the sender and the receiver servers
will not match. In a very unlikely case, both the sender and
the receiver servers may be exposed to the same URE and it
will cause the URE to go undetected harmlessly. Otherwise,
integrity verification will fail, and the file will be transferred
again.

On the other hand, UWEs could easily pass integrity
verification and corrupted data will be assumed as correct.
Unlike UREs, UWEs could only happen at the receiver since
file transfers do not require write operations at the sender.
Figure 2(b) illustrates how UWE occurs for small files at the
receiver server. Transfer application first sends the file from
the sender to the receiver. While writing file to the disk, UWE
corrupts page content which goes undetected. Unaware of the
UWE, the OS keeps the correct copy in memory (i.e., page
cache) to optimize future accesses. Upon completion of the
file transfer and write operations, checksum thread starts to
read the file to compute the checksum. Since the OS holds
the cached copies of the file pages in the memory, it will
serve checksum read requests the page cache. This causes
checksum to be calculated on the correct data while the disk
holds corrupted data.

While UREs are transient and can easily be tackled by
the retransmission of files, UWEs cause permanent impact
by accepting corrupted data as genuine. Thus, it is necessary
for checksum computation to read files from the disk to
capture UWEs. Note that UWEs may be harmless if files
are read only once immediately after their transfer. However
in many cases, large datasets are transferred completely first

and processed afterwards which would cause UWEs to go
undetected. Then, when a client accesses the file after some
time, correct file copies wont be located in the memory and
corrupt data will be served from the disk. Although ECC can
detect/fix single/double bit errors and S.M.A.R.T can detect
some of the disk errors [12], [13], [15] explain that ECC and
S.M.A.R.T are not guaranteed to capture all silent errors.

B. End-to-end Integrity Verification

The simple sequential approach implements integrity verifi-
cation in three steps. In the first step, a file is transferred from
source to destination using preferred transfer application. Once
the transfer is completed and it is written to the storage at the
destination, the checksum of original file at the source and
the transferred copy at destination are computed using a hash
function such as MD5 or SHA1. In the third and final step,
checksum values of the original file and the transferred copy
are exchanged between the source and the destination servers
to compare. If the checksum values are the same, then the file
transfer is marked as completed. Otherwise, the transferred
copy of the file is assumed to be corrupt and whole process
is restarted from the beginning.

The main objective of running end-to-end integrity check is
to detect possible data corruption by comparing the checksum
of the file at the source and the destination servers. On the
other hand, operating systems are designed to minimize cache
misses, so if a file is recently read or written, it will be kept in
the memory to optimize successive accesses to the file content.
This causes checksum thread to use cached copy of the file
pages for small files, preventing the detection of silent data
corruption that may occur during disk write operations.

As UWEs pose a significant threat for file transfers, we
evaluated sequential end-to-end integrity verification approach
in terms of its receiver-side cache behaviour as given in
Figure 3. Both the sender and the receiver servers are equipped
with 16GB of RAM, thus we transferred a mixed dataset that
contains 273 files with total of 274GB size. Only three files
in the dataset are larger than the memory size, as a result
page misses increase only when checksum thread attempts
to read large files. Checksum computation for all small files
triggers page hits as they are found in the page cache of the
memory. The total number of page misses is around 145M



that corresponds to 56GB, the total size of three large files.
We also confirmed that other implementations of integrity
verification exhibit similar behavior of reading small files from
page cache. Hence, current integrity verification approaches
for file transfers are susceptible to UWEs for files that are
smaller than the memory size as most production systems
use data transfer nodes with 64GB or larger memory size
and average file sizes of scientific data transfers are in the
order of megabytes [26]. Moreover, even if a file systems is
robust against UWEs, silent data corruption can still affect
file transfers when data is transmitted from memory of data
transfer node to file system disks due to various reasons such
as faulty cables and driver firmware bugs. Hence, despite the
availability of integrity verification solutions, file transfers in
scientific networks are still vulnerable to silent data corruption
since existing implementations of integrity verification do not
guarantee end-to-end coverage.

III. RELATED WORK

In this section, we discuss related work on high-performance
data transfers, end-to-end integrity verification, and data cor-
ruption in storage systems.

High-performance data transfers: High-speed data trans-
fer studies focus on transfer scheduling [27], throughput
optimization [7], [28], [29], and power consumption opti-
mization [30]. Globus [23] offers data transfer and sharing
services and is well adopted by research community. Yun et
al. proposed ProbData [29] to tune the number of parallel
streams and buffer size for memory-to-memory TCP transfers
using stochastic approximation. ProbData is able to explore
the near-optimal configurations through sample transfers, but
it takes several hours to converge. Rao et al. [31] presented
stochastic gradient descent based solution to tune the number
of parallel flows. HARP [28] models data transfers using
historical data and real-time sampling, and uses this model to
estimate the application layer transfer parameters that would
maximize the throughput of given transfer task. Alan et
al. [30] proposed energy-efficient data transfer algorithms to
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Fig. 3: Transferring a mixed dataset with sequential integrity
verification approach reveals that only files that are larger than
memory size contribute to page misses during the checksum
computation.

tune application layer transfer parameters, and find a balance
between transfer throughout and energy consumption at the
end hosts. They monitor CPU usage of end hosts and estimate
energy consumption with the help of models that relate CPU
usage to energy consumption. A cost function is used to
determine the energy efficiency of each configuration based
on the transfer throughput and energy consumption values.
Finally, a configuration with minimum cost is identified and
used for the rest of the transfer.

Integrity verification: Researchers studied integrity ver-
ification in the context of storage outsourcing [20], [32],
[33], long term archiving [21], [34], file systems [35]–[37],
databases [22], provenance [38], and data transfer [24]. Zhang
et al. [37] evaluated Zetabyte Files System (ZFS) in terms of
robustness to disk and memory fault injections. It has been
found that while ZFS is able to detect and mostly recover
from disk corruptions, it is susceptible to memory corruptions
since it does not check the integrity of data blocks when they
reside in the memory.

Globus [23] supports end-to-end integrity verification for
data transfers. It pipelines data transfers and checksum com-
putation to minimize the overhead of integrity verification.
However, its pipelining approach fails to work well when a
dataset consist of mixed file sizes. Liu et al. propose block-
level pipelining to improve pipelining of mixed size datasets
by dividing large files into blocks [24]. It reduces execution
time considerably especially when dataset is composed of
files with mixed sizes, however it requires careful tuning of
block size to perform well. In a previous work, we proposed
Fast Integrity Verification Algorithm (FIVER) that reads files
once and run the transfer and checksum computation pro-
cesses simultaneously, reducing I/O overhead and checksum
computation time [25]. FIVER outperformed state-of-the-art
solutions by reducing the overhead of integrity verification
from up-to 60% to less than 10%.

Data corruption in storage systems: Studies on disk
fault analysis investigates drive failures [39]–[41], latent sector
errors [42], and data corruption [13], [14], [37]. Shah et
al. investigated the underlying reasons for disk failures and
identified several factors including media errors include head
hits bump, scratch in disk, high-fly writes, rotational vibration,
hard particles, and head slap [40]. Schroeder et al. [41]
analyzed data from 100,000 disks over a five- year period and
found that disk failures have positive correlation with disk
ages. Hence, modern storage systems store checksum of file
blocks next to the block in the disk to detect data corruption.

Checksum mismatch defines the discrepancy between the
stored checksum and calculated checksum of a block. It can
happen because of several reasons such as (i) a misdirected
write in which the data is written to an incorrect disk location,
thus overwriting and corrupting data, (ii) write error in which
only a portion of the data block is written successfully,
and (iii) data corruption caused by components within the
data path [18], [43]. Bairavasundaram et al. monitored 1.53
million disk drives over 41 months and observed more than
400,000 checksum mismatches [13]. They also found that
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nearline disks have an order of magnitude higher probabil-
ity of developing checksum mismatches than enterprise-class
disks. Yet, corrupt enterprise-class disks tend to develop more
checksum mismatches. Although data scrubbing and RAID
reconstruction can detect and possibly recover checksum mis-
matches, they take a long time to finish during which data
becomes inaccessible. In another work, Bairavasundaram et
al. monitored 1.5 million HDDs over 32 months and found
that 8.5% of all disks developed at least one latent sector
error during observation period [42]. Moreover, Krioukov et
al. showed that even tough silent data corruption is detected,
the system may not recover the block, causing data to be lost
permanently [14].

IV. SYSTEM DESIGN

RIVA consists of three threads as shown in Figure 4.
Transfer thread receives the files and writes them to the disk,
Cache Evictor thread evicts file pages from the memory, and
Checksum thread reads evicted pages back from the disk to
calculate the checksum. Cache Evictor uses mmap, munmap,
and mincore system calls to locate and evict file pages.
When a file is recently received by the receiver and written
to the disk, its pages are kept in the page cache. Thus, Cache
Evictor uses mmap to find location of the file pages in the
virtual address space. Then, it uses munmap syscall to evict
pages that are in the memory. Although munmap removes file
pages in one call in most systems, it cannot guarantee the
removal of pages as OS can bring back some of the pages
immediately. Hence, Cache Evictor checks whether or not
the file is fully removed using mincore, which determines
whether or not requested pages are resident in the memory. If
file pages are not fully removed from the page cache, then
Cache Evictor will keep calling munmap until mincore
verifies that none of the chunk pages are resident in the
memory. Then, Cache Evictor passes the evicted chunk to the
Checksum to read them to calculate checksum and exchange
with sender to verify.

Unlike sequential approach, all threads of RIVA work
concurrently to minimize the total execution time. In Figure 4,
Transfer thread is transferring page-n, Cache Evictor thread is
evicting page-k from memory, and Checksum thread is reading
page-3 to calculate checksum. Transfer thread sends periodic

signals to Cache Evictor to inform about written pages so
that those pages could be removed from the cache. Similarly,
Cache Evictor thread sends messages to Checksum to notify it
about evicted pages. Instead of performing this per-page basis,
RIVA sends messages after a certain amount of data, called
chunk. Chunk size is configurable but is set to 256MB by
default. Thus, each chunk contains 65,536 pages as most OS
kernels define page size as 4,096 bytes. Assume that page-3
is corrupted due to a UWE as shown in Figure 4. As opposed
to sequential approach, RIVA is able to capture this error by
removing page-3 from memory after it is saved to the disk.
Thus, when Checksum thread attempts to read page-3, it will
trigger a page miss. Then, page-3 will be brought from the disk
to the memory to be relayed to Checksum thread. Finally, the
UWE will be detected and mitigated as integrity verification
will result in a checksum mismatch and file retransmission.
When checksum mismatch happens RIVA assumes that the
sender copy of the file is correct one, so will discard the
sender side copy and transfer file from sender to receiver again.
While this may cause retransfers in cases where successful
transfers are followed by incorrect checksum calculations due
to undetected read errors while reading file from file system.
This is default assumption by existing end to end integrity
verification systems which we did not change. However, since
we are calculating and comparing checksum of files in blocks
(default is 256MB), only failed blocks will be resent, so the
impact of mismatch is minimized.

Performance overhead of RIVA relies on the speed of
cache eviction and disk read operations. Cache eviction is a
quite lightweight operation as it only updates virtual memory
mappings of a file. In the worst case, cache eviction for a file
chunk takes 0.5 seconds as multiple munmap calls are made
to guarantee page eviction. Yet, RIVA runs Cache Evictor, and
Checksum threads, cache eviction is unlikely to be bottleneck
since checksum computation of a file block tend to take more
time than running repeated system calls. On the other hand,
disk read could impose high overhead if disk read speed is
slower than disk write speed. This is because file read speed
becomes a limiting factor when the network transfer and disk
write speeds are faster than the disk read speed. We observed
this scenario in one of our test cases, Chameleon Cloud, where
memory size is 128GB and disk read/write speed is around 800
Mb/s. Although disk write speed is also slow, the OSes can
buffer write requests in memory for files that are smaller than
available memory size. This leads the write speed of disks to
appear higher for small files, whereas disk read speed cannot
go beyond hardware limitations.

V. EVALUATIONS

We run the experiments using two types of dataset; uniform
and mixed datasets. Uniform datasets consist of one or more
files in same size and mixed dataset consists of mixture of
small and large files. Experiments were run on four different
networks: HPCLab, ESnet, Pronghorn, and Chameleon Cloud
whose specifications are given in Table-I. In HPCLab, we
have two sets of servers; workstations (HPClab-WS) and data



Specs Storage CPU Memory (GB) Bandwidth (Gbps) RTT (ms)
HPCLab-WS SATA HDD 8 x Intel Core i5-7600 @3.50GHz 16 1 0.2

Chameleon Cloud SATA HDD 12 x Intel Xeon E5-2670 @2.30GHz 128 10 0.2
Pronghorn GPFS 16 x Intel Xeon E5-2683 @2.10GHz 192 10 0.1

HPCLab-DTN NVMe SSD 16 x Intel Xeon E5-2623 @2.60GHz 64 40 30 (Emulated)
ESnet RAID-0 12 x Intel Xeon E5-2643 @3.40GHZ 128 100 89

TABLE I: System specification of networks.
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Fig. 5: Performance comparison of algorithms in LAN experiments. While RIVA is able to keep its overhead below 17% in
HPCLab and Pronghorn networks, slow disk speed and large memory size in Chameleon Cloud deteriorates its performance
significantly.

transfer nodes (HPCLab-DTN). Workstations are connected
with the 1G link whereas data transfer nodes are connected
with the 40G link. Although data transfer nodes are located
in the same local area network, we injected artificial delay
between them to emulate wide-area network condition using
traffic controller tc of Linux. Pronghorn is a campus cluster
and its nodes are connected with 10G links. Chameleon
Cloud is an academic cloud service provider and its nodes
are connected with 10G links. ESnet consists of two nodes
that are connected with a dedicated 100G link. Finally, we
used one Pronghorn server as the sender and one Chameleon
Cloud server as the receiver to run Pronghorn-Chameleon
experiments. We repeated the experiments five times and
present average results unless otherwise noted.

We compare RIVA against file-level pipelining
(FileLevelPpl), block-level pipelining (BlockLevelPpl),
and FIVER. FileLevelPpl overlaps the transfer of a file with
the checksum of another file. BlockLevelPpl splits large files
into smaller blocks and overlaps the transfer of a block with
the checksum of another block. Finally, FIVER overlaps
transfer of a file with the checksum of the same file to share
I/O between the two. We omitted the performance results
of sequential integrity verification approach as it performs
similar to FileLevelPpl in page miss behavior and worse
in execution time. Our results indicate that FIVER always
yields the shortest execution time. Hence, we calculate the
performance of the algorithms relative to FIVER and define
overhead as shown in Equation 1. tFIV ER and talgorithm
refer to the times it takes to transfer a dataset using FIVER
and another algorithm, respectively. For example, if a transfer
takes 120 seconds with FIVER, and 130 seconds with RIVA,
then the overhead becomes 8.3%(100 ∗ 130−120

120 ). We also

collected page miss values to compare disk access behavior
of the algorithms. Page miss values define the number of
blocks that the OS fetched from disk since it could not find
them in page cache of main memory.

Overhead = 100 ∗ talgorithm − tFIV ER

tFIV ER
(1)

We conducted extensive experiments in six different net-
works which are grouped as local-area network (Figure 5)
and wide-area network (Figure 6) results. The overhead of
RIVA is always less than 5% in HPCLab-WS transfers (Fig-
ure 5(a)) which can be attributed to slow transfer speed. Since
RIVA pipelines cache eviction and checksum computation
operations with file transfers, RIVA incurs negligible over-
head when transfer speed is the bottleneck. The overhead of
FileLevelPpl reaches up-to 30% for 10GB and 50GB files as
there is only one file in these datasets, causing FileLevelPpl to
perform similar to sequential approach and cannot take advan-
tage of transfer and checksum pipelining. On the other hand,
the overhead of RIVA increase up-to 17% at Pronghorn as its
disk read speed is worse than disk write and transfer speeds.
Unlike HPCLab-WS and Pronghorn networks, the overhead
of RIVA exceeds that of FileLevelPpl in Chameleon Cloud as
given in Figure 5(c). This mainly because Chameleon Cloud
nodes are customized for high-performance computing with
large memory size and multi-core CPUs, and exhibit poor disk
performance. Disk read performance further degrades when it
overlaps with disk write operations. While disk write speed is
also low, the OS is able to cache file writes in the memory and
flush them to the disk at a slower rate. Thus, BlockLevelPpl
and FileLevelPpl can write fast and read back files from
memory, allowing them to yield a small overhead. On the other
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Fig. 6: Performance comparison of algorithms in WAN experiments. RIVA is able to keep its overhead below 12% in all
networks.
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Fig. 7: RIVA yields high page miss rates as it evicts file pages from memory and reads directly from disk to capture UWEs.

hand, when we transferred a 150GB file, we noticed drastic
performance degradation for FileLevelPpl, reaching over 70%,
as the OS is unable cache file writes that are larger than the
memory size.

RIVA keeps its overhead less than 12% in WAN experiments
as shown in Figure 6. Its overhead is below 5% in HPCLab-
DTN as overall speed is limited by checksum computation,
thus reading data from the page cache or the disk has neg-
ligible impact on the overall performance. Since the check-
sum computation is the bottleneck in ESnet, FileLevelPpl
suffers significantly for the single file transfers (i.e., 10GB
and 50GB) and takes up-to 50% time more than FIVER.
Its performance is also 40% worse than FIVER for mixed
dataset since it fails to benefit from overlapping of transfer
and checksum processes when dataset contains both small
and large files. BlockLevelPpl, however, achieves the lowest
overhead in almost all cases since its pipelining approach
overcomes suboptimal overlapping problem that FileLevelPpl
experiences.

We also collected the page misses (i.e. disk reads rates)
during the transfer of a 10GB file in WAN as given in
Figure 7. The transfer speed in HPCLab-DTN and ESnet
testbeds is higher than checksum computation speed, letting
Checksum thread to always have available data to process.
Thus, RIVA sustains consistent disk I/O rate (around 2.4
Gbps) as shown in Figure 7(a) and 7(b). On the other hand,
RIVA returns different behaviour in Chameleon Cloud where

disk read speed is significantly worse than transfer and disk
write speeds for files that are smaller than 100GB. Moreover,
when the disk read and write operations overlap, the read
performance degrades significantly. Consequently, RIVA has
short periods of disk reads until transfer completely finishes.
The transfer of the file completes at around 150s after which
disk read performance recovers and RIVA’s Checksum thread
obtains high and consistent read I/O performance (around 800
Mbps). On the other hand, all the other approaches reads the
file completely from page cache in all networks, leading zero
page misses throughout the checksum operation. We further
calculated total page misses for RIVA and verified that it is
close to 10GB. As page misses are calculated at application
granularity, the measured pages miss values include misses
caused by other operations such as network transfer and disk
write. Thus, page miss values itself cannot guarantee reading
all pages from the disk. Thus, we introduce extreme-injection
test in the next section to confirm that none of the pages of a
file is read from the page cache of main memory.

A. Fault Injection

Given that the rate of UWE occurrence is low, testing
RIVA in a real system would be costly, probably requiring
a prohibitively large number of disks to observe within a
reasonable period of time. Hence, we reproduced UWEs by
injecting faults to files pages on disk UWEs. We first identify
the disk sectors that file pages reside. Then, we changed the
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1MB 100MB 1GB 10GB 20GB 50GB

FIVER 7 7 7 7 7 7

BlockLevelPpl 7 7 7 7 7 7

FileLevelPpl 7 7 7 7 7 3

RIVA 3 3 3 3 3 3

TABLE II: The results of extreme-injection experiment in
HPCLab-WS network with 16GB system memory. RIVA is
able to detect all injected faults whereas FileLevelPpl can only
detect it for a 50GB file.

content of page by writing directly to disk partition which is
not reflected to cached copy of pages. For example, when we
inject fault to the page k+1 in Figure 4, the cached copy will
not be updated, creating a similar impact of UWEs as shown
in Figure 2(b).

We introduce extreme-injection where all pages of a file are
exposed to UWE to check if an integrity verification algorithm
reads any file pages from page cache during the checksum
operation. We first create a copy of the file on sender side
and change one bit of all of its pages (step 1 in in Figure 8).
This copy is called injected and used to validate the output
of the receiver side checksum. The sender sends the original
file to the receiver which is written to disk (step 5). As file
is being written to disk, we flip a bit of all file pages that are
flushed to disk just before checksum computation starts. We
flip same bits of pages at the sender and the receiver to be able
to compare injected copies. Upon completion of fault injection
to all file pages, we let checksum thread to read the file and
compute its checksum (step 7). The computed checksum value
is then sent to the sender to be compared against the its injected
file’s checksum (step 8 and 9).

If checksum values match, we can then confidently claim
that the checksum thread of the receiver must have read all
file pages from the disk. If the receiver happens to read even
one page of the file from the memory, its checksum value will
be different than that of the sender’s injected version of the
file. We evaluated the extreme-injection scenario in HPCLab-
WS using several files that are smaller and larger than the
memory size, 16GB. Table II presents the results of integrity
verification algorithms for the extreme-injection test. FIVER
and BlockLevelPpl failed to pass the test for all file sizes as
they always read from page cache. FileLevelPpl is able to catch

Algorithm 1: Dynamic parallelism of RIVA

1 global variables
2 tr-confidence= 0, ch-confidence= 0,

prevTransferThr= 0, prevChecksumThr= 0,
stopSearch= False

3 end global variables
4 function monitor(transferThr,checksumThr)

/* If opening new transfer/checksum
thread does not help, stop adding
more */

5 if prevChecksumThr ≥ checksumThr or
prevTransferThr ≥ transferThr then

6 stopSearch== True
7 if stopSearch == True then
8 return
9 ratio = transferThr

checksumThr
// Slow checksum case

10 if ratio ≥ 1.1 then
11 if ch-confidence ==THRESDHOLD then
12 prevChecksumThr = checksumThr

OPENNEWCHECKSUMTHREAD( )
13 ch-confidence= 0
14 else
15 ch-confidence++

16 tr-confidence= 0
// Slow transfer case

17 else
18 if tr-confidence == THRESDHOLD then
19 prevTransferThr = transferThr
20 OPENNEWTRANSFERTHREAD( )
21 tr-confidence== 0
22 else
23 tr-confidence++

24 ch-confidence= 0

all faults only in 50GB file which is three times larger than
memory size. Surprisingly, FileLevelPpl fails to catch all faults
for the 20GB file despite yielding high page misses, inferring
the occurrence of small number of page hits. Finally, RIVA is
able to capture all fault injections regardless of file size as a
result of invalidating cache copies of file blocks before starting
checksum computation.

B. Dynamic Checksum and Transfer Parallelism

By default, RIVA creates one transfer and checksum threads.
We observed that Intel Xeon E5 processors with 3.4 GHz
clock rate process around 300MB data per second for the
checksum calculation when MD5 hash algorithm is used. The
network and storage speeds, on the other hand, can be faster,
causing checksum computation to be the bottleneck. Hence,
we implemented dynamic parallelism algorithm to create a
new checksum or transfer threads when it realizes that either
one of them is slow.
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Fig. 9: RIVA can dynamically adjust the number of transfer and checksum threads to overcome bottlenecks.

We define ratio to be the ratio of transfer throughput to
checksum throughput as shown in line 9 in Algorithm 1. If the
ratio is higher than 1.1, (meaning transfer speed is at least
10% faster than checksum speed), it attempts to open a new
checksum thread to leverage spare cores in the system to keep
up with transfer speed. We also define confidence interval to
avoid transient variations in transfer and checksum throughput
such that RIVA will open a new transfer or checksum threads
only after it builds enough confidence (THRESDHOLD)
on results. The threshold can be tuned for specific network
conditions but we noticed that setting it to 5 is sufficient in
our test environments. As monitor function is called once a
second, this would set the confidence threshold to five seconds.
If the ratio is smaller than 1.1 (line 17), RIVA deduces that
transfer throughput could be limiting factor and creates a
new transfer thread after building enough confidence on the
assumption. Increasing the number of transfer threads could
also improve checksum throughput since checksum throughput
might be limited by the transfer performance. If adding a
new checksum or transfer thread does not improve throughput,
RIVA assumes that it reached to maximum performance and
stops adding more threads since doing so will only overload
system resources (line 5).

We evaluated the dynamic parallelism algorithm in
HPCLab-DTN, ESnet, and HPCLab-WS networks as illus-
trated in Figure 9. Single-threaded checksum computation
can only reach to 2.4 Gbps speed and becomes bottleneck
in HPCLab-DTN and ESnet networks. Dynamic parallelism
is able to detect that checksum operation is the bottleneck
and creates new checksum threads at around 5s as shown in
Figure 9(a) and 9(b). Creating more threads eventually helps
checksum operation to keep up with transfer speed which
triggers new transfer thread creation at time around 15s in
HPLab-DTN transfer. It keeps adding more checksum and
transfer threads until no further improvement is observed,
which happens at around 50s for HPCLab-DTN and 45s in
ESnet. The dynamic parallelism algorithm increases RIVA’s
overall throughput from 2.4 Gbps to around 16 Gbps and
12 Gbps for HPCLab-DTN and ESnet, leading over 5 times
improvement over single-threaded implementation.

On the other hand, it is also possible adding new transfer

and checksum threads may not improve the performance when
single thread is sufficient to achieve maximum possible per-
formance. For example, RIVA’s performance in HPCLab-WS
is limited to 550 Mbps due to slow network speed. Unaware
of this limitation, dynamic parallelism opens up new transfer
thread at around 5s as shown in Figure 9(c). After realizing that
this change does not improve transfer performance, dynamic
parallelism terminates its search phase immediately.

VI. CONCLUSION

End-to-end integrity verification is vital for many appli-
cations which cannot tolerate silent data corruptions. How-
ever, its current implementations for file transfers fail to
capture undetected disk write errors, creating possibility of
permanent data loss. In this paper, we propose RIVA to
improve robustness of the end-to-end integrity verification by
enforcing checksum calculation to read files directly from
disk. RIVA invalidates the cached copies of file pages such
that checksum calculation can read disk copies and detect
silent data corruptions. Our extensive experiments show that
RIVA offers a robust solution to capture and recover from
all undetected disk write errors. In exchange, RIVA increases
transfer execution time, however it can keep the overhead
below 15% in most cases by concurrently executing transfer,
cache eviction, and checksum operations.

We further augmented RIVA with dynamic parallelism
to identify and mitigate performance bottlenecks. Dynamic
parallelism periodically measures performance of transfer and
checksum threads to determine the slow component. Then,
it creates new transfer or checksum threads to increase net-
work throughput and the speed of checksum computation.
We observed that dynamic parallelism can increase RIVA’s
performance more than 5 times by means of of increasing
parallelism in the network and end servers.
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