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Solving stochastic differential equations (SDEs) numerically, explicit Euler—Maruyama (EM) schemes
are used most frequently under global Lipschitz conditions for both drift and diffusion coefficients. In
contrast, without imposing the global Lipschitz conditions, implicit schemes are often used for SDEs
but require additional computational effort; along another line, tamed EM schemes and truncated EM
schemes have been developed recently. Taking advantages of being explicit and easily implementable,
truncated EM schemes are proposed in this paper. Convergence of the numerical algorithms is studied, and
pth moment boundedness is obtained. Furthermore, asymptotic properties of the numerical solutions such
as the exponential stability in pth moment and stability in distribution are examined. Several examples
are given to illustrate our findings.

Keywords: local Lipschitz condition; explicit EM scheme; finite horizon; infinite horizon; pth moment
convergence; moment bound; stability; invariant measure.

1. Introduction

In this paper, we study numerical solutions of d-dimensional stochastic differential equations (SDEs) of
the form

dx()) =f(x(@) dt + g(x(®))dB(), >0, x(0)=x,, (1.1)

where B(f) is an m-dimensional Brownian motion and f : RY — R, g: RY s RI%™_ which satisfy a
local Lipschitz condition, namely, for any N > 0 there is a constant Cy, such that

|f() —fO)| Vv [gx) — g < Cylx — | (1.2)

for any x,y € R? with Ixlvlyl< N. Clearly, if f,g € C', they satisfy the local Lipschitz condition.
Our primary objective is to construct easily implementable numerical solutions and prove that they
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converge to the true solution of the underlying SDEs. In addition to obtaining the asymptotic pth moment
convergence and moment boundedness we consider the approximations to the invariant distributions in
infinite horizon.

Explicit Euler—Maruyama (EM) schemes are most popular for approximating the solutions of SDEs
under global Lipschitz continuously; see, for example, Kloeden & Platen (1992) and Higham et al.
(2002). However, many important SDE models satisfy only local Lipschitz conditions or have growth
rates faster than linear. For such SDEs, the classical strong convergence for classical EM methods does
not hold. Hutzenthaler ez al. (2011) showed that the pth moments of the EM approximation for a large
class of SDEs with coefficients satisfying super-linear growth diverge to infinity for all p € [1, 00).
Implicit methods were developed to approximate the solutions of these SDEs. Higham er al. (2002)
showed that the backward EM schemes converge if the diffusion coefficients are globally Lipschitz
while the drift coefficient satisfies a one-sided Lipschitz condition. More details on the implicit methods
can be found in Kloeden & Platen (1992), Saito & Mitsui (1993), Hu (1996), Milstein et al. (1998),
Burrage & Tian (2002), Appleby et al. (2010) and Szpruch et al. (2011). However, additional
computational effort is required for the implementation of the implicit methods.

Since explicit numerical methods have advantages, a couple of modified EM methods have
recently been developed for nonlinear SDEs. Hutzenthaler e al. (2012) proposed tamed EM schemes
to approximate SDEs with the global Lipschitz diffusion coefficient and one-sided Lipschitz drift
coefficient. Sabanis (2013, 2016) developed tamed EM schemes for SDEs with nonlinear growth
coefficients. Moreover, stopped EM schemes (Liu & Mao, 2013), truncated EM schemes (Mao, 2015),
multilevel EM schemes (Anderson et al., 2016) and their variants have also been developed to deal
with the strong convergence problem for nonlinear SDEs. However, to the best of our knowledge, these
modified EM methods still cannot handle the convergence of a large class of SDEs with nonlinear drift
and diffusion coefficients, for example, the constant elasticity of volatility model (CEV model) arising
in finance for an asset price of the form (Lewis, 2000)

3/2

dr(t) = (By — Byr(0) dt + o |r(1)| ™ “dB(), (1.3)
where B, B;,0 are positive constants. Based on the motivation above, we construct easily imple-
mentable explicit EM schemes for SDEs with only local Lipschitz drift and diffusion coefficients and
establish their convergence. In the process of establishing the strong mean square convergence theory
conditionally, Higham et al., (2002, p.1060) posed an open problem and noted that ‘in general, it is not
clear when such moment bounds can be expected to hold for explicit methods with f, g € C'.” Despite
recent progress in the numerical methods for nonlinear SDEs this problem remains open to date. In this
paper, we answer the question of Higham ef al. positively by requiring only that the drift and diffusion
coefficients are locally Lipschitz and satisfy a structure condition (Assumption 2.1) for the pth moment
boundedness of the exact solution for some p € (0, 4-00).

Talay & Tubaro (1990) investigated the probability law of approximation using the EM scheme
for SDE with smooth f and g whose derivatives of any order are bounded. Furthermore, Bally &
Talay (1996) expanded the error in power of the step size. Gyongy (1998) analysed the almost sure
convergence. Here we focus on the moment convergence. Higham er al. (2002) and Hutzenthaler
et al. (2012) provided the (1/2)-order rate of convergence in moment sense for the backward scheme and
the tamed EM scheme under a one-sided Lipschitz condition and polynomial growth for f and global
Lipschitz condition for g, respectively. Recently, Sabanis (2016) developed a tamed EM scheme with
(1/2)-order rate of convergence. In this paper, we propose a truncation algorithm to relax the restrictions
in the studies by Higham ez al. (2002) and Hutzenthaler et al. (2012). We demonstrate the convergence
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EXPLICIT NUMERICAL APPROXIMATIONS FOR SDES IN FINITE AND INFINITE HORIZONS 849

of the algorithm under weaker conditions compared with what is known in the literature. Then under
slightly stronger conditions similar to the study by Sabanis (2016) we prove the convergence rate is
optimal for the explicit schemes.

While asymptotic properties of the numerical solutions attract more and more attentions (see the
studies by Roberts & Tweedie, 1996, Mattingly et al., 2002, Higham et al., 2003 and Zong et al., 2016)
the moment boundedness of the numerical solutions is also often desirable because its connection to the
tightness and ergodicity. However, the classical EM method fails to preserve the asymptotic boundedness
for many nonlinear SDEs. For example, Higham et al. (2003) showed that for the nonlinear scalar SDE

dx(t) = [—x(t) — (t)] dr + x(t) dB(0), (14)

the second moment of the classical EM numerical solution diverges to infinity in an infinite time
interval for any given step size and an initial value dependent on the step size. In this paper, as their
counterparts of analytic solutions, we show that our explicit schemes will preserve the asymptotic
moment boundedness as well as asymptotic stability for a large class of nonlinear SDEs including
(1.3) and (1.4) under Assumptions 5.1, 6.1, 7.1. Furthermore, we consider asymptotic properties of
our numerical algorithms and demonstrate exponential stability and stability in distribution.

In this paper, adopting the truncation idea from the study by Mao (2015) and using a novel
approximation technique, we construct several explicit schemes under certain assumptions on the
coefficients of the SDEs and derive convergence results in both finite and infinite time intervals. The
numerical solutions at the grid points are modified before each iteration according to the growth rates of
the drift and diffusion coefficients such that the numerical solutions will preserve the properties of the
exact solution nicely. We approximate the exact solution by piecewise constant interpolation directly,
which is different from that of the studies by Higham ez al. (2002), Hutzenthaler ef al. (2012), Sabanis
(2013), Mao (2015) and Bao ef al. (2016). Our main contributions are as follows:

e An easily implementable scheme is proposed such that its numerical solutions converge to the exact
solution in a finite time interval. The rate of convergence is also studied under slightly stronger
conditions.

e The open question posed in the study by Higham ez al. (2002, p.1060) is answered positively. The
pth moment of our explicit numerical solution is bounded for the SDEs with only local Lipschitz
drift and diffusion coefficients.

e Appropriate truncation techniques and approximation techniques are utilized such that properties of
the exact solution are preserved.

e The numerical solutions preserve the pth moment boundedness property of the exact solution almost
completely, not only in a finite time interval but also in an infinite time interval for some p > 0.

e Different schemes are constructed to approximate different stochastic dynamical systems that are
exponentially stable and/or stable in distribution.

The rest of the paper is organized as follows. Section 2 gives some preliminary results on certain
properties of the exact solutions. Section 3 begins to construct an explicit scheme and demonstrate
convergence in a finite time interval. Section 4 provides the rate of convergence. Section 5 goes further
to obtain the pth moment boundedness in an infinite time interval for some p > 0. Section 6 reconstructs
an explicit scheme to approximate the exponential stability. Section 7 analyses the stability of the SDE
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(1.1) in distribution yielding an invariant measure w(-). Then another explicit scheme is constructed
preserving the stability in distribution and a numerical invariant measure, which tends to .(-) as the step
size tends to 0. Section 8 presents a couple of examples to illustrate our results. Section 9 gives further
remarks to conclude the paper.

2. Preliminaries

Throughout this paper, let (Q,}' , {]-'t} t>O’]P>) be a complete filtered probability space with {]—'t} >0
satisfying the usual conditions (that is, it is right continuous and F contains all P-null sets). Let
B(t) = (Bl ®,....B, (t))T be an m-dimensional Brownian motion defined on the probability space. Let
|- denote both the Euclidean norm in R and the Frobenius norm in R*™. Also let C denote a generic
positive constant whose value may change in different appearances. Moreover, let C>! (Rd xR, ;R +)
denote the family of all non-negative functions V(x, ) on RY x R +» Which are continuously twice
differentiable in x and once differentiable in 7. For each V e C%! (]Rd x R 1 R +), define an operator
LV from R? x R, to R by

1
LV(x1) = V,(0.0) + V(5. 0f () + 5 trace [T @V g,

where

2
vy = (R0, TR0, ‘%wﬂz(avmo) |
dxd

0x, 0x, dx; 0x;

For the regularity and pth moment boundedness of the exact solution we make the following
assumption.

AsSUMPTION 2.1 There exists a pair of positive constants p and A such that

2\ (~,T 2\ T 2
MWUWHWNHWM(Zmesk

x| — 00 |x]4

2.1

REMARK 2.2 We highlight that the family of drift and diffusion functions satisfying Assumption 2.1 is
large. Denote by C a positive constant.

(a) If there are positive constants a, &€ and A such that |)ch()c)|2 < alx*"% + C and that
2xTf(x) + |g(x)|? < Alx|> + C then Assumption 2.1 holds for any p > 0.

(b) If there are positive constants a, € and A such that [xTg(x)| 2 > A|x|*+C and that 2xTf (x)+|g(x)|* <
alx|*~¢ + C then Assumption 2.1 holds for any 0 < p < 2.

(c) If there exists a positive constant A such that 2xTf(x) + |g(x)|> < A|x|> + C then Assumption 2.1
holds for p = 2.

(d) If there are positive constants a, A and ¥ > v + 2 such that |ng(x)| 2 > Alx|* 4+ C and that
2xTf(x) + |g(x)]* < alx|" + C then Assumption 2.1 holds for 0 < p < 2.

(e) If there are positive constants a, € and u such that \)ch()c)|2 > alx]“t?2 + C and that
2T (x) + |g)]? < (2a — €)|x|* + C then Assumption 2.1 holds for 0 < p < 1.
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Now we prepare the regularity and moment boundedness of the exact solution.

THEOREM 2.3 Under Assumption 2.1 with some p > 0 the SDE (1.1) with any initial value x, € R< has
a unique regular solution x(#) satisfying

sup Ex(®)P <C VT >0. 2.2)
0<t<T

Proof. 1Tt follows from (2.1) that

. (14 1) (2xTf ) + 1g@)[*) — 2 = p) |xTg) | ?
lim sup 3
=00 (1+1x1%)

< A.

Then for any 0 < k¥ < p|A|/2, there exists a constant M > 0 such that

(14 162) (27 @ +150P) = @ = p) |5 ? = (A+ )(1+|x|2)2 VIl > M.

By the continuity of the functions f and g,
2
(1 + |x|2) (Zfo(x) + |g(x)|2) —2-p) ‘ng(x)‘ 2 < (x + 'i) (1 + |x|2) +C VxeRY (23)
p
It follows from the definition of operator £ that

c ((1 + |x|2)g)

2 (1) (14 1) (267700 + 1600F) = @ - ) [eTew)] ]
<L+ |x|2)%_2 |:(A + 15)) (1+ |x|2)2 + c}
(Z+5) ()’

p_
If 0 < p < 4 then (1 + |x|2)2 2 < 1 for any x € RY, while if 4 < p then it follows from Young’s
inequality that for any given & > 0, for any x € RY,

+c(1 n |x|2)%_ . 2.4)

4 p—4
p

e s A (T = ()

e pe +
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Taking & = % we have

IS

(1 + |x|2)g_2 < S [MT . (1 + |x|2)

for any x € R4
2C

Thus, for any p > 0,

p
2

—4
5-2 4T20(p—417
() " < SPERN T s (1) oy xeRl @9)

Therefore, it follows from (2.4) and (2.5) that

E((l + |x|2)g) < (”% +x) (1+ |x|2)% +C. (2.6)

The above inequality and Assumption 2.1 guarantee the existence of the unique regular solution x(f)
(see the so-called Khasminskii test in the study by Mao & Rassias, 2005). Using It6’s formula, for any
0<t<T,

P

B ((1 * |x(t)|2)g) = (1 + |xo|2)% +C+ (p?k +/<) /OtE (1 + |x(s)|2)7 ds.

By Gronwall’s inequality we have
g P
E ((1 + |x(t)|2) 2) < (c n 2P/2|x0|P) 5T 2.7

which implies the desired inequality (2.2). O

REMARK 2.4 Assumption 2.1 guarantees the existence of global solutions, their regularity and their pth
moment boundedness. This is an alternative to Khasminskii’s condition that there exist positive constants
a, B such that LVP < aVP + B with V = (1 + |x|2) 2 Different from the stability analysis, working
with numerical schemes, it is more preferable to use verifiable conditions. As a result, it is more feasible
to put conditions on the coefficients of the equations rather than to use an auxiliary function.

LEMMA 2.5 Let Assumption 2.1 hold. For each positive integer N > |x,| define

Ty = inf{t € [0,400) : |x(1)| > N}. 2.8)
Then for any T > 0,
C
Pl{ry <T} < N 2.9

where C is a generic positive constant dependent on 7', p and x;, and independent of N.
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Proof. By virtue of Dynkin’s formula it follows from (2.6) that
P

E((l + |x(mrN)|2)127) < (1+ |x0|2)% + (K+”7'\)JE/OWN (1+16P)" ds+cr

for any 0 < ¢ < T. Gronwall’s inequality implies

I3
MPlry < T} <E(lxt Ay)l) <E ((1 F (e ay) |2)2) <c
as desired. _

3. Explicit scheme and convergence in pth moment

In this section our aim is to construct an easily implementable numerical method and establish its strong
convergence theory under Assumption 2.1. To define the appropriate numerical scheme we first estimate
the growth rate of f and g. Choose a strictly increasing continuous function ¢ : R, — R, such that
@(r) > oo asr — oo and

f@l |, lswP
<r 1+ x| Y RENE <@ Vr>0. (3.1)

Denote by ¢~ ! the inverse function of ¢; obviously ¢ ™! : [¢(0),00) — R 4 1s a strictly increasing

continuous function. We also choose a number A* € (0,1) and a strictly decreasing i : (0, A*] —
(0, c0) such that

h(2%) 2 p(ixD,  Jim h(A) = oo and ATh(A) <K, Vae (0,4, (32)
-

where K is a positive constant independent of A. For a given A € (O, A*] let us define the truncation
mapping 7, : R? - R? by

7, = (W A~ (1(2)) = (3.3)

|x]

where we use the convention ﬁ = 0 when x = 0. Clearly,

[f(ra@)| < (A + 1T @),  |glra)] < h? (0) (1 + |7, @)]), VxeR% (3.4)

Next we propose our numerical method to approximate the exact solution of the SDE (1.1). For any
given step size A € (0, A*] define

yO = -x()s
Vip1 =+ (1) &+ g0 2By, (3.5)
Vi1 =TT (5’k+1)’
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where 1, = kA, AB; = B(tk +]) — B(tk). We refer to the numerical method as a truncated EM scheme.
The numerical solutions y, are obtained by truncating the intermediate terms y, according to the growth
rate of the drift and diffusion coefficients to avoid their possible large excursions due to the nonlinearities
of the coefficients and the Brownian motion increments. Consequently, we have the following nice linear

property

FOO| < A +1yD),  [eop)] < A1) (1+1yl), Yk > 0. (3.6)

Moreover, the truncated EM method is an explicit one so it is easy to use. To proceed, we define y(¢)
and y(¢) by

YO =Y YO =y Vi€l fiyy). (3.7)
LeEmMA 3.1 Under Assumption 2.1, the truncation scheme defined by (3.5) has the property

sup sup E|yk|p <C VT=>NO. (3.8)
0<A<A* 0<kA<T

Proof.  For any integer k > 0 we have

~ 2
Fes1l® = Ve +FO0A + g) ABy|

= ‘)’k|2 + 200 f () A+ [ () ABIJZ +2y1 g (i) OBy

2

+If 0r) 77 + 27T (v) 8 (%) OB (3.9)

Then
2\? 2\’ 5

(145 P) = (14 P) (1 +8)° (3.10)

where
2 2
20 () & + [0 AB|” + 2vi 8 (1) ABy + [F () |72 + 27 () g (1) 2B
L+ |yl
Thanks to the Taylor formula, applying the recursion with u > —1, we have
= 1+1’ +1’<1’ 2)u2+u3P(u) 2i<p<2i+1), '

where P;(u) represents an ith-order polynomial of u with coefficients depending only on p, and i is an
integer. We will prove the result when 0 < p < 2 only; the other cases can be done similarly. It follows
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from (3.10) that

E ((1 + |)~’k+1|2)% |]:tk)

< (1+1m) [1 + LB (6lF,) +

2

(SIS

pp—2)
8

E (gkzmk) n W}E (g,?|]—‘lk):| . (3.13)

The fact that ABy, is independent of 7, implies that
E(AB(F,) =E(AB) =0, E (|AABk|2|f,k) —E (|AABk|2) = |APA, VA e R

This together with (3.2) and (3.6) implies

E(el7,) = (1+ ) [(20r00 +18001) & + o 2?]
< (1) [(2 00 +18001) &+ (1 4y 222 27]
< (1+mP) " (20700 +1200P) &+ 267, (3.14)
Using

2i—1

E((408)""17,) =0 and E(JAABHIF,) =Cal, YAeR™™ix1, (3.15)

we have

E(217,) = (1+12) B[ (20008 + |so0 2B, + 25720025,

2
+Hroo o + 2" 0et0ABA) IF, ]

Y

)
(14 ) E[[25] 0048 + 2] 80008,) (23T f 501

a0 2B + [0 A% + 2T 00800 AB,A) | F,

v

-2 -2
(1) " pEeow| 28 =8 (1+ ) i onliseo [ 4%

v

-2 -2 3
4 (1) pTeown|2a =8 (1) vl (1 -+ 1)) 12242

v

-2
(14 P) T plewp| 2 - 2420 (3.16)
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and

E(s17,) = (1+mP) E[( (28r00a + 18008 + rop22)
+ (Zylzg(yk)ABk + 2fT(yk)80’k)ABkA) )3 |‘7:tk]
= (1 mR) B[ (2Fro0a + lson o + rona?)

2
+ (2100 A+1800ABPHF0PA2) (2] 800 8B+ 0800 4B8) )|, ]

IN

(14 1?) B[ (72007001 27 + 9l |8, + O] S
+ 1600 [[s00 [ 4B, "2 + 8l s | 48y [*

+ 8P 00 00 2B A% + 161 [f 00 [g 00 148,227
8O P80 FIABI A% + 81 5 et PIAB A% F, |

IA

-3
C(1+l)  (WPUropPa® + 18610 8% + FepI°a°

+ PO + P80 A% + P00 Pl o P47
+ RlF OO PO PA* + [F 0 Plgel 8% + [F o g0 P

C(h3(A)A3 + 3L+ HO(L) A8 + (M)A + B (L) A2

INA

F RN + (A + R A A + hS(A)AS)
< CA. (3.17)

Also we can prove that, for any i > 3, E (é,il}'tk) = O(A). Combining (3.13)—(3.17) and using (2.1) in
Assumption 2.1, for any k > 0,

B ((1+5el) 1)

» 2 T 2 _ T 2
S(l n ka|2)2[1 L CA +p(l + ) Qvif o) + 18017 + (0 —2) |yl g |

2(1+ Iy ?)?

Ai| (3.18)

%
<(1+ ) (a+ ).

Thanks to the truncated EM scheme (3.5), for any integer k satisfying 0 < kA< T, we obtain

2 P
E ((1 + Inel?) ) E ((1 + 15:?) )
14 4
E [E ((1 +5?) |f,k_,)} < (1+CAE ((1 + i) ) . (3.19)

INA
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Solving the above linear first-order difference inequality, we obtain

P
2

E ((1 + |yk|2)g) < A+ E (1+1l?) " < ™ (1+1l?)

14 4
2 2

< T (1 + |y0|2) .

Therefore, we get the desired result that

P
sup sup Ely, [P < sup sup E ((1 + |yk|2)2) <c
0<A<A* 0<kA<T 0<A<A* 0<kAST

The proof is complete. ]
LEMMA 3.2 Let Assumption 2.1 hold. For any A € (0, A*] define

pp=:inf{t >0: 50| > ¢~ (h(2)) }. (3.20)

Then for any 7 > 0,

Plo, < T} < (3.21)

(¢7! (h())”

where C is a positive constant independent of A.

Proof. We write p,, = p for simplicity. Then p = AB,, where B, =:inf {k > 0: |y,| > ¢~ (h(2A)}.
Clearly, p and B, are F, and F, stopping times, respectively. For v € {ﬂ A > k+ 1} we have
|5’k| < ¢~V (h(A)) and Vi = Yi» whence it follows from (3.5) that

Furionps = Vi1 =+ [ ()2 + 8(54) 2B ]

= Sinp, + FOOL + 8GO LB Lo, (K + 1)
On the other hand, for w € {8, <k + 1}, we have B, < k and hence

s onps = Ips = inp, + G2+ 8GD 2B ] Iy p,yy k + D).

In other words, we always have

Fiaynps = Vinps T GO+ 8GO LB Io gy Kk + D). (3.22)

Then

[STas]
[STas]
[STaS]

(14 Basing?)” = (14 rap, ) (14 &djopp e+ D)7 (3.23)
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where

_ Bif G2 + 1800 2B + 2558 () ABx + |f () 42+ 267 (5, )8 (5) ABe
1+ |5’k|2

&

As in the proof of Lemma 3.1 we prove the assertion only for the case when 0 < p < 2; when p > 2 it
can be done in the same way. Using the technique in the proof of Lemma 3.1 we can show that

g
|‘Ftk,\ﬁA)
2 5 )4
= (1 + Bkng, | ) [1 +3E (“3k’[[o,m]] (k+ 1)|fmm)

p(p=2) PP=2 (=9,
8 48

- 2
E ( (1 + Ve 1yap, | )

+

2 3
]E(fk I pun&+1) |5EtkAﬁA) + (51« I gkt 1)|frkA,sA)}- (3.24)

Note that ABljjo g, j(k+1) = B(ty1ynp,) — B(fxap,,)- Since B(?) is a continuous martingale, by virtue
of the Doob martingale stopping time theorem, we see that E (ABkI[[O, gk + 1 |]:tk/\/3A) = 0, and for
any A € RIx™,

2 2 2
E (A8B P lyo K+ DIF, ) =IAPE (tgiapa—finpe o, ) = APE (o gy k4 DIF, )

This together with (3.2) and (3.6) implies

E ("3k1 o611k + DI, tkA,sA)
= (1+152) " [5G0 +18G0P) &+ G0 22] E (1o gk + DIF, )
< (1) [(277 60 +18G0R) &+ (1 4+ [5e) @87 (g0, k + DI, )

-1 ;
< [(1+15:2) (29kf@k>+|g@k>|2)A+2K2A3}E(Iuo,m<k+1>\fm)- (3:25)

E (1A0B P Lo g,y + DIF,,, ) = COE (o g,k + DIF, ).

E ((AAB,()Z’*H[[OM] (k+1) |f,k%) =0 VAeR"™ >1,
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we have
E (513 I gk + 1) VWA)
)
= (1 + |5’k|2) E [(ﬁ[f(?k)A +18(h) OByl + 25( 8 (1) By
2
+ )07 + sz@k)g@k)ABkA) gy (k+1) |5EWJ
S22 4 1=T (5 )| 2 = e~ ~ 2 A2

> (141507 [4 ‘ykg(yk)‘ A = 85| [f 5 [[e G| "2 ]E (I[[o,m]](k+ 1)|‘7:lk/\ﬁA)

-2
> [4 (1 + I9k|2) ‘i{g(ik) ) 2N — 241(2&} E (I[[O’ﬁA”(k +1) |f,km) (3.26)
and

E (&?ﬁ[omn(k + 1)|-7:t1</\m)
-3
= (1+52) "E[(235rG0s + 1860 AB I + 258G 6By
~ N2 A2 T~ ~ 3
I GOPA + 2T G8GABA) Tyo sk + 1>|fm}

-3
< (14 W) E[[ 1200 00P A% + 91800 IF1ABI° + 91 (1 °2°

+ 161y PO g GO IPIABPA + 8Ly P lg vl AB |
+ 81y P OISO PIABL A% + 161y If ) P 1g ) I AB 223

+ 8 G PlgO I AB[* A% + 81f(yk>|“|g<yk>|2|ABk|2A4]I[[OM(k + 1>|fz,m,sA]

< (14m) [l rOra® + 18001 2% + o Ia°

+ PO A% + P80 A% + I P Pl P42

+ Dl O PO + PGPl A% + VoI 1800 P4 |E I 5.k + DIF,,, |
< C[R ()8 + I (@)A3 + BN + B (2) A2 4+ (1) A2

+ PN + B (0L + R0 + hS(A)AS]E [1[[O’ﬁﬁ]](k + 1)|ftkA,sA]

< CAE (1[[0“”(1( +D|F,, m) . (3.27)
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We can also prove that for any i > 3, E(Elil}',k) = O)E (I[[O,ﬁﬁ]](k—k 1)|]—',kAﬂA). Combining
(3.25)—(3.27), using (2.1) in Assumption 2.1, for any k > O,

14
- 2)?
E ((1 + et 1ynps | ) ’]:nm%)

p
< (1 + |5’kAﬂA|2)2 |:1 + (CA—l-

W (1+ 15 (2507 () (J; E(lyyi)li))2+ (b —2) 5G| A)E (oo + 1) EM)]

z)% (14 COE (o gk + DIF, ) - (3.28)

< (14 [inps

For any integer 1 < k < T/A we obtain

(0451, 9) = 2 (2 (450 ) i)

14
E [(1 + |9(k—1)AﬁA|2)2

IN

(1+C2E (o0 ®|, f(k—m%))}

IA

4
(1+COE ((1 + \y(,{_l)%\z)z) . (3.29)

Solving the above first-order linear inequality leads to

P p P P
E ((1+}&Mm|2)2) < (1+CAYE ((1+|y0|2)2) < ke ((1+|on2)2) < o7 ((1+|yolz)2) .
Therefore, the desired assertion follows from
-1 P ~ P ~ p - 2\’
(‘P (h(A))) Plo < T} <E(3(T Ap)|") =E (|y[T/A]/\/3A| ) <E (1 + [iz/2108, | ) <C.

The proof is complete. 0
The following theorem presents the pth moment convergence of the truncated numerical solutions.

THEOREM 3.3 Under Assumption 2.1, for any g € (0, p),

lim E[y(T) —x(D)|"=0 Vv T=>0. (3.30)
A—0

6102 AelN 81 U0 1sonB Aq L£8Y96Y//¥8/Z/6EAEASqR-0l0IIE/RUlEWI/WOS dNOD|WSPEsE//:SARY WOl PSPEOjUMOQ
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Proof.  Let Ty and ¢, be the same as before. Define 0y \ = ty A pp, ex(T) = x(T) — y(T). Using
Young’s inequality, for any § > 0, we have

EleA (T)lq =E (leA(T)qu{BN,A>T}) +E (leA(T”qI{@N,AST})

P—dq
p8a/p—a)

IA

5
E (|eA(T)|qI{9N’A>T}) + %JE (|eA(T)|1’) + P{oy, <T}. (331

It follows from the results of Theorem 2.3 and Lemma 3.1 that
Ele (D) < 2PElx(D)|P + 2PEly(D)|” < C.

Now let ¢ > 0 be arbitrary. Choose § > 0 sufficiently small for Cq¢§/p < &/3; then we have

qé )
E <|eA(T)|”) =3 (3.32)

Choose N > 1 sufficiently large such that % < - Choose A* > 0 sufficiently small such that
7! (h(0%) = N. (3.33)

It follows from the results of Lemmas 2.5 and 3.2 that for any A € (0, A*],

pP—dq
p8a/ =)

P—q
250/ (P{TN < T}+Pps < T})

. pr-a (Cc, ¢
- péa/v—a \ NP ((p—l (h(A)))p

IED{HN,A <T}

IA

2C(p —
< M < f_ (3.34)
NPpsa/p—a) 3
Combining (3.31), (3.32) and (3.34), we know that for the chosen N and all A € (0, A*],
Elen (T) |1 < E(|ep(D|I + 2z
A - A {ON‘A>T} 3°
If we can show that
. q _
lim E (‘eA(T)‘ I{GNNT}) =0, (3.35)

the desired assertion follows. For this purpose, we define the truncation functions

X

fu@) =f ((lxl /\N)l—) and gy(x) =g ((|x| /\N)i) . VxeR%

x| |x]
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Consider the truncated SDE

dy(t) = fiy (v(®) dt + g (v(1)) dB(2) (3.36)

with the initial value z(0) = x,. By (1.2) in Assumption 2.1, fy(-) and gy(-) are globally Lipschitz
continuous with the Lipschitz constant Cy. Therefore, SDE (3.36) has a unique regular solution y(f) on
t > 0 satisfying

xtATy) =yt ATy as, Vi>0. (3.37)

On the other hand, for each A € (0, A*], we apply the EM method to SDE (3.36) and we denote by
u(t) the piecewise constant EM solution (see Kloeden & Platen, 1992; Higham et al., 2002) that has the

property

IE( sup |y(r) — u(t)|q) <CArY? YT >0. (3.38)
0<t<T

It follows from (3.5) that for all A € (0, A*],

y(en eN,A) ~5 (r A GN’A) =u (r A HN’A) as. Vi>0. (3.39)

Using (3.37)~(3.39),

[
&=
S
>
—~
ﬂ
>
>
=
>
N
ey
=
>
\4
NS
S
N—"

E (‘EA(T)‘ ql{eN,A>T}) =

IN
=
=
—~
ﬂ
>
>
=z
B>
N—
|
<
—
ﬂ
>
2%
B>
-~
s
N—

IA
=
<~
—~
-~
>
=
B>
N—
|
N
—~
~
>
=
B>
~—
2
N—

AN

=
N N T /S A/~

7 o

AS

~

<

—~ s

=~ <

>

>

z

>

S~

I

<

—~

~

>

)

Zz

>

-

LS

\_/

=E| sup  [y®—u® |q)
0<t<TAON,A
< IE( sup_[y(®) — u(®) |")
0<t<T
< Cn92,
Therefore, (3.35) holds and the desired assertion follows. O

4. Convergence rate

In this section, our aim is to establish a rate of convergence result under Assumption 2.1 and additional
conditions on f and g. The rate is optimal, similar to the standard results for the explicit EM scheme
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with globally Lipschtiz f and g. The work of Higham ez al. (2002) gives the optimal rate in gth moment
for the implicit EM scheme for ¢ > 2 with global Lipschitz g and a one-sided Lipschitz f together with
polynomial growth. Using a similar condition to the study by Higham er al. (2002), the rate for the
tamed Euler was obtained (Hutzenthaler et al., 2012). The work of Sabanis (2016) developed the tamed
EM scheme, then obtained the convergence rate under a condition similar to ours. To obtain the rates of
convergence we need somewhat stronger conditions compared with the convergence alone, which are
stated as follows.

AssUMPTION 4.1 There exist positive constants p, > 2, L and [ such that
2
2= )T (F&) =) + (po — D|g@) — g»)|” < Lix—yl%, 4.1
o —fo)] < L(1+ 1 + 1) =yl Wy e R (42)

REMARK 4.2 One observes that if Assumption 4.1 holds then

6@ = g)[* < € (14 1" + I 1 =12, 43)
In addition,
FOI < @ —fO1+ O <L (1+1) W+ o < € (1+1%1), @4
and by Young’s inequality,
g < i+ 121 (1+1)] + e0)] < € (1417241 4.5)

REMARK 4.3 Under Assumption 4.1, we may define ¢ in (3.1) by ¢(r) = C(l +rl) for any
r>0.Then ¢~ ' (r) = (r/C — 1)/ for all r > C. In order to obtain the rate, we specify h(A) = KA™€
for all A e (0,A*], where o € (0,1/2] will be specified in the proof of Lemma 4.7. Thus,
mp () = (x| A (KA™9/C — DY) x/|x| for any x € RY.

Making use of scheme (3.5) we define an auxiliary approximation process by
YO =y ) (0= 1) +800) (BO = B(1)) V1€ [1.611). (4.6)

Note that y(,) = y(t;) = . that is, () and y(¢) coincide at the grid points.

LEMMA 4.4 If Assumptions 2.1 and 4.1 hold with 2(/ + 1) < p, for any g, € [2,p/(I + 1)], for the
process given by (4.6),

sup E (5() —y(0)|®) < CAT ¥T >0, Va4e(0n*], 4.7
OSfST

where C is a positive constant independent of A.
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Proof. For any t € [0, T] there is a non-negative integer k such that 7 € [tk, 1 +1). Then

E (j5(0) = y0)1*) = E (|50 = y(t)|*)
< 2ZE([fon]*) 2% +27E (g0 [ [B®) — B[ )

< C (Elfop|®a® +Elgop|"a?).
Due to (4.4), (4.5) and Lemma 3.1,

E (500 = y0|") = CE (1413 "*1)" 4% 4 CE (14 1y 5+1)" 2%

(I+1)qq (I4+2)qg

<CH+C(Elyl) 7 A0+ CElylP) » o7

40

<CAT?.

The required assertion follows.

Using techniques in the proofs of Lemmas 3.1 and 3.2, we obtain the following lemmas.

LeEMMA 4.5 Under Assumption 2.1, for the numerical solution of scheme (4.6),

sup  sup E|y)If <C VT > 0.
0<A<A* 0<t<T

LEMMA 4.6 Let Assumption 2.1 hold. For any A € (0, A*] define

= inf{t >0: [5(0)] > ¢! (h(A))}-
Then for any T > 0,

¢
(o= (h(a))”

where C is a positive constant independent of A.

4.8)

(4.9)

(4.10)

LEMMA 4.7 If Assumptions 2.1 and 4.1 hold with 4(I41) < p then for any g € [2,p,) N[2,p/2(+ 1)],

for the numerical solution defined by (3.5) and (4.6) with o = Ig/2(p — q),

E|3(T) —x(T)|* < ca? vT >o.

@.11)

Proof. Define 6, = 7,-1 50y A s Aps 2 i= {a) L6, > T}, &(t) = x(t) — (1), for any 1 € [0, T1,

where 1y, p, and ¢, are defined by (2.8), (3.20) and (4.9), respectively. Using Young’s inequality, for
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any « > 0, we have

Ele(D|! = E(le(N)ly,) + E (|é(T)|‘11_Qf)
SEUaDWmV+%yEW@W3+;§ﬁ%WM99' (4.12)
Theorem 2.3 and Lemma 4.5 yield
qﬁKIE (1e(D)I) < ca”. (4.13)

It follows from the results of Lemmas 2.5, 3.2 and 4.5 that

P—4q . P-4
et () < (P{rmraan = T} +Pos = T} +Ple, = 7})
pP—q 3C

— padl =D (o (o))

K

< cAT . (4.14)
On the other hand, for any ¢ € [0, T],
t t
e(t) = /0 (f(x(s) = f(¥(s))) ds + /0 (g(x(5)) — g(¥(5))) dB(s).
The 1t6 formula leads to
lq 2
le(n)|? = /O L@ 1262 (287 (6) (F(x(s) = F6) + [gx) = 806

+ (g = 2)[¢" () (8(x(s)) = g6s)) | ds + M)

IN

t
/O @172 (287 () (f(x(5) = F ) + (g = D] (x(s)) = g0 ) ds + M),

where M (1) = fot % le(s) |q_2éT (s) (g(x(s)) — g(y(s))) dB(s) is a local martingale with initial value 0. This
implies

tAGA
E(let A d.1%) < IE /0 E@IT2[267 (5)(F(x(5) = D) + (g = 1) [g(x() = ) ] ds.

4.15)
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Duetog € [2, Po) we choose a small constant ¢ > 0 such that (1 + ¢) (q - 1) < po — 1. It follows from
Assumption 4.1 that forany 0 < s <t A6,

26T () (F(s) = FG(s)) + (g = 1) |g(x() — g(¥(s))| 2
< 287 (5)(F(x(s)) — FG()) + 28T () (F(5(5)) — F((s))

- 2 1 - 2
+(1+0)(g = 1)|g(x(s)) — gG(s)I* + (1 + 7) (g —1)18(() — gy(s)]
1
< LEe)* + 202l G(s) — fG(s)] + (1 + 7) (g — DIgF()) — g
Inserting the above inequality into (4.15) we have
ZAQ_A
E (|e (t A éA) w) < g /O E(ué(s)vf + 20117 G() = fo()]
1
+ (1 + 7) (= 1)) |gG(s) — g(y(s)>|2) ds.
Then an application of Young’s inequality together with Assumption 4.1 leads to
_ tAOp
E(|etn8.|7) < cE /0 (1217 + [f G5 = F|” + |eGs) — g0(5)|) s
tAOA . N
scz [ (ewir+ (14 50+ bol) o o)
0
+ (1451 + o)1) [56) =) ds

T

= C/otE (o (s 2)[7) s+ C/o E[(14 501+ bor) 56 - y0)1] ds
(4.16)

Using Holder’s equality and Jensen’s equality, and then Lemmas 4.4 and 4.5, we have
Tl / I
/ E[ (14 B+ 1) 156 - y@l] ds
0 L
— 1
r il 1\ % = 212
o[ [E(1+ 50+ vor)| [ -yor]
0 L

T
‘)
0 L

CA3. (4.17)

IN

1

(+Dg

2lq 2ig7] 2 » ]
L+ (BIF@P) 7 +(Ely<s>l”)”] (B =y 1] 7 ds

INA

IN
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Inserting (4.17) into (4.16) and applying Gronwall’s inequality we obtain
E (|e(T)|9I,,) < E (lé (T A éA) |‘4) < cnd. (4.18)

Inserting (4.13), (4.14) and (4.18) into (4.12) yields

Ele(T)|9 < CA% + CA* +cnT i, (4.19)
Let
q op Kkq
—_ =K = — — .
2 l pP—q
which implies o = z(pl‘i o k= %. Therefore, the desired assertion follows. O

Therefore, by virtue of Lemmas 4.4 and 4.7, we get our desired rate of convergence.

THEOREM 4.8 If Assumptions 2.1 and 4.1 hold with 4(/+1) < pthen, forany g € [2, py)N[2, p/2(l+1)],
for the numerical solution defined by (3.5) with o = Iq/2(p — q),

E|y(T) —x(D)|? < ca? vT >o. (4.20)

REMARK 4.9 Higham ef al. (2002) and Hutzenthaler ef al. (2012) obtained the optimal rate 1/2 for the
backward EM scheme and the tamed EM scheme of strong convergence under the following condition:
the functions f and g are C!, and there exists a constant ¢ such that

C=»T[f@) —fO) <elx =y 1g@) —gWI* < clx — I,

o —r@] = e (141 + ) k=l VxyeRE

Note that the above condition implies that Assumptions 2.1 and 4.1 hold for any p > 2 and any p, > 2.
Thus, under such a condition, in view of Theorem 4.8, the convergence rate of our truncated scheme is
optimal. Note that a similar convergence rate result was also obtained by Sabanis (2016) for a modified
tamed EM scheme under conditions similar to ours.

5. The pth moment boundedness in infinite time intervals

Since the moment boundedness in an infinite time interval is related closely to the tightness of the
numerical solution, as well as the ergodicity, we go further to realize this property by our explicit
numerical solution. Mattingly ef al. (2002) showed that for a class of nonlinear SDEs the mean square
of the EM numerical solutions in the infinite interval tends to infinity but the mean square of the
exact solutions is bounded. Thus, they had to approximate the SDEs by the implicit scheme. Now
approximating the exact solutions in an infinite time interval by our numerical method will demonstrate
its advantages. First, we give the moment boundedness result on the exact solutions. For convenience,
we impose the following hypothesis.
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AsSUMPTION 5.1 There exists a pair of positive constants p and A such that

(1+ ) (70 + 1s@1P) = @ =p) [ Te@[?

lim sup 7} < =\ 5.1
|x]— 00 x|
THEOREM 5.2 Under Assumption 5.1, the solution x(¢) of the SDE (1.1) satisfies
sup Elx@®)|P < C. 5.2)

0<t<o

Proof.  For the given p > 0 and A > 0 choose 0 < k¥ < pA/2. Using It6’s formula and (2.6) we obtain

E (e(”?—")’ (1 + |x(t)|2)g)
=F (1 + |x0|2)% + E/Ot,c (e(pf‘“)s (1 + |x(s)|2)g) ds

1+ 1) + E/Ote(p?‘“)s [(”7A - K) (1+hoP)

P
2

+L ((1 + |x(s)|2)5)] ds

Thus,
E ((1 + |x(;>|2)5) < (1 + |x0|2)% E) o< (5.3)

This implies the desired inequality. 0

REMARK 5.3 Although Assumption 2.1 holds directly from Assumption 5.1 we highlight that the family
of the drift and diffusion functions satisfying Assumption 5.1 is large. We give the following examples
as special cases in which Assumption 5.1 holds.

(a) If there are positive constants a, & and A such that |x"g(x)|? < alx[** + C and that
2xTF(x) + |g)|* < —Alx|? + C then Assumption 5.1 holds with any p > 0.

A

(b) If there are positive constants a, ¢ and A such that |ng(x)| 2> A|x|4—|—C and that 2fo x)+|gx) |2
alx|*~¢ + C then Assumption 5.1 holds with any 0 < p < 2.

(c) If there are positive constants a and ¢ < 2a such that |ng(x)‘ 2> alxl4 +C and Zfo @) +1gx) |2
(2a — €)|x|? + C then Assumption 5.1 holds with some 0 < p <« 1 and —1 <« A < 0.

INA

(d) If there is a positive constant A such that 2fo ) + |g(x)|2 < —)»|x|2 + C then Assumption 5.1
holds with p = 2.
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REMARK 5.4 Assumption 5.1 guarantees the asymptotically pth moment boundedness of exact solu-
tions, which is also an alternative to Khasminskii’s condition, which states that there exist positive

. 172 . .
constants « and B such that LVP < —a VP + 8 with V = (1 + |x|2) /2, Again, for numerical schemes,
it is preferable to put conditions on the coefficients as mentioned before.

In order to obtain the asymptotic moment boundedness of the truncated EM scheme (3.5) we require
the chosen function £ : (O, A*] — (0, 00) to satisfy

A0y <K Yoe (0,07], (5.4)

for some 0 € (0,1/2).

THEOREM 5.5 Under Assumption 5.1 there is a A; € (0, 1) sufficiently small such that the numerical
solutions of the truncated EM scheme (3.5) have the property that for any compact set K C R¢

sup sup sup Elyl’ <C. (5.5)
O0<A<Aj x0eK 0<k<oo

Proof. Using the method of proof in Lemma 3.1 we know that (3.18) holds, that is,

E ((1 + wkﬂlz)% \f,k) < (1+ |yk|2)% [1+0(a1)
p (10P) (31r60+ 1800 [) + (-2) bilsool*

+
2 (1+1y?)°

. (5.6

For any given ¢ € (0, pA/2) it follows from Assumption 5.1 that
2 T 2 T 2 2e 2)? d
(1+|x| )(2xf(x)+|g(x)| )—(2—p))x g(x)‘ (-3, (l—l—lxl ) +C VxeRY

p_ L
From Young’s inequality we know that ”TC (l + |x|2) 272 <C+5 (1 + |x|2) 2 for any x € R?, where
C; is a positive constant. Choose A; € (0,1) sufficiently small such that O(AIG) < ¢/3, 1 —
(”7)‘ - 8) Ay > 0. Inserting the above inequalities into (5.6) yields, for any A € (O, Al],

- L 3 DA
Equation (5.7) implies that for any A € (0,A]and k > 0,
)\ 2 - o\2 . 0\2
E (1+|yk+1| ) <E (1+|yk+1| ) —E|E (1+|yk+1| ) |7,

4
2

< [1 - (p% —e) A}E(l +nl?)” + .
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Solving the first-order nonhomogeneous inequality yields

P k+1 P k i
2((eme)) <= (5 =) ] (o) e [- (3]
i=0
< (1+|y0|2)% el

where C is independent of k and A. Thus, the desired inequality follows. 0

6. Exponential stability in pth moment

In this section, we focus on the exponential stability in pth moment. First, we give a sufficient condition
for exponential stability in pth moment of the exact solution. Since stability describes the dynamical
behavior more precisely than the boundedness, we will construct a truncation mapping and an explicit
scheme according to the super-linear growth of the diffusion and drift coefficients. This scheme is
suitable for the realization of stability for the nonlinear SDEs. For convenience we impose the following
hypothesis.

AssumPTION 6.1 There exists a pair of positive constants p and A such that
Ix[2 (2fo(x) n |g(x)|2) —(2-p) ‘ng(x)‘ 2 <t vxeRY 6.1)
THEOREM 6.2 Under Assumption 6.1, the solution x(¢) of the SDE (1.1) satisfies
Elx(DIP < |xplPe /2 Vi >0, (6.2)

where p and A are given in Assumption 6.1. That is, the trivial solution of the SDE (1.1) is exponentially
stable in pth moment.

Proof. It follows from the definition of operator £ and Assumption 6.1 that

A A A X2 (2xTF(x) + |e(x)]?) = (2 — g2
E(e%,lxlp) B | P2 +1_7I 1> (2xTf () + 1g@)?) — (2 = p) |xTg@)| 0.
2 2 |x|4
Thus, the desired assertion follows from Itd’s formula. O

REMARK 6.3 Assumption 6.1 guarantees the exponential stability of the exact solutions in pth moment,
which is also an alternative to Khasminskii’s condition, which states that there exists a positive constant
a such that LVP < —a VP with V = Ixl. We use Assumption 6.1 because it is on the coefficients of the
SDEs. Note that Assumption 5.1 is sufficient for the boundedness of the pth moment of the analytic
solutions but not enough to force the solutions to tend to 0. Thus, for the desired stability, Assumption
6.1 is needed.

It was pointed out in the study by Higham et al. (2003, p.299) that the result (6.2) forces f(0) = 0
and g(0) = 0, in the SDE (1.1). To define the truncation mapping for super-linear diffusion and drift
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terms we first choose a strictly increasing continuous function ¢, : R, — R such that ¢, (r) — oo as
r — oo and

Fol 1g@?

v 2
O<|x|<r |x] |x]

<@ (r) Vr>0. (6.3)

Denote by (pl_l the inverse function of ¢, obviously (pl_l : [p(0),00) — R, is a strictly increasing
continuous function. We also choose a number A* € (0, 1) and a strictly decreasing 5 : (0, A*] -
(0, 00) such that

hy (A7) = @, (Ix)), A1imoh1 (5) =00 and A0 () <K, VA€ (0,07] (6.4)
—

hold for some 6, € (0,1/2), where K is a positive constant independent of A. For a given A € (O, A*],
let us define a truncation mapping 7} : R? — R? by

mhe) = (W Agp ! (@) o (6.5)
where we let I;_I = 0 when x = 0. Obviously,
Lf(ng(x))‘ < hy (D), )g (ng(x))\ <hZ(A)l. Vx#0, xeRY (6.6)

REMARK 6.4 If |[f(x)] V |g(x)] < Clx|,forall x € R, let ¢1(r) = C for any r € [0,00], and let

(pl_l(u) = oo for any u € [C,0); choose A* > 0 such that hl(A*) > C Vv CZ%. Thus, rri(x) = X,
1
[f () @)] < hy (&) Ix] and |g( ) ()| < A (2)|x] hold always.

Given a step size A € (0, A*], applying the truncation mapping to the truncated EM method yields
the scheme

Uy = Xo,
ey = e + @)D + () ABy, 6.7)
ey = T (g )

To obtain the continuous-time approximation we define u(r) by u(t) := w forall 1 € [t 1, ).

The truncation mapping i (x) satisfies (3.4). Thus, Lemma 3.1 and Theorems 3.3 and 5.5 hold for

the numerical solution u(¢) of the scheme (6.7) under Assumption 6.1. Moreover, & i (x) has the more
precise property (6.6), which may result in the corresponding scheme realizing the exponential stability
of the SDE (1.1).

THEOREM 6.5 Under Assumption 6.1, for any ¢ € (0,p)), there is a A, € (0, A*], such that for any
A € (0, A,], the numerical solution u() of the truncated EM scheme (6.7) satisfies

Elu@®) < |xplPe” P9 V1> 0. (6.8)
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That is, the truncated EM scheme (6.7) is exponentially stable in the pth moment.

Proof. For any § > 0, we have (8 + |i¢k+1|2)p/2 =5+ |uk|2)p/2 (1+ nk)p/z, where

y = 2 f () A + 18w ) ABy > + 2ul g () ABy + If () P A% + 2T () g () ABy A
k= 3 .
8+ |uyl

Now we prove only the case when 0 < p < 2 and the proofs for other cases are similar. Thanks to
inequality (3.12), for 0 < p < 2, we have

E ((8 i) Ifzk)

: —2
< (64 1)’ [1 + SE (nlF,) + IL)E( 2

}'
3 77k|

Ik

)4 K220 (nilﬁk)] (69)

Both (6.6) and (6.7) imply

EmlZ,) = (3+ 1) [(2afrw) +1800P) &+ )] *22]

(5 10?) ™ [ (2uErg) + 1) & + 1y PR32 27]

IN

IN

-1
(3 + |uk|2) (2u,{f(uk) 4 Ig(uk)|2) A+ K2AH0 (6.10)
Using (3.15), we have

-2
E (nilﬁk) - (5 + |uk|2) E[ (2u,{f(uk)A + 18 AB, | + 2ul g(u) AB,

2
HIf () P02 + 2fT(uk)g(Mk)ABkA) |]:zki|

v

T
2uf g 8By 2 +2 (20 ) 0B,) (2] Fwps

(5 + Iuklz)_zE[

\%

) -2
> 46+l l) " [ul g 20 =8 (84l ) lllfallgly) P42

v

) -2
4 (5 + |uk|2) Wg(u)| 20 — 8 (5 + Iuk|2) lug |13 (1) A2

v

)
4 (8 n |uk|2) ul g(up) |2 — 24K2 A2 6.11)
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and
-3
E (n,§|f,k) - (5 n |uk|2) ]E|: (2u,{f(uk)A + 18 MBI + 2ul g(u) AB,

3
)P A? + 2fT(uk)g(uk)ABkA) |fzk}

IN

(5 + |uk|2)_31E[(72 ‘u,ff(uk)‘ 313 4 91g(u) || AB, IS + 91f (u) [P A6
+ 161 P ()12 ) PIABL P A + 8lu [P g () |*| ABy |*

+ 8lug [P () P18 () PIABL P A + 16]uy |1 ()P |8 () [P| ABy [ A7
+ 81 ) Plgwpl* 1AB A2 + 8lf (Il PIAB 24%) | 7, |

IN

-3
C (8 + ) (1Y) P A% + 1g)I°a + [ () °4°

+ P18 P42 + 1 P18 o) A2 + L 1 () P g ) P43
g ) Pl ) P+ 1 ) Pl u) 144 4 1f ) g ) P47)

c(h-}’ (A) A3 413 (D) A3+ 18 (8) AS + 13 (0) A2 4 12 (1) A?

INA

+ 13 (M)A + B (DAY + hH(a) At + h?(A)AS) < CcAlF, (6.12)
We can also prove that, for any i > 3, E (n,ilﬁk) =0 (AH’Q‘). Combining (6.9)—(6.12) implies

E ((5 + |b~tk+1|2)g |‘Ftk) < (5 + |Mk|2)% [1 +o0 (A1+9‘)

p (8 + 1) (2ulf ) + 18)l) + (p = 2) |uf g(uy)| A]
2 (8 + I 12)

For any given & € (0,p1), choose A € (0, A*] small sufficiently such that o (A) < /2. Taking the
expectation on both sides, by Assumption 6.1, we have for any A € (0, A],

E ((5 + |ﬁk+1|2)g) <(1+50)E [(6 + |uk|2)g] - A”%]E [(a + |uk|2)%_2 Iukl4]
+ LR [5 (s+ |uk|2)%_2 (Zulf(uk) + |g(uk)|2):|
= (1+32)E [(8+ g )g] [(a+ gl )g_2 |uk|4]
+ o5 (s 1) [uf f(uk)] ] 0[5 (5 +1) [atran] |

22
+ A‘%E [8 (8 + Iuklz) ’ |g(“k)|2):| .
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Letting 6 | 0 and using the theorem on monotone convergence we have

)\' —
E (i, IP) < [1 _P > SA] Elu, |7 (6.13)

Choose A, < A A2/ (ph — ¢); then, for any A € (0, Az], wehave 0 < 1 — (pL—¢)A/2 < 1.
It follows from (6.13) that, for any integer k > 0,

- pA—¢
Bluga P < Eligy, P < (1 - A) Bl .

k+1

— . . — _pr=e .
Thus, Elu, P < (1 - ’%A) |xo|P. By the elementary inequality 1 — p)‘z EA < e "7 we obtain

E|uk+1|p < |x0|Pg—(Pk—8)(k+1)A/2 — |xO|Pe—(P)L—8)tk+l/2 vk > 0.

Thus, the desired inequality (6.8) for the case 0 < p < 2 follows from the definition of u(#). The required
inequality for p > 2 can be proved similarly. Therefore, the proof is complete. d

7. Stability in distribution

This section focuses on asymptotic stability in distribution of SDE (1.1) and the numerical approxima-
tion to the invariant measures. In past decades much effort has been devoted to approximating invariant
measures for ergodic stochastic processes. Talay (2002) obtained convergence rates for approximation
to the invariant measures using an EM implicit scheme for a stochastic Hamiltonian dissipative system
with nonglobal Lipschitz coefficients and additive noise. Lamberton & Pages (2002, 2003) studied
recursive stochastic algorithms with decreasing step sizes to approximate the invariant distribution
for an Euler scheme under Lyapunov-type assumptions under the provision of the existence of such
a Lyapunov function. Liu & Mao (2015) took advantage of the implicit backward EM scheme to
approximate the invariant measure for nonlinear SDEs with nonglobal Lipschitz coefficients. Mei &
Yin (2015) ascertained convergence rates for approximation to invariant measures using EM schemes
with decreasing step sizes for switching diffusions. Approximation using EM schemes to the invariant
measures for switching diffusions was also dealt with in the study by Bao et al. (2016).

In this paper, we first give sufficient conditions that guarantee SDE (1.1) is asymptotically stable
in distribution. Then we construct a truncation mapping and explicit schemes that can approximate the
invariant measure of SDE (1.1) effectively. For convenience we impose the following hypothesis.

AssUMPTION 7.1 There exists a pair of positive constants p and v such that
T 2
=P 20 = 0700 =) + 1800 = g M) = (2= p) (k=) (800 = )|
< —vx— y|4 Vx,ye RY, (7.1)
LeEMMA 7.2 Under Assumption 7.1, SDE (1.1) has the property

lim E|x(t;u) — x(¢;v)|” =0 uniformly in u,v € K, (7.2)
=00
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for any compact subset K C RY, where p is given in Assumption 7.1 and x(t;xo) denotes the unique
global solution of SDE (1.1) with the initial value x, € R4,

Proof. 1Tt follows from SDE (1.1) that

d(x(t;u) — x(1;v)) = (f(x(t;w) — f(x(t;v))) df + (g(x(1; 1)) — g(x(£;v))) dB(D). (7.3)

By virtue of the definition of the operator L,

£ (= 1) = S =177 [l =3P [26: = 07 () = £ ) + lg@ — gO)P’]

oV
—2=p) [ =0 (e — gm)|*] < =Sk -1 (7.4)
Using It6’s formula we obtain
E (e%tlx(t; u) — x(t; v)|p)

U oou [V
< |lu-—v|” +E/ ez2” [7|x(s; u) —x(s;V|° + L (Ix(s;u) — x(s; v)|")]ds
0

< |lu—v|°.

Then we have

2y

E (|x(t; u) — x(t; v)|'0) <lu—vfe”2" Vt>0. (7.5)

Thus, the desired result follows. O

REMARK 7.3 Assumption 7.1 guarantees the attractivity of the analytic solutions, which is also an
alternative to Khasminskii’s condition, which states that there exists a positive constant « such that
L(x — yI’) < —alx — y|” holds for any x,y € R?. As in the other conditions, we prefer to put the
conditions on the coefficients of the SDEs for verification purposes.

THEOREM 7.4 Under Assumptions 5.1 and 7.1, SDE (1.1) is asymptotically stable in distribution.

Proof. 'We adopt the idea of Mao & Yuan (2006, Theorem 5.43). The main difference is that we remove
the linear growth requirement of the drift and diffusion terms. Since the proof is technical we divide it
into three steps.

Step 1: Under Assumptions 5.1 and 7.1, SDE (1.1) has a unique regular solution with an initial
value x; denoted by x(#;x,), which is a time-homogeneous Markov process. Let P(#;x,, ) denote
the transition probability of the process x(t;xy). Let P (Rd) denote all probability measures on R,
Then for P, P, € P (R?) define a metric d; as

il

dr, (IPI, ]P’z) = sup / [(x)P; (dx) —/ ()P, (dx)
el [JRd R4
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where

L= {l: RY 5 R: i) —1()| < x—y| and [I()] < 1}.
Given any compact set K  RY, for any u, v € K and [ € L, compute
|El(x(t;w)) — El(x(t;v))| < E (2 A |x(t;u) — x(5;v)]) . (7.6)

If Assumption 7.1 holds for p > 1 then for any ¢ > O there is a 7} > 0 such that

IE(2 A |x(t;u) — x(t; v)|) < E(|x(r; u) — x(t, v)|) < [E (|x(t; u) — x(t, v)|p)]% < vVe>Ty,

| ™

uniformly in u, v € K. For this ¢, if p < 1, by Assumption 7.1, there is a 7} > 0 such that

E (x(t;u) —x(t;v)|°) < = Vi>T),

| ™

uniformly in u, v € K. Hence,
E @A |x(t;u) — x(5;v)])
< 2P (1) = 5(9)] 2 2} + B (I s <2 505 10) = 305 0)1)
< 217K (x(t;u) — x(;1)|?) + E (21—P|x(t; u) — x(t; v)|'°)

< 227PE (|x(t;u) — x(1;0)]°) <

NSNS

In other words, for any p > 0, there is a 7} > 0 such that E (2 A [x(t; u) — x(£;v)]) < % forall t > T,
uniformly in u, v € K. It follows from (7.6) that |El(x(t; u)) — El(x(t; v))| < % for allt > T,. Since [ is
arbitrary we have

™

sup [El(x(t; u)) — El(x(1;v))| < 3 Vt>T,. (7.7)
lel

Then dy, (P(t;u,-),P(t;v,)) < 5 < e for allz > Ty, namely, lim,_, dy (P(t;u,-),P(t;v,-)) = 0
uniformly in u, v € K.

Step 2: For any x,, € R, {IP’(t; Xp,t) 1t > O} is Cauchy in the space P (Rd) with metric d , namely,
there is a 7 > 0 such that

dy, (IP’(t—{—s;xO, -),IF’(t;xo,~)) <e Vt>T,s>0.
This is equivalent to

sup |El(x(t + s3x0)) — El(x(t;x)))| <& Vi>T, s>0. (7.8)
lelL
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Now for any / € L and 7, s > 0, compute

|El(x(r + 53x0)) — El(x(t;xp)) |
= |E(E(I(x(t + 53x0))| F,)) — El(x(t; )]

= ‘E/Rd I(x(t; ) P(s3 x9, dy) — El(x(2;xp))
< /R . |EL(x(t:y)) — EL(x(t: x0)) |P(s: x0, dy)

< 2P (s;xo,gx,) +/_ |El(x(t;y)) — El(x(t;xo))|IP’ (s;xo, dy) , (7.9)
Sy

where Sy, = {xe RY : |x| < N} and S}'\, = R?—S. By (5.2) of Theorem 5.2 there is a positive constant
N > |xy| sufficiently large such that

P(six0.85) <7 V520, (7.10)
On the other hand, by (7.7) there is a T > 0 such that
sup |El(x(t;y)) — El(x(t;x)))| < % Vi>T, VyeSy. (7.11)
lel

Substituting (7.10) and (7.11) into (7.9) yields \El(x(t + 53x9)) — El(x(#; xo))‘ <eforalt>T,s>0.
Since [ is arbitrary the desired inequality (7.8) must hold.

Step 3: For a given x, € R, it follows from (7.10) that {P(t; x,, )} is tight. Since R? is complete
and separable it is relatively compact (see Billingsley, 1968, Theorems 6.1, 6.2). Then any sequence
{P(t,:x5,)} (1, & o0 as n — ©c0) has a weak convergent subsequence denoted by {P(z,;x,, )} with
some notation abuse. Assume its weak limit is an invariant measure £ (-); then there is a positive integer
N such that ty, > T and df, (IP’(tn;xO, ) ,m(-)) < ¢ for all n > N. Then it follows from (7.8) that

dy, (P(t;x0, ), () < dy, (P(1,3%0, ), () +dp, (P (5%, ), P(t;xg,-)) <26 Vi>T.
Thus, lim,_, . df, (IP’([; Xgs)s /L(~)) = 0 and the invariant measure j(-) is unique. For any y, € R4,
Jim dy, (P(5;30,), () < lim dy, (P(5; 90, ). P(1;x0, ) + Jim dy, (P(t;x0, ), () =0.

Therefore, the desired result follows. O

In order to approximate the invariant measure 1 of SDE (1.1) we need to construct a scheme such
that for any A € (O,A*] the numerical solutions are attractive in pth moment and have a unique
numerical invariant measure. However, the truncation mappings m, (x) and i (x) are not suitable for
the attractive numerical solutions. Thus, we construct the truncation mapping ni (x) according to the
local Lipschitz growth of drift and diffusion coefficients. Then making use of the appropriate truncation

6102 AelN 81 U0 1sonB Aq L£8Y96Y//¥8/Z/6EAEASqR-0l0IIE/RUlEWI/WOS dNOD|WSPEsE//:SARY WOl PSPEOjUMOQ



878 X.LIET AL.

mapping we give an explicit scheme. Finally, we show that it produces a unique numerical invariant
measure ;2 that tends to the invariant measure w of SDE (1.1) as A — 0.

Under the local Lipschitz condition, to define the truncation mapping, we first choose a strictly
increasing continuous function ¢, : R, — R such that ¢,(r) — oo as r — oo and

_ _ 2
up ) —fOI,, 1800 =M™ _ 0r(r) ¥ r> 0. (7.12)

Kvil<ragy X = lx — yI?

Denote by ¢, ! the inverse function of ©,; obviously ¢, L. [9,(0),00) — R, is a strictly increasing
continuous function. We also choose a number A* € (0,1) and a strictly decreasing h, : (0, A*] -
(0, 00) such that

hy (8%) = @y (IxoD) V IFO)] V Ig(0) [, lim hy(£) = o0 and A2 0p, () <K, VA€ (0,47]
(7.13)

holds for some 6, € (0, 1/2), where K is a positive constant independent of A. For a given A € (0, A*]
let us define another truncation mapping ni :R? — RY by

72 () = (le N (hz(A))) |% (7.14)

where we let ﬁ = 0 when x = 0. Note that

I (720) £ (720)] = hy(@) |72 00 = 7200 (7.15)

, VaxyelRd (7.16)

52 0) — 2(x20)] < 13 (&) 2 72 )
We also have
Lf(ni(x))‘ < i) (14 \ng(x)]), g ()| < K (2) (1+ \ng(x)]), vxeRL  (7.17)

REMARK 7.5 If [f(x) —f ()| V |g(x) —g(»)| < Clx—y|for allx,y € RY, let @,(r) = C forany r € [0, <],
and let wz_l(u) = oo for any u € [C, 00); choose A* > 0 such that i, (A*) > CV C?. Thus, ni(x) = x,
(7.15)—(7.17) hold always.

Given a step size A € (O, A*], define the truncated EM method scheme by

Wo = %o
Wiyl = " +fwW) A + g(w) ABy, (7.18)
Wit =77 (W) -
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To obtain the continuous-time approximation we define w(f) by

THEOREM 7.6 Under Assumption 7.1, for any ¢ € (0, pv), there is a constant A5 € (O, A*] such that
the solutions of the truncated EM scheme (7.18) satisfy

sup Ew (1) —w'@)|° < |u—v|Pe P2 v >0, (7.19)
Ae(0,A3]

where w*(-) and w"(-) denote the numerical solutions defined by (7.18) with different initial values u
and v, respectively, and p and v are given in Assumption 7.1.

Proof. Because the proof is rather technical we divide it into three steps.
Step 1: For any integer k > 0 we have

Wity = Wi | 2

= (= wh) + (F (W) = (W) 2 + (g (W) — & (w})) ABy |2

= [l —wi 22 (wf = wl)"(F (W) = F () & + | (wh) — g (W) 2By
+2 (wi —wp)" (g (wE) — g (wh)) ABy + |f (wh) —f (w})] 202

+2(F () —F ()" (s () — & () ABes.

For any § > 0,

- - p/2 p/2
(5 + W = Wi | 2) = (3 + [wi = wj| 2) (1+ §k)p/2’
where

2 (wi = wp)" (F (i) =F (W) & + | (g (wh) — g (w}) 2B, |
5+ |wZ - w,‘:| 2

T
2 (wi = wp)” (g (wg) — 5 ()
8+ [wi —wil

20 0) =7 (o) (8 () — 8 ()

8+ [wi —wil

§k=

() =7 D)2

i 5+ Wi —wi|2

ABy +

ABA.
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We give the proof outline for the case 0 < p < 2 and other cases can be prove similarly. Using the
properties of the Brownian motion (7.13), (7.15), (7.16) and the elementary inequality we can obtain

. - 2\ P/2
E ((5 + Wi = Wi ) |]:tk)
p/2
< (8+ |WZ—WI‘2|2) 1+0(A1+92)

p 2 (wi = wi)" (F (W) =f (W) + s (W) — g (W) |2

+§ 8+|w,‘§—w,ﬁ|2 A

oo =2 [P0 =) (6 () — e G |*
? (8 It vy’

For any given ¢ € (0, pv) choose A e (0, A*] sufficiently small such that o(A%) < &/2. It follows
from Assumption 7.1 that, for any A € (0, A],

5 5 p/2
E ((5 + |WZ+1 - lec+1 2) |‘Ftk)

Pﬂ[l e _pv_ wi—wl? i
22w —wi]?)

@zwwmevww<ﬂw»+mww—g@wvA}
2 (5 + it =il 2)*

Taking the expectation on both sides, letting § | 0, by the theorem on monotone convergence, we have

pv —¢

E Wy — W] < (1 - A)EM —wil”. (7.20)

Step 2: The inequality

2 —72y| <lx—y VxyeR? (7.21)
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holds always. In fact, if |x| V [y] < @5 (1y(2)), (7.21) holds obviously. If |x| < ¢3! (h,(2)), Iyl >

93! (hy (D)),

=y = |r2 0 =72 )2

Then (7.21) follows immediately. If |x| > (pz_l(hz(A)),|y| < @

2 2 2
=3P =[x =72 0|

—2xTy + |y|2 + 2xTni(y) - ‘ni(y)’ 2

Iyl* —

Iyl* —
Iyl? —

Iyl* —
Iyl* —

Iyl* —

i)
72 )
72 ()
T2 )
73 )

T2 ()

-2 (v - 72 0)

2= 20|y - 72 0]
22l |y — oz (1a(2) (I};I(A))y‘
2= 204 |1yl = 03" (1 (2)]
2= 244l (vl — 03 (h(2))
221 (vl = |72 00))

(1 = [=2]) (151 + | 720)] = 21) = 0.

symmetry on x and y. Finally, if [x| A |y| > goz_l (hy (D)),

= y* = |72 (0) — A )| = I — |72 ()

2 2
= x| = |7 (%)

2 2
> x|” — |mA(x)

51 (hy(0)), (7.21) holds also by

T
SEMEE AL 2—2(xTy— (x2w) ni(y))
2
-1
07 (hy(2))
24P = o) -2 [« - o)
iy
2
2y - 72| 2 -2 (|x||y| — (o3t (2) )

= x| = 2Jxllyl + IyI* > 0.

Then (7.21) follows immecliately. Thus, the desired inequality (7.21) holds for all cases.
Step 3: Choose Ay < AA2/(pv—¢), then for any A € (0, As], wehave 0 < 1—(pv—¢€)A/2 < 1.
It follows from (7.20) and (7.21) that for any integer k > 0,

E [wiiyy — Wit |” < E iy — Wiy |” < (1 -

pv —

€
A)E|wZ—w}i P,
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—e K
Thus, Blwiy, —wiy |7 = (1= 2558) T ju = P < Ju — vjpemr—obebar2 oy -
v|Pe=(Pv=8)t1/2 The desired inequality (7.19) follows from the definition of the numerical solution
w(-). O

In order to obtain the Markov property of the scheme we state a lemma.

LeEMMA 7.7 (Mao & Yuan, 2006, p.104). Let h(x, w) be a scalar bounded measurable random function of
x, independent of F. Let ¢ be an F measurable random variable. Then E (h(;, a))l]-'s) =E h(¢,w)).

For any A € B (RY) (where B(RY) denotes the family of all Borel sets in RY), define
P* (xg,A) :=P (w; € Alwy =xo), Py (¥, A) := P (wy € Alwy =x;), Yk > 0.

LEMMA 7.8 {wk} is a homogenous Markov process with the k-step transition probabilities IE”kA (xo, ) .

Proof. For A e (0,A*], k > 0 and x € R define & | = 72 (x+f(x)A + g(x)AB,), which is
a bounded random function of x that is independent of F, . Clearly, wy, = E,z:f |- Hence, for any
AeB (]Rd),

P (werr € A7) =B (L4 (6250 [7) = E (L (51)) |z,
=P (&1 €A) [y, =P (Wig1 € Alwy)
which is the desired Markov property. The homogenous property follows from the truncation scheme
(7.18) directly. O
Next we give a theorem on the asymptotic stability of the scheme.

THEOREM 7.9 If Assumptions 5.1 and 7.1 hold, there is a A, € (O, A*] such that for any A € (O, A4],
the solutions of the truncated EM method (7.18) are asymptotically stable in distribution and admit a
unique invariant measure u” € P (Rd).

Proof.  Since the proof is rather technical we divide it into three steps.
Step 1: For any A € B (R?), define

]P’A(t;xO,A) =Pw() € Alwg =xy) = ]P’,f(xO,A) Vte [tk,tk+1).
Given any compact set K C R, for any u, v € K, let w*(-) and w"(-) denote the numerical solutions
defined by (7.18) with initial values u and v, respectively. It follows from Theorem 7.6 that for ¢ = pv/2

there is a A € (0, A*] such that

lim sup E[w"@®) —w'(®)|” =0 uniformlyinu,v e K.
1220 Ae(0,43]

For any / € L (IL is defined well in the proof of Theorem 7.4) compute

sup  |[El(w" () —EI(w'®)| < sup E(2A W@ —w©)|). (7.22)
Ae(0,A3] Ae(0,A3]
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If Assumption 7.1 holds for p > 1, for any & > 0, there is a 7'} > 0 such that

E 2w @) —w'®]) <E (w0 —w'®|) < [E(w"@®) —WV(z)|P)]% <= Vix>T,

£
2
uniformly in A € (O, A3] and u, v € K. For this ¢, if p < 1, by Assumption 7.1, there is a T; > 0 such

that

E (Jw" (@) —w'(0)]°) < Vt>T,,

0| ™

uniformly in A € (0, Az] and u, v € K. Hence,
E@2A W@ = w'®]) < 2P{|w'®) —w' 0)] = 2} + E (I i<y W1 O = W' (1))
< 2177 (jwn) —w' @] #) + E (277 w0 - w 0] *)

< 27PE (|w”(t) — w"(t)| p) <

| ™

In other words, for any p > 0, there is a T} > 0 such that sup,cg a1 E 2 A W (@) —w"(0)]) < £ for
all > T, uniformly in u, v € K. It follows from (7.22) that sup , ¢ o . [El (W* () — El (W"(1)] < z
forall ¢ > T,. Since [ is arbitrary we have

sup sup |[EI(w() —EI(w'®)| < = Vi3> T, (7.23)
Ae(0,A3] lel 2
namely,
&
lim sup d (]P)A(l‘;v, -),PA(t;u,~)) <% visT,
%0 ne(0,05] - 2 1
Thus,
lim sup dj (P%; v, ), PA (s u,-)) =0, (7.24)

=00 A (0,03]

uniformly in u, v € K.

Step 2: For any given u € RY, there is a Ay € (0, A5] such that for any A e (O, A4], {P,{A(u, -)}k )
>

is Cauchy in the space P (Rd) with metric dj , namely, there is a positive constant k; such that
dy, (PLy ), PR ) s e Yk 2k, j>0. (7.25)
This is equivalent to

<e, Vk>k, j>0. (7.26)

sup E1 (i) — BI (wf)
lelL
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Now for any / € L and any positive integers k, j, compute

=[E(E(1(w)| 7)) - ()
:@Aﬂmmﬁmm—WWD

B (wiy) — 1 (u5)

< [ 1B16s) =B 0)] ) o o)

< 2P (u,S§) + /S ) B (w}) — I (w}) | P} (u, dy), (7.27)

where SN = {x eRY: x| <N } and SJCV =R? — SN. By virtue of Theorem 5.5 there exists a positive
constant Ay such that Supy_ <, SUPg<g<oo EIWil” < C. Then there is a positive constant N > lul

sufficiently large such that for any A € (0, 4],

Pf u,S5) <= Vj=o0. (7.28)

FNIE

On the other hand, let A, = A A A3, by (7.23), for any given A € (0, A,], there is a positive integer
ky satisfying t; = k;A > T such that

sup [ (w5) — 1 (w})] <
leL

Vk >k, VyeSy. (7.29)

| ™

Substituting (7.28) and (7.29) into (7.27) yields

Bl (wi) —EL0)| < V2K, >0,

Since [ is arbitrary, the desired inequality (7.25) must hold. Moreover, it follows from (7.23) that
dy (P,f(u, ). P2, -)) < £ <eforall k > k;, namely,

lim d; (P,f(u, ). PE, .)) =0 (7.30)

uniformly in u, v € K.
Step 3: For a given u € R, it follows from (7.28) that {]P’,f )}y

{IP’kA (u,)} ¢>1 With some notation abuse has a weak convergent subsequence denoted by {PkAj (u, ~)}j21.

is tight. Then any subsequence

Assume its weak limit is an invariant measure ;”(-); then there is a positive integer Jo such that

ar, (Ppw.n () <e ¥z jp
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A . . . A A A
The fact that {]P’k (u, ~)}k21 is a Cauchy sequence implies df, (Pk (u,-), ,uA(-)) < d]L(IP’k (u,-), ijo(u, -)) +
d (P (), pu2()) < 2e forall k > k; v k. Thus, lim_, o dy (P,f , ), MA(-)) = 0, and the
invariant measure u () is unique. It follows from (7.30) that for any v € R4,

. A . Ay, . A . A . . A i Ay —
lim dy (BE, 120) < lim dy (B0 B ) + lim dy (BE o), 15 0) =0,

Therefore, the desired result follows. O

THEOREM 7.10 If Assumptions 5.1 and 7.1 hold, lim, 4 dy (u” (), u(-)) = 0.

Proof.  From the proof of the above theorem we note that for a given initial value u € R?, for any
& > 0, there is a constant 7 > 0 such that for any A € (0, A4],

d (PR, 1 () <ef3,  dy Pu0), () <e/3, 1=T. (7.31)
It follows from Theorem 3.3 that

lim E|w(T) — x(T)|P/* =0, (7.32)
A—0

where w(-) and x(-) denote the numerical solution defined by the scheme (7.18) and the exact solution
with the same initial value u, respectively. For any / € IL compute

[Elw(T)) — El(x(T)| < EQ A [w(T) = x(T))).

Ifp/2 > 1, there is a A € (0, A,] such that for all A € (0,A],

2
EQA W) —x(T)|) < Ew(T) —x(T)| < [E [w(T) — x(T)| ] <

W[ ™

For this ¢, if p/2 < 1, there is a A e (O, A4] such that for all A € (O, A] we have E |w(T) — x(T)| 5 <
£ . Hence
12

E QA () = x(T)I) £ 2P{w(T) = (D] 2 2} +E (Iyr)xqry <2y W(T) = 5(D1)
< 275E (jw(T) = (D18 + E (275 w(D) - x(1)1%)
22 _ 4 f
<2 2E(|W(T) x(T)|2) <3
In other words, for any p/2 > 0, there is a A e (0, Ay4] such that for all A e (0, Al,
I3
5.

|EIw(T)) — El(x(T))| < EQ A w(T) —x(T)]) < %. Since [ is arbitrary we have for all A € (O, A],
super, [EI(w(T)) — El(x(T))| < §, namely,

dy (IPA(T; u, ), dy (P(T;u, -))) <:. (7.33)

W[ ™
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Therefore, combining (7.31) and (7.33) yields, for all A € (O, A],

i, (120, 1O) = dy (PATs0), 12 O)+dy BT ), )by, (PAT:,0), dy (P(T:,) <.

The desired result follows. O

8. Numerical examples

In this section, we consider a number of examples of nonlinear systems and conduct simulations using
our numerical schemes.

ExampLE 8.1 The Ginzburg-Landau equation stems from statistical physics in the study of phase
transitions. Its stochastic version with multiplicative noise was introduced, by Kloeden & Platen (1992)
and Hutzenthaler ez al. (2011), with the form

dx(r) = [(n + %02) () — 925 (r)] dt +ox(t)dB(@), x(0) =x; > 0, (8.1)

where o, ¢+ > 0. Note that if n = —3/2, 0 = 1,9 = 1, then (8.1) degenerates to SDE (1.4) in
Section 1. It can be verified that Assumptions 2.1, 4.1, 5.1 hold with all p, p, > 2 and [ = 2. Moreover,
if n < 0, Assumption 6.1 with p < —2#5 /0% and Assumption 7.1 with p < —21/02 hold. Then by virtue
of Theorems 2.3 and 6.2 not only does (8.1) have a unique regular solution but also it is asymptotically
exponentially stable.

Let ¢,(r) = C, (P> + 1) for all r > 0, where C, = || + 39 + 02, ] '(r) = /r/C, — 1 for all
r > Cy, (D) = ¢,(xy)A™%2 for all Ae (0, 1). For a fixed A€ (0, 1), the truncated EM scheme for
8.1)is

MO = .XO,
ﬁk-ﬂ—l =u + (T) + %0‘2) AN ﬁuzA + ou, ABy, (8.2)

— (& 2 -0.2 ligt 1
Upy1 = (“k+1/\\/(xo+1)A _])mkilr

By virtue of Theorem 4.8, the numerical solution of this scheme approximates the exact solution in the
mean square sense with error estimate A. It follows from Theorems 6.5 and 7.10 that given n < 0, the
pth moment of the numerical solution with p < —27/0?2 is asymptotically exponentially stable and its
measure tends to the Dirac measure as ¢t — oo.

To test the efficiency of the scheme we carry out numerical experiments by implementing (8.2)
using MATLAB. We compare the truncated EM method with the backward EM scheme and the tamed
EM scheme (see, e.g., Hutzenthaler ef al., 2012) numerically. Consider (8.1) with n = =3/2, ¢ =
1,0 = 1,x, = 10 and T = 1. Figure 1 plots the root mean square approximation error (Elx(T) —

X(T) |2) 12 petween the exact solution of (8.1) and the numerical solution by the backward EM scheme,
the error (Elx(T) — Z(T)|2) 172 between the exact solution and that of the tamed EM scheme and the

error (]Elx(T) —u(T) |2) 172 between the exact solution and that of the truncated EM scheme, as functions
of the runtime when A e {2_12, 2_13, 2-14, 2715, 2_16, 2_17}. When A = 2~ for 1000 sample points,
the runtime of X(7') achieving the accuracy 0.0004598 on our computer with Intel Core 2 duo CPU 2.20
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—-2

107 : - ———————y

—#— Truncated EM scheme

—&— Tamed EM scheme

—©— Implicit EM scheme
Approximation error 1/1000

10 7

X:435.4
Y:0.0004598
u

-3.27

Root mean square approximation error

X: 364

Y: 0.000461
I —— |

4 [ ]

10 10733

X: 362.5
Y:0.0004573

102.568

10

1 1 L L | L L | L ! !
107 10
Runtime in seconds

1

10

F1G. 1. The root mean square approximation errors for 1000 sample points between the exact solution x(T") of SDE (1.4) and the
numerical solutions: X(7T') by the implicit EM scheme, Z(T) by the tamed EM scheme and u(7T) by the truncated EM scheme,
respectively, as functions of runtime for A € {2_]2, 2_13, 2_14, 2_]5, 2_]6, 2_17}.

GHz, is about 435.4 seconds while the runtime of Z(T") achieving the accuracy 0.000461 is about 364
seconds. The runtime of u(7T) achieving the accuracy 0.0004573 is about 362.5 seconds (see Fig. 1).
Thus, the convergence speed of the truncated Euler scheme for SDE (8.1) is similar to that of the tamed
EM scheme but is 1.2 times faster than that of the implicit backward EM scheme for achieving the same
accuracy. Figure 2 gives sample paths of the classical EM solution Y(#) and of the truncated EM solution

u(t).

ExaMpPLE 8.2 Because the assumption of constant volatility in the Black—Scholes model has its
drawbacks, the formulation of stochastic volatility has attracted much recent attention. One of the
popular stochastic volatility models is the risk-adjusted formulation given by Lewis (2000, p.83),

dr(t) = (By — Byr(®)) dt + o |r(1)*/*dB(1), (8.3)

r(0) = ry > 0 where B, B;,0 are positive constants. Such a model is known to possess the so-called
mean-reverting property, a direct consequence of which is that the underlying stochastic process is
positive recurrent, hence has a stationary distribution. Because the equation does not have an analytic
solution, there is a little hope that one can get a closed-form solution for the stationary distribution. Our
results obtained in this paper pave a way to numerically approximate the stationary distribution.

Note that f(r) = By — Bir, g(r) = o|r|3/ 2 satisfy the local Lipschitz condition; moreover,
Assumption 5.1 with any 0 < p < 1 and Assumption 7.1 with any 0 < p < 1 hold. By virtue of
Theorems 2.3 and 7.4, equation (8.3) with any initial value 7, > 0 has a unique regular solution r(z),
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(@) 450 (b)10
A=0.02 | A=0.02
- = = A=0.04 - — - A=0.04

400

350
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250
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u(t)

200
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1
0 : : : ‘ : -5
0

0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
t t

FI1G. 2. (a) Sample paths of the EM solution In |Y(¢)]. (b) Sample paths of the truncated EM solution u(#) with the same initial
value xo = 10 for different values of step size A and ¢ € [0, 3].

which is asymptotically stable in distribution, namely the probability measure P(t; ry, -) of the solution
r(t) tends to an invariant measure & (-) as t — 00.
Note that for all u > 0,

If (r)] lg(r)]? 5
sup \Y <ByV B +c°u,
veu LE Il Q4 rp2 =700

F@x) —fol g — g
sup \%

[x|V Iyl <uxsy |x =yl lx —yI?

< B+ 6.2502u.

Taking o(u) = By V B; + 6.2502u for all u > 0, then ¢~ (1) = % forallu > B, Vv B;. Fix

a constant K = ¢(ry), and define h(A) = KA™1/4 forallA e (0,1). For a fixed A€ (0, 1), the
truncated EM scheme for (8.3) is

Yo =To» s

Fie1 =i+ (Bo = Biyp) & + o ln 2 4By, (8.4)
= (| | A KATYA—BovB1\ Fat

Vi1 = \ D1 6.2502 P11

Define y(t) by y(#) := y, forallt [tk, I +1)' Therefore, by virtue of Theorems 3.3 and 5.5, we can
approximate the exact solution in the pth moment and estimate the bounds of the pth moment of the
numerical solution in finite and infinite time intervals for any p € (0, 1). Moreover, by Theorems 7.9
and 7.10, the probability measure P> (t; r,, -) of the solution using this scheme with any initial value
ro > 0 tends to a unique numerical invariant measure w”(-) asymptotically as t — oo, and u>(-) —
u()as A — 0.

Next, in order to test the efficiency of the scheme, we carry out numerical experiments by
implementing (8.4) using MATLAB. Let 8y = 0.1, 8; = 1,0 = 2, ry = 0.2 and take A = 1072
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(@ 1 : (b) 1 — — (€)1.15
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095! = )™ o8] T Ity ™| ' o )™
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FIG. 3. Five sample paths and sample mean of |r(7)| 1/8 for 4000 sample points in different time intervals.

TABLE 1 Sample mean of |r(T)|P with 4000 sample points for different step sizes /\ and different
values of p

Elr(DP 7 6 5 4 3 2 1

A 8 8 8 8 8 8 8

1072 0.1310 0.1733 0.2303 0.3070 0.4106 0.5509 0.7412

1073 0.1294 0.1718 0.2288 0.3057 0.4095 0.5500 0.7407

10~ 0.1278 0.1699 0.2266 0.3032 0.4070 0.5478 0.7392
First, we generate five sample paths of |r(¢)|'/® and the sample mean of |r(r)|/® for 4000 sample points

in different intervals [0, T, where T = 10, T = 50, T = 100, respectively; see Fig. 3. We compute the
sample mean of |r(T)|? for 4000 sample points with 7 = 10 for different step sizes and different values
of p; see Table 1. Figure 4 depicts the frequency of r(T") for 4000 sample points with 7 = 50, which
predicts the stationary distribution.

9. Concluding remarks

This paper developed numerical solutions of SDEs with truncations. We constructed explicit numerical
schemes that allowed both drift and diffusion coefficients to be not globally Lipschitz and to grow
faster than linearly. We obtained convergence and moment boundedness of the numerical solutions in
infinite time intervals under a local Lipschitz condition and structure conditions required by the analytic
solutions. By linking the moment boundedness between the analytic solutions and the explicit numerical
solutions for a variety of nonlinear SDEs in finite or infinite time intervals, we answered the open
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FIG. 4. The frequency distribution of #(7’) for 4000 sample points with 7 = 50.

problem posed in the study by Higham er al. (2002, p.1060) positively. Under mild conditions, the (1/2)-
order rate of convergence is also obtained. Using the features of SDEs, we also studied dynamic behavior
including exponential stability and stability in distribution of SDE (1.1). Our results are demonstrated
through some examples and numerical experiments.
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