
AN EFFICIENT ENSEMBLE ALGORITHM FOR NUMERICAL APPROXIMATION OF
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Abstract. We propose and analyze an efficient ensemble algorithm for fast computation of multiple realizations of the
stochastic Stokes-Darcy model with a random hydraulic conductivity tensor. The algorithm results in a common coefficient
matrix for all realizations at each time step making solving the linear systems much less expensive while maintaining comparable
accuracy to traditional methods that compute each realization separately. Moreover, it decouples the Stokes-Darcy system into
two smaller sub-physics problems, which reduces the size of the linear systems and allows parallel computation of the two
sub-physics problems. We prove the ensemble method is long time stable and first-order in time convergent under a time-step
condition and two parameter conditions. Numerical examples are presented to support the theoretical results and illustrate the
application of the algorithm.

1. Introduction. Many engineering and geological applications require effective simulations of the cou-
pling of groundwater flows (in porous media) and surface flows. Accurate simulations are usually not feasible
due to the fact it is physically impossible to know the exact parameter values, e.g., the hydraulic conductivity
tensor, at every point in the domain as the realistic domains are of large scale and natural randomness occur
at small scales. Consequently, these uncertainties must be taken into account to obtain meaningful results.
The usual way is to model the parameter of interest as a stochastic function that is determined by an under-
lying random field with an prescribed (usually experimentally determined) covariance structure, and then
recast the original deterministic system as a stochastic system. As a result, numerical approximations that
involve repeated sampling and simulations pose great challenges on the computer resources and capability.
A recently developed ensemble algorithm was devoted to address this issue. Jiang and Layton [26] studied an
efficient ensemble algorithm for solving multiple realizations of evolutionary Navier-Stokes equations. The
algorithm results in a common coefficient matrix for all realizations corresponding to different initial condi-
tions or body forces, and thus efficient direct or iterative solvers can be used to reduce both required storage
and computational time. This algorithm has been extensively tested and shown to be able to significantly
reduce the computational cost, [15, 27, 28, 31, 37]. Herein we follow the same idea and develop an efficient
ensemble algorithm for simulating the coupling of groundwater flows and surface flows.

In this report, we consider a linear Stokes-Darcy model for the coupling of the surface and porous
media flows, where the Stokes equations describe the incompressible surface fuild flow and the Darcy model
describes the groundwater flow in porous media. For derivation and more detailed discussions of the Stokes-
Darcy model, see [3], [9], [10], [38], [35], [12], [24]. Let Df denote the surface fluid flow region and Dp

the porous media flow region, where Df , Dp ⊂ Rd(d = 2, 3) are both open, bounded domains. These two
domains lie across an interface, I, from each other, and Df ∩Dp = ∅, D̄f ∩ D̄p = I, see Figure 1.1.

Dp

Df

I

Fig. 1.1: A sketch of the porous median domain Dp, fluid domain Df , and the interface I.

The Stokes-Darcy model is: Find fluid velocity u(x, t), fluid pressure p(x, t), and hydraulic head φ(x, t)
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that satisfy

ut − ν∆u+∇p = ff (x, t),∇ · u = 0, in Df ,

S0φt −∇ · (K(x)∇φ) = fp(x, t), in Dp, (1.1)

φ(x, 0) = φ0(x), in Dp and u(x, 0) = u0(x), in Df ,

φ(x, t) = 0, in ∂Dp\I and u(x, t) = 0, in ∂Df\I.

Let n̂f/p denote the outward unit normal vector on I associated with Df/p, where n̂f = −n̂p. The coupling
conditions across I are conservation of mass, balance of forces and the Beavers-Joseph-Saffman condition on
the tangential velocity:

u · n̂f −K∇φ · n̂p = 0 and p− ν n̂f · ∇u · n̂f = gφ on I,

−ν ∇u · n̂f = αBJS√
τ̂i·Kτ̂i

u · τ̂i on I, for any tangential vector τ̂i on I.

see [4], [41], [25]. Here, g, K, ν and S0 are the gravitational acceleration constant, hydraulic conductivity
tensor, kinematic viscosity and specific mass storativity coefficient, respectively, which are all positive. K is
assumed to be symmetric positive definite (SPD).

In simulations of porous media flows, the major difficulty is the determination of the hydraulic con-
ductivity tensor K. In the simplest case of isotropic homogeneous media, the hydraulic conductivity tensor
is diagonal and constant. But in most geophysical and engineering applications, the media are usually
randomly heterogeneous, and each component kij(x,w) of the hydraulic conductivity tensor is a random
function that depends on spatial coordinates. Then the problem becomes solving a stochastic PDE system
instead of a deterministic PDE system and the goal of mathematical analysis and computer simulations is
the prediction of statistical moments of the solution, such as the mean and variance. The most popular ap-
proach in solving a PDE system with random inputs is the Monte Carlo method, which is easy to implement
and allows the use of existing deterministic codes. The main disadvantage of the Monte Carlo method is its
very slow convergence rate 1/

√
J , which inevitably requires computation of a large number of realizations to

obtain useful statistical information from the solutions. Other ensemble-based methods have been devised to
produce faster convergence rates and reduce numerical efforts including multilevel Monte Carlo method [2],
quasi-Monte Carlo sequences [32], Latin hypercube sampling [23], centroidal Voronoi tessellations [40], and
more recently developed stochastic collocation methods [1, 45] and non-intrusive polynomial chaos meth-
ods [22, 39]. All these methods are non-intrusive in the sense that the stochastic and spatial degrees of
freedom are decoupled and deterministic codes can be used directly without any modification. However,
repetitive runs of an existing deterministic solver can be prohibitively costly when the governing equations
take complicated forms.

A recent ensemble algorithm aiming at significantly reducing the computational cost of the ensemble
simulations and consequently improving the performance of the aforementioned ensemble-based stochastic
approaches was proposed in [26]. This ensemble algorithm solves all realizations simultaneously instead of
solving them individually. It utilizes the mean of the solutions at each time step to form a coefficient matrix
that is independent of the realization index j, that is, all realizations have the same coefficient matrix at
each time step. Then the problem reduces to solving one linear system with multiple right hand sides, for
which the computational cost can be significantly reduced. This ensemble algorithm has been extensively
studied and tested for ensemble simulations to account for uncertainties in initial conditions and forcing
terms [26, 29, 27, 30, 31, 37, 44]. Some recent work include incorporating model reduction techniques to
further reduce computational cost [15, 16], and devising ensemble algorithms to account for various model
parameters of Navier-Stokes equations [17, 18], Boussinesq equations [14] and a simple elliptic equation [36].
In this paper, we will further develop the ensemble algorithm for computing an ensemble of the Stokes-
Darcy systems to account for uncertainties in initial conditions, forcing terms and the hydraulic conductivity
tensor. Herein we consider computing an ensemble of J Stokes-Darcy systems corresponding to J different
parameter sets (u0

j , φ
0
j , ffj , fpj ,Kj), j = 1, ..., J ,

uj,t − νj∆uj +∇pj = ff,j(x, t), ∇ · uj = 0, in Df ,

S0φj,t −∇ · (Kj(x)∇φj) = fp,j(x, t), in Dp, (1.2)
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φj(x, t) = 0, in ∂Dp\I and uj(x, t) = 0, in ∂Df\I.

Here we assume there are uncertainties in initial conditions u0(x), φ0(x), forcing terms ff (x, t), fp(x, t) and
the hydraulic conductivity tensor K(x), and (u0

j , φ
0
j , ffj , fpj ,Kj) is one of the samples drawn from the

respective probabilistic distributions. J is the number of total samples.
The Stokes-Darcy equations have intrinsic difficulties with the coupling of equations. There is a vast

literature on numerical methods for solving evolutionary Stokes-Darcy problem, including monolithic meth-
ods that use implicit time discretization followed by domain decomposition iterations, [5, 6, 9, 11], and
partitioned timestepping methods that decouple the original problem into two subregion problems reducing
the size of the linear systems to be solved and allowing parallel computation of the two subregion problems,
[8, 33, 35, 38, 42, 43]. In this paper we study a partitioned, ensemble timestepping method to compute the
Stokes-Darcy models with different parameter sets. Specifically, the algorithm reads

Algorithm 1.1. Find (un+1
j , pn+1

j , φn+1
j ) ∈ Xf ×Qf ×Xp satisfying ∀ (v, q, ψ) ∈ Xf ×Qf ×Xp,(

un+1
j − unj

∆t
, v

)
f

+ ν(∇un+1
j ,∇v)f +

∑
i

∫
I

η̄i(u
n+1
j · τ̂i)(v · τ̂i) ds

+
∑
i

∫
I

(ηi,j − η̄i)(unj · τ̂i)(v · τ̂i) ds−
(
pn+1
j ,∇ · v

)
f

+ cI(v, φ
n
j ) = (fn+1

f,j , v)f ,

(q,∇ · un+1
j )f = 0, (1.3)

gS0

(
φn+1
j −φnj

∆t , ψ

)
p

+ g(K̄∇φn+1
j ,∇ψ)p + g((Kj − K̄)∇φnj ,∇ψ)p

− cI(unj , ψ) = g(fn+1
p,j , ψ)p.

where

K̄ =
1

J

J∑
j=1

Kj , ηi,j =
αBJS√
τ̂i · Kj τ̂i

and η̄i =
1

J

J∑
j=1

ηi,j .

This algorithm decouples the original problem into two sub-physics problems, which can be run in
parallel. Moreover, at each time step, all realizations share the same coefficient matrix, which allows the use
of efficient block solvers, e.g, block CG [13], block GMRES [21], or direct solvers such as LU factorization,
to reduce both storage and computation time.

This paper is organized as follows. Section 2 gives mathematical preliminaries and defines notation.
In Section 3 we prove the long time stability of the proposed method under a time-step condition and two
parameter conditions. In Section 4, we discuss an alternative approach for the case that K has simpler
structures. We prove this method is long time stable under a similar time-step condition, without any
parameter conditions. In section 5, we study the convergence and error estimates for the proposed method
and prove that it is first order convergent in time. Section 6 gives a brief introduction on how to combine our
ensemble algorithm with the Monte Carlo method to approximate the stochastic Stoke-Darcy system and
derives an error estimate on the expectation of the L2 norm of the error for approximating E[u(x, tn, ω)].
Section 7 numerically tests the proposed ensemble method and illustrates our theoretical results. Final
conclusions and future directions are discussed in Section 8.

2. Notation and Preliminaries. We denote the L2(I) norm by ‖ · ‖I and the L2(Df/p) norms by

‖ · ‖f/p; the corresponding inner products are denoted by (·, ·)f/p. Further, we denote the Hk(Df/p) norm
by ‖ · ‖Hk(Df/p). The following inequalities will be used in the proofs, [35].

‖φ‖I ≤ C(Dp)
√
‖φ‖p‖∇φ‖p, (2.1)

‖u‖I ≤ C(Df )
√
‖u‖f‖∇u‖f , (2.2)

where C(Df/p) = O(
√
Lf/p), Lf/p = diameter(Df/p).
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Define the function spaces:

Velocity: Xf := {v ∈
(
H1(Df )

)d
: v = 0 on ∂Df\I},

Pressure: Qf :=

{
q ∈ L2(Df ) :

∫
Ω

q dx = 0

}
,

Hydraulic Head: Xp := {ψ ∈ H1(Dp) : ψ = 0 on ∂Dp\I}.

To discretize the Stokes-Darcy problem in space by the finite element method, we choose conforming
velocity, pressure, hydraulic head finite element spaces based on an edge to edge triangulation (d = 2) or
tetrahedralization (d = 3) of the domain Df/p with maximum element diameter h:

Xh
f ⊂ Xf , Qhf ⊂ Qf , Xh

p ⊂ Xp.

The continuity across the interface I between the finite element meshes in the two subdomains is not assumed.
The finite element spaces (Xh

f , Qhf ) are assumed to satisfy the usual discrete inf-sup /LBBh condition for
stability of the discrete pressure, see [19] for more on this condition. Taylor-Hood elements, [19], are one
such choice used in the numerical tests in Section 7.

We will also consider the discretely divergence-free space:

V hf := {vh ∈ Xh
f : (qh,∇ · vh)f = 0, ∀qh ∈ Qhf}.

Define

cI(u, φ) = g

∫
I

φu · n̂f ds.

Let CP,f and CP,p be the Poincaré constants of the indicated domains and k̄min(x) be the minimum eigen-
value of the mean hydraulic conductivity tensor K̄(x). Define k̄min = minx∈Ωp k̄min(x) and two parameter-
dependent constants

C1 =
C2
P,f [gC(Df )C(Dp)]

4

4ν2
, C2 =

C2
P,pg

2[C(Df )C(Dp)]
4

4k̄2
min

.

Then we have the following estimates for the coupling term cI(u, φ).
Lemma 2.1. For any (u, φ) ∈ Xf ×Xp and any ε1, ε2, α1, β1 > 0,

|cI(u, φ)| ≤ 1

4ε1
‖φ‖2p +

ε1
α2

1

C1‖∇φ‖2p + α1ν‖∇u‖2f , (2.3)

|cI(u, φ)| ≤ 1

4ε2
‖u‖2f +

ε2
β2

1

C2‖∇u‖2f + β1gk̄min‖∇φ‖2p. (2.4)

Proof. The proof is similar to that in [35]. Using inequalities (2.1) and (2.2), as well as the inequality
abc ≤ 1

4a
4 + 1

4b
4 + c2, we have

cI(u, φ) = g

∫
I

φu · n̂f ds ≤ gC(Df )C(Dp)
√
‖φ‖p‖∇φ‖p

√
‖u‖f‖∇u‖f

≤

(
1

ε
1/4
1

‖φ‖1/2p

)(
gC(Df )C(Dp)ε

1/4
1

1

α
1/2
1 ν1/2

C
1/2
P,f ‖∇φ‖

1/2
p

)(
α

1/2
1 ν1/2‖∇u‖f

)
≤ 1

4ε1
‖φ‖2p +

ε1
α2

1

C1‖∇φ‖2p + α1ν‖∇u‖2f ,

and

cI(u, φ) = g

∫
I

φu · n̂f ds ≤ gC(Df )C(Dp)
√
‖φ‖p‖∇φ‖p

√
‖u‖f‖∇u‖f
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≤

(
1

ε
1/4
2

‖u‖1/2f

)(
gC(Df )C(Dp)ε

1/4
2

1

β
1/2
1 (gk̄min)1/2

C
1/2
P,p‖∇u‖

1/2
f

)(
β

1/2
1 (gk̄min)1/2‖∇φ‖p

)
≤ 1

4ε2
‖u‖2f +

ε2
β2

1

C2‖∇u‖2f + β1gk̄min‖∇φ‖2p.

The fully discrete approximation of (1.2) is:
Algorithm 2.2. Find (un+1

j,h , pn+1
j,h , φn+1

j,h ) ∈ Xh
f ×Qhf ×Xh

p satisfying ∀ (vh, qh, ψh) ∈ Xh
f ×Qhf ×Xh

p ,(
un+1
j,h − unj,h

∆t
, vh

)
f

+ ν(∇un+1
j,h ,∇vh)f +

∑
i

∫
I

η̄i(u
n+1
j,h · τ̂i)(vh · τ̂i) ds

+
∑
i

∫
I

(ηi,j − η̄i)(unj,h · τ̂i)(vh · τ̂i) ds−
(
pn+1
j,h ,∇ · vh

)
f

+ cI(vh, φ
n
j,h) = (fn+1

f,j , vh)f ,

(qh,∇ · un+1
j,h )f = 0, (2.5)

gS0

(
φn+1
j,h − φnj,h

∆t
, ψh

)
p

+ g(K̄∇φn+1
j,h ,∇ψh)p + g((Kj − K̄)∇φnj,h,∇ψh)p

− cI(unj,h, ψh) = g(fn+1
p,j , ψh)p.

Moving all the known quantities to the right hand side, the algorithm is as follows.(
un+1
j,h − unj,h

∆t
, vh

)
f

+ ν(∇un+1
j,h ,∇v)f +

∑
i

∫
I

η̄i(u
n+1
j,h · τ̂i)(v · τ̂i) ds

−
(
pn+1
j,h ,∇ · vh

)
f

= (fn+1
f,j , vh)f −

∑
i

∫
I

(ηi,j − η̄i)(unj,h · τ̂i)(v · τ̂i) ds− cI(vh, φnj,h),

(qh,∇ · un+1
j,h )f = 0, (2.6)

gS0

(
φn+1
j,h − φnj,h

∆t
, ψh

)
p

+ g(K̄∇φn+1
j,h ,∇ψ)p

= g(fn+1
p,j , ψh)p − g((Kj − K̄)∇φnj,h,∇ψ)p + cI(u

n
h, ψh).

Each time step requires the solution of two sets of linear systems (for (uj , pj) and φj respectively), where
each set has the same, shared coefficient matrix:

A

[
u1

p1

∣∣∣∣ · · ·· · ·
∣∣∣∣ uJpJ

]
= [RHS1 |· · ·|RHSJ ] , (2.7)

B
[
φ1

∣∣ · · · ∣∣ φJ ] = [RHS∗1 |· · ·|RHS∗J ] . (2.8)

This structure of the linear systems allows the use of efficient iterative solvers or direct solvers such as
LU factorization for fast calculation. The two sets of linear systems (2.7) and (2.8) can also be run in parallel
to reduce the computation time.

3. Stability Analysis. Let | · |2 denote the 2-norm of either vectors or matrices. Let kj,min(x), k̄min(x)
be the minimum eigenvalue of the hydraulic conductivity tensor Kj(x), K̄(x) respectively, and ρ′j(x) be the

spectral radius of the fluctuation of hydraulic conductivity tensor Kj(x)−K̄(x). Since both Kj(x) and K̄(x)
are symmetric, |Kj(x) − K̄(x)|2 = ρ′j(x). We then define the following quantities that will be used in our
proof.

η′maxi,j = max
x∈I
|ηi,j(x)− η̄i(x)| , η′maxi = max

j
η′maxi,j , η̄mini = min

x∈I
η̄i(x),
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kj,min = min
x∈Dp

kj,min(x), kmin = min
j
kj,min, k̄min = min

x∈Dp
k̄min(x),

ρ′j,max = max
x∈Dp

ρ′j,max(x), ρ′max = max
j
ρ′j,max.

We prove long time stability of Algorithm 2.2 under a time-step condition and two parameter conditions

∆t ≤ min

 2(1− α1 − α2)β2
1

[C(Df )C(Dp)]4C2
P,p

νk̄2
min

g2
,

2(1− β1 − β2 − ρ′max
kmin

)α2
1

[C(Df )C(Dp)]4C2
P,f

ν2k̄minS0

g2

 , (3.1)

η′maxi ≤ η̄mini , (3.2)

ρ′max < k̄min. (3.3)

Remark 3.1. The two parameter conditions (3.2) and (3.3) relate to the probability distribution of the
random hydraulic conductivity tensor. They require the magnitude of the fluctuations be smaller than the
magnitude of the mean. In many applications, this can be easily achieved by dividing the ensemble of samples
into smaller ensembles.

Theorem 3.2 (Long time stability of Algorithm 2.2). If the two parameter conditions (3.2), (3.3) hold,
and there exist α1, α2, β1, β2 in (0, 1) such that the time-step condition (3.1) also holds, then the Algorithm
2.2 is long time stable: for any N > 0,

1

2
‖uNj,h‖2f +

gS0

2
‖φNj,h‖2p + ∆t2

C2

β2
1

‖∇uNj,h‖2f + ∆t
∑
i

η̄mini

2

∫
I

(uNj,h · τ̂i)2 ds (3.4)

+

(
∆t2

1

gS0

C1

α2
1

+ ∆t
gρ′max

2

)
‖∇φNj,h‖2p

≤ 1

2
‖u0

j,h‖2f +
gS0

2
‖φ0

j,h‖2p + ∆t2
C2

β2
1

‖∇u0
j,h‖2f + ∆t

∑
i

η̄mini

2

∫
I

(u0
j,h · τ̂i)2 ds

+

(
∆t2

1

gS0

C1

α2
1

+ ∆t
gρ′max

2

)
‖∇φ0

j,h‖2p + ∆t

N−1∑
n=0

C2
P,f

4α2ν
‖fn+1
f,j ‖

2
f + ∆t

N−1∑
n=0

gC2
P,p

4β2k̄min
‖fn+1
p,j ‖

2
p.

Proof. Setting vh = un+1
j,h , ψh = φn+1

j,h in Algorithm 2.2 and adding all three equations yields

1

2∆t
‖un+1

j,h ‖
2
f −

1

2∆t
‖unj,h‖2f +

1

2∆t
‖un+1

j,h − u
n
j,h‖2f + ν‖∇un+1

j,h ‖
2
f (3.5)

+
∑
i

∫
I

η̄i(u
n+1
j,h · τ̂i)(u

n+1
j,h · τ̂i) ds+

gS0

2∆t
‖φn+1

j,h ‖
2
p −

gS0

2∆t
‖φnj,h‖2p

+
gS0

2∆t
‖φn+1

j,h − φ
n
j,h‖2p + g(K̄∇φn+1

j,h ,∇φn+1
j,h )p + cI(u

n+1
j,h , φnj,h)− cI(unj,h, φn+1

j,h )

= (fn+1
f,j , un+1

j,h )f + g(fn+1
p,j , φn+1

j,h )p −
∑
i

∫
I

(ηi,j − η̄i)(unj,h · τ̂i)(un+1
j,h · τ̂i) ds

− g((Kj − K̄)∇φnj,h,∇φn+1
j,h )p.

Note that

cI(u
n+1
j,h , φnj,h)− cI(unj,h, φn+1

j,h ) (3.6)

=
[
cI(u

n+1
j,h , φnj,h)− cI(un+1

j,h , φn+1
j,h )

]
−
[
cI(u

n
j,h, φ

n+1
j,h )− cI(un+1

j,h , φn+1
j,h )

]
= −cI(un+1

j,h , φn+1
j,h − φ

n
j,h) + cI(u

n+1
j,h − u

n
j,h, φ

n+1
j,h ).

Applying estimates (2.3) and (2.4) with ε1 = ∆t
2gS0

, ε2 = ∆t
2 , and if the time-step condition (3.1) holds,

we have

cI(u
n+1
j,h − u

n
j,h, φ

n+1
j,h )− cI(un+1

j,h , φn+1
j,h − φ

n
j,h) (3.7)
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≥ − 1

2∆t
‖un+1

j,h − u
n
j,h‖2f −

∆t

2

C2

β2
1

‖∇(un+1
j,h − u

n
j,h)‖2f − β1gk̄min‖∇φn+1

j,h ‖
2
p

− gS0

2∆t
‖φn+1

j,h − φ
n
j,h‖2p −

∆t

2gS0

C1

α2
1

‖∇(φn+1
j,h − φ

n
j,h)‖2p − α1ν‖∇un+1

j,h ‖
2
f

≥ − 1

2∆t
‖un+1

j,h − u
n
j,h‖2f −∆t

C2

β2
1

(
‖∇un+1

j,h ‖
2
f + ‖∇unj,h‖2f

)
− β1gk̄min‖∇φn+1

j,h ‖
2
p

− gS0

2∆t
‖φn+1

j,h − φ
n
j,h‖2p −

∆t

gS0

C1

α2
1

(
‖∇φn+1

j,h ‖
2
p + ‖∇φnj,h‖2p

)
− α1ν‖∇un+1

j,h ‖
2
f .

Applying Cauchy-Schwarz and Young’s inequalities to the source terms, for any α2 > 0, β2 > 0 we have

(fn+1
f,j , un+1

j,h )f + g(fn+1
p,j , φn+1

j,h )p (3.8)

≤ ‖fn+1
f,j ‖f‖u

n+1
j,h ‖f + g‖fn+1

p,j ‖p‖φ
n+1
j,h ‖p

≤ CP,f‖fn+1
f,j ‖f‖∇u

n+1
j,h ‖f + gCP,p‖fn+1

p,j ‖p‖∇φ
n+1
j,h ‖p

≤
C2
P,f

4α2ν
‖fn+1
f,j ‖

2
f + α2ν‖∇un+1

j,h ‖
2
f +

gC2
P,p

4β2k̄min
‖fn+1
p,j ‖

2
p + β2gk̄min‖∇φn+1

j,h ‖
2
p.

The other two terms on the right hand side of (3.5) can be bounded as follows.

−
∑
i

∫
I

(ηi,j − η̄i)(unj,h · τ̂i)(un+1
j,h · τ̂i) ds (3.9)

≤
∑
i

∫
I

|ηi,j − η̄i|
∣∣∣(unj,h · τ̂i)(un+1

j,h · τ̂i)
∣∣∣ ds

≤
∑
i

η′maxi,j

∫
I

∣∣∣(unj,h · τ̂i)(un+1
j,h · τ̂i)

∣∣∣ ds,
≤
∑
i

[
η′maxi

2

∫
I

(unj,h · τ̂i)2 ds+
η′maxi

2

∫
I

(un+1
j,h · τ̂i)

2 ds

]
,

and

−g
(

(Kj − K̄)∇φnj,h,∇φn+1
j,h

)
p
≤ g

∫
Dp

|∇φn+1
j,h |2|Kj − K̄|2|∇φ

n
j,h|2 dx

≤ g
∫
Dp

ρ′j(x)|∇φn+1
j,h |2|∇φ

n
j,h|2 dx

≤ gρ′j,max
∫
Dp

|∇φn+1
j,h |2|∇φ

n
j,h|2 dx

≤ gρ′j,max‖∇φnj,h‖p‖∇φn+1
j,h ‖p

≤ gρ′max
2
‖∇φnj,h‖2p +

gρ′max
2
‖∇φn+1

j,h ‖
2
p.

Using above estimates, equation (3.5) becomes

1

2∆t
‖un+1

j,h ‖
2
f −

1

2∆t
‖unj,h‖2f +

(
1− α1 − α2 −∆t

2C2

β2
1ν

)
ν‖∇un+1

j,h ‖
2
f (3.10)

+ ∆t
C2

β2
1

(
‖∇un+1

j,h ‖
2
f − ‖∇unj,h‖2f

)
+
∑
i

[
η̄mini

2
− η′maxi

2

] ∫
I

(un+1
j,h · τ̂i)

2 ds

+
∑
i

η̄mini

2

[∫
I

(un+1
j,h · τ̂i)

2 ds−
∫
I

(unj,h · τ̂i)2 ds

]
7



+
∑
i

[
η̄mini

2
− η′maxi

2

] ∫
I

(unj,h · τ̂i)2 ds+
gS0

2∆t
‖φn+1

j,h ‖
2
p −

gS0

2∆t
‖φnj,h‖2p

+ (1− β1 − β2 −∆t
1

g2S0k̄min

2C1

α2
1

− ρ′max
k̄min

)gk̄min‖∇φn+1
j,h ‖

2
p

+

(
∆t

1

gS0

C1

α2
1

+
gρ′max

2

)(
‖∇φn+1

j,h ‖
2
p − ‖∇φnj,h‖2p

)
≤
C2
P,f

4α2ν
‖fn+1
f,j ‖

2
f +

gC2
P,p

4β2k̄min
‖fn+1
p,j ‖

2
p.

To obtain stability, we need

1− α1 − α2 −∆t
2C2

β2
1ν
≥ 0, (3.11)

η̄mini

2
− η′maxi

2
≥ 0, (3.12)

1− β1 − β2 −∆t
1

g2S0k̄min

2C1

α2
1

− ρ′max
k̄min

≥ 0. (3.13)

Recall that α1, α2, β1, β2,∆t, η
′max
i , ρ′max are all positive, we then have the following constraints on these

parameters.

0 < α1 < 1, 0 < α2 < 1, 0 < β1 < 1, 0 < β2 < 1, (3.14)

ρ′max
k̄min

< 1, η′maxi ≤ η̄mini , (3.15)

∆t ≤ min

 (1− α1 − α2)β2
1ν

2C2
,

(1− β1 − β2 − ρ′max
kmin

)α2
1g

2S0k̄min

2C1

 (3.16)

≤ min

 2(1− α1 − α2)β2
1

[C(Df )C(Dp)]4C2
P,p

νk̄2
min

g2
,

2(1− β1 − β2 − ρ′max
kmin

)α2
1

[C(Df )C(Dp)]4C2
P,f

ν2k̄minS0

g2

 .

(3.15) leads to the two parameter conditions (3.2) and (3.3), and (3.16) leads to the time-step condition
(3.1) required for stability.

Now if the time-step condition (3.1) and the two parameter conditions (3.2) and (3.3) all hold, (3.10)
reduces to

1

2∆t
‖un+1

j,h ‖
2
f −

1

2∆t
‖unj,h‖2f + ∆t

C2

β2
1

(
‖∇un+1

j,h ‖
2
f − ‖∇unj,h‖2f

)
(3.17)

+
∑
i

η̄mini

2

[∫
I

(un+1
j,h · τ̂i)

2 ds−
∫
I

(unj,h · τ̂i)2 ds

]
+
gS0

2∆t
‖φn+1

j,h ‖
2
p −

gS0

2∆t
‖φnj,h‖2p

+

(
∆t

1

gS0

C1

α2
1

+
gρ′max

2

)(
‖∇φn+1

j,h ‖
2
p − ‖∇φnj,h‖2p

)
≤
C2
P,f

4α2ν
‖fn+1
f,j ‖

2
f +

gC2
P,p

4β2k̄min
‖fn+1
p,j ‖

2
p.

Sum (3.17) from n = 0 to N − 1 and multiply through by ∆t to get

1

2
‖uNj,h‖2f +

gS0

2
‖φNj,h‖2p + ∆t2

C2

β2
1

‖∇uNj,h‖2f + ∆t
∑
i

η̄mini

2

∫
I

(uNj,h · τ̂i)2 ds (3.18)

+

(
∆t2

1

gS0

C1

α2
1

+ ∆t
gρ′max

2

)
‖∇φNj,h‖2p
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≤ 1

2
‖u0

j,h‖2f +
gS0

2
‖φ0

j,h‖2p + ∆t2
C2

β2
1

‖∇u0
j,h‖2f + ∆t

∑
i

η̄mini

2

∫
I

(u0
j,h · τ̂i)2 ds

+

(
∆t2

1

gS0

C1

α2
1

+ ∆t
gρ′max

2

)
‖∇φ0

j,h‖2p + ∆t

N−1∑
n=0

C2
P,f

4α2ν
‖fn+1
f,j ‖

2
f + ∆t

N−1∑
n=0

gC2
P,p

4β2k̄min
‖fn+1
p,j ‖

2
p.

4. An alternative approach. Let kj,max(x) be the maximum eigenvalue of the hydraulic conductivity
tensor Kj(x), and we define

ηmaxi,j = max
x∈I

ηi,j(x), ηmaxi = max
j
ηmaxi,j , kj,max = max

x∈Dp
kj,max(x), kmax = max

j
kj,max.

If it is easy to identify the minimum and maximum eigenvalues of the hydraulic conductivity tensor
Kj(x) (e.g., Kj(x) is a diagonal matrix function), then the following algorithm can be used, which removes
one of the parameter conditions for stability.

Algorithm 4.1. Find (un+1
j,h , pn+1

j,h , φn+1
j,h ) ∈ Xh

f ×Qhf ×Xh
p satisfying ∀ (vh, qh, ψh) ∈ Xh

f ×Qhf ×Xh
p ,(

un+1
j,h − unj,h

∆t
, vh

)
f

+ ν(∇un+1
j,h ,∇v)f +

∑
i

∫
I

ηmaxi (un+1
j,h · τ̂i)(v · τ̂i) ds

+
∑
i

∫
I

(ηi,j − ηmaxi )(unj,h · τ̂i)(v · τ̂i) ds−
(
pn+1
j,h ,∇ · vh

)
f

+ cI(vh, φ
n
j,h) = (fn+1

f,j , vh)f ,

(qh,∇ · un+1
j,h )f = 0, (4.1)

gS0

(
φn+1
j,h − φnj,h

∆t
, ψh

)
p

+ kmaxg(∇φn+1
j,h ,∇ψ)p + g((Kj − kmaxI)∇φnj,h,∇ψ)p

− cI(unj,h, ψh) = g(fn+1
p,j , ψh)p.

For this approach, since Kj(x) and kmaxI are both symmetric, we have |Kj(x)−kmaxI|2 ≤ kmax−kmin.
We then prove long time stability of Algorithm 4.1 under a similar time-step condition, without any parameter
conditions.

∆t ≤ min

{
2(1− α1 − α2)β2

1

[C(Df )C(Dp)]4C2
P,p

νk2
max

g2
,

2(1− β1 − β2 − kmax−kmin
kmax

)α2
1

[C(Df )C(Dp)]4C2
P,f

ν2kmaxS0

g2

}
. (4.2)

Theorem 4.2 (Long time stability of Algorithm 4.1). If there exist α1, α2, β1, β2 in (0, 1) such that the
time-step condition (4.2) holds, then the Algorithm 4.1 is long time stable: for any N > 0,

1

2
‖uNj,h‖2f +

gS0

2
‖φNj,h‖2p +

∆tν

8
‖∇uNj,h‖2f + ∆t

∑
i

ηmaxi

2

∫
I

(uNj,h · τ̂i)2 ds (4.3)

+
∆t

8
gkmax‖∇φNj,h‖2p + ∆t

N−1∑
n=0

ν

4
‖∇un+1

j,h ‖
2
f

≤ 1

2
‖u0

j,h‖2f +
gS0

2
‖φ0

j,h‖2p +
∆tν

8
‖∇u0

j,h‖2f + ∆t
∑
i

ηmaxi

2

∫
I

(u0
j,h · τ̂i)2 ds

+
∆t

8
gkmax‖∇φ0

j,h‖2p + ∆t

N−1∑
n=0

C2
P,f

ν
‖fn+1
f,j ‖

2
f + ∆t

N−1∑
n=0

gC2
P,p

kmax
‖fn+1
p,j ‖

2
p.

Proof. Setting vh = un+1
j,h , ψh = φn+1

j,h in Algorithm 4.1 and adding all three equations yields

1

2∆t
‖un+1

j,h ‖
2
f −

1

2∆t
‖unj,h‖2f +

1

2∆t
‖un+1

j,h − u
n
j,h‖2f + ν‖∇un+1

j,h ‖
2
f (4.4)
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+
∑
i

∫
I

ηmaxi (un+1
j,h · τ̂i)(u

n+1
j,h · τ̂i) ds+

gS0

2∆t
‖φn+1

j,h ‖
2
p −

gS0

2∆t
‖φnj,h‖2p

+
gS0

2∆t
‖φn+1

j,h − φ
n
j,h‖2p + gkmax(∇φn+1

j,h ,∇φn+1
j,h )p + cI(u

n+1
j,h , φnj,h)− cI(unj,h, φn+1

j,h )

= (fn+1
f,j , un+1

j,h )f + g(fn+1
p,j , φn+1

j,h )p −
∑
i

∫
I

(ηi,j − ηmaxi )(unj,h · τ̂i)(un+1
j,h · τ̂i) ds

− g((Kj − kmaxI)∇φnj,h,∇φn+1
j,h )p.

The main difference from the proof of Theorem (3.2) is on the estimates of the following two terms.

−
∑
i

∫
I

(ηi,j − ηmaxi )(unj,h · τ̂i)(un+1
j,h · τ̂i) ds (4.5)

≤
∑
i

∫
I

|ηi,j − ηmaxi | (unj,h · τ̂i)(un+1
j,h · τ̂i) ds

≤
∑
i

ηmaxi

∫
I

(unj,h · τ̂i)(un+1
j,h · τ̂i) ds

≤
∑
i

[
ηmaxi

2

∫
I

(unj,h · τ̂i)2 ds+
ηmaxi

2

∫
I

(un+1
j,h · τ̂i)

2 ds

]
,

and

−g
(

(Kj − kmaxI)∇φnj,h,∇φn+1
j,h

)
p
≤ g

∫
Dp

|∇φn+1
j,h |2|Kj − kmaxI|2|∇φ

n
j,h|2 dx

≤ g(kmax − kmin)

∫
Dp

|∇φn+1
j,h |2|∇φ

n
j,h|2 dx

≤ g(kmax − kmin)‖∇φnj,h‖p‖∇φn+1
j,h ‖p

≤ g(kmax − kmin)

2
‖∇φnj,h‖2p +

g(kmax − kmin)

2
‖∇φn+1

j,h ‖
2
p.

Then we have the following inequality

1

2∆t
‖un+1

j,h ‖
2
f −

1

2∆t
‖unj,h‖2f +

(
1− α1 − α2 −∆t

2C2

β2
1ν

)
ν‖∇un+1

j,h ‖
2
f (4.6)

+ ∆t
C2

β2
1

(
‖∇un+1

j,h ‖
2
f − ‖∇unj,h‖2f

)
+
∑
i

ηmaxi

2

[∫
I

(un+1
j,h · τ̂i)

2 ds−
∫
I

(unj,h · τ̂i)2 ds

]
+
gS0

2∆t
‖φn+1

j,h ‖
2
p −

gS0

2∆t
‖φnj,h‖2p + (1− β1 − β2 −∆t

1

g2
0kmax

2C1

α2
1

− kmax − kmin
kmax

)gkmax‖∇φn+1
j,h ‖

2
p

+

(
∆t

1

gS0

C1

α2
1

+
g(kmax − kmin)

2

)(
‖∇φn+1

j,h ‖
2
p − ‖∇φnj,h‖2p

)
≤
C2
P,f

4α2ν
‖fn+1
f,j ‖

2
f +

gC2
P,p

4β2kmax
‖fn+1
p,j ‖

2
p.

Since we assume Kj is SPD, and any two ensemble members have different hydraulic conductivity tensor
K, we have kmax > kmin > 0 and thus 0 < kmax−kmin

kmax
< 1. So we do not need any constraints on these

parameters.
Now if the time-step condition (4.2) holds, (4.6) reduces to

1

2∆t
‖un+1

j,h ‖
2
f −

1

2∆t
‖unj,h‖2f + ∆t

C2

β2
1

(
‖∇un+1

j,h ‖
2
f − ‖∇unj,h‖2f

)
(4.7)
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+
∑
i

ηmaxi

2

[∫
I

(un+1
j,h · τ̂i)

2 ds−
∫
I

(unj,h · τ̂i)2 ds

]
+
gS0

2∆t
‖φn+1

j,h ‖
2
p −

gS0

2∆t
‖φnj,h‖2p

+

(
∆t

1

gS0

C1

α2
1

+
g(kmax − kmin)

2

)(
‖∇φn+1

j,h ‖
2
p − ‖∇φnj,h‖2p

)
≤
C2
P,f

4α2ν
‖fn+1
f,j ‖

2
f +

gC2
P,p

4β2kmax
‖fn+1
p,j ‖

2
p.

Sum (4.7) from n = 0 to N − 1 and multiply through by ∆t to get

1

2
‖uNj,h‖2f +

gS0

2
‖φNj,h‖2p + ∆t2

C2

β2
1

‖∇uNj,h‖2f + ∆t
∑
i

ηmaxi

2

∫
I

(uNj,h · τ̂i)2 ds (4.8)

+

(
∆t2

1

gS0

C1

α2
1

+ ∆t
g(kmax − kmin)

2

)
‖∇φNj,h‖2p

≤ 1

2
‖u0

j,h‖2f +
gS0

2
‖φ0

j,h‖2p + ∆t2
C2

β2
1

‖∇u0
j,h‖2f + ∆t

∑
i

ηmaxi

2

∫
I

(u0
j,h · τ̂i)2 ds

+

(
∆t2

1

gS0

C1

α2
1

+ ∆t
g(kmax − kmin)

2

)
‖∇φ0

j,h‖2p + ∆t

N−1∑
n=0

C2
P,f

4α2ν
‖fn+1
f,j ‖

2
f + ∆t

N−1∑
n=0

gC2
P,p

4β2kmax
‖fn+1
p,j ‖

2
p.

5. Error Analysis. In this section, we analyze the error of Algorithm 2.2. The error analysis for
Algorithm 4.1 can be done similarly with minor modification. We assume the finite element spaces satisfy
the approximation properties of piecewise polynomials on quasiuniform meshes

inf
vh∈Xhf

‖v − vh‖f ≤ Chk+1‖u‖Hk+1(Df ) ∀v ∈ [Hk+1(Df )]d, (5.1)

inf
vh∈Xhf

‖∇(v − vh)‖f ≤ Chk‖v‖Hk+1(Df ) ∀v ∈ [Hk+1(Df )]d, (5.2)

inf
qh∈Qhf

‖q − qh‖f ≤ Chs+1‖q‖Hs+1(Df ) ∀q ∈ Hs+1(Df ), (5.3)

inf
ψh∈Xhp

‖ψ − ψh‖p ≤ Chm+1‖ψ‖Hm+1(Dp) ∀ψ ∈ Hm+1(Dp), (5.4)

inf
ψh∈Xhp

‖∇(ψ − ψh)‖p ≤ Chm‖ψ‖Hm+1(Dp) ∀ψ ∈ Hm+1(Dp), (5.5)

where the generic constant C > 0 is independent of the mesh size h. An example for which both the LBBh

stability condition and the approximation properties are satisfied is the finite elements (Pl+1–Pl–Pl+1), l ≥ 1,
see [19, 20, 34] for more details.

We also assume the following regularity on the true solution of the Stokes-Darcy equations.

uj ∈ L∞(0, T ;Hk+1(Df )), uj,t ∈ L2(0, T ;Hk+1(Df )), uj,tt ∈ L2(0, T ;L2(Df )),

φj ∈ L∞(0, T ;Hm+1(Dp)), φj,t ∈ L2(0, T ;Hm+1(Dp)), φj,tt ∈ L2(0, T ;L2(Dp)),

pj ∈ L2(0, T ;Hs+1(Df )).

For functions v(x, t) defined on (0, T ), we define the continuous norm

‖v‖m,k,r := ‖v‖Lm(0,T ;Hk(Dr)), r ∈ {f, p}.

Given a time step ∆t, let tn = n∆t, T = N∆t, vn = v(x, tn) and define the discrete norms

|||v|||∞,k,r = max
0≤n≤N

‖vn‖Hk(Dr) and

|||v|||m,k,r :=

(
N∑
n=0

‖vn‖mHk(Dr)∆t

)1/m

, r ∈ {f, p}.
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Let unj = uj(x, tn), pnj = pj(x, tn), φnj = φj(x, tn). Denote the errors by enj,u := unj −unj,h, enj,φ := φnj −φnj,h.
We prove the convergence of Algorithm 2.2 under a time-step condition and two parameter conditions.

∆t ≤ min

 (1− α1 − α2)β2
1 k̄min

C2
P,p

,
(1− σ4 − β1 − β2 − (1 + σ3)

ρ′max
kmin

)α2
1S0ν

C2
P,f

 2νk̄min
g2[C(Df )C(Dp)]4

, (5.6)

η′maxi ≤ η̄mini , (5.7)

ρ′max < k̄min. (5.8)

Note that the two parameter conditions are the same as those for stability. The time-step condition is
slightly different with two extra constants σ3 > 0 and σ4 ∈ (0, 1).

Theorem 5.1 (Error Estimate). For any j = 1, . . . , J , if the two parameter conditions (5.7) and (5.8)
hold, and there exist α1, α2, β1, β2, σ4 ∈ (0, 1) and σ3 > 0 such that the time-step condition (5.6) also holds,
then there is a positive constant C independent of the time step ∆t and mesh size h such that

1

2
‖eNj,u‖2f + ∆t2

C2

β2
1

‖∇eNj,u‖2f +
gS0

2
‖eNj,φ‖2p + ∆t

(
1

2
gρ′max +

∆tC1

gS0α2
1

)
‖∇eNj,φ‖2p (5.9)

≤ 1

2
‖e0
j,u‖2f + ∆t2

C2

β2
1

‖∇e0
j,u‖2f + ∆t

∑
i

1

2
η′maxi

∫
I

(e0
j,u · τ̂i)2 ds+

gS0

2
‖e0
j,φ‖2p

+ ∆t

(
1

2
gρ′max +

∆tC1

gS0α2
1

)
‖∇e0

j,φ‖2p + C∆t2‖uj,t‖22,1,f + Ch2k|||uj |||22,k+1,f + C∆t2‖uj,tt‖22,0,f

+ C∆t2‖φj,t‖22,1,p + C∆t2‖φj,tt‖22,0,p + Ch2k+2‖uj,t‖2,k+1,f + Ch2k+2‖φj,t‖2,m+1,p

+ Ch2k|||φj |||22,m+1,p + Ch2s+2|||pj |||22,s+1,f + Ch2k+2|||uj |||∞,k+1,f + C∆t2h2k|||uj |||∞,k+1,f

+ Ch2k+2|||φj |||∞,m+1,p + C∆th2k|||φj |||∞,m+1,p.

In particular, if Taylor-Hood elements (k = 2, s = 1) are used for approximating (uj , pj), i.e., the
C0 piecewise-quadratic velocity space Xh

f and the C0 piecewise-linear pressure space Qhf , and P2 element

(m = 2) is used for Xh
p , we have the following estimate.

Corollary 5.2. Assume that ‖e0
j,u‖, ‖∇e0

j,u‖, ‖e0
j,φ‖ and ‖∇e0

j,φ‖ are all O(h2) accurate or better.

Then, if (Xh
f , Q

h
f , X

h
p ) are chosen as the (P2, P1, P2) elements, we have

1

2
‖eNj,u‖2f + ∆t2

C2

β2
1

‖∇eNj,u‖2f +
gS0

2
‖eNj,φ‖2p + ∆t

(
1

2
gρ′max +

∆tC1

gS0α2
1

)
‖∇eNj,φ‖2p ≤ C(h4 + ∆t2) .

Proof. (of Theorem 5.1) For ∀vh ∈ V hf ,∀ψh ∈ Xh
p ,∀λn+1

h ∈ Qhf , the true solution (uj , pj , φj) satisfies(
un+1
j − unj

∆t
, vh

)
f

+ ν(∇un+1
j ,∇vh)f +

∑
i

∫
I

ηi,j(u
n+1
j · τ̂i)(vh · τ̂i) ds

−
(
pn+1
j − λn+1

h ,∇ · vh
)
f

+ cI(vh, φ
n
j ) = (fn+1

f,j , vh)f + εn+1
j,f (vh),

gS0

(
φn+1
j − φnj

∆t
, ψh

)
p

+ g(Kj∇φn+1
j ,∇ψh)p − cI(unj , ψh) (5.10)

= g(fn+1
p,j , ψh)p + εn+1

j,p (ψh).

The consistency errors εn+1
j,f (vh), εn+1

j,p (ψh) are defined by

εn+1
j,f (vh) :=

(
un+1
j − unj

∆t
− un+1

j,t , vh

)
f

− cI(vh, φn+1
j − φnj ),

12



εn+1
j,p (ψh) := gS0

(
φn+1
j − φnj

∆t
− φn+1

j,t , ψh

)
p

+ cI(u
n+1
j − unj , ψh).

Subtracting (2.5) from (5.10) gives, for ∀vh ∈ V hf ,∀ψh ∈ Xh
p ,∀λn+1

h ∈ Qhf ,(
en+1
j,u − enj,u

∆t
, vh

)
f

+ ν(∇en+1
j,u ,∇vh)f +

∑
i

∫
I

η̄i(e
n+1
j,u · τ̂i)(vh · τ̂i) ds

+
∑
i

∫
I

(ηi,j − η̄i) (enj,u · τ̂i)(vh · τ̂i) ds−
(
pn+1
j − λn+1

h ,∇ · vh
)
f

+ cI(vh, e
n
j,φ)

= −
∑
i

∫
I

(ηi,j − η̄i) ((un+1
j − unj ) · τ̂i)(vh · τ̂i) ds+ εn+1

j,f (vh),

gS0

(
en+1
j,φ − enj,φ

∆t
, ψh

)
p

+ g(K̄∇en+1
j,φ ,∇ψh)p + g((Kj − K̄)∇enj,φ,∇ψh)p (5.11)

− cI(enj,u, ψh) = −g((Kj − K̄)∇(φn+1
j − φnj ),∇ψh)p + εn+1

j,p (ψh).

Let Un+1
j ,Φn+1

j be an interpolation of un+1
j and φn+1

j in V hf and Xh
p correspondingly. Denote

en+1
j,u =

(
un+1
j − Un+1

j

)
+
(
Un+1
j − un+1

j,h

)
=: µn+1

j,u + ξn+1
j,u ,

en+1
j,φ =

(
φn+1
j − Φn+1

j

)
+
(

Φn+1
j − φn+1

j,h

)
=: µn+1

j,φ + ξn+1
j,φ .

Then (5.11) can be rewritten as(
ξn+1
j,u − ξnj,u

∆t
, vh

)
f

+ ν(∇ξn+1
j,u ,∇vh)f +

∑
i

∫
I

η̄i(ξ
n+1
j,u · τ̂i)(vh · τ̂i) ds

+
∑
i

∫
I

(ηi,j − η̄i) (ξnj,u · τ̂i)(vh · τ̂i) ds−
(
pn+1
j − λn+1

h ,∇ · vh
)
f

+ cI(vh, ξ
n
j,φ)

= −
∑
i

∫
I

(ηi,j − η̄i) ((un+1
j − unj ) · τ̂i)(vh · τ̂i) ds+ εn+1

j,f (vh),

−

(
µn+1
j,u − µnj,u

∆t
, vh

)
f

− ν(∇µn+1
j,u ,∇vh)f −

∑
i

∫
I

η̄i(µ
n+1
j,u · τ̂i)(vh · τ̂i) ds

−
∑
i

∫
I

(ηi,j − η̄i) (µnj,u · τ̂i)(vh · τ̂i) ds− cI(vh, µnj,φ), (5.12)

gS0

(
ξn+1
j,φ − ξnj,φ

∆t
, ψh

)
p

+ g(K̄∇ξn+1
j,φ ,∇ψh)p + g((Kj − K̄)∇ξnj,φ,∇ψh)p − cI(ξnj,u, ψh)

= −g((Kj − K̄)∇(φn+1
j − φnj ),∇ψh)p + εn+1

j,p (ψh)− gS0

(
µn+1
j,φ − µnj,φ

∆t
, ψh

)
p

− g(K̄∇µn+1
j,φ ,∇ψh)p − g((Kj − K̄)∇µnj,φ,∇ψh)p + cI(µ

n
j,u, ψh).

Letting vh = ξn+1
j,u , ψh = ξn+1

j,φ in (5.12) and adding the two equations yields

1

2∆t
‖ξn+1
j,u ‖

2
f −

1

2∆t
‖ξnj,u‖2f +

1

2∆t
‖ξn+1
j,u − ξ

n
j,u‖2f + ν‖∇ξn+1

j,u ‖
2
f +

∑
i

∫
I

η̄i(ξ
n+1
j,u · τ̂i)

2 ds (5.13)

+
gS0

2∆t
‖ξn+1
j,φ ‖

2
p −

gS0

2∆t
‖ξnj,φ‖2p +

gS0

2∆t
‖ξn+1
j,φ − ξ

n
j,φ‖2p + g(K̄∇ξn+1

j,φ ,∇ξn+1
j,φ )p + cI(ξ

n+1
j,u , ξnj,φ)− cI(ξnj,u, ξn+1

j,φ )
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= −
∑
i

∫
I

(ηi,j − η̄i) (ξnj,u · τ̂i)(ξn+1
j,u · τ̂i) ds−

∑
i

∫
I

(ηi,j − η̄i) ((un+1
j − unj ) · τ̂i)(ξn+1

j,u · τ̂i) ds

+ εn+1
j,f (ξn+1

j,u )−

(
µn+1
j,u − µnj,u

∆t
, ξn+1
j,u

)
f

− ν(∇µn+1
j,u ,∇ξn+1

j,u )f −
∑
i

∫
I

η̄i(µ
n+1
j,u · τ̂i)(ξ

n+1
j,u · τ̂i) ds

−
∑
i

∫
I

(ηi,j − η̄i) (µnj,u · τ̂i)(ξn+1
j,u · τ̂i) ds− cI(ξ

n+1
j,u , µnj,φ) +

(
pn+1
j − λn+1

h ,∇ · ξn+1
j,u

)
f

− g((Kj − K̄)∇(φn+1
j − φnj ),∇ξn+1

j,φ )p + εn+1
j,p (ξn+1

j,φ )− gS0

(
µn+1
j,φ − µnj,φ

∆t
, ξn+1
j,φ

)
p

− g(K̄∇µn+1
j,φ ,∇ξn+1

j,φ )p − g((Kj − K̄)∇µnj,φ,∇ξn+1
j,φ )p + cI(µ

n
j,u, ξ

n+1
j,φ )− g((Kj − K̄)∇ξnj,φ,∇ξn+1

j,φ )p.

Using the same techniques in the stability proof (see (3.6) and (3.7)), we have

cI(ξ
n+1
j,u ,ξnj,φ)− cI(ξnj,u, ξn+1

j,φ ) (5.14)

= cI(ξ
n+1
j,u − ξ

n
j,u, ξ

n+1
j,φ )− cI(ξn+1

j,u , ξn+1
j,φ − ξ

n
j,φ)

≥ − 1

2∆t
‖ξn+1
j,u − ξ

n
j,u‖2f −∆t

C2

β2
1

(
‖∇ξn+1

j,u ‖
2
f + ‖∇ξnj,u‖2f

)
− β1gk̄min‖∇ξn+1

j,φ ‖
2
p

− gS0

2∆t
‖ξn+1
j,φ − ξ

n
j,φ‖2p −

∆t

gS0

C1

α2
1

(
‖∇ξn+1

j,φ ‖
2
p + ‖∇ξnj,φ‖2p

)
− α1ν‖∇ξn+1

j,u ‖
2
f .

Next we bound the terms on the right hand side of (5.13).

−

(
µn+1
j,u − µnj,u

∆t
, ξn+1
j,u

)
f

− gS0

(
µn+1
j,φ − µnj,φ

∆t
, ξn+1
j,φ

)
p

(5.15)

≤
5C2

P,f

4α2ν
‖
µn+1
j,u − µnj,u

∆t
‖2f +

α2

5
ν‖∇ξn+1

j,u ‖
2
f +

C2
P,pgS

2
0

β2k̄min
‖
µn+1
j,φ − µnj,φ

∆t
‖2p +

β2

4
gk̄min‖∇ξn+1

j,φ ‖
2
p

≤
5C2

P,f

4α2ν

∥∥∥∥∥ 1

∆t

∫ tn+1

tn
µj,u,t dt

∥∥∥∥∥
2

f

+
α2

5
ν‖∇ξn+1

j,u ‖
2
f +

C2
P,pgS

2
0

β2k̄min

∥∥∥∥∥ 1

∆t

∫ tn+1

tn
µj,φ,t dt

∥∥∥∥∥
2

p

+
β2

4
gk̄min‖∇ξn+1

j,φ ‖
2
p

≤
5C2

P,f

4α2ν

1

∆t

∫ tn+1

tn
‖µj,u,t‖2f dt+

α2

5
ν‖∇ξn+1

j,u ‖
2
f +

C2
P,pgS

2
0

β2k̄min

1

∆t

∫ tn+1

tn
‖µj,φ,t‖2p dt+

β2

4
gk̄min‖∇ξn+1

j,φ ‖
2
p.

− ν(∇µn+1
j,u ,∇ξn+1

j,u )f − g(K̄∇µn+1
j,φ ,∇ξn+1

j,φ )p (5.16)

≤ C
(
‖∇µn+1

j,u ‖
2
f + ‖∇µn+1

j,φ ‖
2
p

)
+
α2

5
ν‖∇ξn+1

j,u ‖
2
f +

β2

4
gk̄min‖∇ξn+1

j,φ ‖
2
p.

By trace theorem, we have the following estimates

− cI(ξn+1
j,u , µnj,φ) + cI(µ

n
j,u, ξ

n+1
j,φ ) (5.17)

≤ C
(
‖∇µnj,u‖2f + ‖∇µnj,φ‖2p

)
+
α2

5
ν‖∇ξn+1

j,u ‖
2
f +

β2

4
gk̄min‖∇ξn+1

j,φ ‖
2
p.

The pressure term can be bounded as follows.(
pn+1
j − λn+1

h ,∇ · ξn+1
j,u

)
f
≤ C‖pn+1

j − λn+1
h ‖2f +

α2

5
ν‖∇ξn+1

j,u ‖
2
f . (5.18)

Next we bound the consistency errors.

εn+1
j,f (ξn+1

j,u ) ≤ C
∥∥∥un+1

j − unj
∆t

− un+1
j,t

∥∥∥2

f
+ C‖∇(φn+1

j − φnj )‖2p +
α2

5
ν‖∇ξn+1

j,u ‖
2
f (5.19)
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≤ C∆t

∫ tn+1

tn
‖uj,tt‖2f dt+ C∆t

∫ tn+1

tn
‖∇φj,t‖2p dt+

α2

5
ν‖∇ξn+1

j,u ‖
2
f .

εn+1
j,p (ξn+1

j,φ ) ≤ C
∥∥∥φn+1

j − φnj
∆t

− φn+1
j,t

∥∥∥2

p
+ C‖∇(un+1

j − unj )‖2f +
β2

4
gk̄min‖∇ξn+1

j,φ ‖
2
p (5.20)

≤ C∆t

∫ tn+1

tn
‖φj,tt‖2p dt+ C∆t

∫ tn+1

tn
‖∇uj,t‖2f dt+

β2

4
gk̄min‖∇ξn+1

j,φ ‖
2
p.

The rest of the terms on the right hand side of (5.13) can be bounded as follows.

−
∑
i

∫
I

(ηi,j − η̄i) (ξnj,u · τ̂i)(ξn+1
j,u · τ̂i) ds (5.21)

≤
∑
i

η′maxi,j

∫
I

|(ξnj,u · τ̂i)(ξn+1
j,u · τ̂i)| ds

≤
∑
i

[
η′maxi

2

∫
I

(ξnj,u · τ̂i)2 ds+
η′maxi

2

∫
I

(ξn+1
j,u · τ̂i)

2 ds

]
.

By (2.2) and Poincaré inequality, we have, for any σ1 > 0

−
∑
i

∫
I

(ηi,j − η̄i) ((un+1
j − unj ) · τ̂i)(ξn+1

j,u · τ̂i) ds (5.22)

≤
∑
i

η′maxi,j

∫
I

|((un+1
j − unj ) · τ̂i)(ξn+1

j,u · τ̂i)| ds

≤
∑
i

η′maxi

[
1

2σ1

∫
I

(
(un+1
j − unj ) · τ̂i

)2
ds+

σ1

2

∫
I

(
ξn+1
j,u · τ̂i

)2
ds

]
≤
∑
i

[
η′maxi

2σ1
‖un+1

j − unj ‖2I +
σ1

2
η′maxi

∫
I

(ξn+1
j,u · τ̂i)

2 ds

]
≤
∑
i

[
CP,fC

2(Df )

2σ1
η′maxi ‖∇(un+1

j − unj )‖2f +
σ1

2
η′maxi

∫
I

(ξn+1
j,u · τ̂i)

2 ds

]

≤
∑
i

[
CP,fC

2(Df )

2σ1
η′maxi ∆t

∫ tn+1

tn
‖∇uj,t‖2f dt+

σ1

2
η′maxi

∫
I

(ξn+1
j,u · τ̂i)

2 ds

]
.

Similarly, for any σ2 > 0

−
∑
i

∫
I

η̄i(µ
n+1
j,u · τ̂i)(ξ

n+1
j,u · τ̂i) ds (5.23)

≤
∑
i

[
1

4σ2

∫
I

η̄i(µ
n+1
j,u · τ̂i)

2 ds+ σ2

∫
I

η̄i(ξ
n+1
j,u · τ̂i)

2 ds

]
≤
∑
i

[
1

4σ2
η̄maxi ‖µn+1

j,u ‖
2
I + σ2

∫
I

η̄i(ξ
n+1
j,u · τ̂i)

2 ds

]
≤
∑
i

[
C2(Df )CP,f

4σ2
η̄maxi ‖∇µn+1

j,u ‖
2
f + σ2

∫
I

η̄i(ξ
n+1
j,u · τ̂i)

2 ds

]
.

−
∑
i

∫
I

(ηi,j − η̄i) (µnj,u · τ̂i)(ξn+1
j,u · τ̂i) ds (5.24)

≤
∑
i

η′maxi,j

∫
I

|(µnj,u · τ̂i)(ξn+1
j,u · τ̂i)| ds
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≤
∑
i

η′maxi

[
1

2σ1

∫
I

(µnj,u · τ̂i)2 ds+
σ1

2

∫
I

(ξn+1
j,u · τ̂i)

2

]
ds

≤
∑
i

[
1

2σ1
η′maxi ‖µnj,u‖2I +

σ1

2
η′maxi

∫
I

(ξn+1
j,u · τ̂i)

2 ds

]
≤
∑
i

[
C2(Df )CP,f

2σ1
η′maxi,j ‖∇µnj,u‖2f +

σ1

2
η′maxi

∫
I

(ξn+1
j,u · τ̂i)

2 ds

]
.

The hydraulic conductivity tensor terms are estimated as follows.

−g((Kj − K̄)∇ξnj,φ,∇ξn+1
j,φ )p (5.25)

≤ g
∫
Dp

|∇ξnj,φ|2|Kj − K̄|2|∇ξn+1
j,φ |2 dx

≤ g
∫
Dp

ρ′j(x)|∇ξnj,φ|2|∇ξn+1
j,φ |2 dx

≤ gρ′j,max
∫
Dp

|∇ξnj,φ|2|∇ξn+1
j,φ |2 dx

≤ gρ′max‖∇ξnj,φ‖p‖∇ξn+1
j,φ ‖p

≤ gρ′max
2
‖∇ξnj,φ‖2p +

gρ′max
2
‖∇ξn+1

j,φ ‖
2
p.

For any σ3 > 0, we have

−g((Kj − K̄)∇(φn+1
j − φnj ),∇ξn+1

j,φ )p (5.26)

≤ g
∫
Dp

|∇(φn+1
j − φnj )|2|Kj − K̄|2|∇ξn+1

j,φ |2 dx

≤ g
∫
Dp

ρ′j(x)|∇(φn+1
j − φnj )|2|∇ξn+1

j,φ |2 dx

≤ gρ′j,max
∫
Dp

|∇(φn+1
j − φnj )|2|∇ξn+1

j,φ |2 dx

≤ gρ′max‖∇(φn+1
j − φnj )‖p‖∇ξn+1

j,φ ‖p

≤ gρ′max
2σ3

‖∇(φn+1
j − φnj )‖2p +

σ3

2
gρ′max‖∇ξn+1

j,φ ‖
2
p

≤ gρ′max
2σ3

‖
∫ tn+1

tn
∇φj,t dt‖2p +

σ3

2
gρ′max‖∇ξn+1

j,φ ‖
2
p

≤ gρ′max
2σ3

∆t

∫ tn+1

tn
‖∇φj,t‖2p dt+

σ3

2
gρ′max‖∇ξn+1

j,φ ‖
2
p.

Similarly,

−g((Kj − K̄)∇µnj,φ,∇ξn+1
j,φ )p ≤ g

∫
Dp

|∇µnj,φ|2|Kj − K̄|2|∇ξn+1
j,φ |2 dx (5.27)

≤ g
∫
Dp

ρ′j(x)|∇µnj,φ|2|∇ξn+1
j,φ |2 dx

≤ gρ′j,max
∫
Dp

|∇µnj,φ|2|∇ξn+1
j,φ |2 dx

≤ gρ′max‖∇µnj,φ‖p‖∇ξn+1
j,φ ‖p

≤ gρ′max
2σ3

‖∇µnj,φ‖2p +
σ3

2
gρ′max‖∇ξn+1

j,φ ‖
2
p.
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Since K̄ is SPD, for any σ4 > 0

−g(K̄∇µn+1
j,φ ,∇ξn+1

j,φ )p = −g(K̄ 1
2∇µn+1

j,φ , K̄ 1
2∇ξn+1

j,φ )p (5.28)

≤ g‖K̄ 1
2∇µn+1

j,φ ‖p‖K̄
1
2∇ξn+1

j,φ ‖p

≤ 1

4σ4
g‖K̄ 1

2∇µn+1
j,φ ‖

2
p + σ4g‖K̄

1
2∇ξn+1

j,φ ‖
2
p

≤ 1

4σ4
gk̄max‖∇µn+1

j,φ ‖
2
p + σ4g‖K̄

1
2∇ξn+1

j,φ ‖
2
p.

Combining all these estimates, we have the following inequality

1

2∆t
‖ξn+1
j,u ‖

2
f −

1

2∆t
‖ξnj,u‖2f +

(
1− α1 − α2 −∆t

2C2

β2
1ν

)
ν‖∇ξn+1

j,u ‖
2
f (5.29)

+ ∆t
C2

β2
1

(
‖∇ξn+1

j,u ‖
2
f − ‖∇ξnj,u‖2f

)
+
∑
i

(
(1− σ2)η̄mini − (1 + σ1)η′maxi

) ∫
I

(ξn+1
j,u · τ̂i)

2 ds

+
∑
i

1

2
η′maxi

(∫
I

(ξn+1
j,u · τ̂i)

2 ds−
∫
I

(ξnj,u · τ̂i)2 ds

)
+
gS0

2∆t
‖ξn+1
j,φ ‖

2
p −

gS0

2∆t
‖ξnj,φ‖2p

+

(
(1− σ4 − β1 − β2 −∆t

2C1

g2S0k̄minα2
1

)− (1 + σ3)
ρ′max
k̄min

)
gk̄min‖∇ξn+1

j,φ ‖
2
p

+

(
1

2
gρ′max +

∆tC1

gS0α2
1

)(
‖∇ξn+1

j,φ ‖
2
p − ‖∇ξnj,φ‖2p

)
≤
∑
i

CP,fC
2(Df )

4σ1
η′maxi ∆t

∫ tn+1

tn
‖∇uj,t‖2f dt+

∑
i

C2(Df )CP,f
4σ1

η̄maxi ‖∇µn+1
j,u ‖

2
f

+
∑
i

C2(Df )CP,f
4σ1

η′maxi,j ‖∇µnj,u‖2f + C∆t

∫ tn+1

tn
‖uj,tt‖2f dt+ C∆t

∫ tn+1

tn
‖∇φj,t‖2p dt

+ C∆t

∫ tn+1

tn
‖φj,tt‖2p dt+ C∆t

∫ tn+1

tn
‖∇uj,t‖2f dt+

5C2
P,f

4α2ν

1

∆t

∫ tn+1

tn
‖µj,u,t‖2f dt

+
C2
P.ggS

2
0

β2k̄min

1

∆t

∫ tn+1

tn
‖µj,φ,t‖2p dt+ C

(
‖∇µn+1

j,u ‖
2
f + ‖∇µn+1

j,φ ‖
2
p

)
+ C

(
‖∇µnj,u‖2f + ‖∇µnj,φ‖2p

)
+ C‖pn+1

j − λn+1
h ‖2f +

gρ′max
4σ2

∆t

∫ tn+1

tn
‖∇φj,t‖2p dt+

1

4σ2
gk̄max‖∇µn+1

j,φ ‖
2
p +

gρ′max
4σ2

‖∇µnj,φ‖2p.

To make sure the third, fifth and ninth term on the left hand side are non-negative, we need 0 <
α1, α2, σ2, σ4, β1, β2 < 1, and

η′maxi

η̄mini

≤ 1− σ2

1 + σ1
,

ρ′max
k̄min

<
1

1 + σ3
. (5.30)

For ∀σ2 ∈ (0, 1),∀σ1 > 0,∀σ3 > 0, we can derive that 1−σ2

1+σ1
, 1

1+σ3
∈ (0, 1). Now if the two parameter

conditions (3.2) and (3.3) are satisfied, we have
η′maxi

η̄mini
,
ρ′max
k̄min

∈ (0, 1). Then we can easily find σ2 ∈ (0, 1), σ1 >

0 such that
η′maxi

η̄mini
= 1−σ2

1+σ1
, and σ3 > 0 such that

ρ′max
k̄min

< 1
1+σ3

.

Then under two the parameter conditions (5.7) and (5.8), and the time-step condition (5.6), (5.29)
reduces to

1

2∆t
‖ξn+1
j,u ‖

2
f −

1

2∆t
‖ξnj,u‖2f + ∆t

C2

β2
1

(
‖∇ξn+1

j,u ‖
2
f − ‖∇ξnj,u‖2f

)
(5.31)

+
∑
i

1

2
η′maxi

(∫
I

(ξn+1
j,u · τ̂i)

2 ds−
∫
I

(ξnj,u · τ̂i)2 ds

)
+
gS0

2∆t
‖ξn+1
j,φ ‖

2
p −

gS0

2∆t
‖ξnj,φ‖2p
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+

(
1

2
gρ′max +

∆tC1

gS0α2
1

)(
‖∇ξn+1

j,φ ‖
2
p − ‖∇ξnj,φ‖2p

)
≤
∑
i

CP,fC
2(Df )

4σ1
η′maxi ∆t

∫ tn+1

tn
‖∇uj,t‖2f dt+

∑
i

C2(Df )CP,f
4σ2

η̄maxi ‖∇µn+1
j,u ‖

2
f

+
∑
i

C2(Df )CP,f
4σ1

η′maxi,j ‖∇µnj,u‖2f + C∆t

∫ tn+1

tn
‖uj,tt‖2f dt+ C∆t

∫ tn+1

tn
‖∇φj,t‖2p dt

+ C∆t

∫ tn+1

tn
‖φj,tt‖2p dt+ C∆t

∫ tn+1

tn
‖∇uj,t‖2f dt+

5C2
P,f

4α2ν

1

∆t

∫ tn+1

tn
‖µj,u,t‖2f dt

+
C2
P.ggS

2
0

β2k̄min

1

∆t

∫ tn+1

tn
‖µj,φ,t‖2p dt+ C

(
‖∇µn+1

j,u ‖
2
f + ‖∇µn+1

j,φ ‖
2
p

)
+ C

(
‖∇µnj,u‖2f + ‖∇µnj,φ‖2p

)
+ C‖pn+1

j − λn+1
h ‖2f +

gρ′max
4σ3

∆t

∫ tn+1

tn
‖∇φj,t‖2p dt

+
1

4σ3
gk̄max‖∇µn+1

j,φ ‖
2
p +

gρ′max
4σ4

‖∇µnj,φ‖2p.

Summing up from n = 0 to n = N − 1 and multiplying through by ∆t yields

1

2
‖ξNj,u‖2f + ∆t2

C2

β2
1

‖∇ξNj,u‖2f + ∆t
∑
i

1

2
η′maxi

∫
I

(ξNj,u · τ̂i)2 ds (5.32)

+
gS0

2
‖ξNj,φ‖2p + ∆t

(
1

2
gρ′max +

∆tC1

gS0α2
1

)
‖∇ξNj,φ‖2p

≤ 1

2
‖ξ0
j,u‖2f + ∆t2

C2

β2
1

‖∇ξ0
j,u‖2f + ∆t

∑
i

1

2
η′maxi

∫
I

(ξ0
j,u · τ̂i)2 ds+

gS0

2
‖ξ0
j,φ‖2p

+ ∆t

(
1

2
gρ′max +

∆tC1

gS0α2
1

)
‖∇ξ0

j,φ‖2p + ∆t

N−1∑
n=1

{∑
i

CP,fC
2(Df )

4σ1
η′maxi ∆t

∫ tn+1

tn
‖∇uj,t‖2f dt

+
∑
i

C2(Df )CP,f
4σ2

η̄maxi ‖∇µn+1
j,u ‖

2
f +

∑
i

C2(Df )CP,f
4σ1

η′maxi,j ‖∇µnj,u‖2f + C∆t

∫ tn+1

tn
‖uj,tt‖2f dt

+ C∆t

∫ tn+1

tn
‖∇φj,t‖2p dt+ C∆t

∫ tn+1

tn
‖φj,tt‖2p dt+ C∆t

∫ tn+1

tn
‖∇uj,t‖2f dt

+
5C2

P,f

4α2ν

1

∆t

∫ tn+1

tn
‖µj,u,t‖2f dt+

C2
P.ggS

2
0

β2k̄min

1

∆t

∫ tn+1

tn
‖µj,φ,t‖2p dt+ C

(
‖∇µn+1

j,u ‖
2
f + ‖∇µn+1

j,φ ‖
2
p

)
+ C

(
‖∇µnj,u‖2f + ‖∇µnj,φ‖2p

)
+ C‖pn+1

j − λn+1
h ‖2f +

gρ′max
4σ3

∆t

∫ tn+1

tn
‖∇φj,t‖2p dt

+
1

4σ3
gk̄max‖∇µn+1

j,φ ‖
2
p +

gρ′max
4σ4

‖∇µnj,φ‖2p
}
.

Using interpolation inequalities, we obtain

1

2
‖ξNj,u‖2f + ∆t2

C2

β2
1

‖∇ξNj,u‖2f + ∆t
∑
i

1

2
η′maxi

∫
I

(ξNj,u · τ̂i)2 ds (5.33)

+
gS0

2
‖ξNj,φ‖2p + ∆t

(
1

2
gρ′max +

∆tC1

gS0α2
1

)
‖∇ξNj,φ‖2p

≤ 1

2
‖ξ0
j,u‖2f + ∆t2

C2

β2
1

‖∇ξ0
j,u‖2f + ∆t

∑
i

1

2
η′maxi

∫
I

(ξ0
j,u · τ̂i)2 ds+

gS0

2
‖ξ0
j,φ‖2p

+ ∆t

(
1

2
gρ′max +

∆tC1

gS0α2
1

)
‖∇ξ0

j,φ‖2p + C∆t2‖uj,t‖22,1,f + Ch2k|||uj |||22,k+1,f + C∆t2‖uj,tt‖22,0,f
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+ C∆t2‖φj,t‖22,1,p + C∆t2‖φj,tt‖22,0,p + Ch2k+2‖uj,t‖2,k+1,f + Ch2k+2‖φj,t‖2,m+1,p

+ Ch2k|||φj |||22,m+1,p + Ch2s+2|||pj |||22,s+1,f .

Using triangle inequality on the error equations yields (5.9) and completes the proof.

6. Stochastic Stokes-Darcy equations. In this section, we consider using the presented ensemble
algorithm for solving stochastic Stokes-Darcy equations with a random hydraulic conductivity tensor K(x,w).
Note that the ensemble algorithm can also deal with uncertainties in initial conditions and the forcing terms.
Here for simplicity of presentation, we only consider the example that has a random hydraulic conductivity
tensor. Let (Ω,F ,P) be a complete probability space. Here Ω is the set of outcomes, F ∈ 2Ω is the σ−algebra
of events, and P : F → [0, 1] is a probability measure. The stochastic Stokes-Darcy system considered reads:
Find the functions u : Df × [0, T ]×Ω→ Rd (d = 2, 3), p : Df × [0, T ]×Ω→ R, and φ : Dp× [0, T ]×Ω→ R,
such that it holds P − a.e. in Ω, or in other words, almost surely

ut(x, t, ω)− ν∆u(x, t, ω) +∇p(x, t, ω) = ff (x, t), ∇ · u(x, t, ω) = 0, in Df × Ω,

S0φt(x, t, ω)−∇ · (K(x, ω)∇φ(x, t, ω)) = fp(x, t), in Dp × Ω, (6.1)

φ(x, 0) = φ0(x), in Dp, and u(x, 0) = u0(x), in Df ,

φ(x, t, ω) = 0, in ∂Dp\I and u(x, t, ω) = 0, in ∂Df\I,

where ff (x, t) ∈ L2(Df ), fp(x, t) ∈ L2(Dp). The hydraulic conductivity K(x, ω) is a stochastic function,
which is assumed to have continuous and bounded correlation function.

The Monte Carlo method is one of the most classical approaches for solving stochastic PDEs. It consists
of repeated sampling of the input parameter and solving the corresponding deterministic PDEs using stan-
dard numerical methods, which generates identically distributed approximations of the solution. Then the
approximate solutions are further analyzed to yield statistical moments or distributions. The Monte Carlo
method is known to be computationally expensive as it usually requires a large number of sample points
at a high resolution level. Herein we investigate incorporating the proposed ensemble algorithm with the
Monte Carlo method to solve the stochastic Stokes-Darcy equations at reduced computational cost. The
computation procedure is as follows.

(1) Generate a number of independently, identically distributed (i.i.d.) samples for the random hydraulic
conductivity K(x, ωj), j = 1, · · · , J ;

(2) Apply a numerical method to solve for approximate solutions un+1
j,h (x), pn+1

j,h (x), φn+1
j,h (x), j =

1, · · · , J ;
(3) Output required statistical information such as the expectation of u(x, tn, ω): E[u(x, tn, ω)] ≈

1
J

∑J
j=1 u

n
j,h(x).

Remark 6.1. Similar procedures can also be carried out for other ensemble-based UQ methods, such as
sparse grid collocation methods and non-intrusive polynomial chaos methods. The Monte Carlo method is
chosen here for a simple demonstration of the effectiveness and efficiency of our ensemble algorithm.

Let un(x, ω) = u(x, tn, ω). The error for approximating E[u(x, tn, ω)] is then

E[un]− 1

J

J∑
j=1

unj,h =

E[un]− 1

J

J∑
j=1

unj

+

 1

J

J∑
j=1

unj −
1

J

J∑
j=1

unj,h

 (6.2)

= EnMC,u + EnEN,u,

where EnMC,u represents the numerical error from using the Monte Carlo method while EnEN,u is the error
due to using the ensemble algorithm for numerical solution.

Theorem 6.2. If the time step condition (5.6) holds, and the two parameter conditions (5.7), (5.8) all
hold, then for any N > 0, there holds

E
[
‖E[un]− 1

J

J∑
j=1

unj,h‖2
]
≤ 1

J
E[‖un‖2f ] + C(h4 + ∆t2). (6.3)
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Proof.

E[‖EnMC,u‖2] = E

E[un]− 1

J

J∑
j=1

unj , E[un]− 1

J

J∑
j=1

unj


f

 (6.4)

= E

 1

J

J∑
j=1

(E[un]− unj ),
1

J

J∑
j=1

(E[un]− unj )


f


=

1

J2

J∑
i=1

J∑
j=1

E
[(
E[un]− uni , E[un]− unj

)
f

]
.

Since un1 (x), un2 (x), · · · , unJ(x) are i.i.d., we have

E
[(
E[un]− uni , E[un]− unj

)
f

]
= 0, if i 6= j. (6.5)

Therefore,

E[‖EnMC,u‖2] =
1

J2

J∑
j=1

E
[(
E[un]− unj , E[un]− unj

)
f

]
(6.6)

=
1

J2

J∑
j=1

E
[
‖E[un]‖2f − 2(unj , E[un])f + ‖unj ‖2f

]
=

1

J2

J∑
j=1

‖E[un]‖2f −
2

J2

J∑
j=1

‖E[un]‖2f +
1

J2

J∑
j=1

E[‖unj ‖2f ]

=
1

J
E[‖un‖2f ]− 1

J
‖E[un]‖2f

≤ 1

J
E[‖un‖2f ].

‖EnENu‖
2
f =

∥∥∥ 1

J

J∑
j=1

unj −
1

J

J∑
j=1

unj,h

∥∥∥2

f
=
∥∥∥ 1

J

J∑
j=1

(
unj − unj,h

) ∥∥∥2

f
=
∥∥∥ 1

J

J∑
j=1

enj,u

∥∥∥2

f
(6.7)

≤ 1

J

J∑
j=1

∥∥∥enj,u∥∥∥2

f
≤ C(h4 + ∆t2).

Then we have the following estimate on the expectation of the L2 norm of the error for approximating
E[u(x, tn, ω)].

E
[
‖E[un]− 1

J

J∑
j=1

unj,h‖2
]

= E
[
‖EnMC,u + EnEN,u‖2

]
(6.8)

≤ E
[
‖EnMC,u‖2

]
+ E

[
‖EnEN,u‖2

]
≤ 1

J
E[‖un‖2f ] + C(h4 + ∆t2).

7. Numerical Illustrations. In this section, we use two numerical examples to illustrate the features
of the proposed ensemble scheme for the Stokes-Darcy system. The first example is to test the convergence
of the ensemble algorithm with a known exact solution. The second example is to illustrate how to combine
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our ensemble algorithm with the Monte Carlo method to efficiently simulate the Stokes-Darcy system with
a random hydraulic conductivity tensor. We show the efficiency and effectiveness of the ensemble algorithm
by comparing the numerical results and computation time with those of independent, individual simula-
tions. For both tests, we effect spatial discretization using the Taylor-Hood element pair for the Stokes
equations, i.e., continuous piecewise linear and quadratic finite element spaces for the approximation of p
and −→u , respectively, and for the Darcy equation, continuous piecewise quadratic finite element space for the
approximation of φ.

7.1. Convergence test. In this section, we test the convergence rate of our ensemble algorithm by
computing the numerical error between the numerical approximation and a known exact solution. Specifically
we consider the model problem on D = [0, π]× [−1, 1], where Dp = [0, π]× [−1, 0], and Df = [0, π]× [0, 1].
We take αBJS = 1, ν = 1, g = 1, S0 = 1, and

K = Kj =

[
kj11 0

0 kj22

]
, j = 1, . . . , J,

where K is the random hydraulic conductivity tensor and Kj is one of the samples of K. In this simple test,
we only consider the case that k11, k22 are random variables that are independent of spatial coordinates.
The boundary condition functions and the source terms are chosen such that the following functions are the
exact solutions.

φD = (ey − e−y)sin(x)et,

−→u S = [
kj11

π
sin(2πy)cos(x), (−2kj22 +

kj22

π2
sin2(πy))sin(x)]T et,

pS = 0.

All the numerical results below are for t = T = 1.

We consider a group of simulations with J = 3 members. The three members are corresponding to
different hydraulic conductivity tensors, i.e. k1

11 = k1
22 = 2.21, k2

11 = k2
22 = 4.11, k3

11 = k3
22 = 6.21. As K

is diagonal, we use Algorithm 4.1 for computation, and thus there are no parameter conditions for both
stability and convergence. In order to check the convergence order in time, we uniformly refine the mesh
size h and time step size ∆t from the initial mesh size 1/4 and time step size ∆t = h3. The approximation
errors of the ensemble method are listed in Table 7.1, Table 7.2 and Table 7.3, for the velocity −→u , the
hydraulic head φ and the pressure p respectively. From these tables, we can find the rate of convergence is
O(h3 +4t) = O(h3) = O(∆t) with respect to L2 norms for −→u and φ, which confirms that our ensemble
algorithm is first order in time convergent in both fluid velocity and hydraulic head. In this test, the time
step seems to be small enough as we did not observe any instabilies. The convergence rate for the pressure
p is somehow better than expected, which may be because the exact solution for the pressure vanishes, [7].

Table 7.1: Errors and convergence rates of the ensemble algorithm (J = 3) for 4t = h3.

h ‖−→u h −−→u ‖
E,1
0 rate ‖−→u h −−→u ‖

E,2
0 rate ‖−→u h −−→u ‖

E,3
0 rate

1/4 6.0818× 10−2 − 1.1996× 10−1 − 1.7971× 10−1 −
1/8 7.5907× 10−3 3.00 1.4960× 10−2 3.00 2.2409× 10−2 3.00
1/16 9.3433× 10−4 3.02 1.8431× 10−3 3.02 2.7611× 10−3 3.02
1/32 1.1534× 10−4 3.01 2.3009× 10−4 3.00 3.4513× 10−4 3.00

h |−→u h −−→u |
E,1
1 rate |−→u h −−→u |

E,2
1 rate |−→u h −−→u |

E,3
1 rate

1/4 1.2578× 100 − 2.5143× 100 − 3.7713× 100 −
1/8 3.3416× 10−1 1.91 6.6823× 10−1 1.91 1.0023× 100 1.91
1/16 8.5725× 10−2 1.96 1.7144× 10−1 1.96 2.5717× 10−1 1.96
1/32 2.1431× 10−2 2.00 4.2861× 10−2 2.00 6.4292× 10−2 2.00
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Table 7.2: Errors and convergence rates of the ensemble algorithm (J = 3) for 4t = h3.

h ‖φh − φ‖E,10 rate ‖φh − φ‖E,20 rate ‖φh − φ‖E,30 rate
1/4 1.1563× 10−1 − 4.5348× 10−2 − 2.2165× 10−2 −
1/8 1.4786× 10−2 2.97 5.6293× 10−3 3.01 2.6717× 10−3 3.05
1/16 1.8504× 10−3 2.99 6.9932× 10−4 3.00 3.3003× 10−4 3.01
1/32 2.3132× 10−4 3.00 8.7305× 10−5 3.00 3.7074× 10−5 3.1

h |φh − φ|E,11 rate |φh − φ|E,21 rate |φh − φ|E,31 rate
1/4 3.5679× 10−1 − 2.7501× 10−1 − 2.6241× 10−1 −
1/8 7.3695× 10−2 2.08 6.7565× 10−2 2.03 6.6760× 10−2 1.99
1/16 1.7274× 10−2 2.09 1.6874× 10−2 2.00 1.6824× 10−2 2.00
1/32 4.1129× 10−3 2.07 4.1156× 10−3 2.03 4.1061× 10−3 2.03

Table 7.3: Errors and convergence rates of the ensemble algorithm (J = 3) for 4t = h3.

h ‖ph − p‖E,10 rate ‖ph − p‖E,20 rate ‖ph − p‖E,30 rate
1/4 4.4572× 10−1 − 7.2784× 10−1 − 1.0725× 100 −
1/8 5.5340× 10−2 3.00 9.0644× 10−2 3.00 1.3392× 10−1 3.00
1/16 6.2909× 10−3 3.03 9.7592× 10−3 3.12 1.4333× 10−2 3.13
1/32 7.7665× 10−4 3.01 1.2048× 10−3 3.02 1.7479× 10−3 3.03

7.2. Random hydraulic conductivity tensor. Next, we consider approximating the stochastic
Stokes-Darcy equations with a random hydraulic conductivity tensor K(~x, ω) that depends on spatial coor-
dinates, using the Monte Carlo method for sampling and our ensemble algorithm for numerical simulations,
as described in Section 6.

7.2.1. Diagonal hydraulic conductivity tensor. We first consider the case that the hydraulic con-
ductivity tensor is diagonal and Algorithm 4.1 will be used for computation. We construct the random
hydraulic conductivity tensor that varies in the vertical direction as follows

K(~x, ω) =

[
k11(~x, ω) 0

0 k22(~x, ω)

]
, and

k11(~x, ω) = k22(~x, ω) = k(~x, ω) = a0 + σ
√
λ0Y0(ω) +

nf∑
i=1

σ
√
λi[Yi(ω)cos(iπy) + Ynf+i(ω)sin(iπy)],

where ~x = (x, y)T , λ0 =
√
πLc
2 , λi =

√
πLce

− (iπLc)
2

4 for i = 1, . . . , nf and Y0, . . . , Y2nf are uncorrelated
random variables with zero mean and unit variance. In the following numerical test, we take the desired
physical correlation length Lc = 0.25 for the random field and a0 = 1, σ = 0.15, nf = 3. We assume
the random variables Y0, . . . , Y2nf are independent and uniformly distributed in the interval [−

√
3,
√

3].
Note that in this setting, the random functions k11(~x,w), k22(~x,w) are guaranteed to be positive, and the
corresponding K(~x, ω) is SPD.

The domain and parameters are the same as those in the first test. But in this test, the problem is
associated with the forcing terms as follows:

fp = (ey − e−y)sin(x)et,

ff1 = [(1 + ν + 4νπ2)
k(~x, ω)

π
]sin(2πy)cos(x)et,

ff2 = −2νk(~x, ω)cos(2πy)sin(x)et + (1 + ν)[−2k(~x, ω) +
k(~x, ω)

π2
sin2(πy)]sin(x)et.
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The Dirichlet boundary condition

φ = (ey − e−y)sin(x)et,

−→u = [
k(~x, ω)

π
sin(2πy)cos(x), (−2k(~x, ω) +

k(~x, ω)

π2
sin2(πy))sin(x)]T et,

will be used on the boundary of the domain, and the initial conditions are chosen by

φ = (ey − e−y)sin(x),

−→u = [
k(~x, ω)

π
sin(2πy)cos(x), (−2k(~x, ω) +

k(~x, ω)

π2
sin2(πy))sin(x)]T .

We simulate the system over the time interval [0, 0.5], and the uniform triangulation with mesh size
h = 1/32 and uniform time partition with time step size 4t = h3 are used.

We generate a set of J random samples of K by the Monte Carlo sampling, and run our code for
simulating the ensemble of the system associated with the J realizations. We use Algorithm 4.1 for ensemble
computation since K is diagonal and multifrontal LU factorization as the linear solver. We first check the
rate of convergence with respect to the number of samples, J . As the exact solution to the stochastic Stokes-
Darcy system is unknown, we take the ensemble mean of numerical solutions of J0 = 1000 realizations as
our exact solution (expectation) and then evaluate the approximation errors based on this. The numerical
results with J = 10, 20, 40, 80, 160 realizations are listed in Table 7.4. Using linear regression, the errors in
Table 7.4 satisfy

‖−→u h −−→u ‖0 ≈ 0.0291J−0.5074, |−→u h −−→u |1 ≈ 0.2534J−0.4870,

‖ph − p‖0 ≈ 0.0267J−0.5199, ‖φh − φ‖0 ≈ 0.0540J−0.4996.

The values of ‖·‖0 and |·|1 together with their linear regression models are plotted in Figure 7.1. It is seen
that the rate of convergence with respect to J is close to −0.5, which coincides with our theoretical results.

Table 7.4: Errors of ensemble simulations.

J 10 20 40 80 100

‖−→u h −−→u ‖
E
0 9.0319× 10−3 6.2865× 10−3 4.5452× 10−3 3.2131× 10−3 2.1762× 10−3

|−→u h −−→u |
E
1 8.2725× 10−2 5.7495× 10−2 4.3362× 10−2 3.0247× 10−2 2.1095× 10−2

‖φh − φ‖E0 8.0585× 10−3 5.5982× 10−3 3.9585× 10−3 2.8010× 10−3 1.8792× 10−3

|φh − φ|E1 1.7074× 10−2 1.2073× 10−2 8.5392× 10−3 6.1365× 10−3 4.2391× 10−3

We next test the efficiency of our ensemble algorithm. We first run the ensemble simulations with
J = 1, 10, 20, 40, 80 realizations using our ensemble algorithm and record the respective elapsed CPU times.
Then we run the simulations again with the same parameter samples using the traditional approach, i.e.,
solving each realization individually. A comparison of the elapsed CPU time is presented in Table 7.5, from
which one can clearly see that our ensemble algorithm is much faster than the traditional approach. For
example, the elapsed CPU time for the ensemble simulation using our ensemble algorithm is 473 seconds,
while running simulations individually takes total 3.998×103 seconds when J = 80. The ensemble algorithm
saves about 88% of the computation time.

Table 7.5: CPU elapsed time of ensemble simulations.

J 1 10 20 40 80
individual 50 498 1001 2000 3998
ensemble 56 160 281 365 473

We also plot numerical results of our ensemble algorithm and those of individual runs for comparison.
The speed contours and velocity streamlines of the ensemble mean computed from both approaches at
T = 0.5 with J = 80 realizations are presented in Figure 7.2. It is observed that both approaches capture
the same general behavior of the flow, while our ensemble algorithm saves 88% of computation time.

23



Fig. 7.1: the rate of Ensemble simulations errors is O(1/
√
J) for −→u (left) and φ (right).
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Fig. 7.2: Speed contours and velocity streamlines of the ensemble mean obtained from individual runs (left)
and computation using our ensemble algorithm (right) with J = 80 at T = 0.5.

7.2.2. Non-diagonal hydraulic conductivity tensor. Here we consider the more realistic case where
the hydraulic conductivity tensor is non-diagonal, for which we need to use Algorithm 2.2 for ensemble
computation. Let

K(~x, ω) =

[
k11(~x, ω) k12(~x, ω)
k21(~x, ω) k22(~x, ω)

]
,

where k11(~x, ω) = k22(~x, ω) 6= 0 and k21(~x, ω) = k12(~x, ω) 6= 0, i.e. K(~x, ω) is not diagonal but symmetric
and

k11(~x, ω) = k22(~x, ω) = a1 + σ
√
λ0Y0(ω) +

nf∑
i=1

σ
√
λi[Yi(ω)cos(iπy) + Ynf+i(ω)sin(iπy)],

k21(~x, ω) = k12(~x, ω) = a2 + σ
√
λ0Y0(ω) +

nf∑
i=1

σ
√
λi[Yi(ω)cos(iπy) + Ynf+i(ω)sin(iπy)].

The corresponding forcing term for the Darcy equation is fp = (1+k11(~x, ω)−k22(~x, ω))(ey−e−y)sin(x)et−
(k12(~x, ω) + k21(~x, ω))(ey − e−y)cos(x)et; for the Stokes equations, ff1 and ff2 are the same as those in
Section 7.2.1. The boundary conditions and initial conditions are also the same as those in Section 7.2.1.
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Fig. 7.3: Speed contours and velocity streamlines of the ensemble mean obtained from individual runs (left)
and computation using our ensemble algorithm (right) with J = 100 at T = 0.5.

We take a1 = 10 and a2 = 1 so that the random hydraulic conductivity tensor K(~x, ω) is SPD. We
consider a group of simulations with J = 100 using the Monte Carlo method for sampling. We plot the
numerical results of our ensemble algorithm (Algorithm 2.2) and those of individual runs for comparison.
The speed contours and velocity streamlines of the ensemble mean computed from both approaches at
T = 0.5 with J = 100 realizations are presented in Figure 7.3. It can be seen that both approaches capture
the same general behavior of the flow while our ensemble algorithm is much faster.

8. Conclusions. We proposed an efficient, decoupled ensemble algorithm for fast computation of the
Stokes-Darcy systems with different parameters sets. The proposed algorithm results in one common co-
efficient matrix for all realizations at each time step, which allows the use of efficient iterative or direct
methods for solving the linear systems at greatly reduced computational cost. Moreover, it also decouples
the original coupled problem into two sub-physics problems, which reduces the size of the linear systems to
be solved and allows parallel computation of the two sub-physics problems. We proved the algorithm is long
time stable and first order in time convergent under a time-step condition and two parameter conditions.
We also presented an alternative algorithm for the problems in which it is easy to identify the eigenvalues
of the hydraulic conductivity tensor, e.g. K is diagonal. We proved this algorithm is long time stable under
a time-step condition, without any parameter conditions. Several numerical experiments were presented to
show the algorithm is first-order in time convergent, illustrate how to incorporate the ensemble algorithm
with the Monte Carlo method and demonstrate the efficiency and effectiveness of the ensemble algorithm.
This is only the first step to study efficient ensemble algorithms in the application of uncertainty quantifica-
tion (UQ) for surface-groundwater flows. The natural next step is to study higher order ensemble methods
and their applications in UQ.
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