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Abstract. Despite important applications in unsteady Stokes flow, a Fredholm second kind inte-
gral equation formulation modeling the first Dirichlet problem of the modified biharmonic equation in
the plane has been derived only recently. Furthermore, this formulation becomes very ill-conditioned
when the boundary is not smooth, say, having corners. The present work demonstrates numerically
that a method called recursively compressed inverse preconditioning (RCIP) can be effective when
dealing with this geometrically induced ill-conditioning in the context of Nyström discretization. The
RCIP method not only reduces the number of iterations needed in iterative solvers, but also improves
the achievable accuracy in the solution. Adaptive mesh refinement is only used in the construction of
a compressed inverse preconditioner, leading to an optimal number of unknowns in the linear system
in the solve phase.
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1. Introduction.

1.1. Biharmonic and modified biharmonic Dirichlet problems. This work
is about solving the first Dirichlet problem of the biharmonic and the modified bihar-
monic equations,

(1) ∆2u = 0 and ∆(∆− λ2)u = 0 ,

in planar domains using integral equation techniques. Since both the biharmonic
and the modified biharmonic equations are fourth order elliptic partial differential
equations, two boundary conditions are needed for the solution to be unique. By the
first Dirichlet problem we mean that both the solution u itself and its first normal
derivative ∂u/∂ν are specified on the domain boundary Γ.

The first Dirichlet problem of the biharmonic equation models the clamped plate
problem in linear elasticity. The first Dirichlet problem of the modified biharmonic
equation has its applications in solving unsteady Stokes flow via semidiscretization
schemes. While solving the modified biharmonic problem is the primary motivation
for the present work, the less involved biharmonic problem captures all the essential
difficulties encountered when solving the modified biharmonic problem. This is why
we discuss both problems. We refer the reader to [18] for a detailed discussion.

1.2. Second kind integral equations and their kernels. In [10], a system of
Fredholm second kind integral equations (SKIE) is constructed for the first Dirichlet
problem of the biharmonic equation. In [18], the construction is extended to solve the
first Dirichlet problem of the modified biharmonic equation. In [10, 18], the solution
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u is represented via a sum of layer potentials whose kernels are judiciously selected so
that all integral operators are compact and the diagonal terms from the jump relations
have a non-zero determinant. The difficulty in constructing these SKIEs lies in the
requirement that one integral operator must have the property that both the operator
itself and its normal derivative are compact and that the corresponding potential has
a non-zero jump across the boundary. Extensive search indicates that there seems to
be only one such operator (modulo lower order terms) for both the biharmonic and the
modified biharmonic equations. Recently, [24] constructed a better conditioned SKIE
system for the first Dirichlet problem of the biharmonic equation that is applicable for
the case of multiply connected domains as well. The construction in [24] is based on a
Goursat function representation of the solution to a related Stokes problem. However,
it is difficult to extend to the modified biharmonic problem and it appears that there
is no clear alternative to the SKIEs in [18] for the modified biharmonic problem.

The SKIEs of [10] and [18] contain kernels that behave very differently on smooth
and on non-smooth boundaries. To illustrate this, let D be a planar domain in R2

with boundary Γ. Let p be a point on Γ, x and y two points on Γ on opposite sides of
p, νx and νy the outward unit normal on Γ at these points, r = x−y, and r = |x−y|.
In this notation, the kernels of the SKIEs contain terms such as

(2)
(r · νy)2(νx · νy)

r4
and

(r · νx)(r · νy)3

r6
.

When Γ is smooth, both (r · νx) and (r · νy) are of the order O(r2) [9, Theorem
2.2], which makes the terms in (2) integrable and leads to the compactness of the
associated integral operators. When Γ has a corner vertex at p, on the other hand,
the terms in (2) behave like 1/r2 as x and y approach p from different sides. This is
in stark contrast to the kernel of the Neumann–Poincaré operator (the double layer
potential operator for Laplace’s equation), which contains only the term (r · νy)/r2

that behaves like 1/r as x and y approach a corner vertex p from different sides.
Indeed, it is shown in [26] that the Neumann–Poincaré operator is a singular bounded
operator on Lipschitz domains.

We remark here that many compact integral operators on smooth curves undergo
similar changes as the Neumann–Poincaré operator in the vicinity of corners. How-
ever, as mentioned, some terms in the kernels of the SKIEs of [10, 18] become nearly
hypersingular and the associated operators are unbounded around corner vertices.
This is a much more difficult situation than what usually is encountered for corner
problems, where kernels merely become nearly singular.

1.3. Numerical challenges. Solving SKIEs numerically on non-smooth bound-
aries involves a number of challenges. Layer densities representing the solution are
often non-smooth close to boundary singularities. Such behaviors are difficult to re-
solve by polynomials, which underlie most approximation schemes. Adaptive mesh
refinement towards corners is often needed. This is costly and may lead to artificial
ill-conditioning and the loss of accuracy. Iterative solvers also converge slowly. All
these problems are caused by the loss of compactness and only recently there have
emerged efficient numerical treatments [3, 4, 5, 6, 7, 12, 13, 15, 25] in the context of
operators that become nearly singular in corners. The problems are exacerbated in
the presence of operators that become nearly hypersingular around corners.

Some particular difficulties that we face in the present work are:
• The numerical evaluation of kernel terms such as the first term in (2) may

suffer from severe cancellation when r is small and x and y are on the same
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side of a corner vertex.
• The leading integral operators in the SKIEs are not scale invariant on wedges.

Scale invariance on wedges is often a helpful property when solving SKIEs
numerically on Γ with corners. The lack of scale invariance poses an additional
challenge.

• The presence of corners on Γ makes the Fredholm index of the SKIEs positive.
To be more precise, our numerical observations indicate that the index of the
Fredholm operator is increased by one for each corner.

• The presence of nearly hypersingular operators in the representation of the
gradient field ∇u may lead to severe loss of accuracy in the numerical evalu-
ation of the gradient field very close to Γ.

1.4. Our approach and outline of the paper. Solving the SKIEs of [10, 18]
numerically in non-smooth domains is of interest for modeling unsteady Stokes flow.
The RCIP method [12, 13, 15, 16], which is a lossless compression and acceleration
scheme in the context of Nyström discretization, has been effectively used for simpler
SKIEs than these ones. Central to the RCIP method is mesh refinement in corners
and a recursive inversion formula based on kernel splitting. Applying RCIP to the
SKIEs of [10, 18] is nontrivial because the kernels become nearly hypersingular near
corners and the SKIEs themselves become non-invertible. This leads to challenges,
related to exponential ill-conditioning of discretized system matrices and the loss of
floating point accuracy, irrespective of what numerical solution method is used.

In this paper we develop a modified RCIP method suitable for nearly hypersin-
gular kernels. First, we apply row-column equilibration to a particular form of block
matrix inversion for increased stability. Second, we use scaling of hypersingular inte-
gral operators to devise a good initializer for the recursion. Third, we derive a more
intricate kernel splitting procedure designed to improve the accuracy of the entries
of intermediate matrices. Combined with an interpolation scheme for the accurate
evaluation of gradient fields close to the boundary, our approach can be used to effi-
ciently evaluate both u and its gradient down to machine precision for the (modified)
biharmonic problem in the entire computational domain.

The rest of the paper is organized as follows. Section 2 reviews the integral
equation formulations in [10, 18]. Section 3 is about explicit kernel-split Nyström
discretization of the SKIEs. The RCIP method is reviewed in section 4 and the mod-
ifications particular to the present paper appear in section 5. Section 6 discusses
accurate evaluation of the solution and its gradient. Section 7 illustrates the perfor-
mance of the entire numerical scheme via several examples. Finally, we conclude the
paper with a short discussion on the extensions and applications of the work.

2. SKIE formulations. This section reviews the SKIEs of [10, 18], for the first
Dirichlet problem of the biharmonic and the modified biharmonic equations, in a
uniform exposition.

2.1. Notation. We shall frequently use Green’s functions G(x,y) whose argu-
ments x = (x1, x2) and y = (y1, y2) are points in R2 and are called target point and
source point, respectively. The unit normal vector at x on Γ is νx, but the unit
normal vector at y is simply denoted by ν. We use r = x − y, r = |x − y|, and dsy
as an element of arc length. We use the same boldfaced letter to denote an integral
operator, its kernel, and the associated interaction matrix after discretization. This
should not cause any confusion as the meaning of the symbol is clear from the context.

To simplify expressions, we shall at times use complex variable notation alongside
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with real notation. We then identify the point (x1, x2) in R2 with the point τ = x1+ix2

in C. Furthermore, we identify x with zt, y with zs, ν with ns, y−x with z, and ∇u
with ux1

+ iux2
. The conjugation operator is denoted by Conj, or indicated with an

overbar symbol. The real part of an expression is abbreviated Re. Note that

(3) ns = −iżs(t)/|żs(t)| ,

where zs(t) is a parameterization of Γ and żs(t) = dzs(t)/dt.

2.2. The first Dirichlet problem of the biharmonic equation. Consider
the following boundary value problem:

∆2u = 0 in D ,(4)

u = f1 on Γ ,(5)

∂u

∂ν
= f2 on Γ .(6)

The fundamental solution to the biharmonic equation is

(7) G(x,y) =
1

8π
r2 log(r) .

In [10], u is represented via a sum of two biharmonic multi-layer potentials

(8) u(x) =

∫
Γ

[G1(x,y)σ1(y) +G2(x,y)σ2(y)] dsy ,

where G1 and G2 are defined in (12). The boundary conditions (5) and (6) together
with jump relations lead to the following SKIE system for the unknown layer densities
σ1 and σ2:

(9) D(x)σ(x) +

∫
Γ

K̃(x,y)σ(y) dsy = f(x) , x ∈ Γ ,

where

(10) D(x) =

[
1
2 0

−κ(x) 1
2

]
, x ∈ Γ ,

κ(x) is the signed curvature at x, and

(11) σ(x) =

[
σ1(x)
σ2(x)

]
, f(x) =

[
f1(x)
f2(x)

]
, K̃(x,y) =

[
G11(x,y) G12(x,y)
G21(x,y) G22(x,y)

]
.

The kernels Gi and Gij , i, j = 1, 2, are

(12)

G11(x,y) = G1(x,y) = − (r · ν)3

πr4
,

G12(x,y) = G2(x,y) =
1

4π
− (r · ν)2

2πr2
,

G21(x,y) =
∂G1

∂νx
= −3

(r · ν)2(ν · νx)

πr4
+ 4

(r · ν)3(r · νx)

πr6
,

G22(x,y) =
∂G2

∂νx
= − (r · ν)(ν · νx)

πr2
+

(r · ν)2(r · νx)

πr4
.
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Since many applications require the evaluation of the gradient of the solution we
use the last two equations in (12) to obtain

(13) ∇u(x) =

∫
Γ

[G1c(x,y)σ1(y) +G2c(x,y)σ2(y)] dsy ,

with kernels

(14)
G1c(x,y) = −3

(r · ν)2ns

πr4
− 4

(r · ν)3z

πr6
,

G2c(x,y) = − (r · ν)ns

πr2
− (r · ν)2z

πr4
.

2.3. The first Dirichlet problem of the modified biharmonic equation.
Consider the following boundary value problem:

∆(∆− λ2)u = 0 in D ,(15)

u = f1 on Γ ,(16)

∂u

∂ν
= f2 on Γ .(17)

The fundamental solution to the modified biharmonic equation is

(18) G(x,y) = − 1

2πλ2
(log(r) +K0(λr)) ,

where λ is assumed to be real and positive and K0 is the modified Bessel function
of the second kind of order zero [23]. In [18], an SKIE is derived for (15)–(17). The
representation for u and the consequent SKIE system are formally identical to (8)–
(11), but the kernels Gi and Gij now become

(19)

G11(x,y) = G1(x,y) = −r · ν
πr2
C1(λr) +

(r · ν)3

πr4
C2(λr) ,

G12(x,y) = G2(x,y) = −
(

1

2π
− (r · ν)2

πr2

)
C0(λr) ,

G21(x,y) = − (ν · νx)

πr2
C1(λr) + 3

(r · ν)2(ν · νx)

πr4
C2(λr)

+
(r · ν)(r · νx)

πr4
C3(λr)− (r · ν)3(r · νx)

πr6
C4(λr) ,

G22(x,y) = 2
(r · ν)(ν · νx)

πr2
C0(λr) +

(r · νx)

2πr2
C5(λr)

− (r · ν)2(r · νx)

πr4
C2(λr) ,

where the functions Ck (k = 0, . . . , 5) are

(20)

C0(x) = K0(x) +
2

x
K1(x)− 2

x2
,

C1(x) = 3C0(x) + xK1(x) +
1

2
,

C2(x) = 4C0(x) + xK1(x) ,

C3(x) = 12C0(x) + 5xK1(x) + x2K0(x) + 1 ,

C4(x) = 24C0(x) + 8xK1(x) + x2K0(x) ,

C5(x) = 2C0(x) + xK1(x) ,
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and K1 is the modified Bessel function of the second kind of order one.
The gradient of the solution to the modified biharmonic problem can be computed

via (13) but with the kernels in (14) replaced with

(21)

G1c(x,y) = − ns

πr2
C1(λr) + 3

(r · ν)2ns

πr4
C2(λr)− (r · ν)z

πr4
C3(λr)

+
(r · ν)3z

πr6
C4(λr) ,

G2c(x,y) = 2
(r · ν)ns

πr2
C0(λr)− z

2πr2
C5(λr) +

(r · ν)2z

πr4
C2(λr) .

We note that neither (9) with (12) nor (9) with (19) has a nontrivial null space
for interior Dirichlet problems in a simply connected domain with smooth boundary.

3. Discretization of the SKIE system. The biharmonic SKIE system (9)
with (12) is discretized using a standard panel-based Nyström scheme and ngl-point
Gauss–Legendre quadrature. The quadrature weight at a node zsk is denoted wk.

The modified biharmonic SKIE system (9) with (19) is discretized using that
same Nyström scheme, but supplemented with a product integration scheme [14,
Section 6.1] which is activated when y is close to x. This requires that each kernel is
split into a smooth part and a logarithmically singular part

(22) Gij(x,y) = G
(S)
ij (x,y) +G

(L)
ij (x,y) log(r) ,

where the factor G
(L)
ij is known in analytic form and both G

(S)
ij and G

(L)
ij are smooth

in the sense that, for a fixed x, their dependence on y is well approximated panelwise
by polynomials of degree ngl − 1. Without ambition of being exhaustive, the rest of
this section summarizes some results needed to implement the discretizations of (9)
with (12) and (19).

Limits of the kernels in (12), as y→ x, are computed using

(23) lim
y→x

r · ν
r2

= −κ(x)

2

and read

(24)

lim
y→x

G11(x,y) = 0 , lim
y→x

G12(x,y) =
1

4π
,

lim
y→x

G21(x,y) = − 3

4π
κ2(x) , lim

y→x
G22(x,y) =

1

2π
κ(x) .

For the kernels in (19), we need G
(L)
ij of (22). These functions can be constructed

from splittings

(25) Ck(x) = C(S)
k (x) + C(L)

k (x) log(x) , k = 0, . . . , 5 ,

which, in turn, rely on splittings

(26) Kn(x) = K(S)
n (x) +K(L)

n (x) log(x) , n = 0, 1 .

From the definition of Kn [23] it follows

(27) K
(L)
0 (x) = −J0(ix) , K

(L)
1 (x) = −iJ1(ix) ,
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Fig. 1. Left: the coarse mesh used in the solve phase of the RCIP method. The boundary
subset Γ? contains the four panels closest to the corner. These panels constitute a type c mesh on
Γ?. Right: the fine mesh obtained from the coarse mesh by nsub = 3 times dyadically refining the
panels closest to the corner.

where Jn are Bessel functions of the first kind. Furthermore, it is straightforward to
compute the limits

(28)

lim
y→x

G
(S)
11 (x,y) = 0 ,

lim
y→x

G
(S)
12 (x,y) =

1

4π
,

lim
y→x

G
(S)
21 (x,y) = − 3

4π
κ2(x)− λ2

8π

(
log

(
λ

2

)
+

1

4
+ γ

)
,

lim
y→x

G
(S)
22 (x,y) =

1

2π
κ(x),

lim
y→x

G
(L)
11 (x,y) = lim

y→x
G

(L)
12 (x,y) = lim

y→x
G

(L)
22 (x,y) = 0,

lim
y→x

G
(L)
21 (x,y) = −λ

2

8π
,

where γ is the Euler–Mascheroni constant.

When x = λr is small, we evaluate the C(L)
k (x) of (25) using series expansions of

the order O(x16), or higher, to avoid numerical cancellation.

4. An overview of the RCIP method. This section gives a brief overview
of the RCIP method for solving integral equations on curves Γ with various types of
isolated point singularities. The exposition follows [13], which in turn builds on [12,
15, 16]. We assume that a system of neq integral equations takes the standard form

(29) (I + K)ρ(x) = f(x) ,

where I is the identity operator, K contains integral operators that are compact when
Γ is smooth, and ρ contains unknown layer densities. For the ease of discussion, and
without loss of generality, we will use the one-corner curve Γ from [13, Eq. (1)] with
parameterization

(30) zs(t) = sin(πt)eiθ(t−0.5) , t ∈ [0, 1] ,

and with θ = π/2 (in our illustrations).
A standard numerical technique for resolving point singularities is adaptive mesh

refinement toward the singular point, as shown in Figure 1. That is, the linear system
to be solved after Nyström discretization is

(31) (Ifin + Kfin)ρfin = ffin ,
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where the system size is nfin × nfin. With npan panels on the coarse mesh and nsub

refinement levels on the coarse panels closest to the corner we have nfin = neq(npan +
2nsub)ngl.

There are several issues associated with (31). First, K is not compact when Γ
has corners and (29) is not a second kind equation. The linear system (31) becomes
increasingly ill-conditioned as nsub grows and iterative solvers converge slowly. Sec-
ond, the system size of (31) increases as nsub grows. Third, it is difficult to determine
a priori the number nsub needed to meet a given desired accuracy. Under-refinement
will fail to resolve ρ, while over-refinement often leads to an excessive computational
cost, instability, and the loss of accuracy due to the multiscale nature of the graded
mesh.

The RCIP method resolves these issues. It starts from the splitting of the inter-
action matrix in the form

(32) K = K◦ + K?,

where K? is nonzero only when both the target and source points are on the boundary
subset Γ? containing the four coarse panels closest to the corner vertex, see Figure 1.
One can say that K? is the singular and near-singular part of the interaction matrix
that is capable of capturing the singularities in ρ around the corner, while K◦ contains
the smooth part. We remark here that ? and ◦ as superscripts on any other matrix
always refer to the aforementioned splitting. The final linear system in the RCIP
method is

(33) (Icoa + K◦coaR) ρ̃coa = fcoa ,

where Icoa is the identity matrix on the coarse mesh, K◦coa is K◦ discretized on the
coarse mesh, R is the recursively compressed inverse preconditioner, and ρ̃coa is a
transformed layer density discretized on the coarse mesh. The density ρ̃coa may
be used directly with R and smooth quadratures to calculate many quantities of
interest in the post-processing stage. The linear system (33) has size ncoa×ncoa with
ncoa = neqnpanngl, independent of nsub.

The matrix R coincides with the identity matrix except at those entries where
K?

coa is nonzero. We denote that part of R by R?. The size of R? is nc × nc with
nc = 4neqngl. In other words, the matrix K◦coa has a zero block of size nc × nc, and
R? is exactly located at the position of the zero block of K◦coa. In practice, this zero
block may be distributed in various places in K◦coa depending on the ordering of the
discretization points. In [13, Appendix D], it is shown that R? can be computed as
the matrix Rnsub

obtained via the recursion

(34) Ri = PT
Wbc

(
F{R−1

(i−1)}+ M◦
i

)−1

Pbc , i = 1, . . . , nsub ,

with

(35) Mi = Ib + Kib .

Here R0 is an initializer wich can be set to I?b. Pbc is a prolongation matrix of size
nb × nc (nb = 6neqngl) carrying out interpolation from points on a type c mesh to
points on a type b mesh on the same boundary part. PWbc = WbPbcW

−1
c , where

Wb and Wc are two diagonal matrices with quadrature weights for type b and type c
meshes on the diagonal, respectively. The operator F{·} expands its matrix argument
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Γ⋆
3 = Γ⋆ Γ⋆

2 Γ⋆
1

Fig. 2. Three boundary subsets Γ?
3, Γ?

2, and Γ?
1, used for the discretization of Kib in (35), along

with their corresponding type b meshes for nsub = 3. Note that i = 1 is the finest level and that Γ?
nsub

coincides with Γ? in Figure 1.

by zero-padding, and both the target and source points of Kib are on a type b mesh on
the boundary subset Γ?i . The reader is referred to Figures 1 and 2 for a few examples
of subsets Γ?i and of the so-called type b and type c meshes at different refinement
levels and to [13, Appendix D] for a detailed explanation of (34) and the construction
of the meshes involved. Here we simply note that at each recursion step one only
needs to invert an nb × nb matrix.

The recursion (34) starts from the smallest six panels in the fine mesh, gradually
moves up in the hierarchy, and finally reaches Γ? in the coarse mesh. This way, R?

encapsulates all the information about the singularities of the unknowns around the
corner in the fine mesh and the computational cost grows only linearly with nsub.
The overall accuracy is essentially independent of the choice of nsub as long as nsub

is sufficiently large. We remark that the RCIP method captures the singularities of
ρ in a purely numerical and algorithmic fashion. That is, it is kernel-independent
or even problem-independent and there is no need to find the singular behavior of ρ
analytically in advance.

5. Difficulties associated with the SKIE system (9) and modifications
of the RCIP method. The SKIE system (9) has neq = 2. We choose ngl = 16 in
the discretization and thus nc = 128 and nb = 192. The system (9) can easily be
converted into the form (29) via the change of variables

(36) ρ ≡
[
ρ1

ρ2

]
= Dσ and K = K̃D−1 .

As pointed out in subsection 1.1, the biharmonic problem captures the essential dif-
ficulties of the modified biharmonic problem. Hence, we will use the system matrix
I + K with kernels from (12) as an illustration in this section, unless the modified
biharmonic problem is mentioned specifically. We observe that the stability of the
recursion (34) is tightly related to the properties of the matrix Mi of (35). Thus, we
present numerical evidence on Mi, with Γ as in (30) and npan = 24, to elaborate the
challenges outlined in subsection 1.3 and discuss modifications of the RCIP method
needed to overcome these challenges.

5.1. Avoiding inversion of ill-conditioned matrices. The matrix Mi stem-
ming from (9) via (36), for a fixed i, becomes more and more ill-conditioned as nsub

increases. Figure 3 shows the singular values of M1 for nsub = 20 and the largest and
the smallest singular values of Mi for i = 1, . . . , nsub. We observe that the largest
singular value is doubled and the smallest singular value is halved at each consecutive
refinement level, i = nsub, . . . , 1. Already with nsub = 20 – a number of refinement
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Fig. 3. Left: singular values σn of M1 versus n, n = 1, . . . , 192. Middle: largest singular
values of Mi versus refinement level i. Right: smallest singular values of Mi versus refinement
level i. Here nsub = 20, i = 1, . . . , nsub, and i = 1 is the finest level.
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Fig. 4. Left: 2-norms of diagonal blocks Mi,11 and Mi,22 versus refinement level i. Middle:
2-norms of Mi,12 versus refinement level i. Right: 2-norms of Mi,21 versus refinement level i. Here
nsub = 20, i = 1, . . . , nsub, and i = 1 is the finest level.

levels usually insufficient for resolving the singularities of the unknown density – the
condition number of M1 is greater than 1020, making inversion risky in double pre-
cision arithmetic. The severe ill-conditioning of Mi leads to the ill-conditioning of
Ri. As pointed out in the Introduction, the ill-conditioning of Mi is closely related
to the fact that the kernel G21(x,y) in (12) behaves like O

(
1/‖x− y‖2

)
and that

the associated integral operator becomes hypersingular around a corner. The more
common situation is when a compact operator becomes a bounded singular operator
around a corner and then Ri is well-conditioned.

Fortunately, it is not necessary to compute the recursion (34) exactly as it stands
and the inversion of Ri−1 can be avoided using block matrix inversion techniques.

We implement
(
F{R−1

i−1}+ M◦
i

)−1
using [17, Eq. (8)] as in [16, Appendix B]. This

implementation leads to stabilization.

5.2. Inversion of poorly balanced matrices. The matrix Mi of (35), stem-
ming from (9), is not only ill-conditioned but also poorly balanced. To see this, we
partition Mi into 2× 2 blocks of equal size

(37) Mi =

[
Mi,11 Mi,12

Mi,21 Mi,22

]
.

The partitioning follows naturally from the discretization of G11, G12, etc. and the
associated diagonal blocks. Figure 4 shows the 2-norms of these four blocks. We
observe that the norms of the diagonal blocks Mi,11 and Mi,22 are O(1) and more
or less independent of the refinement level i. However, the norm of Mi,12 is roughly
halved and the norm of Mi,21 is roughly doubled at each consecutive refinement level,
i = nsub, . . . , 1. This is so since the kernel G12 remains bounded and the kernel G21

scales like O(1/r2) around the corner, and the element of arclength ds is reduced by
a factor of 2 from level i to level i− 1.
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The poor balance of Mi will lead to severe loss of accuracy when solving re-
lated linear systems or computing the inverse of certain related matrices in the recur-
sion (34). Here we use a simple row-column equilibration [11, Section 3.5.2] as follows:
Suppose that we try to solve a linear system Aix = b with Ai having similar 2 × 2
block structure as Mi. By row-column equilibration we mean that instead of solving
Aix = b, we solve (D−1

i AiDi)y = D−1
i b and set x = Diy. Di is a diagonal matrix

(38) Di =

[
I 0
0 siI

]
with I the identity matrix, 0 the zero matrix, and the scaling factor si = 2nsub−i. It
is straightforward to verify that D−1

i AiDi has no effect on diagonal blocks of Ai, but
compensates the poor balance of two off-diagonal blocks of Ai so that their entries are
of order O(1), i.e., about the same order as diagonal blocks. Similarly, the inverse of
Ai is computed via the formula A−1

i = Di(D
−1
i AiDi)

−1D−1
i . This technique makes

the recursion much more accurate and robust for the SKIEs studied in this paper.

5.3. Initiating the recursion. The choice of the initializer R0 in (34) has a
great influence on the number of refinement levels nsub needed to resolve an SKIE.
Let, for a given i, Rc

i denote the matrix to which Rnsub−i converges as nsub → ∞
in (34), that is, as the mesh is infinitely refined. The best initializer on a mesh that
is nsub times refined (nsub now finite) is R0 = Rc

nsub
. In the present work, we use an

approximation of that initializer that is asymptotically correct for large nsub.
If Mi of (35) is scale invariant on wedges, then the series of matrices Rc

i , i =
0, 1, . . ., converges rapidly to a limit Rc and the initializer can be set to R0 = Rc.
Often only the first 40 or 50 Rc

i are disctinct in double precision arithmetic. This
means that when nsub is large, the majority of the steps in the recursion (34) can be
viewed as a fixed-point iteration for Rc defined by

(39) Rc = PT
Wbc

(
F{(Rc)−1}+ M◦

w

)−1
Pbc .

Here Mw is Ib + Kb on a finite wedge with the same opening angle as the corner
in (30), for example

(40) zs(t) =

{
−πte0.5iθ , t ∈ [−2, 0] ,

πte−0.5iθ , t ∈ [0, 2] .

The fixed-point property can be used to find Rc without knowing precisely what nsub

are needed for the Rc
i to converge or at what index i the Rc

i cease to be distinct. One
just iterates (39) until convergence is reached. See, further, [13, Section 11].

For the SKIEs of the present work, Mi is not scale invariant on wedges and the
scheme of the preceding paragraph needs to be modified. We observe that

Mi+1 = D−1
1 MiD1 , nsub − i� 1 ,(41)

Rc
i = D−1

1 Rc
i+1D1 , i� 1 ,(42)

where D1 are square diagonal matrices of appropriate dimensions with diagonal entries
either unity or 2. Now, let 2∆t be the side lengths, in parameter, of the legs of the
type b mesh on which M1 is discretized in (34) and let Mw be defined on the finite
wedge (40). One can then, for large nsub, find a matrix Rc such that

(43) Rc
nsub

= Dnsub
RcD−1

nsub
,
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Fig. 5. Effect of round-off errors for small r. Left: scaling of r · ν/r in double precision
floating-point arithmetic. Right: instability when calculating smooth blocks of Mi,21 – the norm of

M
(11)
i,21 versus refinement level i for nsub = 100. Here M

(11)
i,21 is the 11-block of Mi,21 upon further

partition of that matrix into 2× 2 blocks of equal size.

where the diagonal matrix Dnsub
has diagonal entries either unity or (∆t)−1 and

(44) Rc = D1P
T
Wbc

(
F{(Rc)−1}+ M◦

w

)−1
PbcD

−1
1 .

Fixed-point iteration on (44) until convergence gives Rc. Then the initializer R0 =
Rc
nsub

is obtained from (43).

5.4. Reducing the effect of round-off errors. In the original RCIP method,
the splitting (32) is done on a strict geometric basis: the interaction between the
four panels closest to a corner vertex is accounted for in K?, while the remaining
interaction is accounted for in K◦. Since local coordinates with origin at the corner
vertices are used for kernel evaluation, there are typically no problems related to
numerical cancellation.

In the present work the situation is different. Round-off errors can be amplified
and make the recursion (34) unstable, particularly for small indices i with large nsub.
When the target point x and the source point y are on the same side of a corner vertex
and r = ‖x − y‖ is very small, then r · ν or r · νx will not scale like O(r2) as they
should [9, Theorem 2.2]. To see this, let r ·ν = r1−r2 with r1 = (x−y)1ν1 = σr̄1 ·10e

and r2 = −(x − y)2ν2 = σr̄2 · 10e, where σ = ±1 is the sign, e is the exponent, and
r̄1, r̄2 are the significands of r1 and r2, respectively. Now r̄1 will be very close to r̄2

when r is very small. However, with large probability, r̄1 will not be exactly equal to
r̄2 due to round-off error. Instead, we have r1 − r2 = c1εmach · 10e with c1 an O(1)
constant. Since 10e is about the same order as r, we have

(45) r · ν = O(εmachr) ,

rather than the correct value O(r2), when r is very small.
The error in (45) does not have much effect on refined discretizations of SKIEs

if K(x,y) contains only the term r · ν/r2. Consider, for example, the off-diagonal
jk-entry in the corresponding matrix Kib of (35). As both the quadrature weight
wi,k and the distance ri,jk are roughly halved at each consecutive refinement level,
i = nsub, . . . , 1, we have wi,k = O(ri,jk). Hence

(46)
(r · ν)i,jk
r2
i,jk

|żsi,k|wi,k = O(εmach) ,
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Fig. 6. The new definition of K? – white blocks are set to zero in K? and transferred to K◦

in (32) in the RCIP method for the SKIE system (9) with (12) and (36).

rather than the correct value O(ri,jk), when ri,jk is very small. The effect of the error
in (46) is negligible as the identity will dominate smooth blocks of the corresponding
matrix Mi in (35).

When K(x,y) contains the term (r · ν)2/r4, the effect of round-off error is much
more severe. A similar finite-precision analysis as above leads to

(47)
(r · ν)2

i,jk

r4
i,jk

|żsi,k|wi,k = O

(
ε2mach

ri,jk

)
rather than to the correct value O(ri,jk). The magnitude of the right hand side
in (47) increases as ri,jk decreases and it will become O(1) when ri,jk ≈ ε2mach. This
occurs in double-precision arithmetic, say, when nsub = 100 and i = 1 since then
ri,jk ≈ 2−100/16 ≈ 5 · 10−32. Numerical experiments show that the error in (47)
destroys the stability of the recursion (34). Figure 5 shows the round-off effect on
calculating r · ν when x and y are on the same side of the corner and the instability,
due to the term (r · ν)2/r4, when calculating smooth blocks of Mi,21 in (37) for the
biharmonic problem.

The second term (r · ν)3(r · νx)/r6 in (2), while also being hypersingular when x
and y are on the opposite side of the corner, leads to negligible error in the calculation
of matrix entries when x and y are on the same side. This is because

(48)
(r · ν)3

i,jk(r · νx)i,jk

r6
i,jk

|żsi,k|wi,k = O

(
ε4mach

ri,jk

)
in floating-point arithmetic. This quantity will remain small (say, less than εmach) as
long as ri,jk < ε3mach ≈ 10−47, which is true even when nsub = 120, i = 1 for the curve
defined by (30).

5.4.1. Stable splitting for the biharmonic problem. To overcome the prob-
lem with round-off errors diverging with refinement for smooth integrands in (9), we
note that the splitting (32) does not have to be done on a strict geometric basis. The
important property of K? is that it captures the non-smooth part of K near corners.
We therefore abandon strict geometric splitting criteria and let as much as possible
of the kernel K(x,y) be accounted for in K◦.

To be more specific, for the biharmonic problem (9) with (12) and (36), K? is
nonzero only if both the target and source points are on Γ? but lie on different sides of
the corner vertex. That is, if we partition K? into 4× 4 blocks (there are 2 equations
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in our SKIE system), then every other block is set to zero in K? and transferred
to K◦. We illustrate the new splitting in Figure 6. The new splitting reduces the
cancellation error in the calculation of Kib, makes half of the entries of Kib zero, and
stabilizes the recursion (34) completely.

5.4.2. Stable splitting for the modified biharmonic problem. For the
modified biharmonic problem (9) with (19) and (36), operators with logarithmically
singular kernels are not smooth and thus need to be kept in K?. It is straightforward
to split those operators into two parts – K(S) and K(L), with K(S) containing smooth
terms, which would lead to large cancellation error unless they are included in K◦,
and K(L) containing the rest. Therefore, K(S) is split as in subsection 5.4.1, while
K(L) is split as in the original RCIP method. Here we observe that K(S) = K̃(S)D−1

with K̃(S) given by the following expressions:

(49) K̃(S) =

[
G

(S)
11 G

(S)
12

G
(S)
21 G

(S)
22

]
,

and

(50)

G
(S)
11 (x,y) =

(r · ν)3

πr4

(
−1 +

λ2r2

8

)
,

G
(S)
12 (x,y) =

1

2π

(
1

2
− (r · ν)2

r2

)
,

G
(S)
21 (x,y) = 3

(r · ν)2(ν · νx)

πr4

(
−1 +

λ2r2

8

)
− (r · ν)(r · νx)

πr4

λ2r2

8

− (r · ν)3(r · νx)

πr6

(
−4 +

λ2r2

4
− λ4r4

48

)
,

G
(S)
22 (x,y) = − (r · ν)(ν · νx)

πr2
− (r · ν)2(r · νx)

πr4

(
−1 +

λ2r2

8

)
.

6. Accurate evaluation of the solution and its gradient. Once the dis-
cretized system (9) is solved for pointwise values of the unknown layer density σ, the
solution u(x) and its gradient ∇u(x) can be obtained in D via discretization of (8)
and (13). When x is some distance away from Γ, the underlying standard quadrature
is sufficient to give high accuracy.

When x is close to Γ, special evaluation methods are needed. See [1, 20] for
different options. We shall again resort to product integration, extending the scheme
developed in [12, 14]. This time we need to split the kernels concerned into several
terms which are all products of a given type of near-singularity and a smooth function.
The explicit kernel-split needed for a kernel G1, G2, G1c, or G2c reads in general form

(51) Gi(x,y) = G
(S)
i (zt, zs) +G

(L)
i (zt, zs) log |z|+

3∑
m=1

Re
{
G

(m)
i (zt, zs)

ns

zm

}
,

where G
(1)
i is a smooth factor for the near-singularity, G

(2)
i is a smooth factor for a

near-hypersingularity, and G
(3)
i is a smooth factor for a near-supersingularity. For the

complex kernels G1c and G2c of (14) and (21) we may need to omit Re in (51), or
replace it with Conj in certain situations.
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At the heart of our product integration scheme lies panelwise polynomial approx-
imation of layer densities, coefficients determined via the solution of Vandermonde
systems, and the evaluation of integrals over intervals of Γ of the type

(52)

s
(m)
k =

∫ b

a

τk−1 log(τ − zt) dτ , m =L ,

s
(m)
k =

∫ b

a

τk−1 dτ

(τ − zt)m
, m =1, 2, 3 ,

where k = 1, . . . , ngl and a and b are consecutive breakpoints of the quadrature panels
on Γ. The integrals in (52) can readily be evaluated in a semi-analytic fashion via
translation, rotation, scaling of the plane, and forward recursion. See [12, Section 2]

for recursion formulas for s
(m)
k , m = 1, 2, and [14, Appendix B] for a Matlab code

that implements the entire product integration scheme for m = L, 1, 2. The extension
to m = 3 is straight-forward.

When x is very close to Γ, the product integration just discussed may suffer from
numerical cancellation. Subsection 6.3, below, shows how to deal with that problem
when ∇u is known on Γ.

6.1. Kernel splitting for the evaluation of u. This section shows that the
kernels G1 and G2 of (8) with (12) or (19) can be split in the form (51). First, one
can show that

(53)

r · ν = −Re {nsz̄} , (r · ν)2 =
1

2
(zz̄ + Re

{
n2

s z̄
2
}

) ,

r · ν
r2

= −Re
{ns

z

}
,

(r · ν)3

r4
= −Re

{ns

2z

}
+ Re

{
(r · ν)n2

s

2z2

}
.

For the biharmonic kernels G1 and G2 of (12) it then follows

(54) G
(1)
1 =

1

2π
, G

(2)
1 = − 1

2π
(r · ν)ns , G

(1)
2 =

1

2π
(r · ν) .

We emphasize that the term (r · ν)2/r2, occurring in G2, is smooth and bounded in
the analytical sense, but cannot be well approximated by a low degree polynomial
when the target point is close to the source panel. Therefore, it is to be considered
as near-singular within our product integration scheme.

For the modified biharmonic kernels G1 and G2 of (19), the factors G
(L)
1 and G

(L)
2

are the same as for the on-boundary evaluation in section 3. The smooth factors of
the other singularities are

(55) G
(1)
1 =

1

2π
− λ2

8π
(r · ν)2 , G

(2)
1 = − 1

2π
(r · ν)ns , G

(1)
2 =

1

2π
(r · ν) .

The extra term in G
(1)
1 of (55), not present in G

(1)
1 of (54), is due to that the first

two terms in the asymptotic expansion of C2(λr) are −1 + λ2r2/8. We note that the
splittings of G1 and G2 in singular terms are clean in the sense that they do not
contain any cross terms that multiply a near-logarithmic singularity with other types
of near singularity.

6.2. Kernel splitting for the evaluation of ∇u. This section shows that
the complex kernels of (13) with (14) or (21) can be split in the form (51), with Re
omitted or replaced by Conj.
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We first split the kernels of (14). Using

(56)

4
(r · ν)2z

r6
= Conj

{
n2

s

z3

}
+

n2
s

z2z̄
+

2

zz̄2
,

3
(r · ν)ns

r4
= − 3n2

s

2z2z̄
− 3

2zz̄2
,

(r · ν)z

r4
= −Conj

{ ns

2z2

}
− ns

2r2
,

we obtain

(57)
G1c(x,y) = − 1

2π

(
Conj

{
2(r · ν)

n2
s

z3
− ns

2z2

}
+

n3
s

2z2

)
,

G2c(x,y) =
1

2π

(
(r · ν)Conj

{ns

z2

}
+ nsRe

{ns

z

})
.

The above expressions splitG1c andG2c into a sum of near-singular, near-hypersingular,
and near-supersingular terms with smooth prefactors.

We then split the kernels of (21). The resulting factors G
(L)
1c and G

(L)
2c are similar

to G
(L)
21 and G

(L)
22 of the on-boundary evaluation in section 3. For the near singular

terms, we note that the leading terms in the asymptotic expansion of the Ck are

(58)

C0(λr) = −1

2
+O(r2 log r) , C1(λr) = O(r2 log r) ,

C2(λr) = −1 +
1

8
λ2r2 +O(r4 log r) , C3(λr) = −1

8
λ2r2 +O(r4 log r) ,

C4(λr) = −4 +
1

4
λ2r2 − 1

48
λ4r4 +O(r6 log r) , C5(λr) = O(r2 log r) .

Combining (21) and (58), we obtain the near-singular parts G
(N)
1c and G

(N)
2c of G1c and

G2c which can be arranged in accordance with (51) as

(59)

G
(N)
1c (x,y) = − 1

2π

(
Conj

{
2(r · ν)

n2
s

z3
− ns

2z2

}
+

n3
s

2z2

)
+
λ2

8π
(r · ν)zRe

{
n2

s

z2

}
− λ2

8π

(
2z + 3(r · ν)ns −

λ2

6
(r · ν)2z

)
Re
{ns

z

}
,

G
(N)
2c (x,y) =

1

2π

(
(r · ν)Conj

{ns

z2

}
+

(
ns −

λ2

4
(r · ν)z

)
Re
{ns

z

})
.

We observe that setting λ = 0 in (59) gives back (57).

6.3. An interpolation scheme for very close evaluation. The product in-
tegration scheme will suffer from cancellation in terms like 1/(zs − zt)

m when the
target point zt is away from the origin but very close to the boundary Γ. The eval-
uation of ∇u is particularly affected by this loss of precision. To fix the problem,
we propose a simple interpolation scheme for ∇u. We invoke this scheme whenever
d(zt,Γ)/lk < 0.04, where d(zt,Γ) is the distance from zt to Γ and lk is the length of
the panel on which the boundary point nearest to zt is situated. Typically, very few
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Table 1
Strengths and positions of sources generating f1.

k = 1 k = 2 k = 3 k = 4 k = 5
qk 0.171 0.720 0.918 0.825 0.078

Re{zk} 1.280 0.413 −0.235 −0.145 1.050
Im{zk} 0.177 0.795 0.315 −0.474 −0.580

target points will need this special treatment. Therefore, its use will not increase the
cost of field evaluations in any significant way.

The interpolation scheme goes as follows. First, we find a boundary point zs

whose normal vector passes through zt. This is done via Müller’s method [22], which
converges to machine precision in about four iterations. We then place nip +1 interpo-
lation points zi on the line passing through zs and zt. The first point is z1 = zs. The
remaining points are chosen to be the transformed Chebyshev nodes of the second
kind, as implemented by the following Matlab code
x=cos(pi*(n_ip:-1:0)/n_ip);

z_i=z_s+(x+1)*l_k/2*(z_t-z_s)/abs(z_t-z_s);

In our implementation, we set nip = 8 and evaluate ∇u at zi, i = 2, . . . , 9, using the
product integration scheme of section 6. It is assumed that the value of ∇u at z1

can be obtained directly from boundary data. Finally, barycentric interpolation is
used to evaluate the gradient field at zt. We observe, in numerical experiments, that
the scheme is fairly robust and achieves better than 11-digit accuracy for ∇u and
arbitrarily small d(zt,Γ).

7. Numerical results. We now demonstrate the performance of our algorithms
for (9), (8), and (13) with numerical examples. The codes are implemented in Mat-
lab, release 2017a. Output and timings are obtained on a 64 bit Linux laptop with
a 2.10GHz Intel i7-4600U CPU with 4MB of cache in single core mode.

Example 1. The one-corner curve of (30) with θ = π/2.

In this example, D is the domain bounded by the curve Γ of (30) with θ =
π/2. Boundary data f1 and f2 are generated by a linear combination of fundamental
solutions with strengths qk at points zk outside D. The combination of fundamental
solutions for the two problems is

(60) f1(x) =

5∑
k=1

qkr
2
k log(rk) and f1(x) =

5∑
k=1

qk (log(rk) +K0(λrk)) ,

where rk = |zt − zk|. qk and zk are chosen “randomly” as in Table 1. The errors are
computed against analytical solutions. The linear system, corresponding to (33), is
solved iteratively using GMRES with a stopping criterion threshold of εmach in the
estimated relative residual. ngl is set to 16. Other than part (e), the constant λ
in (15) is set to 20; the curve is divided into 28 and 45 panels for the biharmonic and
modified biharmonic problems, respectively.

(a). Stability analysis. The top row of Figure 7 illustrates how the relative
error in the solution u and the number of GMRES iterations needed depend on the
number of refinement levels nsub used in (34) for the biharmonic problem. The bot-
tom row of Figure 7 illustrates analogous dependencies for the modified biharmonic
problem. The errors in u are measured at a single interior point zt = 0.3 + 0.1i.
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Fig. 7. Stability for Example 1. Left column: convergence of u with nsub. Right column:
number of GMRES iterations needed as a function of nsub. Top row: the biharmonic problem.
Bottom row: the modified biharmonic problem.

Figure 7 shows that the RCIP method is robust and accurate and leads to linear sys-
tems whose system matrices have nice spectral properties. The number of GMRES
iterations needed is low, ranging from 17 to 35. The achieved precision is more or less
independent of nsub and nearly optimal, as long as nsub is sufficiently large.

(b). Accuracy analysis. We now seek u and ∇u in the entire domain D. A
Cartesian grid of 300× 300 equispaced points is placed on the rectangle [−0.1, 1.1]×
[−0.5353, 0.5353] and evaluations are carried out at those 27, 332 grid points that are
in D. Here 7, 344 target points activate the product integration scheme of section 6;
4, 678 target points close to the corner vertex require that ρ is reconstructed on a
partially refined grid, see [13, Section 9]; 464 target points activate the interpolation
scheme of subsection 6.3. The number of refinement levels is set to nsub = 40. Figure 8
shows the absolute error in u and ∇u for the biharmonic and modified biharmonic
problems, respectively.

From these results, and from similar experiments with other strengths qk and
points zk than those in Table 1 and also with other corner opening angles θ, we
conclude that our scheme achieves high accuracy in the entire computational domain.

(c). Computational cost on various parts of the numerical scheme.
The breakdown of the computational cost for the biharmonic problem is as follows.
0.88 seconds of CPU time is spent on the initializer (44) for Rc; 0.21 seconds of CPU
time is spent on the recursion (34) for R?; 0.02 seconds of CPU time is spent on
solving (33) for ρ̃coa with GMRES; 23 seconds of CPU time is spent on computing
u and ∇u from ρ̃coa via (36) and discretizations of (8) and (13). The breakdown of
the computational cost for the modified biharmonic problem is similar, although it
generally takes longer time in the recursion and evaluation phases since the kernels
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Fig. 8. Accuracy in D for Example 1. Left column: Log10 of pointwise absolute error in u.
Right column: Log10 of pointwise absolute error in |∇u|. Top row: the biharmonic problem. Bottom
row: the modified biharmonic problem.
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Fig. 9. Asymptotic behavior of the layer densities ρ1 and ρ2 close to the corner vertex for Ex-
ample 1. Left: the biharmonic problem. Right: the modified biharmonic problem.

are more complicated. The time spent on GMRES is negligible compared to the time
spent on the recursion (34) and, even more so, on evaluations of u and ∇u. We
expect the time spent on evaluations of u and ∇u to be reduced if fast algorithms are
constructed and incorporated.

(d). Asymptotic behavior of the density. We emphasize that the RCIP
method can use ρ̃coa and the matrices Ri of (34) to reconstruct ρfin at all discretization
points on the fine mesh [13, Section 9]. This makes it easy to zoom in on layer
densities in regions where they vary rapidly. Figure 9 shows the asymptotic behavior
of ρ, related to σ via (36), close to the corner vertex. For both our problems, the
asymptotic behavior is

(61) ρi ∝ dβi i = 1, 2 ,
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Fig. 10. Stability for Example 2. Left column: convergence of u with nsub. Right column:
number of GMRES iterations needed as a function of nsub. Top row: the biharmonic problem.
Bottom row: the modified biharmonic problem.

where d is the distance to the corner vertex and the singularity exponents are numer-
ically determined to β1 = 0.0914708101539 and β2 = −0.9085291898461.

(e). Dependence on λ for the modified biharmonic problem. We have
also investigated the dependence on λ for the modified biharmonic problem. For
λ = 1, 10, 100, we need 24, 32, 50 panels to fully resolve the density, and 16, 19,
22 number of iterations for GMRES to converge with stopping criterion of 10εmach,
respectively. This shows that the number of GMRES iterations increases very mildly
as λ increases.

Example 2. Triangle.

It is clear that our numerical algorithms are applicable to curves with multiple
corners. The construction of the preconditioner R? needs to be done only once for each
different type of corner, which reduces the computational cost for certain geometries.
For example, only one distinct R? is needed for all corners of a regular polygon. Here
we illustrate the applicability of our algorithms to polygons by considering the domain
D whose boundary Γ is given by a nonequilateral triangle with vertices at vj = eiθj

(j = 1, 2, 3). The angles θj are chosen “randomly” to be [0.258 2.20 4.27], ngl is set
to 18, and the total number of discretization points on the coarse mesh is 450 for
the biharmonic problem and 684 for the modified biharmonic problem with λ = 20.
Boundary data is generated by a linear combination of fundamental solutions with
strengths qk at points zk outside D, where the qk are the same as in Table 1, and
zk = 1.5ei2π(k−1)/5 (k = 1, . . . , 5). The GMRES stopping criterion threshold is set to
20εmach. The errors in u are measured at a single interior point zt = 0.3+0.1i against
analytical solutions.

The top row of Figure 10 illustrates how the relative error in the solution u and
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Fig. 11. Accuracy in D for the modified biharmonic problem for Example 2. Left column:
Log10 of pointwise absolute error in u. Right column: Log10 of pointwise absolute error in |∇u|.

the number of GMRES iterations needed depend on the number of refinement levels
nsub used in (34) for the biharmonic problem. The bottom row of Figure 10 illustrates
analogous dependencies for the modified biharmonic problem. The number of GMRES
iterations is almost constant. For the biharmonic problem, the achieved precision is
more or less independent of nsub due to the presence of the initializer and the fact
that all sides are straight line segments. For the modified biharmonic problem, the
achieved precision also reaches its limit in double precision arithmetic quickly with
respect to nsub.

An accuracy study is carried out in the entire domain D. A Cartesian grid
of 300 × 300 equispaced points is placed on the rectangle [−1, 1.1] × [−1, 1] and
evaluations are carried out at those 27, 401 grid points that are in D. Here 4, 388
target points activate the product integration scheme of section 6; 1, 500 target points
close to the corner vertex require that ρ is reconstructed on a partially refined grid;
239 target points activate the interpolation scheme of subsection 6.3. The number of
refinement levels is set to nsub = 40. Figure 11 shows the absolute error in u and ∇u
for the modified biharmonic problem. The accuracy for the biharmonic problem is
similar and therefore omitted.

8. Conclusions and further discussions. We have developed a numerical
scheme to solve the SKIEs for the first Dirichlet problem of the biharmonic and
modified biharmonic equations [10, 18] in non-smooth domains. The scheme modifies
the RCIP method [13, 15], so that it can handle certain hypersingular integral kernels
around corners in a stable fashion.

In [24] it was pointed out that the condition number of the discretized system
matrix of the SKIE (9) grows linearly with the maximum curvature of the boundary,
as illustrated in [24, Figure 2]. The modified RCIP method presented in this paper
uses the preconditioned equation (33) which, for domains with corners, allows for an
economical discretization, rapid convergence of iterative solvers, and high accuracy in
both the solution and its gradient.

For large-scale problems, say, with boundary curves of many corners, our scheme
can be coupled with fast algorithms (see, for example, [2, 8, 19, 21]) to achieve optimal
complexity in both the solve phase and the evaluation phase. We plan to extend our
work and combine it with proper fast algorithms to develop an accurate and efficient
solver for the unsteady Stokes flow [18] in non-smooth domains.
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