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STABILITY OF REGIME-SWITCHING DIFFUSION SYSTEMS

WITH DISCRETE STATES BELONGING TO A COUNTABLE SET\ast 

DANG HAI NGUYEN\dagger AND GEORGE YIN\ddagger 

Abstract. This work focuses on the stability of regime-switching diffusions consisting of con-
tinuous and discrete components, in which the discrete component switches in a countably infinite
set and its switching rates at the current time depend on the continuous component. In contrast
to the existing approach, this work provides a more practically viable approach with more feasible
conditions for stability. A classical approach for asymptotic stability using Lyapunov function tech-
niques shows that the Lyapunov function evaluated at the solution process goes to 0 as time t → ∞.
A distinctive feature of this paper is the precise estimate of pathwise rates of convergence, which
pinpoint how fast the aforementioned convergence takes place. In addition, some examples are given
to illustrate our findings.
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1. Introduction. In the new era, because of the pressing needs in networked
systems (including physical, biological, ecological, and social dynamic systems), large-
scale optimization, and wired and wireless communications, many new sophisticated
control systems have come into being. Hybrid systems in which discrete and con-
tinuous states coexist and interact are such a representative. In particular, taking
random disturbances into consideration, the so-called regime-switching diffusion sys-
tems have drawn resurgent and increasing attention. A regime-switching diffusion is
a two-component process (X(t), α(t)), a continuous component and a discrete compo-
nent taking values in a set consisting of isolated points. When the discrete component
takes a value i (i.e., α(t) = i), the continuous component X(t) evolves according to
the diffusion process whose drift and diffusion coefficients depend on i. Asymptotic
properties of such systems such as stability have been studied intensively because of
numerous applications. For example, many issues such as permanence, extinction,
persistence, etc., of species in population dynamics and ecology are all linked to the
stability issues.

Because many systems are in operation for a long period of time, an important
problem of great interest is the stability of such systems. Many results on different
types of stability have been given for switching diffusions when the state space of α(t)
is finite (see, e.g., [9, 12, 21, 22, 24, 25]). For α(t) taking values in a countable state
space, the stability of the underlying systems is more difficult to analyze. To the best
of our knowledge, very few papers have considered the stability of switching diffusion
with countable switching states. In [18], some conditions for the stability of those
systems were given by approximating the generator of a continuous state-dependent
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3894 DANG HAI NGUYEN AND GEORGE YIN

switching process by that of a Markov chain with finite state space.
To find sufficient conditions for stability, it is desirable to find some common

threads that are shared by many specific systems. Our motivation is based on the
following thoughts. First, although the dynamics of X(t) depend on the residence
of the state of α(t), the structures of equations for different states of α(t) are not
drastically different but rather similar in a certain sense. This observation suggests
finding a Lyapunov function that has a similar form in different states of α(t). For
instance, suppose that there is a Lyapunov function V (x) such that in each discrete
state i we have \scrL iV (x) \leq ciV (x), where \scrL i is the generator of the diffusion in regime
i (more conditions and explanations for this inequality and related issues will be given
in the next sections). In this case, there is a common Lyapunov function shared by all
the discrete states (or the Lyapunov function is independent of the discrete states).
It is well known that the sign of ci determines the stability of the diffusion in each
state i. For the regime-switching diffusion, one can expect that the stability of the
system depends not only on \{ ci\} but also on the generator Q(x) of the switching part.
A natural question is, “Under what relation between \{ ci\} and Q(x) is the regime-
switching diffusion stable?” When the number of regimes is finite, this question has
been answered relatively completely; see [9, 18]. However, it is not straightforward
to answer this question for the case of the discrete states belonging to a countable
state space. We aim to take the challenges here. Moreover, this paper also considers
a generalization when the condition \scrL iV (x) \leq ciV (x) is replaced with a condition of
the type \scrL iV (x) \leq cig(V (x)) with g being an appropriate function.

To date, much work has been devoted to the asymptotic stability of diffusions and
switching diffusions. A commonly used technique is based on the Lyapunov stability
argument. For example, treating asymptotic stability, much effort has been devoted
to obtaining sufficient conditions under which the Lyapunov function evaluated at the
solutions of the processes goes to 0 as t\rightarrow \infty . However, the question of how fast the
Lyapunov function goes to 0 is unknown to date to the best of our knowledge. The
current paper settles this issue. We estimate the convergence rate of the solution to
the equilibrium point by the use of properties of the function g(\cdot ).

Treating switching diffusions as Markov processes, one may obtain sufficient con-
ditions for stability by using a Lyapunov function satisfying certain properties. How-
ever, the conditions are often not directly related to the given system coefficients
(such as the drifts and diffusion matrices). To obtain conditions that are based on
coefficients of the systems, we examine the associated linearized (about the point of
equilibrium) systems. The idea originated from the topological equivalence of the
linearized systems and original nonlinear systems due to the well-known Hartman–
Grobman theorem in differential equations. Here, in addition to linearizing the sys-
tems about the equilibrium point, we also replace Q(x) by Q(0), resulting in replacing
the state-dependent switching by a continuous-time Markov chain.

The rest of this paper is organized as follows. In section 2, we formulate the
equation for a regime-switching diffusion and pose appropriate conditions for the
existence and uniqueness of solutions. We then provide the definitions of certain
types of stability as well as give general conditions for the stability of switching. In
section 3, conditions for the stability and instability of regime-switching diffusions are
given. Applications of these conditions to linearizable systems are given in section 4,
and examples are provided in section 5 to illustrate our findings. Section 6 is devoted
to several remarks. Finally, we provide the proofs of a number of technical results in
Appendix A.
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STABILITY OF SWITCHING DIFFUSIONS 3895

2. Formulation and auxiliary results. Let (Ω,\scrF , \{ \scrF t\} t\geq 0,\BbbP ) be a complete
filtered probability space with the filtration \{ \scrF t\} t\geq 0 satisfying the usual condition; i.e.,
it is increasing and right continuous while \scrF 0 contains all \BbbP -null sets. Throughout the
paper, we work with W (t), an \scrF t-adapted and \BbbR 

d-valued standard Brownian motion,
and p(dt, dz), an \scrF t-adapted Poisson measure independent of the Brownian motion
W (t) (see (2.3)). Suppose b(\cdot , \cdot ) : \BbbR n \times \BbbZ + \rightarrow \BbbR 

n and σ(\cdot , \cdot ) : \BbbR n \times \BbbZ + \rightarrow \BbbR 
n\times d.

Consider the two-component process (X(t), α(t)), where α(t) is a pure jump process
taking value in \BbbZ + = \BbbN \setminus \{ 0\} = \{ 1, 2, . . . \} , the set of positive integers, and X(t) \in \BbbR 

n

satisfies

(2.1) dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dW (t).

We assume that the jump intensity of α(t) depends on the current state of X(t),
that is, there are functions qij(\cdot ) : \BbbR 

n \rightarrow \BbbR for i, j \in \BbbZ + satisfying

(2.2)
\BbbP \{ α(t+∆) = j| α(t) = i,X(s), α(s), s \leq t\} = qij(X(t))∆ + o(∆) if i \not = j,
\BbbP \{ α(t+∆) = i| α(t) = i,X(s), α(s), s \leq t\} = 1 - qi(X(t))∆ + o(∆).

Throughout this paper, qij(x) \geq 0 for each i \not = j and
\sum 

j\in Z+
qij(x) = 0 for each

i and all x \in \BbbR 
n. Denote qi(x) =

\sum \infty 
j=1,j \not =i qij(x) (so qii(x) =  - qi(x)) and Q(x) =

(qij(x))Z+\times Z+
. The process α(t) can be defined rigorously as the solution to a stochas-

tic differential equation with respect to a Poisson random measure. For each function
x \in \BbbR 

n, i \in \BbbZ +, let ∆ij(x), j \not = i, be the consecutive left-closed, right-open intervals
of the real line, each having length qij(x). That is,

∆i1(x) = [0, qi1(x)),

∆ij(x) =

\Biggl[ 
j - 1\sum 

k=1,k \not =i

qik(x),

j\sum 

k=1,k \not =i

qik(x)

\Biggr) 
, j > 1, j \not = i.

Define h : \BbbR n\times \BbbZ +\times \BbbR \mapsto \rightarrow \BbbR by h(x, i, z) =
\sum \infty 

j=1,j \not =i(j - i)1\{ z\in ∆ij(x)\} . Recall that in

our case, both the \BbbR d-valued Brownian motionW (\cdot ) and the Poisson random measure
p(dt, dz) being independent of the Brownian motion are defined on (Ω,\scrF , \{ \scrF t\} t\geq 0,\BbbP )
and are \scrF t-adapted. Then the process α(t) can be defined as the solution to

(2.3) dα(t) =

\int 

R

h(Xt, α(t - ), z)p(dt, dz),

where a(t - ) = lims\rightarrow t - α(s) and p(dt, dz) is a Poisson random measure with intensity
dt\times m(dz) and m is the Lebesgue measure on \BbbR . The pair (X(t), α(t)) is therefore a
solution to

(2.4)

\left\{ 
 
 
dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dW (t),

dα(t) =

\int 

R

h(X(t), α(t - ), z)p(dt, dz).

A strong solution to (2.4) on [0, T ] with initial data (x, i) \in \BbbR 
n\times \BbbZ + is an \scrF t-adapted

process (X(t), α(t)) such that the following hold:
\bullet X(t) is continuous and α(t) is cadlag (right continuous with left limits) with

probability 1 (w.p.1).
\bullet X(0) = x and α(0) = i0.
\bullet (X(t), α(t)) satisfies (2.4) for all t \in [0, T ] w.p.1.
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3896 DANG HAI NGUYEN AND GEORGE YIN

Let f(\cdot , \cdot ) : \BbbR n \times \BbbZ + \mapsto \rightarrow \BbbR be twice continuously differentiable in x. We define the
operator \scrL f(\cdot , \cdot ) : \BbbR n \times \BbbZ + \mapsto \rightarrow \BbbR by
(2.5)

\scrL f(x, i) = [\nabla f(x, i)]\top b(x, i) +
1

2
tr
\Bigl( 

\nabla 2
f(x, i)A(x, i)

\Bigr) 

+

\infty 
\sum 

j=1,j \not =i

qij(x)
\bigl[ 

f(x, j) - f(x, i)
\bigr] 

=
n
\sum 

k=1

bk(x, i)fk(x, i) +
1

2

n
\sum 

k,l=1

akl(x, i)fkl(x, i) +
\infty 
\sum 

j=1,j \not =i

qij(x)
\bigl[ 

f(x, j) - f(x, i)
\bigr] 

,

where \nabla f(x, i) = (f1(x, i), . . . , fn(x, i)) \in \BbbR 
1\times n and \nabla 2f(x, i) = (fij(x, i))n\times n are the

gradient and Hessian of f(x, i) with respect to x, respectively, with

fk(x, i) = (∂/∂xk)f(x, i), fkl(x, i) = (∂2/∂xk∂xl)f(x, i),

A(x, i) = (aij(x, i))n\times n = σ(x, i)σ\top (x, i),

where z\top denotes the transpose of z. If (X(t), α(t)) satisfies (2.4), then by modifying
the proof of [19, Lemma 3, p. 104], we have the generalized Itô formula

f(X(t), α(t)) - f(X(0), α(0)) =

\int t

0

\scrL f(X(s), α(s - ))ds+M1(t) +M2(t),

where M1(\cdot ) and M2(\cdot ) are two local martingales defined by
(2.6)

M1(t) =

\int t

0

\nabla f(X(s), α(s - ))σ(X(s), α(s - ))dW (s),

M2(t) =

\int t

0

\int 

R

\bigl[ 
f
\bigl( 
X(s), α(s - ) + h(X(s), α(s - ), z)

\bigr) 
 - f(X(s), α(s - ))

\bigr] 
µ(ds, dz),

and µ(ds, dz) is the compensated Poisson random measure given by

µ(ds, dz) = p(ds, dz) - m(dz)ds.

For discussion on martingales, see [10] and references therein. Throughout this paper,
we assume that either one of the following assumptions is satisfied. Under either of
the conditions, it is proved in [13] that (2.4) has a unique solution with given initial
data. Moreover, the solution is a Markov–Feller process.

Assumption 2.1. We assume the following conditions:
1. For each i \in \BbbZ +, H > 0, there is a positive constant Li,H such that

| b(x, i) - b(y, i)| + | σ(y, i) - σ(x, i)| \leq Li,H | x - y| 

if x, y \in \BbbR 
n and | x| , | y| \leq H.

2. For each i \in \BbbZ +, there is a positive constant \widetilde Li such that

| b(x, i)| + | σ(x, i)| \leq \widetilde Li(| x| + 1).

3. The qij(x) is continuous in x \in \BbbR 
n for each (i, j) \in \BbbZ 

2
+. Moreover,

M := sup
x\in Rn,i\in Z+

\{ | qi(x)| \} <\infty .D
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Assumption 2.2. We assume the following conditions hold:
1. For each i \in \BbbZ +, H > 0, there is a positive constant Li,H such that

| b(x, i) - b(y, i)| + | σ(x, i) - σ(y, i)| \leq Li,H | x - y| 

if x, y \in \BbbR 
n and | x| , | y| \leq H.

2. There is a positive constant \widetilde L such that

| b(x, i)| + | σ(x, i)| \leq \widetilde L(| x| + 1).

3. The qij(x) is continuous in x \in \BbbR 
n for each (i, j) \in \BbbZ 

2
+. Moreover, for any

H > 0,
MH := sup

x\in Rn,| x| \leq H,i\in Z+

\{ | qi(x)| \} <\infty .

We suppose throughout this paper that b(0, i) = 0 and σ(0, i) = 0 for i \in \BbbZ + and
give the following definitions of stability.

Definition 2.3. The trivial solution X(t) \equiv 0 is said to be

\bullet stable in probability if for any h > 0,

lim
x\rightarrow 0

inf
i\in Z+

\BbbP x,i

\bigl\{ 
X(t) \leq h \forall t \geq 0

\bigr\} 
= 1 and

\bullet asymptotic stable in probability if it is stable in probability and

lim
x\rightarrow 0

inf
i\in Z+

\BbbP x,i

\Bigl\{ 
lim
t\rightarrow \infty 

X(t) = 0
\Bigr\} 
= 1.

We state a general result that can be proved by well-known arguments; see [25,
section 7.2].

Theorem 2.4. Let D be a neighborhood of 0 \in \BbbR 
n. Suppose there exist three

functions V (x, i) : D \times \BbbZ \mapsto \rightarrow \BbbR +, µ1(x) : D \mapsto \rightarrow \BbbR +, µ2(x) : D \mapsto \rightarrow \BbbR + such that the

following hold:

\bullet µ1(x), µ2(x) are continuous on D, and µk(x) = 0 if and only if x = 0 for

k = 1, 2.
\bullet V (x, i) is continuous on D and twice continuously differentiable in \scrD \setminus \{ 0\} 
for each i \in \BbbZ +.

\bullet µ1(x) \leq V (x, i) for any (x, i) \in D \times \BbbZ +.

Then the following conclusions hold:

\bullet If \scrL V (x, i) \leq 0 for any (x, i) \in D \times \BbbZ +, the trivial solution is stable in

probability.

\bullet If \scrL V (x, i) \leq  - µ2(x) for any (x, i) \in D \times \BbbZ + the trivial solution is asymp-

totically stable in probability.

Definition 2.5. Let \widehat α(t) be the Markov chain with bounded generator Q(0) and
transition probability \widehat pij(t). The Markov chain \widehat α(t) is said to be

\bullet ergodic if it has an invariant probability measure ν = (ν1, ν2, . . . ) and

lim
t\rightarrow \infty 

\widehat pij(t) = νj for any i, j \in \BbbZ +

or, equivalently,

lim
t\rightarrow \infty 

\sum 

j\in Z+

| \widehat pij(t) - νj | = 0 for any i \in \BbbZ +,
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3898 DANG HAI NGUYEN AND GEORGE YIN

\bullet strongly ergodic if

lim
t\rightarrow \infty 

sup
i\in Z+

\Biggl\{ 
\sum 

j\in Z+

| \widehat pij(t) - νj | 

\Biggr\} 
= 0, and

\bullet strongly exponentially ergodic if there exist C > 0 and λ > 0 such that

(2.7)
\sum 

j\in Z+

| \widehat pij(t) - νj | \leq Ce - \lambda t for any i \in \BbbZ +, t \geq 0.

We refer the reader to [1] for some properties and sufficient conditions for the
aforementioned ergodicity.

3. Certain practical conditions for stability and instability. For each h >
0, denote by Bh \subset \BbbR 

n the open ball centered at 0 with radius h. Throughout this
section, let D be a neighborhood of 0 satisfying D \subset B1. We also denote by \widehat α(t) the
continuous-time Markov chain with generator Q(0). Denote by \scrL i the generator of
the diffusion when the discrete component is in state i, that is,

\scrL iV (x) = \nabla V (x)b(x, i) +
1

2
tr
\Bigl( 
\nabla 2V (x)A(x, i)

\Bigr) 
.

We first state a theorem, which generalizes [9, Theorem 4.3], a result for switching
diffusions when the switching takes values in a finite set.

Theorem 3.1. Suppose that the Markov chain \widehat α(t) is strongly exponentially er-

godic with invariant probability measure ν = (ν1, ν2, . . . ) and that

(3.1) sup
i\in Z+

\sum 

j \not =i

| qij(x) - qij(0)| \rightarrow 0 as x\rightarrow 0.

Let D be a neighborhood of 0 and V : D \mapsto \rightarrow \BbbR + which satisfies that V (x) = 0 if and

only if x = 0 and that V (x) is continuous on D, twice continuously differentiable in

D \setminus \{ 0\} . Suppose that there is a bounded sequence of real numbers \{ ci : i \in \BbbZ +\} such

that

(3.2) \scrL iV (x) \leq ciV (x) \forall x \in D \setminus \{ 0\} .

Then, if
\sum 

i\in Z+
ciνi < 0, the trivial solution is asymptotically stable in probability.

Proof. Let λ =  - 
\sum 

i\in Z+
ciνi. Since

\sum 
i\in Z+

νi = 1, we have
\sum 

i\in Z+
(ci + λ)νi = 0.

Since \widehat α(t) is strongly exponentially ergodic, it follows from Lemma A.1 that there
exists a bounded sequence of real numbers \{ γi : i \in \BbbZ +\} such that

(3.3)
\sum 

j\in Z+

qij(0)γj = λ+ ci for any i \in \BbbZ +.

Since
\sum 

j\in Z+
qij(0) = 0 for any i \in \BbbZ + it follows from (3.3) that

(3.4)
\sum 

j\in Z+

qij(0)γj =
\sum 

j\in Z+

qij(0)(1 - pγj) =  - p(λ+ ci) for any i \in \BbbZ +.

Since \{ γi\} is bounded, we can choose p \in (0, 1) such that

(3.5) p| γi| \leq min\{ 0.25λ, 0.5\} .
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In view of (3.1) and (3.5), there is an h > 0 sufficiently small such that

(3.6)
\sum 

j\in Z+

(1 - pγj)| qij(x) - qij(0)| <
pλ

4
\forall x \in Bh.

Define the function U(x, i) : Bh \times \BbbZ + \mapsto \rightarrow \BbbR + by U(x, i) = (1  - pγi)V
p(x). By Itô’s

formula, (3.1), (3.4), and (3.6), we have
(3.7)

\scrL U(x, i)

= p(1 - pγi)V
p - 1\scrL iV (x) - 

p(1 - p)

2
V

p - 2 | Vx(x)σ(x, i)| 
2 + V

p(x)
\sum 

j\in Z+

(1 - pγj)qij(x)

\leq cip(1 - pγi)V
p - 1 + V

p(x)
\sum 

j\in Z+

(1 - pγj)qij(0) + V
p(x)

\sum 

j\in Z+

(1 - pγj)| qij(x) - qij(0)| 

\leq cip(1 - pγi)V
p - 1  - p(λ+ ci)V

p(x) + V
p(x)

\sum 

j\in Z+

(1 - pγj)| qij(x) - qij(0)| 

\leq p( - λ - pγi)V
p(x) + V

p(x)
\sum 

j\in Z+

(1 - pγj)| qij(x) - qij(0)| 

\leq  - 0.75pλV p(x) + 0.25pλV p(x) =  - 0.5pλV p(x) for (x, i) \in Bh \times \BbbZ +.

Using Theorem 2.4, it follows from (3.7) that the trivial solution is asymptotically
stable.

The hypothesis of this theorem seems to be restrictive. It requires the strongly ex-
ponential ergodicity of Q(0) and the uniform convergence to 0 of

\sum 
j \not =i | qij(x) - qij(0)| .

To treat cases in which Q(0) is strongly ergodic (not exponentially ergodic) or even
only ergodic, as well as to relax the condition (3.1), we need a more complicated
method. Our method, which is inspired by the idea in [4], utilizes the ergodicity
of Q(0) and the analysis of the Laplace transform. Similar techniques that use the
Laplace transform can also be seen in the large deviations theory and related ap-
plications [3, 26]. We also take a step further by estimating the pathwise rate of
convergence of solutions.

Let Γ be a family of increasing and differentiable functions g : \BbbR + \mapsto \rightarrow \BbbR + such
that g(y) = 0 if and only if y = 0 and dy

dy is bounded on [0, 1]. Since dg
dy (y) is bounded

on [0, 1] and g(0) = 0, it is easy to show that the function

(3.8) G(y) :=  - 

\int 1

y

dz

g(z)
on [0, 1]

is nonpositive and strictly decreasing and limy\rightarrow 0G(y) =  - \infty . Its inverse G - 1 :
( - \infty , 0] \mapsto \rightarrow (0, 1] satisfies

lim
t\rightarrow \infty 

G - 1( - t) = 0.

We state some assumptions to be used in what follows; we will also provide some
lemmas whose proofs are relegated to Appendix A.

Assumption 3.2. There are functions g \in Γ, V : D \mapsto \rightarrow \BbbR + such that the following
hold:

\bullet V (x) = 0 if and only if x = 0.
\bullet V (x) is continuous on D and twice continuously differentiable in D \setminus \{ 0\} .
\bullet There is a bounded sequence of real numbers \{ ci : i \in \BbbZ +\} such that

(3.9) \scrL iV (x) \leq cig(V (x)) \forall x \in D \setminus \{ 0\} .
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3900 DANG HAI NGUYEN AND GEORGE YIN

Lemma 3.3. Under Assumption 3.2, for any ε, T, h > 0, there exists an h̃ =
h̃(ε, T, h) such that

\BbbP x,i\{ τh \leq T\} < ε \forall (x, i) \in Bh̃ \times \BbbZ +,

where τh = inf\{ t \geq 0 : | X(t)| \geq h\} .

Lemma 3.4. Let Y be a random variable, let θ0 > 0 be a constant, and suppose

\BbbE exp(θ0Y ) + \BbbE exp( - θ0Y ) \leq K1.

Then the log-Laplace transform φ(θ) = ln\BbbE exp(θY ) is twice differentiable on
\bigl[ 
0, \theta 02

\bigr) 

and
dφ

dθ
(0) = \BbbE Y and 0 \leq 

d2φ

dθ2
(θ) \leq K2 , θ \in 

\biggl[ 
0,
θ0
2

\biggr) 

for some K2 > 0. As a result of Taylor’s expansion, we have

φ(θ) \leq θ\BbbE Y + θ2K2 for θ \in [0, 0.5θ0).

Lemma 3.5. Under the assumption b(0, i) = 0, σ(0, i) = 0, i \in \BbbZ +, we have

\BbbP x,i \{ X(t) = 0 for some t \geq 0\} = 0 for any x \not = 0, i \in \BbbZ +.

With the auxiliary results above, we can prove our main results.

Theorem 3.6. Suppose that the Markov chain \widehat α(t) is ergodic with invariant prob-

ability measure ν = (ν1, ν2, . . . ) and Assumption 3.2 is satisfied with additional con-

ditions

(3.10) lim sup
i\rightarrow \infty 

ci < 0

and

(3.11) Mg := sup
x\in D,i\in Z+

\biggl\{ \bigm| \bigm| \bigm| \bigm| 
Vx(x)σ(x, i)

g(V (x))

\bigm| \bigm| \bigm| \bigm| 
\biggr\} 
<\infty .

Then, if
\sum 

i\in Z+
ciνi < 0, the trivial solution is asymptotically stable in probability.

That is, for any h > 0 with Bh \subset D, and ε > 0, there exists δ = δ(h, ε) > 0 such that

\BbbP x,i

\Bigl\{ 
X(t) < h \forall t \geq 0 and lim

t\rightarrow \infty 
X(t) = 0

\Bigr\} 
> 1 - ε for any (x, i) \in B\delta \times \BbbZ +.

Moreover, there is a λ > 0 such that

(3.12) \BbbP x,i

\biggl\{ 
lim
t\rightarrow \infty 

V (X(t))

G - 1( - λt)
\leq 1

\biggr\} 
> 1 - ε for any (x, i) \in B\delta \times \BbbZ +.

Remark 3.7. Before proceeding to the proof of the theorem, let us make a brief
comment. In addition to providing sufficient conditions for asymptotic stability, a
significant new element here is the rate of convergence given in (3.12). Although there
are numerous treatments of stochastic stability by a host of authors for diffusions and
switching diffusions, the rate result in Theorem 3.6 appears to be the first one of its
kind.
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Proof. The proof is divided into two steps. We first show that the trivial solution
is stable in probability, and then we prove asymptotic stability and estimate the
pathwise convergence rate.

Step 1: Stability. Shrinking D if necessary, we can assume without loss of
generality that V (x) \leq 1 in D. Let h > 0 such that Bh \subset D. Since \{ ci\} is bounded,

(3.13) lim
k\rightarrow \infty 

\sum 

i\leq k

ciνi =
\sum 

i\in Z+

ciνi < 0.

This and (3.10) show that there exists k0 \in \BbbZ + such that

 - λ1 :=
\sum 

i\leq k0

ciνi < 0

and
 - 2λ2 := sup

i>k0

ci < 0.

Let c = supi\in Z+
| ci| , and let m0 be a positive integer satisfying m0λ2 > c +Mg + 1.

Define G(y) =  - 
\int 1

y
g - 1(z)dz. In view of Lemma 3.5, if X(0) \not = 0, then X(t) \not = 0

a.s, which leads to g(V (X(t))) \not = 0 a.s. Thus, we have from Itô’s formula and the
increasing property of g(\cdot ) that
(3.14)

G
\bigl( 
V (X(τh \wedge t))

\bigr) 
= G(V (x)) +

\int \tau h\wedge t

0

\scrL \alpha (s)V (X(s))

g(V (X(s)))
ds

 - 

\int \tau h\wedge t

0

dg

dy
(V (X(s)))

\bigm| \bigm| \bigm| Vx(X(s))σ(X(s), α(s))
\bigm| \bigm| \bigm| 
2

2g2(V (X(s)))
ds

+

\int \tau h\wedge t

0

Vx(X(s))σ(X(s), α(s))

g(V (X(s)))
dW (s) \leq G(V (x)) +H(t),

where

H(t) =

\int \tau h\wedge t

0

c\alpha (s)ds+

\int \tau h\wedge t

0

Vx(X(s))σ(X(s), α(s))

g(V (X(s)))
dW (s).

By Itô’s formula,

(3.15)

e\theta H(t) = 1 +

\int t\wedge \tau h

0

e\theta H(s)

\biggl[ 
θc\alpha (s) +

θ2

2

| Vx(X(s))σ(X(s), α(s))| 2

2g2(V (X(s)))

\biggr] 
ds

+ θ

\int t\wedge \tau h

0

e\theta H(s)Vx(X(s))σ(X(s), α(s))

g(V (X(s)))
dW (s).

Let ςk = inf\{ t \geq 0 : | H(t)| \geq k\} . It follows from (3.15) that

\BbbE x,ie
\theta H(t\wedge \varsigma k) = 1 + \BbbE x,i

\int t\wedge \varsigma k\wedge \tau h

0

e\theta H(s)

\biggl[ 
θc\alpha (s) +

θ2

2

| Vx(X(s))σ(X(s), α(s))| 2

2g2(V (X(s)))

\biggr] 
ds

\leq 1 + [c+Mg]\BbbE x,i

\int t\wedge \varsigma k\wedge \tau h

0

e\theta H(s)ds

\leq 1 + [c+Mg]

\int t

0

\BbbE x,ie
\theta H(s\wedge \varsigma k)ds.
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In view of Gronwall’s inequality, for any t \geq 0 and (x, i) \in Bh \times \BbbZ +, we have

(3.16) \BbbE x,ie
\theta H(t\wedge \varsigma k) \leq e\theta [c+Mg ]t, θ \in [ - 1, 1].

Letting k \rightarrow \infty and applying the Lebesgue dominated convergence theorem, we obtain

(3.17) \BbbE x,ie
\theta H(t) \leq e\theta [c+Mg ]t, θ \in [ - 1, 1].

On the other hand, we have

(3.18)

\BbbE x,iH(t) \leq \BbbE x,i

\int \tau h\wedge t

0

c\alpha (s)ds

\leq \BbbE x,i

\int t

0

c\alpha (s)ds - \BbbE x,i

\int t

\tau h\wedge t

c\alpha (s)ds

\leq \BbbE x,i

\int t

0

c\alpha (s)ds+ tc\BbbP x,i\{ τh < t\} .

Because of the ergodicity of \widehat α(t), there exists a T > 0 depending on k0 such that

(3.19) \BbbE 0,i

\int t

0

c\alpha (s)ds = \BbbE i

\int t

0

c\widehat \alpha (s)ds \leq  - 
3λ1
4
t \forall t \geq T, i \leq k0.

By the Feller property of (X(t), α(t)), there exists an h1 \in (0, h) such that

(3.20) \BbbE x,i

\int t

0

c\alpha (s)ds \leq  - 
λ1
2
t \forall t \in [T, T2], | x| \leq h1, i \leq k0,

where T2 = (m0 + 1)T . In view of Lemma 3.3, there exists an h2 \in (0, h1) such that

(3.21) c\BbbP x,i\{ τh < m0T + T\} \leq 
λ1
4
, provided | x| \leq h2, i \in \BbbZ +.

Applying (3.20) and (3.21) to (3.18), we obtain

(3.22) \BbbE x,iH(t) \leq  - 
λ1
4
t if 0 < | x| \leq h2, i \leq k0, t \in [T, T2].

By Lemma 3.4, it follows from (3.17) and (3.22) that for θ \in [0, 0.5], 0 < | x| < h2, i \leq 
k0, t \in [T, T2], we have

(3.23)
ln\BbbE x,ie

\theta H(t) \leq θ\BbbE x,iH(t) + θ2K

\leq  - θ
λ1t

4
+ θ2K

for some K > 0 depending on T2, c, and Mg. Letting θ \in (0, 0.5] such that

(3.24) θK <
λ1T

8
and θMg < λ2,

we have

ln\BbbE x,ie
\theta H(t) \leq  - 

θλ1t

8
for 0 < | x| < h2, i \leq k0, t \in [T, T2]

or, equivalently,

(3.25) \BbbE x,ie
\theta H(t) \leq exp

\biggl\{ 
 - 
θλ1t

8

\biggr\} 
for 0 < | x| < h2, i \leq k0, t \in [T, T2].
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In what follows, we fix a θ \in (0, 0.5] satisfying (3.24). Exponentiating both sides of
the inequality G(V (X(τh \wedge t))) \leq G(V (x)) + H(t), we have for 0 < | x| < h2, i \leq 
k0, t \in [T, T2] that

(3.26) \BbbE x,iU(X(τh \wedge t)) \leq U(x)\BbbE x,ie
\theta H(t) \leq U(x) exp

\biggl\{ 
 - 
θλ1t

8

\biggr\} 
,

where U(x) = exp(θG(V (x))). Since limx\rightarrow 0G(V (x)) =  - \infty , then

(3.27) lim
x\rightarrow 0

U(x) = 0.

Using the inequality G(V (X(τh \wedge t))) \leq G(V (x)) +H(t) and (3.17), we have

(3.28) \BbbE x,iU(X(τh \wedge t)) \leq U(x) exp \{ θ[c+Mg]t\} \forall (x, i) \in Bh \times \BbbZ +, t \geq 0.

Now, let ∆ = inf\{ U(x) : h2 \leq | x| \leq h\} > 0. Define stopping times

ξ = inf\{ t \geq 0 : α(t) \leq k0\} and ζ = inf\{ t \geq 0 : U(X(t)) \geq ∆\} .

Clearly, if X(0) \in Bh, then ζ \leq τh, and if t < ζ, then | X(t)| < h2. By computation
and (3.24), we have

\scrL iU(x) \leq θU(x)

\biggl[ 
ci + [θ  - ġ(V (x)]

| Vx(x)σ(x, i)| 
2

g(V (x))

\biggr] 

\leq θ( - 2λ2 + θMg)U(x)

\leq  - θλ2U(x) for 0 < | x| < h, i > k0.

It follows from Itô’s formula that

(3.29)

\BbbE x,ie
\theta \lambda 2(t\wedge \xi \wedge \zeta )U(X(t \wedge ξ))

= U(x) + \BbbE x,i

\int t\wedge \xi \wedge \zeta 

0

e\lambda 2s
\bigl[ 
θλ2U(X(s)) + \scrL \alpha (t)U(X(s))

\bigr] 
ds

\leq U(x) for 0 < | x| < h, i \in \BbbZ +.

We have the following estimate for 0 < | x| < h, i > k0:

(3.30)

\BbbE x,ie
\theta \lambda 2(T2\wedge \xi \wedge \zeta )U(X(T2 \wedge ξ \wedge ζ))

= \BbbE x,i1\{ \xi \wedge \zeta <m0T\} e
\theta \lambda 2(T2\wedge \xi \wedge \zeta )U(X(T2 \wedge ξ \wedge ζ))

+ \BbbE x,i1\{ m0T\leq \xi \wedge \zeta <T2\} e
\theta \lambda 2(T2\wedge \xi \wedge \zeta )U(X(T2 \wedge ξ \wedge ζ))

+ \BbbE x,i1\{ \xi \wedge \zeta \geq T2\} e
\theta \lambda 2(T2\wedge \xi \wedge \zeta )U(X(T2 \wedge ξ \wedge ζ))

\geq \BbbE x,i1\{ \xi \wedge \zeta \leq m0T\} U(X(ξ \wedge ζ))

+ e\theta \lambda 2m0T\BbbE x,i1\{ m0T\leq \xi \wedge \zeta <T2\} U(X(ξ \wedge ζ))

+ e\theta \lambda 2T2\BbbE x,i1\{ \xi \geq T2\} U(X(T2)).

Since \BbbP x,i\{ ζ = 0\} = 1 if i \leq k0, (3.30) holds for 0 < | x| < h, i \in \BbbZ +. Noting that
U(x) \wedge ∆ \leq ∆ for any x \in Bh, we have

\BbbE 

\Bigl[ 
U(X(T2 \wedge τh)) \wedge ∆

\bigm| \bigm| \bigm| ζ < m0T, ζ \leq ξ
\Bigr] 
\leq ∆ \leq U(X(ζ)) = U(X(ξ \wedge ζ)).
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If ξ < ζ, then U(X(ξ)) < ∆. By the strong Markov property of (X(t), α(t)), (3.26),
and (3.17), we have

\BbbE 

\Bigl[ 
U(X(T2 \wedge τh)) \wedge ∆

\bigm| \bigm| \bigm| ξ < m0T \wedge ζ
\Bigr] 
\leq U(X(ξ)) = U(X(ξ \wedge ζ))

and

\BbbE 

\Bigl[ 
U(X(T2\wedge τh))\wedge ∆

\bigm| \bigm| \bigm| m0T \leq ξ < T2\wedge ζ
\Bigr] 
\leq U(X(ξ))e\theta (c+Mg)T = U(X(ξ\wedge ζ))e\theta (c+Mg)T .

From the three estimates above, we have
(3.31)

\BbbE x,i1\{ \xi \wedge \zeta \leq m0T\} 

\bigl[ 
U(X(T2 \wedge τh)) \wedge ∆

\bigr] 
= \BbbE x,i1\{ \zeta <m0T,\zeta \leq \xi \} 

\bigl[ 
U(X(T2 \wedge τh)) \wedge ∆

\bigr] 

+ \BbbE x,i1\{ \xi <m0T\wedge \zeta \} 

\bigl[ 
U(X(T2 \wedge τh)) \wedge ∆

\bigr] 

\leq \BbbE x,i1\{ \xi \wedge \zeta <m0T\} U(X(ξ \wedge ζ))

and
(3.32)

\BbbE x,i1\{ m0T\leq \xi \wedge \zeta <T2\} 

\bigl[ 
U(X(T2 \wedge τh)) \wedge ∆

\bigr] 
\leq e\theta (c+Mg)T\BbbE x,i1\{ m0T\leq \xi \wedge \zeta <T2\} U(X(ξ \wedge ζ))

\leq e\theta \lambda 2m0T\BbbE x,i1\{ m0T\leq \xi \wedge \zeta <T2\} U(X(ξ \wedge ζ)),

where the last line follows from m0λ2 > c +Mg + 1. Applying (3.31) and (3.32) to
(3.30), we obtain

\BbbE x,i

\bigl[ 
U(X(T2 \wedge τh)) \wedge ∆

\bigr] 
\leq U(x) for any (x, i) \in Bh \times \BbbZ .

Since \BbbE x,i

\bigl[ 
U(X(T2 \wedge τh)) \wedge ∆

\bigr] 
\leq ∆, we have

(3.33) \BbbE x,i

\bigl[ 
U(X(T2 \wedge τh)) \wedge ∆

\bigr] 
\leq U(x) \wedge ∆ for any (x, i) \in Bh \times \BbbZ .

This together with the Markov property of (X(t), α(t)) implies that

\{ M(k) :=
\bigl[ 
U(X(kT2 \wedge τh)) \wedge ∆

\bigr] 
, k \in \BbbZ +\} is a supermartingale.

Let η = inf\{ k \in \BbbZ + : M(k) = ∆\} . Clearly, \{ η < \infty \} \supset \{ τh < \infty \} . For any ε > 0, if
U(x) < ε∆, we have that

\BbbP x,i\{ η < k\} \leq 
\BbbE x,iM(η \wedge k)

∆
\leq 
U(x)

∆
\leq ε.

Letting k \rightarrow \infty yields

(3.34) \BbbP x,i\{ τh <\infty \} \leq \BbbP x,i\{ η <\infty \} \leq ε if U(x) < ε∆.

We complete the proof of this step by noting that \{ x : U(x) < ε∆\} is a neighborhood
of x due to the fact that limx\rightarrow 0 U(x) = 0.

Step 2: Asymptotic stability and pathwise convergence rate. To prove
the asymptotic stability in probability, fix h > 0 and define U(x), T2, m0, and ∆
depending on h as in the first step. By virtue of (3.30), we have
(3.35)

\BbbE x,ie
\theta \lambda 2(T2\wedge \xi \wedge \zeta )U(X(T2 \wedge ξ \wedge ζ)) \geq \BbbE x,i1\{ \xi \wedge \zeta <m0T\} U(X(ξ \wedge ζ))

+ e\theta \lambda 2m0T\BbbE x,i1\{ m0T\leq \xi \wedge \zeta <T2\} U(X(ξ \wedge ζ))

+ e\theta \lambda 2T2\BbbE x,i1\{ \xi \wedge \zeta \geq T2\} U(X(T2))

\geq \BbbE x,i1\{ \xi <m0T,\zeta >\xi \} U(X(ξ))

+ e\theta \lambda 2m0T\BbbE x,i1\{ m0T\leq \xi <T2,\zeta >\xi \} U(X(ξ))

+ e\theta \lambda 2T2\BbbE x,i1\{ \xi \wedge \zeta \geq T2\} U(X(T2)).
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Recalling that ζ \leq τh and X(t) < h2 if t < ζ, we have from (3.25) and (3.28) that
(3.36)
\BbbE x,i1\{ \zeta \geq T2\} 1\{ \xi <m0T\} U(X(T2)) = \BbbE x,i1\{ \zeta \geq T2\} 1\{ \xi <m0T\} U(X(T2 \wedge τh))

\leq \BbbE x,i1\{ \xi <\zeta \} 1\{ \xi <m0T\} U(X(T2 \wedge τh))

\leq \BbbE x,i

\biggl[ 
1\{ \xi <m0T\wedge \zeta \} U(X(ξ)) exp

\biggl\{ 
 - θ

λ

8
(T2  - ξ)

\biggr\} \biggr] 

\leq exp

\biggl\{ 
 - 
θλT

8

\biggr\} 
\BbbE x,i

\bigl[ 
1\{ \zeta \geq \xi \} 1\{ \xi <m0T\} U(X(ξ))

\bigr] 

and

(3.37)

\BbbE x,i1\{ m0T\leq \xi <T2,\zeta \geq T2\} U(X(T2))

\leq \BbbE x,i1\{ m0T\leq \xi <T2\wedge \zeta \} U(X(T2 \wedge τh))

\leq \BbbE x,i

\bigl[ 
1\{ m0T\leq \xi <T2\wedge \zeta \} U(X(ξ)) exp \{ θ(c+Mg)(T2  - ξ)\} 

\bigr] 

\leq exp \{ θ(c+Mg)T\} \BbbE x,i

\bigl[ 
1\{ m0T\leq \xi <T2\wedge \zeta \} U(X(ξ))

\bigr] 

\leq exp\{  - θT\} exp \{ θλ2m0T\} \BbbE x,i

\bigl[ 
1\{ m0T\leq \xi <T2\wedge \zeta \} U(X(ξ))

\bigr] 
.

On the other hand, we can write

(3.38) \BbbE x,i1\{ \xi \wedge \zeta \geq T2\} U(X(T2)) = e - \theta \lambda 2T2e\theta \lambda 2T2\BbbE x,i1\{ \xi \wedge \zeta \geq T2\} U(X(T2)).

Letting p = max
\bigl\{ 
exp
\bigl\{ 
 - \theta \lambda T

8

\bigr\} 
, exp\{  - θT\} , exp\{  - θλ2T2\} 

\bigr\} 
< 1 and adding (3.36),

(3.37), and (3.38) side by side and then using (3.35), we have

\BbbE x,i1\{ \zeta \geq T2\} U(X(T2)) \leq pU(x) for (x, i) \in Bh \times \BbbZ +.

By the strong Markov property of the process (X(t), α(t)) (see, e.g., [13, 17]),

\BbbE x,i1\{ \zeta \geq 2T2\} U(X(2T2)) = \BbbE x,i

\bigl[ 
1\{ \zeta \geq T2\} \BbbE X(T2),\alpha (T2)1\{ \zeta \geq T2\} U(X(T2))

\bigr] 

\leq p\BbbE x,i1\{ \zeta \geq T2\} U(X(T2))

\leq p2U(x) for (x, i) \in Bh \times \BbbZ +.

Continuing this way, we have

\BbbE x,i1\{ \zeta \geq kT2\} U(X(kT2)) \leq pkU(x) for (x, i) \in Bh \times \BbbZ +.

Since 2θ < 1, we have from (3.17) that \BbbE x,ie
2\theta H(s) \leq e2\theta [c+Mg ]s. This and the

Burkholder–Davis–Gundy inequality imply that

(3.39)

\BbbE x,i sup
t\leq T2

\bigm| \bigm| \bigm| \bigm| 
\int t\wedge \tau h

0

e\theta H(s)Vx(X(s))σ(X(s), α(s))

g(V (X(s)))
dW (s)

\bigm| \bigm| \bigm| \bigm| 

\leq 

\Biggl[ 
\BbbE x,i

\int T2\wedge \tau h

0

e2\theta H(s) | Vx(X(s))σ(X(s), α(s))| 2

g2(V (X(s)))
ds

\Biggr] 1
2

\leq 

\Biggl[ 
M2

g\BbbE x,i

\int T2

0

e2\theta H(s)ds

\Biggr] 1
2

\leq 

\Biggl[ 
M2

g

\int T2

0

e2\theta [c+Mg ]sds

\Biggr] 1
2

:= \widetilde K1.
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On the other hand,

(3.40)

\BbbE x,i sup
t\leq T2

\bigm| \bigm| \bigm| \bigm| 
\int t\wedge \tau h

0

e\theta H(s)

\biggl[ 
θc\alpha (s) +

θ2

2

| Vx(X(s))σ(X(s), α(s))| 2

2g2(V (X(s)))

\biggr] 
ds

\bigm| \bigm| \bigm| \bigm| 

\leq (c+Mg)\BbbE x,i

\int T2\wedge \tau h

0

e\theta H(s)ds

\leq (c+Mg)

\int T2

0

e\theta [c+Mg ]ds := \widetilde K2.

It follows from (3.39) and (3.40) that

(3.41)
\BbbE x,i sup

t\leq T2

U(X(t \wedge τh)) = U(x)\BbbE x,i sup
t\leq T2

e\theta Ht

\leq U(x)[1 + \widetilde K1 + \widetilde K2] := U(x) \widetilde K3.

By the strong Markov property of (X(t), α(t)), we derive from (3.41) that

(3.42)

\BbbE x,i1\{ \zeta =\infty \} sup
t\in [kT2,(k+1)T2]

U(X(t \wedge τh))

\leq \BbbE x,i1\{ \zeta \geq kT2\} sup
t\in [kT2,(k+1)T2]

U(X(t \wedge τh))

\leq \widetilde K3\BbbE x,i1\{ \zeta \geq kT2\} U(X(kT2))

\leq \widetilde K3U(x)ρk,

which combined with Markov’s inequality leads to

(3.43)

\BbbP x,i

\Biggl\{ 
1\{ \zeta =\infty \} sup

t\in [kT2,(k+1)T2]

U(X(t \wedge τh)) > (ρ+ \widetilde ε)k
\Biggr\} 

\leq 
1

(ρ+ \widetilde ε)k\BbbE x,i

\Biggl[ 
1\{ \zeta =\infty \} sup

t\in [kT2,(k+1)T2]

U(X(t \wedge τh))

\Biggr] 

\leq \widetilde K3U(x)
ρk

(ρ+ \widetilde ε)k , k \in \BbbZ +,

where \widetilde ε is any number in (0, 1 - ρ). In view of the Borel–Cantelli lemma, for almost
all ω \in Ω, there exists random integer k1 = k1(ω) such that

1\{ \zeta =\infty \} sup
t\in [kT2,(k+1)T2]

U(X(t)) < (ρ+ \widetilde ε)k for any k \geq k1.

Thus, for almost all ω \in \{ ζ = \infty \} , we have

(3.44) G(V (X(t))) \leq [t/T2] ln(ρ+ \widetilde ε) \leq  - λt for t \geq k1T2,

where [t/T2] is the integer part of t/T2 and λ =  - ln(\rho +\widetilde \varepsilon )
2T2

> 0. Since G(y) is decreasing
and maps (0, h] onto ( - \infty , 0], (3.12) follows from (3.34) and (3.44). The proof is
complete.

In Theorem 3.6, under the condition that α(t) is merely ergodic, we need an
additional condition (3.10) to obtain the stability in probability of the system. If α(t)
is strongly ergodic, the condition (3.10) can be removed.
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Theorem 3.8. Suppose that the following hod:

\bullet For any T > 0 and a bounded function f : \BbbZ + \mapsto \rightarrow \BbbR , we have

(3.45) lim
x\rightarrow 0

sup
i\in Z+

\Biggl\{ \bigm| \bigm| \bigm| \bigm| \bigm| \BbbE x,i

\int T

0

f(α(s))ds - \BbbE i

\int T

0

f(\widehat α(s))ds
\bigm| \bigm| \bigm| \bigm| \bigm| 

\Biggr\} 
= 0.

\bullet Assumption 3.2 is satisfied.

\bullet The Markov chain \widehat α(t) is strongly ergodic with invariant probability measure

ν = (ν1, ν2, . . . ).
Suppose further that (3.11) is satisfied and

\sum 
i\in Z+

ciνi < 0. Then the conclusion of

Theorem 3.6 holds.

Remark 3.9. In Appendix A, we will prove that (3.45) holds if Assumption 3.2
and (3.1) hold.

Proof of Theorem 3.8. Let λ =  - 
\sum 

i\in Z+
ciνi. Because of the uniform ergodicity

of \widehat α(t), there exists a T > 0 such that

(3.46) \BbbE 0,i

\int t

0

c\alpha (s)ds = \BbbE i

\int t

0

c(\widehat α(s))ds \leq  - 
3λ

4
t \forall t \geq T, i \in \BbbZ +.

By (3.45), there exists an h1 \in (0, h) such that

(3.47) \BbbE x,i

\int T

0

c\alpha (s)ds \leq  - 
λ

2
T \forall | x| \leq h1, i \in \BbbZ +.

In view of Lemma 3.3, there exists an h2 \in (0, h1) such that

(3.48) c\BbbP x,i\{ τh < T\} \leq 
λ

4
, provided | x| \leq h2, i \in \BbbZ +.

Applying (3.47) and (3.48) to (3.18), we have

(3.49) \BbbE x,iH(T ) \leq  - 
λ

4
T if 0 < | x| \leq h2, i \in \BbbZ +.

Using (3.49), we can use arguments in the proof Theorem 3.6 to show that

(3.50) \BbbE x,ie
\theta H(T ) \leq exp

\biggl\{ 
 - 
θλT

8

\biggr\} 
for 0 < | x| < h2

for a sufficiently small θ > 0. This implies that

(3.51) \BbbE x,iU
\bigl( 
X(T \wedge τh)

\bigr) 
\leq exp

\biggl\{ 
 - 
θλT

8

\biggr\} 
U(x),

where U(x) = exp(θG(V (x))). Thus, \{ Mk := U
\bigl( 
X
\bigl( 
(kT ) \wedge τh

\bigr) \bigr) 
, k = 0, 1, . . . \} is

a bounded supermartingale. Then we can easily obtain the stability in probability
of the trivial solution. Moreover, proceeding as in Step 2 of the proof of Theorem
3.6, we can obtain the asymptotic stability as well as the rate of convergence. The
arguments are actually simpler because (3.51) holds uniformly in i \in \BbbZ +, rather than
i \in \{ 1, . . . , k0\} in the proof of Theorem 3.6.
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Remark 3.10. Consider the special case g(y) \equiv y. With this function, U(X(t)) =
V (X(t)). Thus, if Assumption 3.2 holds with g(y) \equiv y, then the conclusions on
stability in Theorems 3.6 and 3.8 are still true without the condition (3.11) because
we still have \BbbE V (X(t\wedge τh)) \leq V (x)ect, which can be used in place of (3.28). However,
in order to obtain asymptotic stability and rate of convergence, (3.11) is needed. In
that case, if the initial value is sufficiently closed to 0, then V (X(t)) will converge
exponentially fast to 0 with a large probability.

Theorem 3.11. Consider the case that the state space of α(t) is finite, say \scrM =
\{ 1, . . . ,m0\} for some positive integer m0, rather than \BbbZ +. Suppose that Q(0) is ir-

reducible and that ν is the invariant probability measure of the Markov chain with

generator Q(0). If
\sum 

i\in \scrM ciνi < 0, then the trivial solution is asymptotically stable in

probability, and for any ε > 0, there are λ > 0 and δ > 0 such that

\BbbP x,i

\biggl\{ 
lim
t\rightarrow \infty 

V (X(t))

G - 1( - λ3t)
\leq 1

\biggr\} 
> 1 - ε for any (x, i) \in B\delta \times \scrM .

We now provide some conditions for instability in probability.

Theorem 3.12. Suppose that the Markov chain \widehat α(t) is ergodic with invariant

probability measure ν = (ν1, ν2, . . . ) and that there are functions g \in Γ, V : D \mapsto \rightarrow \BbbR +

such that the following hold:

\bullet V (x) = 0 if and only if x = 0.
\bullet V (x) is continuous on D and twice continuously differentiable in D \setminus \{ 0\} .
\bullet There is a bounded sequence of real numbers \{ ci : i \in \BbbZ +\} such that

(3.52) \scrL iV (x) \geq cig(V (x)) \forall x \in D \setminus \{ 0\} .

If (3.11) is satisfied and if
\sum 

i\in Z+
ciνi < 0 and lim supi\rightarrow \infty ci < 0, then the trivial

solution is unstable in probability.

Proof. Define G(y) =  - 
\int 1

y
g - 1(z)dz as in Theorem 3.6. We have from Itô’s

formula that
(3.53)

 - G
\bigl( 
V (X(τh \wedge t))

\bigr) 
= - G(V (x)) - 

\int \tau h\wedge t

0

\scrL \alpha (s)V (X(s))

g(V (X(s)))
ds

+

\int \tau h\wedge t

0

ġ(V (X(s)))| Vx(X(s))σ(X(s), α(s))| 2

2g2(V (X(s)))
ds

 - 

\int \tau h\wedge t

0

Vx(X(s))σ(X(s), α(s))

g(V (X(s)))
dW (s) \leq  - G(V (x)) + \widetilde H(t),

where

\widetilde H(t) =  - 

\int \tau h\wedge t

0

c\alpha (s)ds - 

\int \tau h\wedge t

0

Vx(X(s))σ(X(s), α(s))

g(V (X(s)))
dW (s).

Then, using (3.53) and proceeding in the same manner as in the proof of Theorem

3.6 with H(t) replaced with \widetilde H(t), we can find a sufficiently small \widetilde θ, \widetilde ∆ > 0 and a
sufficiently large T3 > 0 such that

\BbbE x,i1\{ \widetilde \zeta \geq kT3\} 
\widetilde U(X(kT2)) \leq pk \widetilde U(x) for (x, i) \in Bh \times \BbbZ +,

where \widetilde U(x) = exp
\bigl\{ 
 - \widetilde θG(V (x))

\bigr\} 
, and \widetilde ζ = inf\{ k \geq 0 : U(X(kT3)) \leq \widetilde ∆ - 1\} . Note

that, unlike U(x), we have limx\rightarrow 0
\widetilde U(x) = \infty . Since U(X(kT3)) \geq \widetilde ∆ - 1 if \widetilde ζ \geq k, we
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have that

\BbbP x,i\{ \widetilde ζ = \infty \} = lim
k\rightarrow \infty 

\BbbP x,i\{ \widetilde ζ \geq k\} = 0.

Similarly, we can obtain a counterpart of Theorem 3.8 for instability.

Theorem 3.13. Suppose that the Markov chain \widehat α(t) is strongly ergodic with in-

variant probability measure ν = (ν1, ν2, . . . ) and that there are functions g \in Γ and

V : D \mapsto \rightarrow \BbbR + such that the following hold:

\bullet V (x) = 0 if and only if x = 0.
\bullet V (x) is continuous on D and twice continuously differentiable in D \setminus \{ 0\} .
\bullet There is a bounded sequence of real numbers \{ ci : i \in \BbbZ +\} such that

(3.54) \scrL iV (x) \geq cig(V (x)) \forall x \in D \setminus \{ 0\} .

If (3.11) and (3.1) are satisfied and if
\sum 

i\in Z+
ciνi > 0, then the trivial solution is

unstable in probability.

4. Stability and instability of linearized systems. Suppose that (3.45) is
satisfied and that \widehat α(t) is a strongly ergodic Markov chain.

Assumption 4.1. Suppose that for i \in \BbbZ +, there exist b(i) and σk(i) \in \BbbR 
n\times n

bounded uniformly for i \in \BbbZ + such that

ξi(x) := b(x, i) - b(i)x, ζi(x) := σ(x, i) - (σ1(i)x, . . . , σd(i)x)

satisfying

(4.1) lim
x\rightarrow 0

sup
i\in Z+

\biggl\{ 
| ξi(x)| \vee | ζi(x)| 

| x| 

\biggr\} 
= 0.

For i \in \BbbZ +, k \in \{ 1, . . . , n\} , let Λ1,i and Λ2,i,k be the maximum eigenvalues

of b(i)+b\top (i)
2 and σk(i)σ

\top 
k (i), respectively. Similarly, denote by λ1,i and λ2,i,k the

minimum eigenvalues of b(i)+b\top (i)
2 and σk(i)σ

\top 
k (i), respectively.

Suppose that Λ1,i and Λ2,i,k are bounded in i \in \BbbZ +; then we claim that if

\sum 

i\in Z+

νi

\Biggl( 
Λ1,i +

1

2

n\sum 

k=1

Λ2,i,k

\Biggr) 
< 0,

then the trivial solution is asymptotically stable.
To show that, let ε > 0 be sufficiently small such that

(4.2)
\sum 

i\in Z+

νi

\Biggl( 
ε+ Λ1,i +

1

2

n\sum 

k=1

Λ2,i,k

\Biggr) 
< 0.

Defining V (x) = | x| p, carrying out the calculation, and obtaining the estimates
as in those of [9, Theorem 4.3], we can find a sufficiently small p > 0 and \hbar > 0 such
that

(4.3) \scrL iV (x) \leq p

\Biggl( 
ε+ Λ1,i +

1

2

n\sum 

k=1

Λ2,i,k

\Biggr) 
V (x) for 0 < | x| < \hbar .
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(Note that the existence of such p and \hbar satisfying (4.3) uniformly for i \in \BbbZ + is due
to (4.3) and the boundedness of Λ1,i and Λ2,i,k.)

By (4.2) and (4.3), it follows from Theorem 3.8 that the trivial solution is asymp-
totic stable and that for any ε > 0, there exist δ > 0, λ > 0 such that

\BbbP x,i

\Bigl\{ 
lim
t\rightarrow \infty 

e\lambda t| X(t)| \leq 1
\Bigr\} 
\geq 1 - ε for (x, i) \in B\delta \times \BbbZ +.

Similarly, if
\sum 

i\in Z+
νi(λ1,i +

1
2

\sum n
k=1 λ2,i,k) > 0 and if λ1,i and λ2,i,k are bounded

in i \in \BbbZ +, k = 1, . . . , n, we have that the trivial solution is unstable. To sum up, we
have the following result.

Proposition 4.2. Let Assumption 4.1 be satisfied. Then the following hold:

\bullet If Λ1,i and Λ2,i,k are bounded in i \in \BbbZ + and

\sum 

i\in Z+

νi

\Biggl( 
Λ1,i +

1

2

n\sum 

k=1

Λ2,i,k

\Biggr) 
< 0,

then the trivial solution is asymptotically stable in probability.

\bullet If λ1,i and λ2,i,k are bounded in i \in \BbbZ +, k = 1, . . . , n, and

\sum 

i\in Z+

νi

\Biggl( 
λ1,i +

1

2

n\sum 

k=1

λ2,i,k

\Biggr) 
> 0,

then the trivial solution is unstable in probability.

5. Examples. This section provides several examples.

Example 5.1. Consider a real-valued switching diffusion

(5.1) dX(t) = b(α(t))X(t)[| X(t)| \gamma \vee 1]dt+ σ(α(t)) sin2X(t)dW (t), 0 < γ < 1,

where a\vee b = max(a, b) for two real numbers a and b, and Q(x) =
\bigl( 
qij(x)

\bigr) 
Z+\times Z+

with

qij(x) =

\left\{ 
       
       

 - p̌1(x) if i = j = 1,

p̌1(x) if i = 1, j = 2,

 - \widehat pi(x) - p̌i(x) if i = j \geq 2,

\widehat pi(x) if i \geq 2, j = i - 1,

p̌i(x) if i \geq 2, j = i+ 1.

Note that the drift grows faster than linear and the diffusion coefficient is locally like
x2 near the origin for the continuous state. Suppose that b(i), σ(i), p̌i(x), \widehat pi(x) are
bounded for (x, i) \in \BbbR \times \BbbZ + and p̌i(x), \widehat pi(x) are continuous in \BbbR 

n for each i \in \BbbZ +. It
is well known (see [1, Chapter 8]) that if

ν\ast :=
\infty \sum 

k=2

k\prod 

\ell =2

p̌\ell  - 1(0)

\widehat p\ell (0)
<\infty ,

then \widehat α(t) is ergodic with the invariant measure ν given by

ν1 =
1

ν\ast 
, νk =

1

ν\ast 

k\prod 

\ell =2

p̌\ell  - 1(0)

\widehat p\ell (0)
, k \geq 2.
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STABILITY OF SWITCHING DIFFUSIONS 3911

We suppose that \sum 

i

b(i)νi < 0 and lim sup
i\rightarrow \infty 

b(i) < 0.

We will show that the trivial solution is stable. Let 0 < ε <  - 
\sum 

i b(i)νi. Then\sum 
i[b(i) + ε]νi < 0. Let

V (x) = x2.

We have

\scrL iV (x) = 2b(i)| x| 2+2\gamma + σ2(i) sin4(x).

Since γ < 1 and σ(i) is bounded, there exists an \hbar > 0 such that σ2(i) sin4(x) \leq 
ε| x| 2+2\gamma , given that | x| \leq \hbar . Then

\scrL iV (x) \leq [2b(i) + ε]| x| 2+2\gamma = [2b(i) + ε]V 1+\gamma (x) in [ - \hbar , \hbar ]\times \BbbZ +.

By Theorem 3.6, the trivial solution is asymptotically stable in probability. Moreover,
for the function g(y) = y1+\gamma ,

G(y) :=  - 

\int 1

y

1

g(z)
ds = 1 - y - \gamma , y \in (0, 1],

has the inverse

G - 1( - t) =
1

[t+ 1]
1/\gamma 

for t \geq 0.

Thus, for any ε > 0, there exists a δ > 0 such that if (x, i) \in [0, δ] \times \BbbZ +, then there
exists a λ > 0 such that

\BbbP x,i

\biggl\{ 
lim sup
t\rightarrow \infty 

t1/\gamma X2(t) \leq λ

\biggr\} 
> 1 - ε.

Example 5.2. This example considers a random-switching linear system of differ-
ential equations:

(5.2) dX(t) = A(α(t))X(t)dt,

where A(i) \in \BbbR 
n\times n satisfies supi\in Z+

\{ | λi| \vee | Λi| \} <\infty with λi,Λi being the minimum
and maximum eigenvalues of A(i), respectively. Let

Q(x) =

\left( 

 

 

 

 

 

 

 - 1 - sin | x| 1 + sin | x| 0 0 0 \cdot \cdot \cdot 
1 + sin | x|  - 2 - 2 sin | x| 1 + sin | x| 0 0 \cdot \cdot \cdot 
1 + sin | x| 0  - 2 - 2 sin | x| 1 + sin | x| 0 \cdot \cdot \cdot 
1 + sin | x| 0 0  - 2 - 2 sin | x| 1 + sin | x| \cdot \cdot \cdot 

...
...

...
...

...
. . .

\right) 

 

 

 

 

 

 

.

By [1, Proposition 3.3], it is easy to verify that the Markov chain \widehat α(t) with generators
Q(0) is strongly ergodic. Solving the system of equations

νQ(0) = 0,
\sum 

νi = 1,

we obtain that the invariant measure of \widehat α(t) is (νi)\infty i=1 = (2 - i)\infty i=1. Thus, if
\sum 

i λi2
 - i >

0, the trivial solution to (5.2) is unstable. In case
\sum 

i Λi2
 - i < 0, the trivial solution
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3912 DANG HAI NGUYEN AND GEORGE YIN

to (5.2) is asymptotically stable in probability. In particular, suppose that n = 2 and
A(i) are upper triangle matrices, that is,

A(i) =

\biggl( 
ai bi
0 ci

\biggr) 
.

If ai and ci are positive for i \geq 2, then the system dX(t) = A(i)X(t)dt is unstable.
However, if a1, c1 <  - supi\geq 2\{ ai, ci\} , then

\sum 
i(ai \vee ci)2

 - i < 0. Thus, the switching
differential system is asymptotically stable. The stability of the system at state 1 and
the switching process become a stabilizing factor.

On the other hand, if ai \wedge ci is negative for i \geq 2, then the system dX(t) =
A(i)X(t)dt is asymptotically stable. Suppose further that a1, c1 > supi\geq 2\{  - (ai\wedge ci)\} ;

then
\sum 

i(ai \vee ci)2
 - i > 0. Under this condition, the switching differential system is

unstable.

6. Further remarks. We developed a new method to provide sufficient con-
ditions for the stability and instability in probability of a class of regime-switching
diffusion systems with switching states belonging to a countable set. The conditions
are based on the relation of a “switching-independent” Lyapunov function and the
generator of the switching part.

Although the systems under consideration are memoryless, the main results of this
paper hold if we assume that the switching intensities qij depend on the history of
\{ X(t)\} rather than the current state ofX(t); see [13, 14, 15, 16] for the main properties
of such processes. The problem can be formulated as follows. Let r be a fixed positive
number. Denote by \scrC the set of \BbbR n-valued continuous functions defined on [ - r, 0]. For
φ \in \scrC , use the norm \| φ\| = sup\{ | φ(t)| : t \in [ - r, 0]\} , and for t \geq 0, denote by yt the so-
called segment function (or memory segment function) yt = \{ y(t+ s) :  - r \leq s \leq 0\} .
We assume that the jump intensity of α(t) depends on the trajectory of X(t) in the
interval [t  - r, t]. That is, there are functions qij(\cdot ) : \scrC \rightarrow \BbbR for i, j \in \BbbZ + satisfying
that qi(φ) :=

\sum \infty 
j=1,j \not =i qij(φ) is uniformly bounded in (φ, i) \in \scrC \times \BbbZ + and that qi(\cdot )

and qij(\cdot ) are continuous such that

(6.1)
\BbbP \{ α(t+∆) = j| α(t) = i,Xs, α(s), s \leq t\} = qij(Xt)∆ + o(∆) if i \not = j,
\BbbP \{ α(t+∆) = i| α(t) = i,Xs, α(s), s \leq t\} = 1 - qi(Xt)∆ + o(∆).

It was proved in [13] that if either Assumption 2.1 or 2.2 is satisfied with x, y \in \BbbR 
n

replaced by φ, ψ \in \scrC , then there is a unique solution to the switching diffusion (2.1)
and (6.1) with a given initial value. Moreover, the process (Xt, α(t)) has the Markov–
Feller property. With slight modifications in the proofs, the theorems in section 3 still
hold for system (2.1) and (6.1).

Our method can also be applied to regime-switching jump diffusion processes.
Thus our method generalizes the existing results (see, e.g., [20, 23, 26]) to regime-
switching jump diffusions with the random switching taking values in countable state
space.

Note that there is a gap between sufficient conditions for stability and instability
in Proposition 4.2. To overcome the difficulty, we need to make a polar coordinate
transformation to decompose ofX(t) into the radial part r(t) = | X(t)| and the angular
part Y (t) = X(t)/r(t). Then the Lyapunov exponents with respect to invariant
measures of the linearized process of (Y (t), α(t)) will determine whether or not the
system is stable. This approach has been used to treat many linear and linearized
stochastic systems (see, e.g., [2, 3, 5, 8]). In our setting, the switching process α(t)
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takes values in a noncompact space; thus, it is more difficult to examine invariant
measures. We will address this problem together with necessary conditions of stability
in a subsequent paper.

Appendix A.

Proof of Lemma 3.3. Since V (0) = 0 and V (x) is continuous on D, we can find
h\ast > 0 such that Bh\ast 

\subset D and V (x) \leq 1 for any x \in Bh\ast 
. Because τh1

\leq τh2
if

h1 \leq h2, it suffices to prove the lemma for any h \leq h\ast .
Since g is continuously differentiable and g(0) = 0, there exists a Kg > 0 such

that g(z) \leq Kg| z| for | z| \leq 1. Thus, we have

\scrL iV (x) \leq Kg sup
i\in Z+

\{ | ci| \} V (x), (x, i) \in Bh\ast 
\times \BbbZ +.

Letting K̃ = Kg supi\in Z+
\{ | ci| \} , by Itô’s formula,

\BbbE x,iV (X(t \wedge τh)) \leq V (x) + K̃\BbbE x,i

\int t\wedge \tau h

0

V (X(s))ds

\leq V (x) + K̃\BbbE x,i

\int t

0

\BbbE x,iV (X(s \wedge τh))ds.

By the Gronwall inequality, we obtain

\BbbE x,iV (X(T \wedge τh)) \leq V (x)eKT .

Letting vh = inf\{ V (x) : | x| = h\} > 0, an application of Markov’s inequality yields
that

\BbbP x,i\{ τh \leq T\} \leq 
V (x)eKT

vh
.

Since V (0) = 0 and V is continuous on D, there is an h̃ > 0 such that

\BbbP x,i\{ τh \leq T\} \leq 
V (x)eKT

vh
\leq ε

for any x \in Bh̃ as desired.

Proof of Lemma 3.4. The proof was already given in [7]. To be self-contained,
we present the proof here. It is easy to show that there exists some K2 > 0 such that

| y| k exp(θy) \leq K2(exp(θ0y) + exp( - θ0y)), k = 1, 2,

for θ \in 
\bigl[ 
0, \theta 02

\bigr] 
, y \in \BbbR . For any y \in \BbbR , let ξ(y) be a number lying between y and 0 such

that exp(ξ(y)) = ey - 1
y . Pick out a θ \in 

\bigl[ 
0, \theta 02

\bigr] 
and let h \in \BbbR such that 0 \leq θ+h \leq \theta 0

2 .
Then

lim
h\rightarrow 0

exp((θ + h)Y ) - exp(θY )

h
= Y exp(θY ) a.s.,

where Y is as defined in Lemma 3.4, and
\bigm| \bigm| \bigm| \bigm| 
exp((θ + h)Y ) - exp(θY )

h

\bigm| \bigm| \bigm| \bigm| = | Y | exp(θY + ξ(hY )) \leq 2K3[exp(θ0Y ) + exp( - θ0Y )].

By the Lebesgue dominated convergence theorem,

d\BbbE exp(θY )

dθ
= lim

h\rightarrow 0
\BbbE 
exp((θ + h)Y ) - exp(θY )

h
= \BbbE Y exp(θY ).
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3914 DANG HAI NGUYEN AND GEORGE YIN

Similarly,
d2\BbbE exp(θY )

dθ2
= \BbbE Y 2 exp(θY ).

As a result, we obtain
dφ

dθ
=

\BbbE Y exp(θY )

\BbbE exp(θY )
,

which implies that
dφ

dθ
(0) = \BbbE Y

and
d2φ

dθ2
=

\BbbE Y 2 exp(θY )\BbbE exp(θY ) - [\BbbE Y exp(θY )]2

[\BbbE exp(θY )]2
.

By Hölder’s inequality, we have \BbbE Y 2 exp(θY )\BbbE exp(θY ) \geq [\BbbE Y exp(θY )]2, and there-
fore

d2φ

dθ2
\geq 0 \forall θ \in 

\biggl[ 
0,
θ0
2

\biggr] 
.

Moreover,
d2φ

dθ2
\leq 

\BbbE Y 2 exp(θY )

\BbbE exp(θY )

\leq 
K3(\BbbE exp(θ0Y ) + \BbbE exp( - θ0Y ))

exp(θ\BbbE Y )

\leq 
K3(\BbbE exp(θ0Y ) + \BbbE exp( - θ0Y ))

exp( - θ0| \BbbE Y | )
:= K2,

which concludes the proof.

Proof of Lemma 3.5. Let τn be the nth jump moment of α(t). Letting T > 0, in
view of [11, Lemma 4.3.2], we have

\BbbP x,i\{ X(t) = 0 for some t \in [0, T \wedge τ1]\} = 0 for any x \not = 0, i \in \BbbZ +.

Since X(T \wedge τ1) \not = 0 a.s., applying [11, Lemma 4.3.2] again yields

\BbbP x,i\{ X(t) = 0 for some t \in [T \wedge τ1, T \wedge τ2]\} = 0 for any x \not = 0, i \in \BbbZ +.

Continuing this way, we have

(A.1) \BbbP x,i\{ X(t) = 0 for some t \in [0, T\wedge τn]\} = 0 for any x \not = 0, i \in \BbbZ +, n \in \BbbZ +.

In [13, Theorems 3.1 and 3.3], we have that limn\rightarrow \infty τn = \infty . This and (A.1) imply
that

\BbbP x,i\{ X(t) = 0 for some t \in [0, T ]\} = 0 for any x \not = 0, i \in \BbbZ +, n \in \BbbZ +.

Since T is taken arbitrarily, we obtain the desired result.

Lemma A.1. If the Markov chain \widehat α(t) is strongly exponentially ergodic with gen-

erator \widehat Q and invariant probability measure ν = (ν1, ν2, . . . )
\top , then if b = (b1, b2, . . . )

\top 

is bounded satisfying
\sum 

i νibi = 0, then there exists a bounded vector c = (c1, c2, . . . )
\top 

such that bi =
\sum 

j \widehat qjicj.

D
o
w

n
lo

ad
ed

 0
6
/2

8
/1

9
 t

o
 1

4
1
.2

1
7
.1

1
.3

9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY OF SWITCHING DIFFUSIONS 3915

Proof. Let \widehat P (t) = \widehat pij(t), where \widehat pij(t) = \BbbP \{ \widehat α(t) = j| α(0) = i\} , the transition

matrix of \widehat α(t). Let c = (c1, c2, . . . )
\top , where ci =

\int \infty 

0
[νjbj  - \widehat Pij(t)bi]dt. In view of

(2.7), it is easy to see that c is bounded. Let 1 = (1, 1, . . . ). We have

\widehat Qc =

\int \infty 

0

\bigl[ \widehat Qν1b - \widehat Q \widehat P (t)b
\bigr] 
dt

= - 

\int \infty 

0

\widehat Q \widehat P (t)bdt

= - 

\int \infty 

0

\widehat P (t)bdt =  - \widehat P (t)b
\bigm| \bigm| \bigm| 
\infty 

0

= - 1νb+ b = b.

Lemma A.2. Suppose that Assumption 3.2 and (3.1) hold. Then, for any T > 0
and a bounded function f : \BbbZ + \mapsto \rightarrow \BbbR , we have

(A.2) lim
x\rightarrow 0

sup
i\in Z+,t\in [0,T ]

\{ | \BbbE x,if(α(t)) - \BbbE if(\widehat α(t))| \} = 0.

Proof. By the basic coupling method (see, e.g., [6, p. 11]), we can consider the
joint process (X(t), α(t), \widehat α(t)) as a switching diffusion where the diffusion X(t) \in \BbbR 

n

satisfies

(A.3) dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dw(t)

and the switching part (α(t), \widehat α(t)) \in \BbbZ + \times \BbbZ + has the generator \widetilde Q(X(t)) which is
defined by

\widetilde Q(x) \widetilde f(k, l) =
\sum 

j,i\in Z+

\widetilde q(k,l)(j,i)(x)
\Bigl( 
\widetilde f(j, i) - \widetilde f(k, l)

\Bigr) 

=
\sum 

j\in Z+

[qkj(x) - qlj(0)]
+( \widetilde f(j, l) - \widetilde f(k, l))

+
\sum 

j\in Z+

[qlj(0) - qkj(x)]
+( \widetilde f(k, j) - \widetilde f(k, l))

+
\sum 

j\in Z+

[qkj(x) \wedge qlj(0)]( \widetilde f(j, j) - \widetilde f(k, l)).

(A.4)

In what follows, we use the notation \BbbE x,i,j and \BbbP x,i,j to denote the corresponding
conditional expectation and probability for the coupled process (X(t), α(t), \widehat α(t)) con-
ditioned on (X(0), α(0), \widehat α(0)) = (x, i, j). Let ϑ = inf\{ t \geq 0 : α(t) \not = \widehat α(t)\} . Define
g̃ : \BbbZ \times \BbbZ \mapsto \rightarrow \BbbR by \widetilde g(k, l) = 1\{ k=l\} . By the definition of the function \widetilde g, we have

(A.5)

\widetilde Q(x)\widetilde g(k, k) =
\sum 

j\in Z+,j \not =k

[qkj(x) - qkj(0)]
+ +

\sum 

j\in Z+,j \not =k

[qkj(0) - qkj(x)]
+

=
\sum 

j\in Z+,j \not =k

| qkj(x) - qkj(0)| =: Ξ(x, k).

For any ε > 0, let h > 0 such that Bh \in D and sup(x,k)\in Bh\times Z+
Ξ(x, k) < \varepsilon 

2T . Applying
Itô’s formula and noting that α(t) = \widehat α(t), t \leq ϑ,
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we obtain that

\BbbP x,i,i\{ ϑ \leq T \wedge τh\} = \BbbE x,i,i\widetilde g (α(ϑ \wedge T \wedge τh), \widehat α(ϑ \wedge T \wedge τh))

= \BbbE x,i,i

\int \vargamma \wedge T\wedge \tau h

0

\widetilde Q(X(t))\widetilde g(α(t), \widehat α(t))dt

= \BbbE x,i,i

\int \vargamma \wedge T\wedge \tau h

0

Ξ(X(t), α(t))dt

\leq T sup
(x,i)\in Bh\times Z+

Ξ(x, k) \leq 
ε

2
.

(A.6)

Thus, in view of Lemma 3.3, there is a δ > 0 such that \BbbP x,i,i\{ τh \leq T\} \leq \varepsilon 
2 . This and

(A.6) lead to

\BbbP x,i,i\{ ϑ \wedge τh \leq T\} \leq \BbbP x,i,i\{ ϑ \leq T \wedge τh\} + \BbbP x,i,i\{ τh \leq T\} \leq ε.

We have that

| \BbbE x,if(α(t)) - \BbbE 0,if(α(t))| = | \BbbE x,i,i [f(α(t)) - f(\widehat α(t))]| 
=
\bigm| \bigm| \BbbE x,i,i1\{ \vargamma \wedge \tau h\leq t\} [f(α(t)) - f(\widehat α(t))]

\bigm| \bigm| 
\leq 2Mf\BbbP x,i,i\{ ϑ \wedge τh \leq t\} \leq 2Mfε for t \in [0, T ],

where Mf = supi\in Z+
| f(i)| . The lemma is proved.
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