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WITH DISCRETE STATES BELONGING TO A COUNTABLE SET*

DANG HAI NGUYENT AND GEORGE YIN*

Abstract. This work focuses on the stability of regime-switching diffusions consisting of con-
tinuous and discrete components, in which the discrete component switches in a countably infinite
set and its switching rates at the current time depend on the continuous component. In contrast
to the existing approach, this work provides a more practically viable approach with more feasible
conditions for stability. A classical approach for asymptotic stability using Lyapunov function tech-
niques shows that the Lyapunov function evaluated at the solution process goes to 0 as time t — oo.
A distinctive feature of this paper is the precise estimate of pathwise rates of convergence, which
pinpoint how fast the aforementioned convergence takes place. In addition, some examples are given
to illustrate our findings.

Key words. switching diffusion, countable discrete-state space, stability, rate of convergence
AMS subject classifications. 93D05, 93D20, 34D20, 60H10, 60J60

DOI. 10.1137/17M1118476

1. Introduction. In the new era, because of the pressing needs in networked
systems (including physical, biological, ecological, and social dynamic systems), large-
scale optimization, and wired and wireless communications, many new sophisticated
control systems have come into being. Hybrid systems in which discrete and con-
tinuous states coexist and interact are such a representative. In particular, taking
random disturbances into consideration, the so-called regime-switching diffusion sys-
tems have drawn resurgent and increasing attention. A regime-switching diffusion is
a two-component process (X (t), a(t)), a continuous component and a discrete compo-
nent taking values in a set consisting of isolated points. When the discrete component
takes a value i (i.e., a(t) = i), the continuous component X (t) evolves according to
the diffusion process whose drift and diffusion coefficients depend on 7. Asymptotic
properties of such systems such as stability have been studied intensively because of
numerous applications. For example, many issues such as permanence, extinction,
persistence, etc., of species in population dynamics and ecology are all linked to the
stability issues.

Because many systems are in operation for a long period of time, an important
problem of great interest is the stability of such systems. Many results on different
types of stability have been given for switching diffusions when the state space of «(t)
is finite (see, e.g., [9, 12, 21, 22, 24, 25]). For «(t) taking values in a countable state
space, the stability of the underlying systems is more difficult to analyze. To the best
of our knowledge, very few papers have considered the stability of switching diffusion
with countable switching states. In [18], some conditions for the stability of those
systems were given by approximating the generator of a continuous state-dependent
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switching process by that of a Markov chain with finite state space.

To find sufficient conditions for stability, it is desirable to find some common
threads that are shared by many specific systems. Our motivation is based on the
following thoughts. First, although the dynamics of X (¢) depend on the residence
of the state of «(t), the structures of equations for different states of a(t) are not
drastically different but rather similar in a certain sense. This observation suggests
finding a Lyapunov function that has a similar form in different states of a(t). For
instance, suppose that there is a Lyapunov function V(z) such that in each discrete
state ¢ we have £;V(z) < ¢;V(z), where L; is the generator of the diffusion in regime
i (more conditions and explanations for this inequality and related issues will be given
in the next sections). In this case, there is a common Lyapunov function shared by all
the discrete states (or the Lyapunov function is independent of the discrete states).
It is well known that the sign of ¢; determines the stability of the diffusion in each
state i. For the regime-switching diffusion, one can expect that the stability of the
system depends not only on {¢;} but also on the generator Q(x) of the switching part.
A natural question is, “Under what relation between {c¢;} and Q(x) is the regime-
switching diffusion stable?” When the number of regimes is finite, this question has
been answered relatively completely; see [9, 18]. However, it is not straightforward
to answer this question for the case of the discrete states belonging to a countable
state space. We aim to take the challenges here. Moreover, this paper also considers
a generalization when the condition £;V (x) < ¢;V(z) is replaced with a condition of
the type £;V(x) < ¢;9(V(z)) with g being an appropriate function.

To date, much work has been devoted to the asymptotic stability of diffusions and
switching diffusions. A commonly used technique is based on the Lyapunov stability
argument. For example, treating asymptotic stability, much effort has been devoted
to obtaining sufficient conditions under which the Lyapunov function evaluated at the
solutions of the processes goes to 0 as t — co. However, the question of how fast the
Lyapunov function goes to 0 is unknown to date to the best of our knowledge. The
current paper settles this issue. We estimate the convergence rate of the solution to
the equilibrium point by the use of properties of the function g(-).

Treating switching diffusions as Markov processes, one may obtain sufficient con-
ditions for stability by using a Lyapunov function satisfying certain properties. How-
ever, the conditions are often not directly related to the given system coefficients
(such as the drifts and diffusion matrices). To obtain conditions that are based on
coefficients of the systems, we examine the associated linearized (about the point of
equilibrium) systems. The idea originated from the topological equivalence of the
linearized systems and original nonlinear systems due to the well-known Hartman-—
Grobman theorem in differential equations. Here, in addition to linearizing the sys-
tems about the equilibrium point, we also replace Q(x) by Q(0), resulting in replacing
the state-dependent switching by a continuous-time Markov chain.

The rest of this paper is organized as follows. In section 2, we formulate the
equation for a regime-switching diffusion and pose appropriate conditions for the
existence and uniqueness of solutions. We then provide the definitions of certain
types of stability as well as give general conditions for the stability of switching. In
section 3, conditions for the stability and instability of regime-switching diffusions are
given. Applications of these conditions to linearizable systems are given in section 4,
and examples are provided in section 5 to illustrate our findings. Section 6 is devoted
to several remarks. Finally, we provide the proofs of a number of technical results in
Appendix A.
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2. Formulation and auxiliary results. Let (Q, F, {F:}i>0,P) be a complete
filtered probability space with the filtration {F; }+>¢ satisfying the usual condition; i.e.,
it is increasing and right continuous while F; contains all P-null sets. Throughout the
paper, we work with W (t), an Fi-adapted and R%valued standard Brownian motion,
and p(dt,dz), an Fi-adapted Poisson measure independent of the Brownian motion
W(t) (see (2.3)). Suppose b(-,-) : R x Z; — R™ and o(-,-) : R" x Z, — R"*4,
Consider the two-component process (X (t), «(t)), where a(t) is a pure jump process
taking value in Z; = N\ {0} = {1,2,...}, the set of positive integers, and X (t) € R"
satisfies

(2.1) dX (1) = b(X (1), a(t))dt + o (X (t), a(t))dW (¢).

We assume that the jump intensity of «(t) depends on the current state of X(t),
that is, there are functions g;;(-) : R" — R for 4, j € Z satisfying

) Plalt+8) = jla(t) =4, X().a(s).s < 1} = ay(XO)A +o(&) ifi ]
‘ Pl{a(t+ A) =ila(t) =i, X(s),a(s),s <t} =1—q;(X(t)A + o(A).

Throughout this paper, ¢;;(z) > 0 for each ¢ # j and Zj€Z+ ¢ij(z) = 0 for each
¢ and all z € R™. Denote g;(z) = Z;’;l,#i gij(z) (so gii(z) = —g¢i(x)) and Q(z) =
(¢ij(%))z, xz, - The process a(t) can be defined rigorously as the solution to a stochas-
tic differential equation with respect to a Poisson random measure. For each function
x €R" i €Zy, let Ajj(x), j # 1, be the consecutive left-closed, right-open intervals
of the real line, each having length ¢;;(z). That is,

A1 (x) = [0, ¢ (2)),

Jj—1 J
Aij(x>=[ > i), > qik(:c)>, j>1, i
k=1,k#i k=1,k#i

Define h : R* x Zy x R+— R by h(z,i,2) = Z;’;L#i(j —i)1{.en,;(2)}- Recall that in
our case, both the R%-valued Brownian motion W (-) and the Poisson random measure
p(dt, dz) being independent of the Brownian motion are defined on (Q, F, {F; }i>0,P)
and are Fi-adapted. Then the process a(t) can be defined as the solution to

(2.3) dal(t) = /R h(Xy, a(t—), 2)p(dt, dz),

where a(t—) = lim, ,;- a(s) and p(dt, dz) is a Poisson random measure with intensity
dt x m(dz) and m is the Lebesgue measure on R. The pair (X (t), a(t)) is therefore a
solution to

dX (1) = b(X (1), a(t))dt + o (X (L), a(t))dW (2),

(24) da(t) = / R(X(t), a(t—), z)p(dt, dz).
R
A strong solution to (2.4) on [0, T] with initial data (x,i) € R™ x Z, is an F;-adapted
process (X (¢),a(t)) such that the following hold:
e X(t) is continuous and a(t) is cadlag (right continuous with left limits) with
probability 1 (w.p.1).
e X(0) =z and «(0) = 1p.
o (X (t),a(t)) satisfies (2.4) for all ¢ € [0,T] w.p.1.
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Let f(-,-) : R" x Z4 — R be twice continuously differentiable in x. We define the
operator Lf(-,-) : R" x Z; — R by

(2.5)
Lf(x,i) = [Vf(x,)] blz,i)+ itr (V f(z,9) ) + Z qij(x — f(x,1)]
Jj=1,5#1
= Zbk(.’b,i)fk($,’i) —|—% Z ar (2, 1) fer(z, 1) + Z qi;(x — f(z,9)],
k=1 k=1 J=1,j#i

where Vf(z,i) = (f1(z,4),..., fo(z,i)) € R*™*™ and V?f(z,4) = (fi;(2,%))nxn are the
gradient and Hessian of f(x,7) with respect to x, respectively, with

fi(@, i) = (8/0xi) f(2,4), fu(w,i) = (8°/0xkdxy) f(2,1),
A(z,1) = (aij(2,7))pxn = U(J:,i)UT(x,i),

where 2" denotes the transpose of z. If (X (t), a(t)) satisfies (2.4), then by modifying
the proof of [19, Lemma 3, p. 104], we have the generalized 1td formula

FX(8),a(t)) = f(X(0),(0)) = /0 Lf(X(s),a(s—))ds + My (t) + Ma(2),

where M (-) and Ms(-) are two local martingales defined by
(2.6)

M, (1) / FX(5), als—))o (X (s), a(s—))dW (s),
/ / 52) + h(X(s),a(s-), 2)) — F(X(s), a(s—)] ulds, dz).

and p(ds,dz) is the compensated Poisson random measure given by
wu(ds,dz) = p(ds,dz) — m(dz)ds.

For discussion on martingales, see [10] and references therein. Throughout this paper,
we assume that either one of the following assumptions is satisfied. Under either of
the conditions, it is proved in [13] that (2.4) has a unique solution with given initial
data. Moreover, the solution is a Markov—Feller process.

Assumption 2.1. We assume the following conditions:
1. For each i € Z,, H > 0, there is a positive constant L; i such that

[b(2,4) = by, )| + o (y,4) — o(,0)] < Liule -yl

if x,y € R" and |z|, |y| < H.
2. For each i € Z, there is a positive constant L; such that

bz, i)| + |o(x, i) < Li(jx| +1).
3. The ¢;j(x) is continuous in € R™ for each (i, j) € Zi. Moreover,

M:= sup {lg(z)|} < .

TERM €T,
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Assumption 2.2. We assume the following conditions hold:
1. For each i € Z,, H > 0, there is a positive constant L; i such that

|b($,1) - b(y77’)| + ‘O’({E/L) - O'(y,l)| < LZ’H|'I - y|

if x,y € R" and |z|, ly| < H.
2. There is a positive constant L such that

1b(z, )| + o (x,0)| < L(Jz| + 1).

3. The ¢;;(z) is continuous in & € R" for each (i,j) € Z3. Moreover, for any
H>0,
My = sup {lai(@)|} < oo.
z€R™,|z|<H,i€Z4
We suppose throughout this paper that 5(0,7) = 0 and ¢(0,47) = 0 for ¢ € Z; and
give the following definitions of stability.

DEFINITION 2.3. The trivial solution X (t) =0 is said to be
e stable in probability if for any h > 0,
lim inf P,;{X(t) <hVt>0}=1and

r—04€Zy

e asymptotic stable in probability if it is stable in probability and

lim inf P, { lim X (t) = 0} =1
z—0i€Zy t— o0
We state a general result that can be proved by well-known arguments; see [25,
section 7.2].

THEOREM 2.4. Let D be a meighborhood of 0 € R™. Suppose there exist three
functions V(z,i) : D X Z — Ry, pi(z) : D — Ry, po(x) : D — Ry such that the
following hold:

o pi(x), ua(x) are continuous on D, and pp(z) = 0 if and only if x = 0 for
k=1,2.

o V(z,i) is continuous on D and twice continuously differentiable in D\ {0}
for each i € Z,.

o 1(z) < V(x,i) for any (z,i) € D X Zy.

Then the following conclusions hold:

o If LV (x,i) < 0 for any (x,i) € D X Zy, the trivial solution is stable in
probability.

o If LV (x,i) < —pua(x) for any (z,i) € D X Zy the trivial solution is asymp-
totically stable in probability.

DEFINITION 2.5. Let a(t) be the Markov chain with bounded generator Q(0) and
transition probability p;;(t). The Markov chain (t) is said to be
e ergodic if it has an invariant probability measure v = (v1,va,...) and

i 5o (4) — v ic7
Jm pij(t) = v forany i, j € Zy
or, equivalently,

tlggo Z |pij(t) —vj| =0 foranyie€ Zy,
JELy
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o strongly ergodic if

lim sup { Z ij () — I/j} =0, and

t—o0 i€Z, jez,
e strongly exponentially ergodic if there exist C > 0 and A > 0 such that
(2.7) Z i (t) —v;| <Ce ™™ foranyi€Zy, t>0.
JELy
We refer the reader to [1] for some properties and sufficient conditions for the
aforementioned ergodicity.

3. Certain practical conditions for stability and instability. For each h >
0, denote by Bj C R™ the open ball centered at 0 with radius h. Throughout this
section, let D be a neighborhood of 0 satisfying D C B;. We also denote by a(t) the
continuous-time Markov chain with generator @)(0). Denote by £; the generator of
the diffusion when the discrete component is in state i, that is,

LV (x) = VV (2)b(x, i) + %tr (VV(@)AG.1).

We first state a theorem, which generalizes [9, Theorem 4.3], a result for switching
diffusions when the switching takes values in a finite set.

THEOREM 3.1. Suppose that the Markov chain a(t) is strongly exponentially er-
godic with invariant probability measure v = (v1,va,...) and that

(3.1) sup Z |gij(x) — ¢i;(0)] = 0 as x — 0.
€L+ ki

Let D be a neighborhood of 0 and V : D +— R which satisfies that V(x) = 0 if and
only if © = 0 and that V(x) is continuous on D, twice continuously differentiable in
D\ {0}. Suppose that there is a bounded sequence of real numbers {c; : i € Z} such
that

(3.2) LV (z) <c¢V(x) Ve D\{0}.

Then, if Zi€Z+ c;v; < 0, the trivial solution is asymptotically stable in probability.

Proof. Let A = — Ziez+ c;v;. Since Ziez+ v; = 1, we have Ziem (i + Nv; =0.
Since a(t) is strongly exponentially ergodic, it follows from Lemma A.1 that there
exists a bounded sequence of real numbers {v; : ¢ € Z} such that

(3.3) Z ¢ij(0)y; =A+¢; foranyieZ,.
JEL+

Since ez, 4i5(0) = 0 for any i € Z it follows from (3.3) that

(3.4) Z qi;(0)y; = Z ¢:;;(0)(1 = pvj) = —p(A+¢;) foranyieZy.
JELy JELy

Since {v;} is bounded, we can choose p € (0,1) such that

(3.5) p|v:| < min{0.25\,0.5}.
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In view of (3.1) and (3.5), there is an h > 0 sufficiently small such that

A
(3.6) > (1= pylas(@) = (0) < 2= vae By,
JELy
Define the function U(z,i) : By X Z4 — Ry by U(x,i) = (1 — py;)VP(z). By Itd’s
formula, (3.1), (3.4), and (3.6), we have

(3.7)
LU (z,1)
= (= V" LV (@) PPV @ ) + V@) Y (- p)a (@)
<ep(l—py)VP + VP (x) Z (1 = p75)4i; (0) + V*(z) Z (1 = pvi)laij (x) — 4:;(0)]|
<eip(l—py)VP ™ = p(A + ) VP (@) + VP () > (1= pys)lgis (@) — gi; (0)]
jezy
<p(=A—py)VP(z) + V() Z (1 = pvi)lgij (z) — 4i;(0)]

< —0.75pAVP(z) + 0.25pAV? (x) = —0.5pAVP(z)  for (x,i) € Bp X Z+4.

Using Theorem 2.4, it follows from (3.7) that the trivial solution is asymptotically
stable. ]

The hypothesis of this theorem seems to be restrictive. It requires the strongly ex-
ponential ergodicity of @(0) and the uniform convergence to 0 of 3, |g:;(x) —i;(0)|.
To treat cases in which Q(0) is strongly ergodic (not exponentially ergodic) or even
only ergodic, as well as to relax the condition (3.1), we need a more complicated
method. Our method, which is inspired by the idea in [4], utilizes the ergodicity
of Q(0) and the analysis of the Laplace transform. Similar techniques that use the
Laplace transform can also be seen in the large deviations theory and related ap-
plications [3, 26]. We also take a step further by estimating the pathwise rate of
convergence of solutions.

Let I' be a family of increasing and differentiable functions g : R4 — R4 such
that g(y) = 0 if and only if y = 0 and Z—‘Z is bounded on [0, 1]. Since Z—Z(y) is bounded
on [0,1] and ¢g(0) = 0, it is easy to show that the function

1
dz
(3.9) Gly) = — / L 0]
y 9(2)
is nonpositive and strictly decreasing and lim, ,o G(y) = —oo. Its inverse G

(=00, 0] — (0, 1] satisfies
lim G~(—t) = 0.
t— o0
We state some assumptions to be used in what follows; we will also provide some
lemmas whose proofs are relegated to Appendix A.
Assumption 3.2. There are functions g € I', V : D +— R, such that the following
hold:
e V(z) =0 if and only if x = 0.
e V(x) is continuous on D and twice continuously differentiable in D \ {0}.
e There is a bounded sequence of real numbers {¢; : i € Z} such that

(3.9 L;V(z) <cig(V(z)) VzeD\{0}.
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_ LemMA 3.3. Under Assumption 3.2, for any e,T,h > 0, there exists an h =
h(e,T,h) such that

Ppi{mn <T} <e V(x,i) € B x Zy,

where 7, = inf{t > 0:|X(¢)| > h}.

LEMMA 3.4. LetY be a random variable, let 6y > 0 be a constant, and suppose
Eexp(6pY) + Eexp(—6yY) < K.

Then the log-Laplace transform ¢(0) = InEexp(0Y) is twice differentiable on [0, %0)
and
d¢

do

2
(0)=EY and OS;ZQ(S(Q)SK279€|:05920>

for some Ko > 0. As a result of Taylor’s expansion, we have
#(0) <OEY +0°Ky  for 6 € [0,0.50).
LEMMA 3.5. Under the assumption b(0,i) = 0,0(0,7) =0, i € Zy, we have
P, {X(t) =0 for some t >0} =0 forany ©#0,i € Zy.

With the auxiliary results above, we can prove our main results.

THEOREM 3.6. Suppose that the Markov chain &(t) is ergodic with invariant prob-
ability measure v = (v1,va,...) and Assumption 3.2 is satisfied with additional con-
ditions

(3.10) limsupc¢; <0
i—00
and
Va(z)o(x,1) }
3.11 M, := sup {‘ < 00.
(3.11) 77 epen | o(V(@)

Then, if Zieh civ; < 0, the trivial solution is asymptotically stable in probability.
That is, for any h > 0 with B, C D, and € > 0, there exists § = 6(h,e) > 0 such that

P, {X(t) <hVt>0 and lim X(t) = 0} >1-¢ for any (x,i) € Bs x Z..

Moreover, there is a A > 0 such that

. V(X(®) ‘
(3.12) Py {tlgglo e <1lp>1—¢ forany (x,i) € Bs X Z.

Remark 3.7. Before proceeding to the proof of the theorem, let us make a brief
comment. In addition to providing sufficient conditions for asymptotic stability, a
significant new element here is the rate of convergence given in (3.12). Although there
are numerous treatments of stochastic stability by a host of authors for diffusions and
switching diffusions, the rate result in Theorem 3.6 appears to be the first one of its
kind.
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Proof. The proof is divided into two steps. We first show that the trivial solution
is stable in probability, and then we prove asymptotic stability and estimate the
pathwise convergence rate.

Step 1: Stability. Shrinking D if necessary, we can assume without loss of
generality that V(z) < 1in D. Let h > 0 such that B, C D. Since {¢;} is bounded,

(3.13) ler&Zciui = Z c;v; < 0.

i<k i€Z

This and (3.10) show that there exists ky € Z4 such that

—A1 = Z civ; <0

i<ko

and
—2Xo :=sup ¢; < 0.
i>ko
Let ¢ = suplez+ |cl|, and let mg be a positive integer satisfying moy > ¢+ M, + 1.
Define G(y f g~ 1(2)dz. In view of Lemma 3.5, if X(0) # 0, then X(¢) # 0
a.s, which leads to g(V( ( ))) # 0 a.s. Thus, we have from It6’s formula and the
increasing property of g(-) that

(3.14)
G(V(X(ma A1) = G(V(2)) +/0 | st
ot VRNV (X, a6
/ ST v
A YL(X(8))a(X (), als))
+f VX)) = CVEDHHD.
where

H(t)Z/OTh ca(s>ds+/0m Vi (X (s))o (X (s)

By It6’s formula,

tATH 2 2
PHM) 1+/ cOH (5) {‘9%( 0% |V (X (s))a(X(s), a(s))]
0

(3.15)

QOH (s )V (X(s))a(X(s),a(s)) s
+9/ EO) I

Let g, = inf{t > 0: |H(¢)| > k}. It follows from (3.15) that

B, 00 _ 1 45, /eH() [9 a1 KD X o)),
0

tASE AT
<l+[c+ Mg]]Ew,i/ /1) g
0

t
<1+[c+ Mg]/ E, /N s,
0
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In view of Gronwall’s inequality, for any ¢ > 0 and (z,) € B}, X Z4, we have

(3.16) E, i/ BNk < Mol g e [21,1].

Letting k£ — oo and applying the Lebesgue dominated convergence theorem, we obtain
(3.17) E, 7 < fletMalt g o [—1,1].

On the other hand, we have

Th AL
Ea:7zH(t) < Ez,z/ ca(s)ds
0

t t
Er,i/ Ca(s)ds - Er,l/ Coz(s)d'S
0 T AL

t
]Ez,i/ ca(s)ds -+ tEEDLi{Th < t}.
0

(3.18)

IN

IN

Because of the ergodicity of a(t), there exists a T' > 0 depending on kg such that

t t 3A1
(3.19) Eoﬂ'/ Ca(s)ds = Ei/ Ca(s)ds < _Tt Vt>T,i<kg.

0 0
By the Feller property of (X (¢), a(t)), there exists an hy € (0, h) such that
t )\1

(320) Ea:z/ ca(s)ds < —?t Vit e [T, TQ}, ‘.’E| < hl,i < ]{)0,

0
where Ty = (mg + 1)T. In view of Lemma 3.3, there exists an hy € (0, hy1) such that

A
(3.21) Py i{mh < mT + T} < Zl’ provided |z| < ho, i € Zy.
Applying (3.20) and (3.21) to (3.18), we obtain
A

(3.22) E. H(t) < let if 0< |z| < hg, i<k, tel[l,Ty.

By Lemma 3.4, it follows from (3.17) and (3.22) that for 8 € [0,0.5], 0 < |z| < hg, i <
ko, t € [T, T3], we have
InE, ’2® < 0K, ;H(t) + 6°K
(3.23)
< - (9% +0*K

for some K > 0 depending on T3, ¢, and M. Letting 6 € (0,0.5] such that

MT
(3.24) 0K < 17 and M, < X,
we have ot
InE, ;" < —?1 for 0 < || < ha, i < ko, t € [T, T3]
or, equivalently,
O\t
(3.25) E, "8 < exp {—81} for 0 < |z| < ha, i < ko, t € [T, Ty].
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5] satisfying (3.24). Exponentiating both sides of

In what follows, we fix a 6 € (0,0.
) < G(V(z)) + H(t), we have for 0 < |z| < hg, i <

the inequality G(V (X (1, A t))
ko, t € [T, TQ] that

(3.26) E.iU(X (1, At)) < U(z)E, /7O < U(x) exp {}

where U(z) = exp(6G(V (x))). Since lim,_,o G(V(z)) = —oo, then

(3.27) lim U(z) = 0.

2—0
Using the inequality G(V (X (m, A t))) < G(V(z)) + H(t) and (3.17), we have
(3.28)  E,,U(X(mh At)) <U(x)exp{ffc+ M)t} V(z,i) € By x Zy, t > 0.
Now, let A = inf{U(z) : he < |z] < h} > 0. Define stopping times
E=inf{t>0:a(t) <ks} and (=inf{t>0:U(X(t)> A}

Clearly, if X(0) € By, then ¢ < 73, and if ¢ < ¢, then |X(¢)| < he. By computation
and (3.24), we have

Va(z)o(x, i)
9(V(z))

<

LU (x) < 0U(2) | s + 16— g(V ()]

0(—2)g + OM,)U (z)

<
< =0\ U(x) for 0 < |x| < h, i > ko.

It follows from It0’s formula that
B e N U(X (t A €))
tAENC
(3.29) — U(x) + B / 2 02U (X(5)) + Lo U(X(s))] ds
0
<U(z) for0<|z|<h,i€Zs.
We have the following estimate for 0 < |z| < h, ¢ > ko:
E, ;"M U(X(Ty AEAQ))
= Ew,i1{£A<<moT}69/\2(T2A€AOU(X(T2 NENC))
+ ]E;c,z'1{mgT§§/\C<T2}60)\2(T2A£/\<)U(X(TQ NENCQ))
(3.30) + By ilgencst) €2 NNOU (X (Ty AEACQ))
> By ilienc<moryU(X(ENQ))

+ ee’\sz’TIEgp,i1{moT§£AC<T2}U(X(5 NO))
+ "Ry eom) U(X(T2))-

Since P, ;{¢ = 0} = 1 if i < ko, (3.30) holds for 0 < |z| < h, i € Z4. Noting that
U(z) NA < A for any x € By,, we have

E[U(X(T2 AT)) AAlC < moT, ¢ < g} <A <UX(Q) =UXENQ).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/28/19 to 141.217.11.39. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

3904 DANG HAI NGUYEN AND GEORGE YIN

If £ < ¢, then U(X(£)) < A. By the strong Markov property of (X(¢), a(t)), (3.26),
and (3.17), we have

E[U(X(T, A7) A A < moT £ ¢] SUX(€) = UX(EAQ)
and
E[U(X(Tg/\Th))/\A‘moT <¢< TgAc} < U(X (€))L CHMIT — (X (EAC))edTHMT
From the three estimates above, we have
(3.31)
E%il{EACSmoT} [U(X(T2 A Th)) A A} = Ew,il{c<moT,C§£} [U(X(Tg A Th)) A\ A]
+ Eailigcmorac [U(X (T2 A7h)) A A]
< EgiliencemoriU(X(ENQ))

and
(3.32)

Evilimor<enc<ts} [UX (T2 Amp)) AA] < ?EMITE 10 reencernUX(EAC))
< eGAzmoTEm7l.1{m0T§§/\<<T2}U(X(f ANGQ))s

where the last line follows from mgAs > ¢+ M, + 1. Applying (3.31) and (3.32) to
(3.30), we obtain

Eui[UX (T2 A7) AA] <U(z)  for any (z,7) € By, x Z.
Since E, ; [U(X (T2 A 7)) A A] < A, we have
(3.33) Eoi [UX(To A7) AA] S U(x) AA - for any (z,i) € By, x Z.
This together with the Markov property of (X (t), a(t)) implies that
{M(k) := [U(X(kT> A7) AA],k € Zy} is a supermartingale.

Let n = inf{k € Z; : M(k) = A}. Clearly, {n < oo} D {7, < oo}. For any € > 0, if
U(z) < eA, we have that

E.iM(nAk) _ Ux)
P, ; < ’ < <e.
w,z{n < k} > A =~ A S €

Letting £ — oo yields
(3.34) P, i{mn <o} <Py {n<oo}<e if U(z) <eA.

We complete the proof of this step by noting that {z : U(z) < €A} is a neighborhood
of 2 due to the fact that lim,_,o U(x) = 0.

Step 2: Asymptotic stability and pathwise convergence rate. To prove
the asymptotic stability in probability, fix h > 0 and define U(z), T, mg, and A
depending on h as in the first step. By virtue of (3.30), we have
(3.35)
E, ;e TNNOU (X (Ty NN C)) 2 BoiliencamoryU(X(EAQ))
+ €2 B i1 o r<enc<mn UX (EA Q)
+ 60/\2T2Em’i1{;’:/\<2'1"2}U(X(TQ))
> Eziliecmer,c>eyU(X(E))
+ 60’\2m°TEm,i1{mUng<T2,<>§}U(X(f))
+ eeAszEm’il{f/\CZTz}U(X(TQ)).
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Recalling that ¢ < 7, and X (t) < hg if t < ¢, we have from (3.25) and (3.28) that
(3.36)
Esz,il{c>my le<moriU(X(T2)) = Bailicomy Le<mory U(X (T2 A Th))
< EeiliecyLigcmoryU(X (T2 ATa))

< Bt [eammaU (X ©) exn { 03 - 0 |

OV
<exp {5 }Eus iz Leanam VX©)

and

Ee,ilimor<e¢<ts,c>mU(X(T2))
S Epilpmer<e<moncU(X (T2 A Th))
(3.37) < Eai [Lmor<e<muncyU(X(€)) exp {0(c + M) (T — €)}]
< exp{0(c+ My)T}Eai [Limor<e<roncyU(X(€))]
< exp{—0T} exp {0 AamoT} E; ; [1{m0T§5<T2/\g}U(X(§))] .
On the other hand, we can write

(338) Emvil{é/\csz}U(X(Tg)) = 670)\2T2 60>\2T2Em7i1{5/\<ZT2}U(X(TQ)).

Letting p = max {exp { — &L} exp{—0T},exp{—0A:T>}} < 1 and adding (3.36),

(3.37), and (3.38) side by side and then using (3.35), we have
Eq,ilie>myU(X(T2)) < pU(x)  for (x,i) € By X Zy..
By the strong Markov property of the process (X (t), «(t)) (see, e.g., [13, 17]),

e ilc>omyU(X (2T2) = Ea i [Lic21)Ex (12) 001 Lcomy U(X (T2))]
< PEeilies>m U(X(T2))
<p’U(x) for (z,i) € By X Zy.

Continuing this way, we have
Euilicsrir, U(X (KT2)) < pFU(z)  for (z,i) € By, x Z..

Since 20 < 1, we have from (3.17) that E, ;e?/H(5) < ¢20[c+Mols - This and the
Burkholder-Davis—Gundy inequality imply that

/Wh o (s) Va(X(s))o(X(s),
0 9(V(X(s)))

i To AT, 2 %
[T o Ve (X ()0 (X(s), )
B | PVEE) ]

a(s)) AW (s)

Eac,i sup
t<Ts

<

(3.39) )

1
2

AN

T>
M;Em / e20H () gg
0

IN

0

_ - 1
Mg/ eze[HMg]Sds] ::IN{l.
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On the other hand,

AT 62 |V (X (s))o(X(s),a(s))|?
E, ;s 0H(s)|:9as + 5 ’ :|d
i) W ey
ToNATh
(3.40) < (e+ Mg)]Em/ 01 () g
0

T> .
<(c+ Mg)/ Ml s .= K.
0

It follows from (3.39) and (3.40) that

E,;sup U(X(t A1p,)) = U(x)E,,; sup et
(3.41) t<Ty t<T»
<U@)1+ Ky + Ks) == U(x)K3

By the strong Markov property of (X (t), a(t)), we derive from (3.41) that

Ezil{c—oo} sup UX({tAT))
tG[kT2,(k+1)T2]

<Eoilgcormy  sup  U(X(EATH))
(3.42) te[kTy,(k+1)Ts]

< K3y i1ieshy U(X (KT3))
S [?3U($)pk,

which combined with Markov’s inequality leads to

Pai {1{<—oo} sup  U(X(t A7) > (p+€)’“}
te[kTs,(k+1)Ts)

1
(3.43) < B, |1 sup  U(X(EAT
> (p_|_g)k > {¢=oo} te[kTy,(k+1)T3] ( ( h))
~ pk
< K3U(l‘)ma kels,

where € is any number in (0,1 — p). In view of the Borel-Cantelli lemma, for almost
all w € Q, there exists random integer k1 = k1(w) such that

1ic—co} sup UX(t) < (p+8)F for any k > k.
te[sz,(k}+1)T2]

Thus, for almost all w € {¢ = oo}, we have
(3.44) GV(X®) <[t/Te)ln(p+&) < =AMt fort > k115,

where [t/T»] is the integer part of ¢/T5 and A = ln(p +2) > 0. Since G(y) is decreasing
and maps (0, h] onto (—o0,0], (3.12) follows from 53 34) and (3.44). The proof is
complete. ]

In Theorem 3.6, under the condition that «(t) is merely ergodic, we need an
additional condition (3.10) to obtain the stability in probability of the system. If «(t)
is strongly ergodic, the condition (3.10) can be removed.
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o For any T > 0 and a bounded function f : Z, — R, we have
Tt / f dS - / f

} 0
o Assumption 3.2 is satisfied.
o The Markov chain a(t) is strongly ergodic with invariant probability measure
v=(v,va,...).
Suppose further that (3.11) is satisfied and Zi€Z+ c;v; < 0. Then the conclusion of
Theorem 3.6 holds.

Remark 3.9. In Appendix A, we will prove that (3.45) holds if Assumption 3.2
and (3.1) hold.

Proof of Theorem 3.8. Let A = — Zigm c;v;. Because of the uniform ergodicity
of @(t), there exists a T > 0 such that

z—0 1€ZL4

(3.45) lim sup {

¢ ¢
3\
(3.46) ]EOJ-/ Ca(s)ds = Ei/ c(a(s))ds < —Zt Vt>T,1€ Zy.
0 0
v (3.45), there exists an hy € (0, h) such that
4 A
(3.47) Em/ Cotods < 5T Vo] < b, i €7
0

In view of Lemma 3.3, there exists an hy € (0, hy) such that

_ A . ‘
(3.48) Py i{mn < T} < T provided |z| < ha, i € Zy.
Applying (3.47) and (3.48) to (3.18), we have

A . .

(3.49) B, H(T) < =T if 0< o] < hy.i € Zy.

Using (3.49), we can use arguments in the proof Theorem 3.6 to show that

ONT
(3.50) E, 7T < exp {_8} for 0 < |z| < he

for a sufficiently small # > 0. This implies that

(3.51) E.iU(X(T A7) < exp {_9)\81“} U(x),

where U(z) = exp(8G(V(z))). Thus, {M}, = U(X((KT) A 7)),k = 0,1,...} is
a bounded supermartingale. Then we can easily obtain the stability in probability
of the trivial solution. Moreover, proceeding as in Step 2 of the proof of Theorem
3.6, we can obtain the asymptotic stability as well as the rate of convergence. The
arguments are actually simpler because (3.51) holds uniformly in i € Z, , rather than
1€ {1,...,ko} in the proof of Theorem 3.6. O
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Remark 3.10. Consider the special case g(y) = y. With this function, U(X(t)) =
V(X(t)). Thus, if Assumption 3.2 holds with g(y) = y, then the conclusions on
stability in Theorems 3.6 and 3.8 are still true without the condition (3.11) because
we still have EV (X (tA7p,)) < V(z)e, which can be used in place of (3.28). However,
in order to obtain asymptotic stability and rate of convergence, (3.11) is needed. In
that case, if the initial value is sufficiently closed to 0, then V(X (¢)) will converge
exponentially fast to 0 with a large probability.

THEOREM 3.11. Consider the case that the state space of a(t) is finite, say M =
{1,...,mg} for some positive integer mq, rather than Z,. Suppose that Q(0) is ir-
reducible and that v is the invariant probability measure of the Markov chain with
generator Q(0). If Y7o v civi < 0, then the trivial solution is asymptotically stable in
probability, and for any € > 0, there are A > 0 and 6 > 0 such that

M ( (t)) .
. N« _ )
P, {thm G (= ral) 1p>1—¢  forany (z,i) € Bs x M

We now provide some conditions for instability in probability.

THEOREM 3.12. Suppose that the Markov chain &(t) is ergodic with invariant
probability measure v = (v1,vs,...) and that there are functions g €T, V : D+ R
such that the following hold:

e V(z) =0 if and only if = 0.
e V(z) is continuous on D and twice continuously differentiable in D\ {0}.
o There is a bounded sequence of real numbers {c; : i € Z4} such that

(3.52) LV(x) > cig(V(z)) Ve D)\{0}.

If (3.11) s satisfied and if 3 ez, civi < 0 and limsup,_,,, c; < 0, then the trivial
solution is unstable in probability

Proof. Define G(y) = — f g 1(2)dz as in Theorem 3.6. We have from It&’s
formula that

(3.53) o
—-G(V(X(th A1) == G(V(z)) — /0 ;((‘S/)()é

At GV (X <>>>|v< (
*/o PV (X(s)))

- N VI(X(S))O'( (s),a(s)) ) - i _
/ JVXE)) V) < —GV@) + HD),

where

o Th/\tc - TV (X (8)o (X (s), as)) s
H(t) = /O a(s)d /O g(V(X(s))) W)

Then, using (3.53) and proceeding in the same manner as in the proof of Theorem

3.6 with H(t) replaced with H(t), we can find a sufficiently small 0,A > 0 and a
sufficiently large T3 > 0 such that

E, ;1 U(X (KTy)) < p*U(x) for (x,i) € By X Zy,

{C>kTs}

where U(z) = exp{ — 0G(V z))}, and ¢ =inf{k > 0: UX(KI3)) < A'}. Note
that, unlike U(z), we have hmm_m U(z) = oo. Since U(X(kT3)) > A1 if { > k, we
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have that
Pyi{C = oo} = lim PyifC >k} =0, -
k— o0

Similarly, we can obtain a counterpart of Theorem 3.8 for instability.

THEOREM 3.13. Suppose that the Markov chain a(t) is strongly ergodic with in-
variant probability measure v = (v1,va,...) and that there are functions g € T' and
Vi D w— Ry such that the following hold:

e V(x) =0 if and only if x = 0.
o V(z) is continuous on D and twice continuously differentiable in D\ {0}.
o There is a bounded sequence of real numbers {c; : i € Z4} such that

(3.54) L;V(x)>cg(V(zx)) VaeD\{0}.
If (3.11) and (3.1) are satisfied and if 3,5, civ; > 0, then the trivial solution is
unstable in probability.

4. Stability and instability of linearized systems. Suppose that (3.45) is
satisfied and that a(t) is a strongly ergodic Markov chain.

Assumption 4.1. Suppose that for ¢ € Z,, there exist b(i) and oy(i) € R**™
bounded uniformly for ¢ € Z, such that

&i(x) :=b(x, i) —b(D)z, (i(x):=o(x,i) — (o1(d)x,...,0q(i)x)

satisfying
i VG
(4.1) lim sup {|€ @)V IG(@)] } =0.
J:_>Oi62+ |.’,U|
For i € Zy, k € {1,...,n}, let A;; and Ag;x be the maximum eigenvalues

of Y04 W and gy (i)oy (i), respectively. Similarly, denote by Ai; and Mg th
3 k k y pectively. mmilarly, enote by Ajp; al 2,1,k €

. T, .
minimum eigenvalues of W and oy, (7)o (i), respectively.

Suppose that A1 ; and Ag; i are bounded in ¢ € Z; then we claim that if
1 n
Z Vi (Al,i + 5 ZA2,i,k> <0,
l€Z+ k=1

then the trivial solution is asymptotically stable.
To show that, let € > 0 be sufficiently small such that

1 n
(4.2) Z v (E + A+ 3 ZA2,i,k> < 0.
Z€Z+ k=1

Defining V' (z) = |z|P, carrying out the calculation, and obtaining the estimates
as in those of [9, Theorem 4.3], we can find a sufficiently small p > 0 and % > 0 such
that

1 n
(4.3) LV(x)<p (E + A+ 3 ZAZi,k) V(z) for0 < |z| <h.
k=1
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(Note that the existence of such p and & satisfying (4.3) uniformly for i € Z is due
to (4.3) and the boundedness of A;; and Ag; x.)

By (4.2) and (4.3), it follows from Theorem 3.8 that the trivial solution is asymp-
totic stable and that for any € > 0, there exist § > 0, A > 0 such that

Pm{}meﬂmﬁngl}z1—a for (z,i) € Bs x Zy.
—00

Similarly, if Zi€Z+ Vi(/\l,i + % ZZ:I )\Q,i,k) > 0 and if )\171‘ and /\Q,i,k are bounded
initeZy, k=1,...,n, we have that the trivial solution is unstable. To sum up, we
have the following result.

PROPOSITION 4.2. Let Assumption 4.1 be satisfied. Then the following hold:
o If A1 and Ao ;1 are bounded in i € Z, and

n
> v (Al,i + % ZAz,i,k> <0,
i€y k=1

then the trivial solution is asymptotically stable in probability.
o If \i; and Xa;k are bounded ini € Z4, k=1,...,n, and

1 n
Z v; (Al,i + 5 Z)\Q,i,k> > 0,
sy k=1

then the trivial solution is unstable in probability.

5. Examples. This section provides several examples.

Example 5.1. Consider a real-valued switching diffusion

(5.1)  dX(t) = b(a(t) X (O] X (O] V 1)dt + o(a(t))sin? X (O)dW(t), 0< < 1,

where a Vb = max(a, b) for two real numbers a and b, and Q(z) = (g;; (:c))Z+XZ+ with
—p1(z) ifi=45=1,
p1(x) ifi=1,5=2,
qij(w) = § —Pi(x) —pi(x) ifi=j>2,
i) ifi>2 j=i—1,
pi(z) ifi>2 j=1i+1.

Note that the drift grows faster than linear and the diffusion coeflicient is locally like
x? near the origin for the continuous state. Suppose that b(i), o (i), p;(z), p;(z) are
bounded for (z,7) € R x Z and p;(z), p;(x) are continuous in R™ for each i € Z. It

is well known (see [1, Chapter 8]) that if
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We suppose that
Z b(i)v; <0 and limsupb(i) < 0.

1—>00

We will show that the trivial solution is stable. Let 0 < & < —) . b(i)r;. Then
>;[b(i) + €]y, < 0. Let
V(r) = 2?.

We have

LV () = 2b(i)|z|* T2 + 0% (i) sin*(z).
Since v < 1 and (i) is bounded, there exists an & > 0 such that o?(i)sin*(z) <
g|lz|**?7, given that |z| < h. Then

LV (x) < [2b(i) + ]|z = [2b(i) + ]V (z)  in [k, k] X Z,.

By Theorem 3.6, the trivial solution is asymptotically stable in probability. Moreover,
for the function g(y) = y**7,

1
Gy) == —/ ﬁds =1-y 7, ye(0,1],

has the inverse 1
t+ 1)/

Thus, for any € > 0, there exists a ¢ > 0 such that if (z,i) € [0,0] x Z, then there
exists a A > 0 such that

G (-t) = for ¢t > 0.

Py {limsuptl/WXg(t) < /\} >1—e.

t—o0

Ezxample 5.2. This example considers a random-switching linear system of differ-
ential equations:

(5.2) dX(t) = A(a(t)) X (t)dt,

where A(i) € R™"*" satisfies sup;cz, {|A\i| V [Ai]} < oo with i, A; being the minimum
and maximum eigenvalues of A(i), respectively. Let

—1 — sin |z| 1+ sin|z| 0 0 0
1+sin|z] —2—2sin|z| 1+ sin |z 0 0
Q(z) = 1+ sin |z| 0 —2 — 2sin || 1+ sin |z| 0

1+ sin|z| 0 0 —2 —2sin|z| 1+ sin|z|

By [1, Proposition 3.3], it is easy to verify that the Markov chain @(t) with generators
Q(0) is strongly ergodic. Solving the system of equations

vQ(0) =0, > vi=1,

we obtain that the invariant measure of &(t) is ()52, = (279)52;. Thus, if >, \;27¢ >

0, the trivial solution to (5.2) is unstable. In case ), A;27" < 0, the trivial solution
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to (5.2) is asymptotically stable in probability. In particular, suppose that n = 2 and
A(7) are upper triangle matrices, that is,

. a; bz
A(@) = < 0 > .
If a; and ¢; are positive for ¢ > 2, then the system dX (¢t) = A(:)X (t)dt is unstable.
However, if a1,¢1 < —sup;so{ai, ¢;}, then > .(a; V ¢;)27% < 0. Thus, the switching
differential system is asymptotically stable. The stability of the system at state 1 and
the switching process become a stabilizing factor.

On the other hand, if a; A ¢; is negative for ¢ > 2, then the system dX(t) =
A(9) X (t)dt is asymptotically stable. Suppose further that ai,c; > sup;~o{—(a; Ac;)};
then >, (a; V ¢;)27" > 0. Under this condition, the switching differential system is
unstable.

6. Further remarks. We developed a new method to provide sufficient con-
ditions for the stability and instability in probability of a class of regime-switching
diffusion systems with switching states belonging to a countable set. The conditions
are based on the relation of a “switching-independent” Lyapunov function and the
generator of the switching part.

Although the systems under consideration are memoryless, the main results of this
paper hold if we assume that the switching intensities g;; depend on the history of
{X (t)} rather than the current state of X (t); see [13, 14, 15, 16] for the main properties
of such processes. The problem can be formulated as follows. Let r be a fixed positive
number. Denote by C the set of R"™-valued continuous functions defined on [—r,0]. For
¢ € C, use the norm ||¢|| = sup{|¢(t)| : t € [-r,0]}, and for ¢ > 0, denote by y; the so-
called segment function (or memory segment function) v = {y(t +s) : —r < s < 0}.
We assume that the jump intensity of «(t) depends on the trajectory of X (t) in the
interval [t — r,t]. That is, there are functions g;;(-) : C = R for i, j € Z, satisfying
that ¢;(¢) == Z;’;lyj# ¢i;(¢) is uniformly bounded in (¢,7) € C x Z4 and that ¢;(-)
and ¢;;(-) are continuous such that

(6.1) P{a(t + A) = jla(t) =i, Xs, a(s),s <t} = ¢;;(X)A +0o(A)  if i # j,
’ P{a(t+ A) =ila(t) =i, Xs, as),s <t} =1— q:(Xe)A + o(A).

It was proved in [13] that if either Assumption 2.1 or 2.2 is satisfied with z,y € R"
replaced by ¢, € C, then there is a unique solution to the switching diffusion (2.1)
and (6.1) with a given initial value. Moreover, the process (X;, a(t)) has the Markov—
Feller property. With slight modifications in the proofs, the theorems in section 3 still
hold for system (2.1) and (6.1).

Our method can also be applied to regime-switching jump diffusion processes.
Thus our method generalizes the existing results (see, e.g., [20, 23, 26]) to regime-
switching jump diffusions with the random switching taking values in countable state
space.

Note that there is a gap between sufficient conditions for stability and instability
in Proposition 4.2. To overcome the difficulty, we need to make a polar coordinate
transformation to decompose of X (¢) into the radial part r(¢) = | X (¢)| and the angular
part Y(¢) = X(t)/r(t). Then the Lyapunov exponents with respect to invariant
measures of the linearized process of (Y (t), a(t)) will determine whether or not the
system is stable. This approach has been used to treat many linear and linearized
stochastic systems (see, e.g., [2, 3, 5, 8]). In our setting, the switching process «(t)
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takes values in a noncompact space; thus, it is more difficult to examine invariant
measures. We will address this problem together with necessary conditions of stability
in a subsequent paper.

Appendix A.

Proof of Lemma 3.3. Since V(0) = 0 and V() is continuous on D, we can find
h.« > 0 such that By, C D and V(z) < 1 for any © € By,. Because 7,, < 73, if
h1 < hg, it suffices to prove the lemma for any h < h,.

Since g is continuously differentiable and g(0) = 0, there exists a K; > 0 such
that g(z) < Kg|z| for |z| < 1. Thus, we have

LiV(x) < Kg sup{[c;|}V(2), (x,7) € Bp, X Zs.
iEZ+
Letting K = K, sup;ez, {lcil}, by 1to’s formula,
5 tATH
Eo V(X(t A7) < V(2) + KB / V(X (s))ds
0

t
<V(z)+ KEM/ E, V(X (s Ah))ds.
0

By the Gronwall inequality, we obtain
E..V(X(T A1) < V(z)eT.

Letting vy, = inf{V(z) : |x| = h} > 0, an application of Markov’s inequality yields
that
V(x)eKT

Pa:,i{Th < T} <
Up

Since V(0) = 0 and V' is continuous on D, there is an h > 0 such that

Vv KT
P <Th< L <.
Vh
for any = € Bj, as desired. 0

Proof of Lemma 3.4. The proof was already given in [7]. To be self-contained,
we present the proof here. It is easy to show that there exists some K5 > 0 such that

ly|* exp(By) < K (exp(foy) + exp(—boy)), k=1,2,

for 0 € [O, %‘J], y € R. For any y € R, let £(y) be a number lying between y and 0 such

that exp(£(y)) = eyy—_l Pick out a 6 € [0, %"] and let h € R such that 0 <6+ h < %0.

Hhen 0+h)Y oYy
L ep((6+ B)Y) — exp(6Y)
h—0 h

=Y exp(AY) a.s.,
where Y is as defined in Lemma 3.4, and

exp((0 + h)Y) — exp(0Y)
h

= |Y]exp(0Y + §(hY)) < 2K3[exp(6oY) + exp(—6oY)].

By the Lebesgue dominated convergence theorem,

dE exp(0Y) — lim Eexp((@ + h)Y) —exp(6Y)
do h—0 h

=EY exp(6Y).
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Similarly,
d*Eexp(0Y) 9
— gz - EY“ exp(0Y).

As a result, we obtain
d¢  EY exp(0Y)
dd  Eexp(dY) '’

which implies that
do
—(0) =EY
de 0)

and
d?*¢  EYZexp(0Y)Eexp(0Y) — [EY exp(0Y)]?

ez [Eexp(0Y)]?

By Holder’s inequality, we have EY 2 exp(0Y )Eexp(0Y) > [EY exp(fY)]?, and there-
fore

d? 0o
— > — .
d02*0 V96[072]

Moreover,
@ < EY?2exp(8Y)
df? — Eexp(dY)
< K;3(Eexp(00Y) + Eexp(—6pY))
- exp(6EY)
< K3(Eexp(00Y) + Eexp(—60Y))
- exp(—6o|EY)

= K2a

which concludes the proof. 0

Proof of Lemma 3.5. Let T,, be the nth jump moment of «(t). Letting T' > 0, in
view of [11, Lemma 4.3.2], we have

P, {X(t) =0 for some t € [0,TAT1|} =0 forany #0,i€ Z,.
Since X (T AT1) # 0 a.s., applying [11, Lemma 4.3.2] again yields
P, {X(t) =0 for some ¢t € [T AT1,T AT2]} =0 forany x#0,i€ Z;.
Continuing this way, we have
(A1) P, i{X(t) =0 for some t € [0,TAT,]} =0 forany ©#0,i€Zy, n€ Z;.

In [13, Theorems 3.1 and 3.3], we have that lim,,_, 7, = co. This and (A.1) imply
that

P, {X(t) =0 for some t € [0,T]} =0 forany z#0, i € Zy, n € Zy.

Since T is taken arbitrarily, we obtain the desired result. 0

LEMMA A.1. If the Markov chain a(t) is strongly exponentially ergodic with gen-
A T
-

erator Q and invariant probability measure v = (vy,va,...) ", then ifb = (b1, ba, . ..
is bounded satisfying ), v;b; = 0, then there exists a bounded vector ¢ = (c1,ca, . ..
such that b; = Zj qjiCy -
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Proof. Let P(t) = Dij(t), where p;;(t) = P{a(t) = j|la(0) = i}, the transition

matrix of a(t). Let ¢ = (c1,¢a,...)", where ¢; = fo vib; — Py(t ()b ]dt In view of
(2.7), it is easy to see that c is bounded. Let 1 = (1, ) We h

Qc = /0 - [Quib — QP(t)b]dt

= / QP(t)bdt
0
_— / P(t)bdt = fﬁ(t)b’m
0 0
— 1Ivb+b=b. O

LEMMA A.2. Suppose that Assumption 3.2 and (3.1) hold. Then, for any T >0
and a bounded function f : 7y — R, we have

(A2) lim  sup  {[E.if(a(t) — Ef@()[} = 0.

v=0,e7., te[0,7)

Proof. By the basic coupling method (see, e.g., [6, p. 11]), we can consider the
joint process (X (t), a(t),a(t)) as a switching diffusion where the diffusion X (¢) € R"
satisfies

(A.3) dX (1) = b(X (L), a(t))dt + o (X (1), a(t))du(t)

and the switching part (a(t),a(t)) € Zy x Zy has the generator Q(X(t)) which is
defined by

D=3 Qoo (76G.0 - JkD)

€L
- Z qk] - qu )] (.}?(.77 l) - ]?(ka l))

JEL4

+ Z (le _ij )] (f(k,j)—f(k?,l))

JEL+

+ 3 [k (@) A @O (TG ) — F(k. D).

JELy

In what follows, we use the notation E,;; and P, ;; to denote the corresponding
conditional expectation and probability for the coupled process (X (¢), a(t), &(t)) con-
ditioned on (X (0),«(0),a(0)) = (z,i,7). Let ¥ = inf{t > 0 : a(t) # a(t)}. Define

G:7ZxZw R by g(k,l) = 1—;3. By the definition of the function g, we have

Q)glk, k) = > larj(@) —ary O]+ D [ari (0) — gu(2)]F

€7, ,j#k €7y, j#k
(A.5) JE€ELy,j# JE€ELy,j#
= > k(@) — gk (0)] = E(a, k).

JEL4 ,jFk

For any £ > 0, let h > 0 such that B, € D and sup(, y)ep, xz, =(z, k) < 5. Applying
Itd’s formula and noting that a(t) = a(t), ¢ < 9,
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we obtain that

Ppii{d <T AT} =E;;:g (AT A7), 0(dANT A1)
19/\T/\Th .
B[ QX@)a0).a0)d
0

INT AT,
_E,., / 2(X (1), a(t))dt
0

<T sup E(z, k) < <
(2,8)€Bp X7 2

Thus, in view of Lemma 3.3, there is a § > 0 such that P, ; ;{7 < T} < 5. This and
(A.6) lead to

Ppii{d AT <T} <Pui {0 <T AT} +Pyii{mn <T}<e.

We have that

[Ex,if (a(t)) = Eoif (a(t)] = [Eeii [f(e(t)) — F(@(@))]]
= [Ew.iilionn <oy [F(a(t)) — f(@(1))]]
<2MyP {9 AT, <t} <2Mye  fort e [0,T],

where My = sup;cz, |f(i)]. The lemma is proved. |
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