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Abstract Efficient high-order integral equation methods have been developed for
solving boundary value problems of the heat equation in complex geometry in
two dimensions. First, the classical heat potential theory is applied to convert
such problems to Volterra integral equations of the second kind via the heat layer
potentials, where the unknowns are only on the space-time boundary. However, the
heat layer potentials contain convolution integrals in both space and time whose
direct evaluation requires O(NZN#) work and O(NgsNr) storage, where Ng is the
total number of discretization points on the spatial boundary and Np is the total
number of time steps.

In order to evaluate the heat layer potentials accurately and efficiently, they
are split into two parts - the local part containing the temporal integration from
t — 0 to t and the history part containing the temporal integration from 0 to ¢t — 4.
The local part can be dealt with efficiently using conventional fast multipole type
algorithms. For problems with complex stationary geometry, efficient separated
sum-of-exponentials (SOE) approximations are constructed for the heat kernel
and used for the evaluation of the history part. Here all local and history kernels
are compressed only once. The resulting algorithm is very efficient with quasilinear
complexity in both space and time for both interior and exterior problems. For
problems with complex moving geometry, the spectral Fourier approximation is
applied for the heat kernel and nonuniform FFT (NUFFT) is used to speed up the
evaluation of the history part of heat layer potentials. The performance of both
algorithms is demonstrated with several numerical examples.
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1 Introduction

In this paper, we consider the boundary value problem of heat equation in two
dimensions:

T
Ui(z,t) = AU(z,1), (z,1) € [] 2(),
T7=0

U(z,0) =0, =z €, (1)

T
Uz,t) = f(z,t), (1) e [[ 1),
T7=0

where z € R?, 2(7) € R? is a domain at ¢ = 7 which could be multiply connected
and/or unbounded, and I'(7) is its boundary. This problem has direct applications
in solidification, melting, crystal growth, and dislocation dynamics [23,25,38]. In
order to solve (1) numerically, we first apply standard heat potential theory to
convert it to a Volterra integral equation of the second kind using the heat double
layer potential. As compared with the commonly used finite difference and finite
element methods, integral formulation have a number of advantages for solving this
type of problems. First, the unknown density is only on the space-time boundary
Hf:o I'(7). This reduces the dimension of the problem by one and thus the total
number of unknowns by a large extent. Second, it is easier to design high-order
discretization scheme for the boundary and the unknowns on the boundary rather
than the whole volume and the unknowns in the whole volume, especially in the
case of complex geometry. In two dimensions, one only needs to discretize the
boundary curves instead of the 2D domain. Third, it is easier to design high-order
marching scheme in time using integral formulation in the case of moving geometry.
Fourth, the integral formulation leads to a well-conditioned linear system which
requires a constant number of iterations to solve and the associated marching
scheme is unconditionally stable, while finite difference/finite element methods ei-
ther require certain restriction on the Courant number for explicit schemes or need
good preconditioners for solving the linear system for implicit schemes. Finally,
for exterior problems, there is no need to design artificial boundary conditions
to truncate the computational domain when the integral formulation is used. We
would like to remark here that finite difference and finite element methods are very
general and broadly applicable to a much wider class of problems, including vari-
able coefficient problems, advection diffusion equation, and nonlinear problems,
even though integral equation methods seem to be the method of choice for the
particular problem we study here.

However, the heat layer potentials contain the convolution integrals in both
space and time. A straightforward way to evaluate heat potentials at a sequence
of time steps t, = nAt, for n = 1,..., Np, clearly requires an amount of work
of the order O(N%NL%)7 where Ng denotes the number of points in the discretiza-
tion of the spatial boundary. When direct methods are used in the absence of
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fast algorithms, it is difficult to argue that integral equation methods would be
methods of choice for large-scale simulation. In the last three decades, a variety
of schemes have been developed to overcome this obstacle. Many of these schemes
use discrete Fourier methods to represent the history part and FFT to speed up
the computation; see, for example, [3,16,23,38]. However, these schemes are appli-
cable only in regular domains and somewhat difficult to treat complex geometry.
In [40], a space-time “fast-multipole-like” method is developed to overcome the
cost of history-dependence for three dimensional problems. But it used a first kind
integral equation formulation and a low order scheme for spatial and temporal
discretization. The method also involves a hierarchical decomposition of the entire
space-time domain and thus has a large prefactor in its computational complexity
when high accuracy is required.

In this paper, we develop two high-order integral equation methods for solving
(1). Both methods can be made arbitrarily high order in both space and time,
although we use the scheme that is 16th order in space and 4th order in time
for illustration. Both methods start from the splitting of the heat layer potentials
into two parts - the local part that contains the temporal integration from ¢ — ¢
to t and the history part that contains the temporal integration from 0 to ¢ — 4.
Here ¢ is usually of the same order as the time step size At. For the local part,
product integration [32] is applied on the temporal integral to convert it to a
sum of several spatial convolution integrals where the so-called local kernels have
logarithmic singularity. These weakly singular integrals are discretized via high-
order quadratures [1] and the resulting discrete summations can then be evaluated
via fast algorithms.

Two methods diverge in the treatment of the history part. Our first method
is built upon an efficient sum-of-exponentials approximation to the heat kernel
n [24]. By allowing general complex exponentials instead of purely oscillatory
Fourier modes, the approximation can be made much more efficient. Indeed, the
approximation is valid in the entire spatial domain and the number of exponentials
depends only logarithmically on %, or equivalently, Npr. The approximation also
separates the temporal and spatial variables so that fast algorithms in both space
and time are more or less straightforward to design. However, the approximation
does not separate the source point and the target point. Thus, it is only applicable
for stationary geometry.

Our second method approximates the heat kernel via a Fourier spectral repre-
sentation [13] that is valid for ¢ > ¢ and z in a bounded domain. We then apply
nonuniform FFT (see, for example, [12] and references therein) to speed up the
calculation of the resulting discrete summation. The scheme has been applied to
solve the heat equation in free space with smooth compactly supported data in [31].
The Fourier spectral representation of the heat kernel, however, is valid only in a
bounded spatial domain and it requires excessively large number of Fourier modes
when ¢ is very small. On the other hand, it has the advantage that the Fourier
approximation of the heat kernel completely separates the temporal variable and
the spatial variable, and the source point and the target point. This makes it very
suitable for dealing with moving geometry, when the underlying spatial domain is
not very large and the time step is not very small.

The rest of the paper is organized as follows. In Section 2, we review analytical
apparatus that are needed for our algorithms. In Section 3, we discuss in detail
two algorithms that we have developed for solving the boundary value problems
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of the heat equation in two dimensions. The performance of these algorithms is
demonstrated via several numerical examples in Section 4. Finally, we conclude
the paper with further discussion and future research directions.

2 Preliminaries

In this section, we review analytical apparatus to be used in our numerical algo-
rithms.

2.1 Potential Theory for the Heat Equation

The Green’s function for the heat equation in two dimensions is

|=|?
G(:mt):ﬁe’f, z € R2. 2)

Suppose that o is a function on HZ:O I'(r). Then the single layer potential is
defined by the formula

Slo](z,t) = /Ol /F( )G(l’ —y,t — 7)oy, 7)dsydr, (3)

and the double layer potential is defined by the formula

Dlo](z, 1) =/0 /F( )ainyG(x—y,t—T)a(y,T)dsydT. (4)

Here ny is the outward unit normal vector at a point y on I'(1). The single layer
potential is continuous across the boundary, but its normal derivative satisfies the
jump relation

t
lim 95[o] (2,t) = :Flcr(:c7 t) +/ / 0 Gz —y,t — 1)o(y, T)dsydr,  (5)
2 0 Jr(r) One

z—aE anm
where z — 2+ implies that z approaches x on I'(t) nontangentially from the exte-
rior (+) or the interior (—) side, respectively. The double layer potential satisfies
the jump relation

lim Do](z,¢) = :I:%U(:c,t) + Do) (z,1). (6)

z—axt

If we represent the solution to (1) via a double layer potential, then the jump rela-
tion leads to the following second kind Volterra integral equation for the unknown
density o for the interior Dirichlet problem:

5o, )+ Dlo](z, 1) = f(z. 1) (7)
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Remark 1 For the exterior Dirichlet problem, the diagonal term will change sign.
For the Neumann or Robin problem, the solution is represented via a single layer
potential. The initial potential defined by the formula

10nlGet) = [ Gl = 0000wy (®)
0

can be used to treat the nonzero initial data Up; and the volume potential defined

by the formula

VIR (z,t) =./0 /m R L )

can be used to treat the inhomogeneous term h(z,t) on the right side of the heat
equation. Note that we only need to evaluate the initial potential and the volume
potential, i.e., the only unknown is the layer density defined on the space-time
boundary. The readers are referred to [13,19,29,43] for details.

Remark 2 In this paper, we assume that the boundary itself and the boundary
data are both smooth so that the full potential of high-order quadrature schemes
developed here can be realized. However, it is straightforward to extend our al-
gorithm to treat, say, piecewise smooth curves in space by slighly modifying the
spatial quadrature we use. Moreover, our integral equation formulation does not
reduce the regularity of the solution. Indeed, the regularity of the solution with
respect to the boundary data was studied in detail using the technique of layer po-
tentials (see, for example, [5,6,9,29]). In particular, we would like to point out [29,
§9.2] that the double layer potential operator is compact from C(I" x [0,T]) into
C(I'x[0,T]) and that the double layer potential is continuous on {2 x [0, 7] provided
the continuous density satisfies o(-,0) = 0.

2.2 Spectral Fourier Approximation for the Heat Kernel in Free Space

Spectral Fourier approximation for the heat kernel has been studied in [13]. For
the 1D heat kernel G (z,t), the starting point is the following well-known Fourier
representation:

2
Gi(z,t) = e /¥ _ L - e Ktk g, (10)
’ VAt 27 J_

In [13], it is shown that in order to approximate Gi by a discrete Fourier series
for all t > 6 > 0 and |z| < R within an absolute error ¢, i.e.,

Np ,
Gl(x,t) _ Zwie—k‘i telki.’,K

i=1

<e |z|<R, t>§, (11)

the number of Fourier modes needed N is of the order:

=0 (s (1) (s () 5). a2

The spectral Fourier approximation for the heat kernel in higher dimensions is
obtained via the tensor product in [13].
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2.3 Efficient Sum-of-exponentials Approximation for the Heat Kernel

The Fourier approximation of the heat kernel becomes very inefficient when the
spatial domain is very large and/or the time step size is very small. In [24], an ef-
ficient sum-of-exponentials approximation is developed for the heat kernel in any
dimensions. The construction is based on efficient sum-of-exponentials approxi-
mations for the 1D heat kernel and the power function 1/t% (8 > 0). To be more
specific, it is shown in [24] that for any 0.1 > ¢ > 0 and T > 10005 > 0, the 2D
heat kernel G(z,t) admits the following approximation:

N, Ny
G(xz,t) = Zu;je—/\jt Z wyesttem VRl (13)
j=1 k=—N,

such that

|G(z,t) — G(z,1)] < € (14)

td/? ’
for any = € RY, ¢ € [8,T]. Here Ny is of the order

o) () rmn()).

and Ns is of the order

ol (mmn()om(D) e

It is worth noting that the approximation (14) is valid in the entire spatial domain
and the number of complex exponentials depends only logarithmically on 7'/4.
In [43], it is shown that N7 =47 and N2 = 22 for t € [1073,1] and ¢ = 1077,

3 Numerical Algorithms

In this section, we present fast algorithms for solving the second kind Volterra
integral equation (7), which in turn solves (1) for the interior Dirichlet problem.
The exterior Dirichlet problem can be solved in an almost identical manner.

3.1 Split of the Layer Potentials

It is convenient both analytically and numerically to decompose the double layer
potential into two pieces: a history part Dy and a local part Dy,. Let § be a small
positive parameter. We have

Dlo](z,t) = Dplo](z,t) + Dr[o](=,1), (17)

where

t—38
Dylo](x,t) = /o /F %G(m —y,t — 7)oy, 7)dsydr (18)

and

DL[O](x,t):/H/F O Gla =yt — 7)oy, 7)dsydr . (19)

any
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3.2 Efficient Heat Solver with Stationary Geometry Using SOE Approximation
3.2.1 Explicit Expressions of the Local Kernels

In order to evaluate the local part accurately, we switch the order of integration
and carry out the integration in time semi-analytically using product integration
(see, for example, [26,32]). Assuming that the density o is smooth in time, we
expand it on [t — 4, ¢] for each y in the form

Y
7(07) = a0lo) + (1= D)o () 4+ - a,a () +O((e = 7)),

The functions oo(y), ..., op—1(y) are obtained from the function values o (y, t —jAt)
for j =0,---,p—1 via standard polynomial interpolation. In other words, we have
) o(y,t)
t— t—7)P~ t— At
o =0 ST T g | WA o), (20)

At Atp—1
o(y,t —(p—1)At)

where M), is the coefficient matrix for the pth order polynomial interpolation. For

example, for p =4 we have

1 0 0 0
%3 -3}
-1 1 _1 1
6 2 2 6

Substituting (20) into equation (19) and changing the order of integration in
time and space, we obtain

o(y,t)
gt — At
Dylo](z,t) = / [Dr, Dp, - Dr, My oy ) dsy  (22)
r
o(y,t—(p—1)At)
where the local kernels Dy, are given by the formula
t g .
Dule) = [ 5rGalo =yt =)t~ 1) dr
t—5 9Ny (23)

1 bz —y) - ny ey
_ =~ J7 I t—7) dr.
Atk J,_ s 8n(t —T)2~k ‘ ’
The integrals in (23) can be evaluated analytically and we obtain the following
explicit expressions for the local kernels

(z—y)ny — B
w € P ’ k - 07
“ixrt Ei(p) , k=1,
DLA-, (xvy) = mé —p . B (24)
“grap- (e77 = pEi(p)), k=2,
—)- 52 -~ .
%((1—0)6 P+ p’Ei(p)), k=3,

where p = ‘“CZ(;J ® and Ei is the exponential integral function [37] defined by the

formula
. et
Fi(z) = / .
- t
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3.2.2 Discretization and Compression of the Spatial Integrals in the Local Part

It is easy to see that the local kernels Dy, (z,y) in (24) are at most logarithmically
singular. There are many high-order quadratures for discretizing such weakly sin-
gular integrals. Here we use the 16th order Alpert quadrature in [1] to discretize
the spatial integrals involving these local kernels. We would also like to avoid the
O(N2) work that would be required by direct evaluation of the matrix-vector prod-
uct. A large number of fast algorithms are now available to reduce the cost of this
step to O(Ng) or O(Nglog Ng). These include classical fast multipole methods
(FMM) with analytical expansions [8,14,15], kernel-independent fast multipole
methods [10,11,35,44], HSS and H-matrix methods [7,20], recursive skeletoniza-
tion factorization [21,22], and hierarchical interpolative factorization [22]. All these
fast algorithms have either linear or quasilinear complexity, but they differ in the
range of applicability, the ease of implementation, and the prefactors in front. We
use recursive skeletonization factorization (rskelf) developed in [22]. In order to
compute the matrix-vector product Av with A a hierarchically compressible ma-
trix, rskelf first factorizes A into a product of low rank sparse matrices in the
compression stage. The compression stage usually is about ten times slower than
one FMM for intrinsically one dimensional problems. However, the compression
needs to be done only once. And after the compression is done, the apply stage
(i.e., using the resulting factorization to compute Av) is much faster than one
FMM due to the much smaller prefactor in front. For stationary geometry, it is
clear that all matrices are independent of time and thus need to be compressed
only once, which makes rskelf much cheaper than FMMs for time marching.

Rskelf requires fast access of matrix entries and matrix blocks A;s, where ¢
and s are both set of indices. Although we could apply rskelf directly on the
matrix A resulted from the discretization of the spatial integrals using the Alpert
quadrature, the compression stage would be much slower since the Alpert quadra-
ture contains nonequispaced nodes near the diagonal. In order to speed up the
compression stage, we split the matrix A into three parts:

A= A€q + Aalp - Aadja (25)

where Aeq is a matrix obtained by using the equispaced trapezoidal rule to dis-
cretize the spatial integral with diagonal entries set to 0; Ay, is a matrix that
contains the effect of the non-equispaced points in the Alpert quadrature; and
Aqq; is a banded matrix that contains the effect of the adjacent 18 equispaced
points near the diagonal from the trapezoidal rule.

Only Aeq is compressed by rskelf and the matrix entries of A¢q can be eval-
uated quickly. The matrix compression and apply costs are both O(Ng) with the
apply step much faster than the compression step (very often at least 100 times
faster). The matrix Ay, is actually not sparse since we use global spectral in-
terpolation to interpolate the function values at those nonequispaced points to
equispaced points. However, since there are only 30 nonequispaced points near the
diagonal and one could apply NUFFT to speed up the global interpolation. The
cost of the matrix-vector product Ag,0 is O(Nglog(Ng)). We remark here that
one could use local high-order barycentric interpolation to reduce the cost of this
step to O(Ng). Finally, we need to subtract the action of A,g4; since they are not
in the Alpert quadrature. Evaluating A,4j0 costs O(Ng).

We summarize the evaluation of the local part in Algorithm 1.
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Algorithm 1 Evaluation of the Local Part

Require: Suppose o is the density function and each local kernel Dy, is split into three parts:
Deq, Daip, and Dygj. Evaluate Dy, [o].

: Compress Deq and evaluate Deqo via rskelf.

: Evaluate D,jpo via 1D NUFFT.

: Evaluate D,qjo directly by sparse matrix-vector product.

: Set Dy, [0] t0 Deqo + Daipo — Dagjo.

=W N

Remark 3 In the case of stationary boundary, one could also compress the matrix
inverse directly using fast direct solvers [4,21,28,33,34,36]. This will lead to an
optimal algorithm for long-time simulations. When the number of time step is not
too large, our method is more efficient since (a) the compression cost is reduced
by a large factor; (b) the apply cost is much smaller than the compression cost;
and (c) it takes very few number of iterations for GMRES to converge due to the
second kind Volterra structure of the integral equation.

3.2.3 Evaluation of the History Part

For the history part, approximating the kernel by its sum-of-exponentials approx-
imation and substituting it into (18), we obtain

t—§ Ny
DH[U}(x,t)z/ /ije—xm—ﬂ
0 ri-

Ny
Z wkeszc(tfr)e*\/gh:*m [(1’ _ y) . ny]g(y7 T)dSydT (26)
k=—N;

N N
=D Y wpHj (1),
J=1  k=—N,

where each history mode Hj j, is given by the formula

t—9
H,p(o,1) = / LN Y (0 2, (27)
0

with Vi, given by the formula
Vi(z,7) = / e~ VERle—yl [(x —y) - nylo(y, 7)dsy. (28)
r

Here, we have interchanged the order of summation and integration.

For each fixed 7, Vi (z, 7) can be discretized using the trapezoidal rule to achieve
spectral accuracy. This is because although each integral is not smooth, the kernel
of the whole history part is smooth since the heat kernel is smooth for 7 € [0, —
5]. The resulting discrete summation can again be computed via rskelf. The
computational cost for this step is O(Ng) for each k. Once the V; have been
evaluated, each history mode H; j can be computed recursively, as in [13,26]:

t+At—6
Hj (2t + At) = e(f)‘jJrs’“)Atijk(m, t) —|—/ e(f/\j+5k)(t+At77)Vk(x7T)dT.

t—o
(29)



10 Shaobo Wang et al.

Similar to local kernels, V}, can be expressed as

(t—(S—T)p_l Vk(x,t—5) »
Vi(z,t — 8 — (p— 1) At)
Then
t+At—9
/ 6(_)\j+8k)(t+At_T)Vk(IIJ,T)dT _
t—48
Vi (z,t — 0) (31)
Vi(z,t — 8 — At
[Dy, Dg, .. Du, |M, k(@ ) +0(AtP),
Vi(z,t —6— (p—1)At)
where Dy, (j =0, ...,p — 1) are given by the formulas
t+At—4 j
Dy. = / i e(TAitsR) (t+At=7) 7(15 —90 _ 7)’ dr
7 s AtJ
1—e™ 1 .
; J=0,
1_(éfq_qefq =1 (32)
1 2 I -
= (k- 1)J+1At 2726gq72qe_”7q25_q =9
qS ) .] ]
—6e—9—6ge—9—3g2e—9—_g3e—4
6—6e¢”9—6qe 43qe qe j =3,

q b
where
qa=(p—1)(Aj — s)At.

(32) suffers from severe cancellation error when g is small. Therefore, for ¢ < 1073
we evaluate it with Taylor expansions

4 .
L=3a+ 50" =3¢’ + 50", 7=0,
1 1 1.2 1.3 1 4 .
114, )3 30t 50 500+ md ., J=1,
DHj:(pfl)H_ At 3 2 s M , (33)
3~ 49T 109 — 39 t1esd J=2
1 1 1.2 1.3 1 4 s
1759t 20 ¢ et I=

Equivalently, each history mode H;j; can be seen to satisfy a simple linear
ordinary differential equation. This gives another way of evaluating each history
mode in O(1) operations at each time step for each z without using the recurrence
relation (29). Since both Ni and Na are O(log(7'/6)) = O(log(Nt)) with Ny the
total number of time steps, the computational cost for the evaluation of the history
part at each time step is O(Nglog Ny + Ng log2 Nr), with storage requirement of
the order O(Ng log? Nr). The computational cost for the history part for the entire
simulation is

O(NgNylog Ny + NgNplog® Np) . (34)

Remark 4 Since we use multistep method for time marching, the parameter ¢ that
divides the local part and the history part actually changes for every time step in
order to reduce the storage cost of the history part. For example, for the 4th order
scheme, when t = 4At, the local part contains the temporal integral from 3At to
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4At and § = At. When t = 5A¢, the local part contains the temporal integral from
3At to bAt. That is, § is now 2A¢ and each history mode is simply updated via
the formula

Hjp(a,t+ At) = TN TR (2,4) (35)

instead of (29).

The algorithm is straightforward to parallelize since the computation of each
history mode is independent of one another. Furthermore, the hierarchical fast
algorithms used for evaluating each Vj(z,7) are themselves amenable to paral-
lelization, leading to further parallelization if necessary.

We summarize the evaluation of the history part in Algorithm 2.

Algorithm 2 Evaluation of the History Part Using the SOE Approximation

Require: Suppose o is the density function. Assume that we are at the mth step in a pth
order scheme. Evaluate the history part Dg[o].

1: if mod(m — 2, p—1) == 0 then

2: Evaluate the spatial integral (28) via rskelf.

3: Evaluate the recurrence relation (29) for each history mode Hj .
4: else

5: Update each history mode Hj j using (35).

6: end if

7

: Evaluate Dy [o] via (26).

3.2.4 The Full Algorithm

We now combine the results from previous sections to obtain the full algorithm for
solving the heat equation with stationary boundary using the sum-of-exponentials
approximation.

Denote the density o(z,tm) at time step m as om(z). For the 4th order scheme
in time, the integral equation that we need to solve at the mth step is:

—%Um + Drylom] =bm — Dlog] — Di,[om—1] — Dp,lom—2] — Drylom-3], (36)
where by, = f(z,tm) and oy contains the density vectors oo, ..., 0,5/, With §
specified in Remark 4.

Since there are O(1) local kernels and O(log Nr) history kernels to be com-
pressed and it takes O(Ng) to compress each kernel, the cost for the rskelf com-
pression stage is

O(Nglog Np). (37)

Due to the second kind Volterra structure of the integral equation, it takes about
6 iterations for GMRES to converge when the GMRES stopping threshold is set
to 10712, Thus, the cost for solving the density o at all times is

O(NpNglog Ng + NgNrplog? Np). (38)

Here the log Ng factor is from the global interpolation using NUFFT, which can
be removed if one uses high-order local interpolation to compute the density at
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Algorithm 3 Efficient Heat Solver for Stationary Geometry Using the SOE Ap-
proximation

Require: Given Ng source points src, Niarg target points targ, total number of time steps
N, time step At in a pth order scheme. Solve the density o at all time steps and evaluate
the solution U to the heat equation at the final time T for all target points.

: Separate all local kernels into three parts Deq, Dalp, and D,qj. Compress Deq of all local
kernels and all history kernels approximated by the SOE approximation using rskelf.

: for m = pto Ny +1 do > Solving the density o

Compute the right hand side of the linear system b.
if m > p then
Evaluate the history part Dy using Algorithm 2.
end if
Evaluate the local part Dy (o) using Algorithm 1.
Use GMRES to solve the linear system (36) and obtain op,.
end for
. Evaluate the solution U at the final time for all target points.

—

—

the nonequispaced points in the Alpert quadrature. And the log2 N factor is from
the number of complex exponentials in the SOE approximation of the heat kernel.
Note here that we have ignored the dependence on ¢ and the factor loglog Np in
(15) and (16). Similarly, evaluating the solution U costs

O(N7(Ns + Ntarg)log® Np + (Ng + Ntarg) log Ng). (39)
Remark 5 For high-order scheme, o1, ..., op—1 are obtained via a low-order, say,

2nd order scheme with smaller time step size. This is standard technique for mul-
tistep methods.

3.3 Efficient Heat Solver in Moving Geometry Using NUFFT
3.8.1 Accurate Evaluation of the Local Part

We review briefly the treatment of the local part in [32] for moving geometry. When
the boundary is function of time, i.e., I = I'(1), the kernel of the double layer
potential has the following explicit expression:

_ e —y(n)?

G(m(tg}zﬁii;t = e CORC R (40)

The local part of the double layer potential is given by the formula

_lz® -y

TG
pueleny= [ [ S )~ ) ol ) oy
(41)
where one has to carry out the integration in space first since the boundary is now
a function of time as well. We now switch the order of integration by using the
boundary at the current time I'(¢) for spatial integration, which involves a change



Fast High-Order Methods for the Heat Equation in 2D 13

of variable in the spatial variable first. We obtain

_ =) —y()|7 (t) y(D|?
AT
(=) /F(t)/t s Sm(t—7)2 [(z(t) = y(7)) - ny(r)] W)
o(y(r), )dsy( )desy(t)

In order to carry out the product integration in time as in the stationary case, we
decompose the exponential function as follows:

\<f) v(T)I2 _lem—ymI12 _ly®-ymI® _ (@®m-—y) @t —y(r)

e t—T) —e it—7) . e a(t—T) e 2(t—7) . (43)

The first term on the right hand side of (43) is the same as the stationary case,
while the second and third terms both contain the factor %, which is a

smooth function of 7 when the boundary undergoes a smooth motion. Let

ly®—y(I?  _ (@®)—yE) () —y() (T)

pr)=e T e =0 [(2(8)=y(7))-ny(r)]o(y(7), T) - (44)

Then (42) can be written as follows:

|1(Z)t y(f))\
x,t) = T)drds 45
fo)(z. 1) = /m/(s S ) (45)

We may now proceed as in the stationary case. That is, approximate p(r) by a
polynomial of 7, convert the integration in time to a sum of products of local
kernels Dy, and p(t — mAt), and then use proper quadrature to discretize the
spatial integrals.

Remark 6 One will need the value of u(t), which may be obtained by replacing

% with its limiting value y'(t) as 7 — t.

3.3.2 Evaluation of the History Part

For the history part, we use the spectral Fourier approximation of the heat kernel.
Unlike [13] in which a tensor product is applied to obtain the spectral Fourier
approximation of the heat kernel in two dimensions, we first write the Fourier
representation of G(z,t) in polar coordinates:

G(x,t) _ 4% /oo /OO e—(’ferkg)tei(kll'l+k'ﬂ2)dk1dk2
w2 J_ )

1 27 [e’e) 0 . (46)
_ 7/ / oKt k(1 cos(0)+a sin(0) g g 10
472 0 ’

We then use the generalized Gaussian quadrature to construct an optimal quadra-
ture along the radial direction, and the trapezoidal rule discretize the integration
along the azimuthal direction which achieves spectral accuracy for smooth periodic
integrals. Altogether, we need 21600 Fourier modes to achieve 13-digit accuracy
for t > § = 10% and |z| < R = 1. If the tensor product in [13] were used, one would
need about 700 for each direction in the Fourier domain and 7002 (i.e., about half
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a million) Fourier modes to approximate G in the same region. In any case, we
have the following spectral Fourier representation for G:

1 & 2
G(:E,t) ~ = ije_wj\ tezﬁj-w. (47)
j=1

The Fourier representation of the double layer kernel can be obtained by replacing
t, x with t — 7, © — y, respectively, and then differentiating the resulting expression
with respect to y. We have

. Nr
OG(x(t),y(r);t—71) i 1P (t—7) i€ (z—
Oy () v Z = SPEDE E0 (6 ony ). (48)
]:

Substituting the above approximation into the history part of the double layer
potential, we obtain

[ GGyt — 1)
Dpylo](,t) —/0 /F(T) Oy o (y(r), 7)dsy(r)dr

iR~ &2 (t—) i€; (2 —1)
- — wie 181 ETT) e EY
472 ;/o /F(T) ’
(& - ny(ry) o(y(7), T)dsy (rydr

iR g [0 e
=12 ije‘ i /o e I8 T H;(r)dr,
j=1

(49)

where H; is defined by the formula
Hj (T) = / e*iﬁj-y(‘r) (5] : ny(T)) U(y(T)7 T)dsy('r)7 j=1...,Np. (50)
I(r)

The integrals in (50) can be discretized via the trapezoidal rule with spectral
accuracy. After that, all H; (j = 1,..., Np) can be evaluated via type-3 NUFFT
with O((Ng + Np)log(Ng+ Np)) cost. The temporal integral can be evaluated via
standard recurrence relation as in the stationary case with O(Ng) cost for each
time step. Finally, we may apply type-3 NUFFT again to evaluate the summation
in (49) with O((Ng+ Ng)log(Ng+ Ng)) cost. The algorithm is spectrally accurate
and has O(Nr(Ng + Np)log(Ng + Np)) complexity for the whole simulation.

4 Numerical Results

We have implemented the SOE algorithm with OpenMP for parallelizing the com-
pression of local and history kernels and the evaluation of history kernels. For
the NUFFT based algorithm, we use the library [30] for NUFFT and the code is
entirely sequential. We remark here that one could use recently developed FIN-
UFFT [2] to achieve better efficiency and parallelization of the NUFFT, hence
speeding up the NUFFT based algorithm significantly. In this section, we illus-
trate the performance of the two algorithms outlined in the preceding section via
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several numerical examples. All numerical experiments shown below were carried
out using the scheme with the 4th order in time and 16th order in space. In the
tables and figures presented below, At is the time step size; N is the total number
of time steps; Ng is the total number of discretization points in space; E is the
relative L2 error of the numerical solution at the final time; r is the ratio of the
relative errors of two consecutive runs. T is the total simulation time in seconds;
Ty is the total factorization time for Algorithm 2 using the SOE approximation
(where all kernels need to be compressed only once); and Ty, is the total time for
time marching in Algorithm 2. We generate boundary data by placing point heat
sources outside the computational domain, and all errors are computed against
analytical solutions at 20 target points inside the computational domain. Output
and timings are obtained on a 60-core machine with each core a 2.50GHz INTEL
Xeon E7-4880 CPU with 38.4MB of cache. The SOE algorithm was run with the
number of threads set to 50.

4.1 Efficient Heat Solver for Stationary Geometry Using the SOE Approximations

Example 1 Exterior Dirichlet Problem with the Boundary Consisting of a 32-gram.

Fig. 1 32-gram boundary curve for Example 1.

We consider the exterior Dirichlet problem with the boundary consisting of a
32-gram shown in Figure 1. Here the boundary curve is roughly of size R =4 and
the center locates at (0,0).

We first check the order of accuracy of our algorithm. The left panel of Table 1
lists the relative L? error versus Ng, showing the high-order in space. The right
panel lists the time step size At, the relative L? error E, and the ratio r of the
relative errors of two consecutive runs. Here Ny is set to 6,250 so that the error due
to spatial discretization is negligible. We observe the convergence rate is roughly
consistent with the fourth order accuracy in time (slightly better because of the
smoothing effect of the heat kernel).

We now check the complexity of our algorithm. The left panel of Figure 2 shows
the total CPU time for different Ng while Np is fixed, demonstrating that the
algorithm has almost linear complexity in Ng. The right panel of Figure 2 shows
the total factorization time, the total marching time versus Ny when Ng = 6,250
is fixed. Since the geometry is stationary, the factorization needs to be carried
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At E r
N E
3 2.00e-1 | 1.07e-2
125 | 3.37e2
1.00e-1 | 6.65¢-4 | 16.1
250 | 1.35e-4
5.00e-2 | 1.76e-5 | 37.5
500 | 4.02¢-6
1000 | 24800 2.50e-2 | 2.73e-7 | 64.7
1.25¢-2 | 2.47¢-9 | 110

Table 1 Order of Accuracy for Example 1. Left: Accuracy in space - Relative L2 error versus
Ng. Here Ny = 80 and At = 0.0125 are fixed. Right: Accuracy in time - Relative L? error
versus At. Here Ng = 6,250 is fixed.

out only once and its cost Ty is thus independent of N7. On the other hand, we
observe that the matching time T3, is almost linear with respect to Nrp.

1000 120

100

80

Time
Time

60

40

20

0 50 100 150 200

Fig. 2 Timing results for Example 1. Left: Total computational time T versus Ng. Here
Np = 80 and At = 0.0125 are fixed. Red circles represent the numerical results, while the
blue dashed line represents O(Ng) scaling. Right: Timing results with respect to Np. Here
Ngs = 6,250 is fixed. Red circles represents the total matching time; green circles represent
the total factorization time; and the blue dashed line represents O(N) scaling. The total
factorization time Ty = 21.9s is the same for all different time step sizes.

Example 2 Interior Dirichlet Problem with the Boundary Consisting of One Outer Circle
and 16 Inner Hexagrams.

Fig. 3 Example 2: boundary consisting of one outer circle and 16 inner hexagrams.
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We consider the interior Dirichlet problem with the boundary consisting of one
outer circle and sixteen inner hexagrams shown in Figure 3. Here the outer circle
is centered at the origin with radius 5.5. The size of each hexagram is about 0.5.
The centers of the hexagrams are at (c1,c2) with c1, c2 taken from +1.5 and +3.

At FE r ‘
N, E
5 2.00c-1 | 6.93¢-3
850 | 4.520-3
1.00e-1 | 4.69e-4 | 14.7
1700 | 1.28e-5
5.00e-2 | 4.11e-5 | 11.4
2550 | 6.96e-7
3400 | 78709 2.50e-2 | 1.49¢-7 | 274
1.25e-2 | 6.52¢-9 | 22.9

Table 2 Order of Accuracy for Example 2. Left: Accuracy in space - Relative L2 error versus
Ng. Here Ny = 80 and At = 0.0125 are fixed. Right: Accuracy in time - Relative L? error
versus At. Here Ng = 12,750 is fixed.

Table 2 illustrates that the order of accuracy of the scheme in both space and
time for Example 2. And Figure 4 shows the timing results for this example.

o
£ 400
[=

0 2 4 6 8 10 12 0 50 100 150 200
S x10 T

Fig. 4 Timing results for Example 2. Left: Total computational time T versus Ng. Here
N7 = 80 and At = 0.0125 are fixed. Red circles represent the numerical results, while the
blue dashed line represents O(Ng) scaling. Right: Timing results with respect to Np. Here
Ng = 12,750 is fixed. Red circles represents the total matching time; green circles represent
the total factorization time; and the blue dashed line represents O(N) scaling. The total
factorization time Ty = 106.4s is the same for all different time step sizes.

Example 3 Interior Dirichlet Problem with the Boundary Consisting of One Outer Cirle
and 64 Inner Ellipses.

We consider the interior Dirichlet problem with the boundary consisting of one
outer circle and sixty-four inner ellipses shown in Figure 5. Here the outer circle is
centered at the origin with radius 6.5. The major axis ¢ and minor axis b of each
ellipse are 0.3 and 0.2, respectively. The centers of the ellipses are at (c1,c2) with
c1, co taken from =+1,..., +4.

Table 3 illustrate the order of accuracy of the algorithm in both space and
time for Example 3. And Figure 6 presents the timing results for this example.
The sublinear complexity with respect to Ng is due to the fact that the interaction
rank between well-separated blocks is more or less independent of Ng and rskelf
achieves higher compression rate as Ng increases.
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Fig. 5 Example 3: boundary consisting of one outer circle and sixty-four inner ellipses.

At E T
Ns E 2.000-1 | 6.580-3
4500 2.02e-3 1.00e-1 | 3.77e-4 | 17.4
9100 1.87e-5 5.00e-2 | 3.24e-5 11.6
18200 | 6.52e-9 2.50e-2 | 8.19e-8 396
1.25e-2 | 6.61e-9 124

Table 3 Order of Accuracy for Example 3. Left: Accuracy in space - Relative L2 error versus
Ns. Here Ny = 80 and At = 0.0125 are fixed. Right: Accuracy in time - Relative L? error
versus At. Here Ng = 26,000 is fixed.

800 250
. T
700 , ©m
. 200 T .
600 L
500 e 150
o i (0]
E 400 E
[ =
300 100
200
50
100
0 0
0 2 4 6 8 10 12 0 200
Ng x10* T

Fig. 6 Timing results for Example 3. Left: Total computational time 7" versus Ng. Here
Nt = 80 and At = 0.0125 are fixed. Red circles represent the numerical results, while the
blue dashed line represents O(Ng) scaling. Right: Timing results with respect to Np. Here
Ng = 26,000 is fixed. Red circles represents the total matching time; green circles represent
the total factorization time; and the blue dashed line represents O(N) scaling. The total
factorization time Ty = 112.6s is the same for all different time step sizes.

4.2 Efficient Heat Solver for Moving Geometry Using the Spectral Fourier
Approximation

Example 4 Interior Dirichlet Problem with the Boundary Enclosed by One Outer Circle
and One Inner Moving Decagram.

We consider the interior Dirichlet problem with the boundary consisting of one
outer circle and one inner moving decagram shown in Figure 7. Here, the radius of
the outer circle is 0.7 and the centers of the circle and decagram are both at (0,0)
at the initial time. The size of the inner decagram is roughly 0.1 and it moves
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Fig. 7 Example 4: boundary consisting of one outer circle and one inner moving decagram.

towards the positive y-axis with the velocity of 0.01. At the final time, the center
of the decagram is at (0,0.1).

At E T
Ns E 2.000-1 | 1.930-3
200 5.09e-3 1.00e-1 | 7.54e-5 | 25.5
400 2.37e-5 5.00e-2 | 5.21e-7 144
800 | 9.51e-10 2.50e-2 | 3.88e-8 | 13.4
1.25e-2 | 1.69e-9 | 22.9

Table 4 Order of Accuracy for Example 4. Left: Accuracy in space - Relative L2 error versus
Ng. Here Ny = 80 and At = 0.0125 are fixed. Right: Accuracy in time - Relative L? error
versus At. Here Ng = 2,000 is fixed.

Table 4 illustrates that the scheme has high-order in space and slightly better
than fourth order in time. Figure 8 shows the timing results for this example.

400
. =
1600 300
- P .
20 200
a0 100
o0
w0 0
200
T - TR R T 100 50 100 150 200
NS x10° NT

Fig. 8 Timing results for Example 4. Left: Total computational time T versus Ng. Here
Np = 80 and At = 0.0125 are fixed. Right: Total computational time T versus Np. Here
Ng = 2,000 is fixed. Red circles represent the numerical results, while the blue dashed line
represents O(Ng) scaling.

Example 5 Interior Dirichlet Problem with the Boundary Consisting of One Outer Circle
and 64 Inner Oscillating Circles.
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Fig. 9 Example 5: boundary consisting of one outer circle and 64 inner oscillating circles.

We consider the interior Dirichlet problem with the boundary consisting of
one outer circle and 64 inner oscillating circles shown in Figure 9. Here, the
outer circle is centered at the origin with radius 0.5. The radius of each inner
circle is 0.01. The centers of the inner circle are initially at (c1,c2) with ci1, ca
chosen from =+0.25,40.185,+0.125, £0.0625. The centers are then oscillating as
(c1 +vcos(r), c2 + vsin(r)), where v = 0.001 and 7 € (0,10] is the temporal vari-
able.

At E T
2.00e-1 | 1.58e-4
1.00e-1 3.68e-6 | 42.9
5.00e-2 | 6.83e-8 | 53.9
2.50e-2 | 7.76e-9 | 8.79
1.25e-2 1.29e-9 6.01

Ns E
780 | 1.37c-6
1300 | 4.14e-8
1820 | 5.39e-9
2340 | 2.80e-10

Table 5 Order of Accuracy for Example 5. Left: Accuracy in space - Relative L? error versus
Ng. Here Ny = 80 and At = 0.0125 are fixed. Right: Accuracy in time - Relative L? error
versus At. Here Ng = 6,500 is fixed.

Table 5 presents the accuracy analysis for Example 5. Figure 10 shows the
timing results for this example.

5 Conclusions and Further Discussions

In this paper, we have developed two fast high-order numerical algorithms for
solving the boundary value problems of the heat equation in two dimensions. For
problems with complex stationary geometry, we use the SOE approximation for
the heat kernel and compress all local and history kernels only once. The resulting
algorithm is very efficient with quasilinear complexity and is capable of handling
both interior and exterior problems. For problems with complex moving geometry,
we apply the spectral Fourier approximation for the heat kernel and NUFFT to
speed up the evaluation of the history part of the heat potentials. The algorithm
does require the compression of the local kernels at each time step due to the
facts that the boundary is moving and the local kernels change correspondingly.
The algorithm also has the restrictions that the physical domain shall not be very
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Fig. 10 Timing results for Example 5. Left: Total computational time 7" versus Ng. Here
Np = 80 and At = 0.0125 are fixed. Right: Total computational time T versus Np. Here
Ng = 7,400 is fixed. Red circles represent the numerical results, while the blue dashed line
represents O(Ng) scaling.

large and the time step size shall not be very small. Nevertheless, the algorithm
achieves high order for complex moving geometry. We expect that the algorithm
will have some applications in applied physics and engineering such as dislocation
dynamics in materials science.

Admittedly, both algorithms have certain restrictions and there is still much
room for improvement. A bootstrap method [41,42] is currently under develop-
ment to remove the restrictions of the algorithms in this paper. Furthermore, even
though the initial potential can be treated efficiently via the fast Gauss trans-
form [17,18,39] and the volume potential can be treated similarly as the layer
potentials, there is still work to be done in order to build an efficient and high-
order solver for the general initial-boundary value problem of the heat equation.
We are currently working on these projects and will report our findings on a later
date. Finally, we would like to point out both algorithms can be extended to three
dimensional problems and we refer the readers to [27] on a high-order algorithm
for the 3D heat equation in complex geometry using the SOE approximation.
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