

1 Delineation of Thermodynamic and Dynamic Responses to Sea Surface

2 Temperature Forcing Associated with El Niño

3

4

5 Xiaoming Hu^{1,2}, Ming Cai³, Song Yang^{1,2,4} and Zhaohua Wu^{3,5}

6 ¹School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China

7 ²Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun
8 Yat-sen University, Guangzhou, China

9 ³Department of Earth, Ocean & Atmospheric Sciences, Florida State University, Tallahassee,
10 Florida, USA

11 ⁴Institute of Earth Climate and Environment System, Sun Yat-sen University, Guangzhou, China

12 ⁵Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, USA

13

14

15

16

17

18

19

20 Submitted to *Climate Dynamics - EAC Special Issue*

21 November 2016

22

23

24 *Corresponding author address: Prof. Song Yang, School of Atmospheric Sciences, Sun Yat-sen
25 University, 135 West Xingang Road, Guangzhou 510275, China. Email:
26 yangsong3@mail.sysu.edu.cn; Prof. Ming Cai, Department of Earth, Ocean & Atmospheric
27 Sciences, Florida State University, Tallahassee, Florida, USA. Email: mcai@fsu.edu

28

29

ABSTRACT

30 A new framework is proposed to gain a better understanding of the response of the
31 atmosphere over the tropical Pacific to the radiative heating anomaly associated with the sea
32 surface temperature (SST) anomaly in canonical El Niño winters. The new framework is based
33 on the equilibrium balance between thermal radiative cooling anomalies associated with air
34 temperature response to SST anomalies and other thermodynamic and dynamic processes.

35 The air temperature anomalies in the lower troposphere are mainly in response to radiative
36 heating anomalies associated with SST, atmospheric water vapor, and cloud anomalies that all
37 exhibit similar spatial patterns. As a result, air temperature induced thermal radiative cooling
38 anomalies would balance out most of the radiative heating anomalies in the lower troposphere.
39 The remaining part of the radiative heating anomalies is then taken away by an enhancement (a
40 reduction) of upward energy transport in the central-eastern (western) Pacific basin, a secondary
41 contribution to the air temperature anomalies in the lower troposphere. Above the middle
42 troposphere, radiative effect due to water vapor feedback is weak. Thermal radiative cooling
43 anomalies are mainly in balance with the sum of latent heating anomalies, vertical and horizontal
44 energy transport anomalies associated with atmospheric dynamic response and the radiative
45 heating anomalies due to changes in cloud. The pattern of Gill-type response is attributed mainly
46 to the non-radiative heating anomalies associated with convective and large-scale energy
47 transport. The radiative heating anomalies associated with the anomalies of high clouds also
48 contribute positively to the Gill-type response. This sheds some light on why the Gill-type
49 atmospheric response can be easily identifiable in the upper atmosphere.

50 **Keywords** El Niño, SST anomalies, thermodynamic and dynamic responses, Gill-type response

51 **1. Introduction**

52 The hallmark of an El Niño, in terms of sea surface temperature (SST) anomalies, is the pattern
53 of anomalous warming in the equatorial central-eastern Pacific and cooling in the western
54 equatorial Pacific (Bjerknes 1969; Larkin 2005; Kao and Yu 2009). Associated with the anomalous
55 SST pattern is an eastward shift of the rising branch of the Walker Circulation from the equatorial
56 western Pacific to the central Pacific. The eastward shifting of the Walker Circulation is manifested
57 by upward (downward) motion anomalies and anomalous divergence (convergence) in the upper
58 troposphere over the central equatorial (western) Pacific region (Zebiak 1986; Trenberth et al.
59 1998; Ashok et al. 2007; Yuan and Yang 2012). Associated with the anomalous divergence flow
60 is a pair of off-equator anti-cyclonic circulation anomalies on the west and an equatorial positive
61 center of geopotential height anomaly on the east (Gill 1980; Rasmusson and Kingtse Mo 1993).
62 For an easy reference, we refer to such spatial pattern of geopotential height anomaly as a positive
63 “tripod” of circulation anomalies. The off-equator anti-cyclonic circulation anomalies serve as the
64 source of Rossby wave train emanating from deep tropic into the extratropics along the great circle
65 route (Hoskins and Karoly 1981; Philander 1990; Trenberth et al. 1998). In this way, an El Niño
66 leads to profound impacts on weather and climate over the globe, including remote regions via
67 teleconnections (Wang et al. 2000; Alexander et al. 2002; Lyon and Barnston 2005; Ashok et al.
68 2007; Wang et al. 2012). Besides this positive tripod, there exists a negative tripod associated with
69 the downward motion anomalies over the western equatorial Pacific, namely a pair of off-equator
70 anomalous cyclonic centers on the west and a negative geopotential height center on the east
71 centered at around 150° E (DeWeaver and Nigam 2004).

72 Gill (1980) provided an analytic solution of the idealized atmospheric dynamic response to a
73 localized diabatic heating anomaly center, which exhibits a positive tripod spatial pattern. It

74 represents the dynamic balance of a pair of westward propagating Rossby anti-cyclonic circulation
75 anomalies and an eastward propagating high-pressure Kelvin mode in the upper troposphere with
76 the positive diabatic heating anomalies below. Conversely, a negative tripod spatial pattern in the
77 upper troposphere can be regarded as the Gill-type response to a diabatic cooling anomaly.
78 DeWeaver and Nigam (2004) used a linear general circulation model to prove that, in the upper
79 troposphere during the mature phase of El Niño events, the co-existence of a positive tripod of
80 circulation anomalies over the central tropical Pacific and a negative tripod above the western
81 tropical Pacific can be regarded as the Gill-type response to a pair of localized heating anomalies
82 of opposite sign with positive in the east and negative in the west.

83 The Gill solution also predicts that there is a tripod with the opposite sign in the lower
84 troposphere centered at the localized diabatic heating center (Wu et al. 2000; Wu 2003). In other
85 words, one would expect a negative (positive) tripod spatial pattern over the tropical (western)
86 Pacific in the lower troposphere during El Niño events, if the Gill-type response would prevail.
87 However, during El Niño events, geopotential height anomalies in the lower troposphere do exhibit
88 negative values over the tropical eastern Pacific but positive values over the western equatorial
89 Pacific, indicating a negative Southern Oscillation pattern (Rasmusson and Carpenter 1982;
90 Rasmusson and Wallace 1983). The accompanied off-equator circulation anomalies of the same
91 sign as in the Gill-type response are not identifiable in the lower troposphere. The lack of Gill-type
92 dynamic response signal in the lower atmosphere seems to indicate that the thermodynamic
93 response would have to play a more important role in the observed response to SST anomalies in
94 the lower troposphere. Thermodynamic processes yield different spatial patterns in the lower-
95 tropospheric response to SST anomalies of El Niño events, especially near the surface (Lindzen
96 and Nigam 1987; Battisti et al. 1999; Chiang et al. 2001; Back and Bretherton 2009). Battisti et al.

97 (1999) found that the circulation anomalies near the surface were forced by sensible and latent
98 heat flux anomalies while circulation anomalies above the boundary layer were forced by the latent
99 heating anomaly. Furthermore, Chiang et al. (2001) reported that the Gill type response above the
100 boundary layer contributed significantly to the surface zonal wind but the meridional wind was
101 primarily forced by the gradient of SST anomalies associated with El Niño events. Back and
102 Bretherton (2009) and Zhang et al. (2012) discussed the relative contributions from the
103 thermodynamic process in the boundary layer and the dynamic process above the boundary layer.
104 The existence of clearly organized Gill-type response in the middle and upper troposphere but less
105 organized one in the lower troposphere had been duplicated in model simulations of El Niño (Lee
106 et al. 2009).

107 The main objective of this study is to delineate the roles of the thermodynamic and dynamic
108 responses to SST anomalies associated with canonical El Niño events. Because geopotential height
109 and air temperature anomalies are related to one another via the hydrostatic balance (White 2008),
110 we will focus on air temperature response in this study. Specifically, we wish to examine how the
111 response in atmospheric temperature transitions from the thermodynamically-driven response in
112 the lower troposphere, which resembles to the SST anomaly pattern, to the pattern characterized
113 by the Gill-type response in the upper atmosphere. The remaining part of this paper is organized
114 as follows. Section 2 presents the analysis framework of the coupled dynamic and thermodynamic
115 responses and Section 3 describes data and analysis procedures. Features of atmospheric response
116 to SST anomalies associated with El Niño events are presented in Section 4. Section 5 discusses

117 the attribution of temperature response to individual radiative and non-radiative heating anomalies.

118 Conclusions are given in Section 6.

119 **2. Analysis Framework**

120 A new framework is proposed to delineate the atmosphere response to SST anomalies. The
121 main feature of this new framework is to divide loosely the atmosphere response to anomalous
122 upward longwave radiative fluxes associated with SST anomalies into two parts: non-temperature
123 response and temperature response. Non-temperature response includes the changes in
124 atmospheric dynamics processes, such as those in convective activity and large-scale atmospheric
125 circulation (e.g., the Gill-type response), as well as the changes in non-temperature thermodynamic
126 variables such as water vapor and cloud anomalies. The changes in atmospheric dynamics
127 processes redistribute energy both vertically and horizontally far away from the original diabatic
128 heating anomaly, but also generate additional heating anomalies, such as latent heat anomalies.

129 Associated with the changes in non-temperature thermodynamic variables are radiative heating
130 anomalies. It is the anomaly of thermal radiative cooling rate associated with the changes in air
131 temperatures that is in balance with the sum of these individual non-temperature induced radiative
132 heating anomalies and non-radiative energy flux convergence anomalies.

133 The formulation of the new framework is based on the perturbation equation of energy
134 balance in an atmospheric column from the boundary layer to the top layer, namely,

$$135 \quad \Delta^{(RAD)}Q + \Delta^{(DYN)}Q = 0 \quad (1)$$

136 where $\Delta^{(RAD)}Q$ corresponds to the vertical profile of total changes in radiative energy

137 absorbed by the atmosphere. $\Delta^{(DYN)}Q$ corresponding to the vertical profile of non-

Field Code Changed

Field Code Changed

Field Code Changed

138 radiative energy flux convergence anomalies, which are equal to the sum of perturbations in energy
 139 redistributions by convective and large-scale atmospheric motions as well as changes in energy
 140 fluxes entering the atmosphere due to the changes in surface sensible and latent heat fluxes. By
 141 evoking a linear approximation, we have

$$142 \quad \Delta^{(RAD)}Q \approx \Delta^{(T_s)}Q + \Delta^{(WV)}Q + \Delta^{(C)}Q - \Delta^{(T_{air})}R + \Delta^{(other)}Q$$

$$143 \quad \Delta^{(RAD)}Q \approx \Delta^{(T_s)}Q + \Delta^{(WV)}Q + \Delta^{(C)}Q - \Delta^{(T_{air})}R + \Delta^{(other)}Q \quad (2)$$

Field Code Changed

144 where $\Delta^{(T_s)}Q$ is the vertical profile of the absorption of the perturbation longwave radiative
 145 flux emitted from the surface associated with SST anomalies. $\Delta^{(WV)}Q$ and $\Delta^{(C)}Q$ are
 146 the vertical profiles of the absorption perturbation of the shortwave and longwave radiative energy
 147 due to the changes in atmospheric water vapor (WV) and clouds (C), respectively. $\Delta^{(T_{air})}R$ is
 148 the vertical profile of radiative thermal cooling rate anomalies due to atmospheric temperature

Field Code Changed

Field Code Changed

149 (T_{air}) anomalies, and $\Delta^{(other)}Q$ denotes the vertical profile of the absorption perturbation of
 150 radiative energy fluxes due to the changes in stratospheric ozone and surface albedo. Because the
 151 part of $\Delta^{(other)}Q$ due to the change in ozone is very small in the troposphere and the part
 152 of $\Delta^{(other)}Q$ due to the change in surface albedo is nearly equal to zero over tropical oceans,

Field Code Changed

Field Code Changed

Field Code Changed

153 we neglect the term $\Delta^{(other)}Q \Delta^{(other)}Q$ in this study. Combining (1) and (2) without the term

Field Code Changed

154 $\Delta^{(other)}Q \Delta^{(other)}Q$ yields

Field Code Changed

155 $\Delta^{(T_{air})}R \approx \Delta^{(T_s)}Q + \Delta^{(WW)}Q + \Delta^{(C)}Q + \Delta^{(DYN)}Q \Delta^{(T_{air})}R \approx \Delta^{(T_s)}Q + \Delta^{(WW)}Q + \Delta^{(C)}Q + \Delta^{(DYN)}Q$ (3)

Field Code Changed

156 Next, we calculate the pattern-amplitude projection (PAP; Deng et al. 2012) coefficients

157 according to

$$158 PAP_j^{(X)} = \frac{A^{-1} \int a^2 \Delta^{(X)}Q_j \Delta^{(T_{air})}R_j \cos\phi d\lambda d\phi}{\sqrt{\int a^2 (\Delta^{(T_{air})}R_j)^2 \cos\phi d\lambda d\phi}} PAP_j^{(X)} = \frac{A^{-1} \int a^2 \Delta^{(X)}Q_j \Delta^{(T_{air})}Q_j \cos\phi d\lambda d\phi}{\sqrt{\int a^2 (\Delta^{(T_{air})}Q_j)^2 \cos\phi d\lambda d\phi}} \quad (4)$$

Field Code Changed

159 where ϕ and λ are respectively latitude and longitude, and a is the radius of the earth. A

160 corresponds to the area of the tropical Pacific domain of 30 °S-30 °N, 90 °E-90 °W. $\Delta^{(X)}Q_j$

Field Code Changed

161 $\Delta^{(X)}Q_j$ is one of the terms on the right hand side (RHS) of (3) in the j^{th} atmospheric layer. It is

162 easy to verify that according (3) the summation of $PAP_j^{(X)} PAP_j^{(X)}$ over all terms on the RHS of

Field Code Changed

163 (3) is approximately equal to the amplitude of the spatial pattern of $\Delta^{(T_{air})}R_j \Delta^{(T_s)}Q_j$ over the area

Field Code Changed

164 A, namely, $\sum_j PAP_j^{(X)} \approx \sqrt{\int a^2 (\Delta^{(T_{air})}R_j)^2 \cos\phi d\lambda d\phi}$

Field Code Changed

165 $\sum_j PAP_j^{(X)} \approx \sqrt{\int a^2 (\Delta^{(T_s)}Q_j)^2 \cos\phi d\lambda d\phi}$ (the approximation is due to the linearization of the

166 radiative transfer model and the neglecting of the small term $\Delta^{(other)}Q \Delta^{(other)}Q$). Therefore,

Field Code Changed

167 $PAP_j^{(X)} PAP_j^{(X)}$ measures the relative contribution of each term on the RHS of (3) to $\Delta^{(T_{air})}R$

Field Code Changed

Field Code Changed

168 $\Delta^{(T_{air})}R$ in the j^{th} atmospheric layer in terms of both spatial pattern and amplitude. It follows that

169 the closer the value of $PAP_j^{(X)}$ to the amplitude of the spatial pattern of $\Delta^{(T_{air})}R_j$ $\Delta^{(T_{con})}Q_j$,

Field Code Changed

Field Code Changed

170 the larger is contribution of the corresponding process to both spatial pattern and amplitude of

171 temperature response. Thus, we can say that the atmospheric temperature change in the layer

172 over area A is mainly in response to the process X because the radiative cooling associated with

173 air temperature change $(\Delta^{(T_{air})}R_j \Delta^{(T_{con})}Q_j)$ is mainly in balance with $\Delta^{(X)}Q_j$ $\Delta^{(X)}Q_j$.

Field Code Changed

Field Code Changed

174 3. Data and Analysis Procedures

175 The data used in this study are obtained from the European Centre for Medium-range Weather
176 Forecasts (ECMWF) Re-Analysis Interim (ERA-Interim; Dee and Uppala 2009; Dee et al. 2011).

177 The atmospheric variables include geopotential height, air temperature, specific humidity, ozone

178 mixing ratio, cloud cover, and cloud liquid/ice water content. All atmospheric variables are defined

179 at 37 pressure levels from 1000 hPa to 1 hPa. We also consider the incoming solar energy flux at

180 the top of the atmosphere (TOA), the surface skin temperature, the upward longwave radiative

181 flux at the surface, surface albedo, and surface sensible/latent heat fluxes.

182 Following Hu et al. (2016), we use the data in the periods of the four major canonical El Niño
183 winters (1982/1983, 1986/1987, 1997/1998, and 2006/2007) and eight ENSO-neutral winters

184 (1980/1981, 1981/1982, 1985/1986, 1989/1990, 1992/1993, 1993/1994, 2001/2002, and

185 2003/2004) to construct the composite El Niño and neutral events, respectively. The differences

186 (denoted by the symbol Δ) between the composite El Niño and neutral events are referred to as El

187 Niño anomalies. We focus on the El Niño anomalies over the tropical Pacific and part of the East
 188 Asia monsoon region (30 °S-30 °N, 80 °E-80 °W).

189 We use the Fu-Liou radiative transfer model (Fu and Liou 1992; Fu and Liou 1993) to evaluate
 190 all terms in (2) at the original 37 levels of the ERA-interim on each grid point as the following:

$$\Delta^{(RAD)}Q = Q(T_{SST}^E, T_{air}^E, WV_{air}^E, C_{air}^E, other_{air}^E) - Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N)$$

$$\Delta Q^{(T_s)} = Q(T_{SST}^E, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N) - Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N)$$

$$\Delta^{(WV)}Q = Q(T_{SST}^N, T_{air}^N, WV_{air}^E, C_{air}^N, other_{air}^N) - Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N)$$

191 $\Delta^{(C)}Q = Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^E, other_{air}^N) - Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N)$

$$\Delta^{(T_{air})}R = -[Q(T_{SST}^N, T_{air}^E, WV_{air}^N, C_{air}^N, other_{air}^N) - Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N)]$$

$$\Delta^{(other)}Q = Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^E) - Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N)$$

$$\Delta^{(RAD)}Q = Q(T_{SST}^E, T_{air}^E, WV_{air}^E, C_{air}^E, other_{air}^E) - Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N)$$

$$\Delta^{(T_s)}Q = Q(T_{SST}^E, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N) - Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N)$$

$$\Delta^{(WV)}Q = Q(T_{SST}^N, T_{air}^N, WV_{air}^E, C_{air}^N, other_{air}^N) - Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N)$$

$$\Delta^{(C)}Q = Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^E, other_{air}^N) - Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N)$$

$$\Delta^{(T_{air})}R = -[Q(T_{SST}^N, T_{air}^E, WV_{air}^N, C_{air}^N, other_{air}^N) - Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N)]$$

$$\Delta^{(other)}Q = Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^E) - Q(T_{SST}^N, T_{air}^N, WV_{air}^N, C_{air}^N, other_{air}^N)$$

Field Code Changed

(5)

193 where Q is the vertical profile of the net radiative energy flux convergence (in units of W/m²) in
 194 each atmospheric layer obtained from the radiative transfer model using the information of SST,
 195 vertical profiles of T_{air}, WV, and C, as well as other variables/parameters (denoted as “other”) such
 196 as the incoming solar radiative flux at the TOA, ozone, and surface albedo. The superscript “N”
 197 and “E” denote, respectively, the variables derived from the composite mean fields of the eight

198 ENSO-neutral winters and the four major El Niño winters. Note that the vertical profiles of C
199 include cloud liquid and ice water as well as cloud area. We then use (1) to indirectly infer the
200 term $\Delta^{(DYN)}Q$ as

$$201 \Delta^{(DYN)}Q = -\Delta^{(RAD)}Q \quad \Delta^{(DYN)}Q = -\Delta^{(RAD)}Q \quad (6)$$

202 Equations (5) and (6) enable us to obtain all of the terms in (3).

203 Note that because the units of all terms in (5) have been converted from K/s (degree per second)
204 to W/m², they can be summed up vertically without changing their physical meanings. For example,

205 the vertical summation of $\Delta^{(WV)}Q$ from the lowest to the highest atmospheric layers
206 corresponds to the perturbation in the total energy absorbed by the atmosphere due to the changes
207 in atmospheric water vapor. Therefore, we can reduce the number of layers in our discussions to a
208 few selected layers by adding the terms vertically. We have divided the atmospheric column
209 broadly into six layers in presenting the results of (3) and (4): one for the boundary layer (1000-
210 925 hPa), two for the lower troposphere (925-800 hPa and 800-600 hPa), one for the middle
211 troposphere (600-400 hPa), and two for the upper troposphere (400-250 hPa and 250-150 hPa).
212 We will use the results in these layers to explain temperature and geopotential height anomalies
213 at 950 hPa, 850 hPa, 700 hPa, 500 hPa, 300 hPa, and 200 hPa.

214 4. An Overview of the Key Features of Atmospheric Anomalies of El Niño Events

215 We here present an overview of the salient features of atmospheric circulation anomalies
216 observed during El Niño events. Figure 1a shows the composite SST anomalies over the tropical
217 Pacific during El Niño winters. The corresponding geopotential height anomalies at various levels
218 are displayed in Fig. 2. It is seen that in the upper troposphere above 500 hPa, there exists a pair

219 of negative and positive tripods of circulation anomalies centered over the western and eastern
220 tropical Pacific, respectively (Figs. 2a-b). The intensity of geopotential height anomalies is
221 strongest at 200 hPa. The existence of such a pair of tripods in the upper troposphere is consistent
222 with the Gill-type response to a pair of localized heating anomalies of opposite sign with positive
223 values in the east and cooling anomalies in the west (DeWeaver and Nigam 2004). Below the
224 middle troposphere (Figs. 2d-f), the geopotential height response mainly shows negative values
225 over the tropical eastern Pacific but positive values over the western Pacific, indicating the
226 negative Southern Oscillation pattern during El Niño winters (Rasmusson and Wallace 1983;
227 Scherllin-Pirscher et al. 2011). The off-equator positive and negative centers are barely noticeable.
228 Therefore, the canonical low-level Gill-type response is not observed in the lower troposphere.
229 The lack of Gill-type dynamic response signal in the lower atmosphere seems to indicate that the
230 thermodynamic response could play a more important role in the observed response to SST
231 anomalies in the lower troposphere.

232 It is seen from Fig. 3 that the spatial pattern of air temperature anomalies in the lower
233 troposphere is similar to SST anomalies. The Gill-type response begins to emerge clearly at 500
234 hPa with the maximum intensity at 300 hPa. Therefore, one would infer from the hydrostatic
235 balance that the pair of tripod patterns in geopotential height anomalies exists only at levels higher
236 500 hPa with its intensity increasing with elevation until a level above 300 hPa. According to Fig.
237 2, the maximum amplitude of the tripod patterns in the field of geopotential height anomaly is at
238 200 hPa. The ability of using the hydrostatic balance to infer geopotential height anomalies from
239 air temperature response to SST anomalies is the rationale that prompts us to focus on air
240 temperature response in the framework of (3) for explaining the dominance of the

241 thermodynamically-driven response in the lower troposphere but the Gill-type response in the
242 upper troposphere.

243 Now let us examine the anomaly fields that are responsible for the energy flux convergence
244 perturbations on the RHS of (3). The anomalous upward longwave radiative flux emitted from the
245 surface during El Niño events ($\Delta R_s^\uparrow \Delta R_s^\uparrow$, Fig. 1b) can be inferred directly from the corresponding

246 SST anomalies (Fig. 1a) using $\Delta R_s^\uparrow \approx 4\sigma \bar{T}_s^3 \Delta T_s$ $\Delta R_s^\uparrow \approx 4\sigma \bar{T}_s^3 \Delta T_s$, where σ is the Stefan-Boltzmann

247 constant and \bar{T}_s^3 is the mean SST derived from the composite mean of neutral events. The term

248 $\Delta R_s^\uparrow \Delta R_s^\uparrow$ can be regarded as the “source of external forcing” for the atmospheric response since

249 its absorption by the atmosphere, i.e. the first term on the RHS of (3), is the “sole” source of energy
250 outside the atmosphere component of the coupled atmosphere-ocean system in the analysis
251 framework (3). Here we wish to reiterate that the anomalous surface latent and sensible fluxes
252 should also be regarded as part of the “external forcing” to the atmosphere component. However,
253 the effect of anomalous surface latent and sensible fluxes entering the atmosphere has been blended
254 in the last term on the RHS of (3) as part of the atmospheric dynamic response since there is no
255 information available from the ERA-interim about where the energy is released without running a
256 general circulation model.

257 The atmospheric water vapor anomalies of the composite El Niño (Fig. 4) exhibit a similar
258 spatial pattern as the SST anomalies, showing a moistening center in the central-eastern equatorial
259 Pacific and drying anomalies in the western equatorial Pacific and off-equator tropical latitudes in
260 both hemispheres, which is consistent with the results Prabhakara et al. (1985) and Takahashi et
261 al. (2013). The horizontal pattern of atmospheric water vapor anomalies remains largely

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

unchanged throughout the troposphere but its amplitude decreases gradually with height in the lower troposphere and diminishes in the upper troposphere. The cloud water/ice content anomalies of the composite El Niño, however, exhibit large amplitude in the middle and upper troposphere (Figs. 5b-5d). The spatial pattern of cloud water/ice content anomalies in the middle and upper troposphere resembles greatly to that of the rainfall anomalies of the composite El Niño (Fig. 6), suggesting that most of condensation or latent heating anomaly takes place in the middle and upper troposphere. This conjecture is consistent with the vertical motion anomalies of the composite El Niño (Fig. 7). Specifically, the spatial patterns of vertical motion anomalies at 700 hPa, 500 hPa, and 300 hPa (Figs. 7b-7d) are all similar not only to one another but also to the cloud water/ice content anomalies at these layers (Figs. 5b-5d) and rainfall anomalies (Fig. 6). The nearly perfect positive correlation among these spatial patterns indicates that the most latent heating anomalies take place in the layers between 700 hPa and 300 hPa where both vertical motion and cloud content anomalies are strongest and their spatial patterns match the spatial pattern of rainfall anomalies. The pattern of downward motion anomalies with less clouds and reduction of rainfall over the western equatorial Pacific and upward motion anomalies with more clouds and enhancement of rainfall over the central-eastern Pacific is indicative of the weakening of the Walker Circulation during the mature phase of El Niño (Philander 1990; Hsu 1994; Power and Smith 2007). The dominance of the downward motion anomalies away from the equator, together with the dominance of the rising motion anomalies along the equatorial Pacific, is suggestive of the strengthening of the Hadley Circulation (Oort and Yienger 1996; Sun et al. 2013; Nguyen et al. 2013).

In summary, the key features of the non-air temperature changes along the equatorial Pacific associated with the SST anomalies of the composite El Niño are (i) strengthening (weakening) of

285 the upward thermal radiative fluxes emitted from the ocean surface in the central-eastern (western)
286 equatorial Pacific, (ii) moistening (drying) in the lower troposphere along the central-eastern
287 (western) equatorial Pacific, and (iii) more (less) latent heating release accompanied with more
288 (less) clouds in the middle and upper troposphere along the central-eastern (western) equatorial
289 Pacific. In the next section, we will consider the effects of radiative heating and non-radiative
290 energy flux anomalies and examine how they are balanced by radiative thermal cooling anomalies
291 associated with air temperature response.

292 **5. Attribution of Air Temperature Response to Anomalies of Radiative and Non-radiative
293 Processes**

294 The anomalies of the radiative thermal cooling rate associated with the air temperature
295 anomalies at the 6 layers of 950 hPa, 850 hPa, 700 hPa, 500 hPa, 300 hPa, and 200 hPa (Fig. 8)
296 exhibit similar spatial patterns as the air temperature anomalies shown in Fig. 3, which is expected
297 because warm (cold) air temperature anomalies would emit more (less) thermal energy. We now
298 attribute the air temperature anomalies to radiative and non-radiative heating rate perturbations by
299 examining their balance with the air temperature induced radiative heating anomalies during El
300 Niño winters. Figure 9 shows the pattern-amplitude projection coefficients of each term on the

301 RHS of (3) onto the left hand side (i.e., $\Delta^{(T_{air})} R \Delta^{(T_{air})} R$ shown in Fig. 8) as a function of height.

Field Code Changed

302 It is seen from Fig. 9 that the response to SST anomalies accounts for nearly 80% of the spatial
303 pattern of the air temperature induced anomalies of radiative thermal cooling rate ($\Delta^{(T_{air})} R \Delta^{(T_{air})} R$)
304 in the boundary layer (1000-925 hPa). Most of energy emitted from the surface due to SST
305 anomalies (Fig. 1b) is absorbed in the boundary layer (Fig. 10f), explaining why the air temperature
306 response in the boundary layer resembles to the SST anomalies greatly. Above the boundary layer,

Field Code Changed

307 the direct effect of SST anomalies diminishes very quickly (Figs. 10a-10e). Because SST
308 anomalies no longer play a direct role in causing air temperature change above the boundary layer,
309 the spatial pattern of air temperature anomalies differs from the SST anomaly pattern more and the
310 difference increases as elevation goes up (see the orange portion of the bars in Fig. 9).

311 Displayed in Fig. 11 are the radiative heating rate anomalies due to the change in atmospheric
312 water vapor ($\Delta^{(WV)}Q$ $\Delta^{(WV)}Q$). As discussed in Sejas et al. (2016), an increase of atmospheric
313 greenhouse gases in a tropospheric layer, such as atmospheric water vapor, would lead to large
314 positive (weak negative) radiative heating anomalies in the layers below (above). The reversal can
315 be said for a decrease of atmospheric water vapor in a tropospheric layer. Recall that atmospheric
316 water anomalies (Fig. 4) tend to concentrate below the middle troposphere and are positively
317 correlated with SST anomalies. This feature explains why the spatial pattern of $\Delta^{(WV)}Q$ $\Delta^{(WV)}Q$ in
318 the lower troposphere (panels (d)-(f) of Fig. 11) is positively correlated with SST anomalies but
319 negatively correlated with $\Delta^{(WV)}Q$ $\Delta^{(WV)}Q$ in the upper troposphere (panels (a)-(c) of Fig. 11). As
320 a result, $\Delta^{(WV)}Q$ $\Delta^{(WV)}Q$ contributes to the air temperature changes positively and strongly in the
321 lower troposphere but negatively and weakly in the upper troposphere (see the green portion of
322 the bars in Fig. 9).

323 We have confirmed that different from the surface, throughout the atmosphere the longwave
324 portion of the radiative heating rate anomalies ($\Delta^{(C)}Q$ $\Delta^{(C)}Q$) or the greenhouse effect is greater
325 than the shortwave portion or the reflection effect (Bergman and Hendon 2000; Wang and Su
326 2013). Therefore, the behavior of the net effect of $\Delta^{(C)}Q$ $\Delta^{(C)}Q$ is similar to the effect of $\Delta^{(WV)}Q$
327 $\Delta^{(WV)}Q$, as far as the sign is concerned, namely large positive (weak negative) radiative heating

Field Code Changed

328 anomalies below (above) the layer where cloud content anomalies are positive. Unlike atmospheric
329 water vapor, which mainly resides in the lower troposphere, clouds and their changes can take
330 place largely in the upper troposphere. This is especially true for the equatorial region where cloud
331 anomalies are associated with the changes in deep convection as both cloud and upward motion
332 anomalies are large and are positively correlated one another even in the upper troposphere (Fig.

333 5 versus Fig. 7). In light of the aforementioned factors, one would expect positive values of $\Delta^{(C)}Q$

Field Code Changed

334 $\Delta^{(C)}Q$ over the central-eastern equatorial Pacific throughout the troposphere but negative values
335 over the western equatorial Pacific (Fig. 12) due to the weakening of the Walker Circulation or the
336 weakening (strengthening) of deep convections over the western (central-eastern) equatorial

337 Pacific. As a result, $\Delta^{(C)}Q \Delta^{(C)}Q$ contributes positively to the air temperature changes along the

Field Code Changed

338 equatorial Pacific throughout the troposphere. In the lower troposphere, $\Delta^{(C)}Q \Delta^{(C)}Q$ also
339 contributes positively to the air temperature anomalies outside the equatorial basin, becoming the

Field Code Changed

340 leading contributor to $\Delta^{(C)}Q \Delta^{(C)}Q$ over the entire tropical Pacific in the layer of 925-800 hPa

Field Code Changed

341 (gray portion of the bars in Fig. 9). In the upper troposphere, $\Delta^{(C)}Q \Delta^{(C)}Q$ is weakly correlated
342 with $\Delta^{(T_{air})}R \Delta^{(T_{air})}R$ outside the equatorial basin, partially because the amplitude of cloud

Field Code Changed

343 anomalies becomes weaker away from the equatorial latitude band in the upper troposphere. As a

344 result, the positive contribution from $\Delta^{(C)}Q \Delta^{(C)}Q$ to $\Delta^{(T_{air})}R \Delta^{(T_{air})}R$ becomes secondary in the

Field Code Changed

345 upper troposphere.

Field Code Changed

Field Code Changed

346 The non-radiative heating anomalies ($\Delta^{(DYN)}Q \Delta^{(DYN)}Q$) include latent heat release anomalies

Field Code Changed

347 and perturbations in energy redistributions by convective and large-scale atmospheric motions as

348 well as changes in energy fluxes entering the atmosphere due to the changes in surface sensible

349 and latent heat fluxes. Overall, the non-radiative heating anomalies are negatively correlated with
350 the upward motion ($-\omega$) anomalies (i.e., Fig. 13 versus Fig. 7), particularly along the equatorial
351 latitude band. This seems to indicate that the non-radiative heating anomalies are mainly associated
352 with the energy redistributions by convective and large-scale atmospheric motions because latent
353 heat release anomalies are expected to be positively correlated with upward motion anomalies. In

354 other words, the negative (positive) values of $\Delta^{(DYN)}Q$ $\Delta^{(DYN)}Q$ in Fig. 13 are indicative of
355 divergence (convergence) of energy transport by convection and/or large-scale dynamics. The

Field Code Changed

356 longitudinal pattern of $\Delta^{(DYN)}Q$ $\Delta^{(DYN)}Q$ along the equatorial Pacific basin suggests an
357 enhancement (reduction) of upward energy transport associated with the convection in the central
358 (western) Pacific and reduction of energy transport from the western equatorial Pacific to central-
359 eastern equatorial Pacific. Each of these two possible scenarios is a direct evidence of the

Field Code Changed

360 weakening of the Walker Circulation during El Niño. The meridional pattern of $\Delta^{(DYN)}Q$ $\Delta^{(DYN)}Q$
361 is indicative of strengthening (weakening) of poleward energy transport over the central-eastern

Field Code Changed

362 (western) tropical Pacific sector. Overall, $\Delta^{(DYN)}Q$ $\Delta^{(DYN)}Q$ contributes to air temperature changes
363 positively in the middle and upper troposphere but negatively in the lower troposphere (the blue
364 portion of the bars in Fig. 9). In particular, $\Delta^{(DYN)}Q$ $\Delta^{(DYN)}Q$ becomes the leading contributor to
365 $\Delta^{(T_{air})}R$ $\Delta^{(T_{air})}R$ at 200 hPa.

Field Code Changed

366 6. Conclusions

367 Using the ERA-Interim reanalysis data set, four major canonical El Niño events and eight
368 neutral cases are selected for the period of 1979-2013. The DJF-mean differences between the two
369 groups are regarded as the composite anomalies for the mature phase of the canonical El Niño. We

370 have confirmed that the spatial pattern of air temperature anomalies in the lower troposphere is
371 similar to SST anomaly pattern and the Gill-type response begins to emerge mainly in the layers
372 above 500 hPa with the maximum intensity at 300 hPa. To gain a better understanding of why the
373 Gill-type response to SST anomalies over the tropical Pacific during El Niño mature phase is
374 observed mainly in the upper troposphere, we examine the balance of thermal radiative cooling
375 anomalies associated with air temperature response to SST anomalies with other thermodynamic
376 and dynamic processes.

377 Most of the anomalous upward longwave radiative fluxes associated SST anomalies are
378 absorbed in the boundary layer. In response to such heating anomalies, air temperature anomalies
379 in the boundary layer exhibit a similar spatial pattern as the SST anomalies so the associated
380 thermal radiative cooling anomalies would balance out most of the absorbed energy. The
381 moistening and more clouds in the lower troposphere produce positive radiative heating anomalies
382 in the central-eastern equatorial Pacific but drying and less clouds in the western equatorial Pacific
383 introduce negative radiative heating anomalies. The air temperature anomalies in the lower
384 troposphere are mainly in response to water vapor and cloud-induced radiative heating anomalies
385 to reach a radiative equilibrium balance. The remaining part of the radiative heating anomalies is
386 taken away by an enhancement (a reduction) of upward energy transport in the central-eastern
387 (western) Pacific basin. The non-radiative heating anomalies associated with the changes in
388 dynamics contribute secondarily to the air temperature anomalies in the lower troposphere. The
389 dominance of the thermodynamic response in the lower troposphere explains why the Gill-type

390 response in the low levels is identifiable mainly in a dynamic model that does not include radiative
391 heating processes.

392 Above the middle troposphere, the radiative effect due to water vapor feedback is weak.
393 Thermal radiative cooling anomalies are mainly in balance with the sum of latent heating
394 anomalies, the vertical and horizontal energy transport anomalies associated with atmospheric
395 dynamic response, and the radiative heating anomalies due to cloud changes. The pattern of Gill-
396 type response is attributed mainly to non-radiative heating anomalies associated with convective
397 and large-scale energy transport. The radiative heating anomalies associated with the anomalies of
398 high clouds also contribute positively to the Gill-type response. This feature sheds light on why
399 the Gill-type atmospheric response can be easily identifiable in the upper atmosphere.

400

401 **Acknowledgement**

402 This study was supported by The National Key Research and Development Program of China
403 (2016YFA0602703), the National Key Research Program of China (2014CB953904), the National
404 Natural Science Foundation of China (Grants 41661144019 and 41375081), and the Jiangsu
405 Collaborative Innovation Center for Climate Change, China. MC is supported by grants from the
406 National Science Foundation (AGS-1354834) and NASA Interdisciplinary Studies Program grant
407 (NNH12ZDA001N-IDS). Calculations for this study were supported by the High-Performance
408 Grid Computing Platform of the Sun Yat-sen University and the China National Supercomputer
409 Center in Guangzhou. The data sets used in this study are all freely available on the official
410 websites of <http://apps.ecmwf.int/datasets/data/interim-full-mnths/>.

411 **References**

412 Alexander MA, Bladé I, Newman M, et al (2002) The atmospheric bridge: the influence of
413 ENSO teleconnections on air–sea interaction over the global oceans. *J Climate* 15: 2205–
414 2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2

415 Ashok K, Behera SK, Rao SA, et al (2007) El Niño Modoki and its possible teleconnection. *J*
416 *Geophys Res Ocean*. doi: 10.1029/2006JC003798

417 Back LE, Bretherton CS (2009) On the relationship between SST gradients, boundary layer
418 winds, and convergence over the tropical oceans. *J Climate* 22: 4182–4196. doi:
419 10.1175/2009JCLI2392.1

420 Battisti DS, Sarachik ES, Hirst AC (1999) A consistent model for the large-scale steady surface
421 atmospheric circulation in the tropics. *J Climate* 12: 2956–2964. doi: 10.1175/1520-
422 0442(1999)012<2956:ACMFTL>2.0.CO;2

423 Bergman JW, Hendon HH (2000) Cloud radiative forcing of the low-latitude tropospheric
424 circulation: linear calculations. *J Atmos Sci* 57: 2225–2245. doi: 10.1175/1520-
425 0469(2000)057<2225:CRFOTL>2.0.CO;2

426 Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. *Mon Weather Rev*
427 97: 163–172. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2

428 Chiang JCH, Zebiak SE, Cane M a. (2001) Relative roles of elevated heating and surface
429 temperature gradients in driving anomalous surface winds over tropical oceans. *J Atmos Sci*
430 58: 1371–1394. doi: 10.1175/1520-0469(2001)058<1371:RROEHA>2.0.CO;2

431 Dee DP, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA-
432 Interim reanalysis. *Q J R Meteorol Soc* 135: 1830–1841. doi: 10.1002/qj.493

433 Dee DP, Uppala SM, Simmons AJ, et al (2011) The ERA-Interim reanalysis: configuration and
434 performance of the data assimilation system. *Q J R Meteorol Soc* 137: 553–597. doi:
435 10.1002/qj.828

436 Bergman JW, Hendon HH (2000) Cloud radiative forcing of the low-latitude tropospheric
437 circulation: linear calculations. *J Atmos Sci* 57: 2225–2245. doi: 10.1175/1520-
438 0469(2000)057<2225:CRFOTL>2.0.CO;2

439 Deng Y, Park T-W, Cai M (2012) Process-based decomposition of the global surface
440 temperature response to El Niño in boreal winter. *J Atmos Sci* 69: 1706–1712. doi:
441 10.1175/JAS-D-12-023.1

442 DeWeaver E, Nigam S (2004) On the forcing of ENSO teleconnections by anomalous heating
443 and cooling. *J Climate* 17: 3225–3235. doi: 10.1175/1520-
444 0442(2004)017<3225:OTFOET>2.0.CO;2

445 Fu Q, Liou KN (1992) On the correlated k-distribution method for radiative transfer in
446 nonhomogeneous atmospheres. *J Atmos Sci* 49: 2139–2156.

447 Fu Q, Liou KN (1993) Parameterization of the radiative properties of cirrus clouds. *J Atmos Sci*
448 50: 2008–2025.

449 Gill AE (1980) Some simple solutions for heat induced tropical circulation. *Q J R Meteorol Soc*
450 106: 447–462.

451 Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal
452 and orographic forcing. *J Atmos Sci* 38: 1179–1196.

453 Hsu HH (1994) Relationship between tropical heating and global circulation - interannual
454 variability. *J Geophys Res* 99: 10473–10489.

455 Hu X, Yang S, Cai M (2016) Contrasting the eastern Pacific El Niño and the central Pacific El
456 Niño: process-based feedback attribution. *Climate Dyn* 47: 2413–2424. doi:
457 10.1007/s00382-015-2971-9

458 Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. *J*
459 *Climate* 22: 615–632. doi: 10.1175/2008JCLI2309.1

460 Larkin NK (2005) Global seasonal temperature and precipitation anomalies during El Niño
461 autumn and winter. *Geophys Res Lett* 32: L16705. doi: 10.1029/2005GL022860

462 Lee SK, Wang C, Mapes BE (2009) A simple atmospheric model of the local and teleconnection
463 responses to tropical heating anomalies. *J Climate* 22: 272–284. doi:
464 10.1175/2008JCLI2303.1

465 Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-
466 level winds and convergence in the Tropics. *J Atmos Sci* 44: 2418–2436. doi:
467 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2

468 Lyon B, Barnston AG (2005) ENSO and the spatial extent of interannual precipitation extremes
469 in tropical land areas. *J Climate* 18: 5095–5109. doi: 10.1175/JCLI3598.1

470 Nguyen H, Evans A, Lucas C, et al (2013) The Hadley circulation in reanalyses: climatology,
471 variability, and change. *J Climate* 26: 3357–3376. doi: 10.1175/JCLI-D-12-00224.1

472 Oort AH, Yienger JJ (1996) Observed interannual variability in the Hadley circulation and its
473 connection to ENSO. *J Climate* 9: 2751–2767.

474 Philander SG (1990) *El Niño, La Niña, and the Southern Oscillation*. Academic Press, 293 pp.

475 Power SB, Smith IN (2007) Weakening of the Walker Circulation and apparent dominance of El
476 Niño both reach record levels, but has ENSO really changed? *Geophys Res Lett* 34:
477 L18702. doi: 10.1029/2007GL030854

478 Prabhakara C, Short DA, Vollmer BE (1985) El Niño and atmospheric water vapor: observations
479 from Nimbus 7 SMMR. *J Clim Appl Meteorol* 24: 1311–1324.

480 Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface
481 wind fields associated with the Southern Oscillation/El Niño. *Mon Weather Rev* 110: 354–
482 384.

483 Rasmusson EM, Kingtse Mo (1993) Linkages between 200-mb tropical and extratropical
484 circulation anomalies during the 1986-1989 ENSO cycle. *J Climate* 6: 595–616.

485 Rasmusson EM, Wallace JM (1983) Meteorological aspects of the El Niño/Southern Oscillation.
486 *Science* 222: 1195–1202. doi: 10.1126/science.222.4629.1195

487 Scherlin-Pirscher B, Steiner AK, Kirchengast G, et al (2011) Empirical analysis and modeling
488 of errors of atmospheric profiles from GPS radio occultation. *Atmos Meas Tech* 4: 1875–
489 1890. doi: 10.5194/amt-4-1875-2011

490 Sejas SA, Cai M, Liu G, et al (2016) A Lagrangian view of longwave radiative fluxes for
491 understanding the direct heating response to a CO₂ increase. *J Geophys Res Atmos* 121:
492 6191–6214. doi: 10.1002/2015JD024738

493 Sun Y, Zhou TJ, Zhang LX (2013) Observational analysis and numerical simulation of the
494 interannual variability of the boreal winter Hadley circulation over the recent 30 years. Sci
495 China Earth Sci 56: 647–661. doi: 10.1007/s11430-012-4497-x

496 Takahashi H, Su H, Jiang JH, et al (2013) Tropical water vapor variations during the 2006-2007
497 and 2009-2010 El Niños: satellite observation and GFDL AM2.1 simulation. J Geophys Res
498 Atmos 118: 8910–8920. doi: 10.1002/jgrd.50684

499 Trenberth KE, Branstator GW, Karoly D, et al (1998) Progress during TOGA in understanding
500 and modeling global teleconnections associated with tropical sea surface temperatures. J
501 Geophys Res 103: 14291–14324. doi: 10.1029/97jc01444

502 Wang B, Wu R, Fu X (2000) Pacific–East Asian teleconnection: how does ENSO affect East
503 Asian climate? J Climate 13: 1517–1536. doi: 10.1175/1520-
504 0442(2000)013<1517:PEATHD>2.0.CO;2

505 Wang H, Kumar A, Wang W, Xue Y (2012) Influence of ENSO on Pacific decadal variability:
506 an analysis based on the NCEP climate forecast system. J Climate 25: 6136–6151. doi:
507 10.1175/JCLI-D-11-00573.1

508 Wang H, Su W (2013) Evaluating and understanding top of the atmosphere cloud radiative
509 effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report
510 (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) models using satellite
511 observations. J Geophys Res Atmos 118: 683–699. doi: 10.1029/2012JD018619

512 White FM (2008) Pressure distribution in a fluid. Fluid Mechanics. New York: McGraw-Hill.
513 63–107 pp.

514 Wu Z (2003) A shallow CISK, deep equilibrium mechanism for the interaction between large-
515 scale convection and large-scale circulations in the tropics. *J Atmos Sci* 60: 377–392. doi:
516 10.1175/1520-0469(2003)060<0377:ASCDEM>2.0.CO;2

517 Wu Z, Sarachik ES, Battisti DS (2000) Vertical structure of convective heating and the three-
518 dimensional structure of the forced circulation on an equatorial beta plane. *J Atmos Sci* 57:
519 2169–2187. doi: 10.1175/1520-0469(2000)057<2169:VSOCHA>2.0.CO;2

520 Yuan Y, Yang S (2012) Impacts of different types of El Niño on the East Asian climate: focus on
521 ENSO cycles. *J Climate* 25: 7702–7722. doi: 10.1175/JCLI-D-11-00576.1

522 Zebiak SE (1986) Atmospheric convergence feedback in a simple model for El Niño. *Mon
523 Weather Rev* 114: 1263–1271.

524 Zhang X, Lin H, Jiang J (2012) Global response to tropical diabatic heating variability in boreal
525 winter. *Adv Atmos Sci* 29: 369–380. doi: 10.1007/s00376-011-1049-9

526 **Figures and Captions**

527 Figure 1. Composite DJF-mean anomalies in El Niño winters of observed (a) land and sea surface
528 temperature (SST) anomalies (K) and (b) upward longwave radiative flux anomalies (W/m²).
529 Stippling indicates the 90% confidence level of statistical significance. Zonal means are
530 excluded.

531 Figure 2. Composite DJF-mean anomalies of observed geopotential height anomalies (in units of
532 m) at (a) 200 hPa, (b) 300 hPa, (c) 500 hPa, (d) 700 hPa, (e) 850 hPa, and (f) 950 hPa for El

533 Niño winters. Stippling indicates the 90% confidence level of statistical significance. Zonal
534 means are excluded.

535 Figure 3. Same as Fig. 2 but for air temperature anomalies in units of K.

536 Figure 4. Composite DJF-mean anomalies of observed water vapor anomalies (in units of kg/m²)
537 in the layers of (a) 250-150 hPa, (b) 400-250 hPa, (c) 600-400 hPa, (d) 800-600 hPa, (e) 925-
538 800 hPa, and (e) 1000-925 hPa for El Niño winters. Stippling indicates the 90% confidence
539 level of statistical significance. Zonal means are excluded.

540 Figure 5. Same as Fig. 4 but for cloud water/ice content anomalies in units of g/m².

541 Figure 6. Composite DJF-mean anomalies of observed precipitation (in units of mm/day) for El
542 Niño winters. Stippling indicates the 90% confidence level of statistical significance.

543 Figure 7. Same as Fig. 2 but for vertical velocity (ω) anomalies in units of Pa/s.

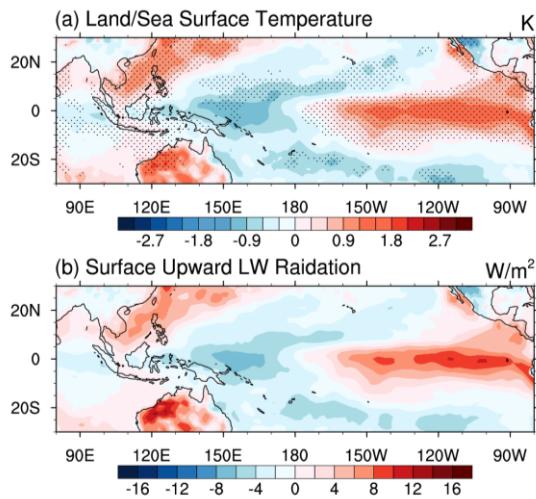
544 Figure 8. Air temperature-induced radiative cooling rate anomalies (in units ~~of~~ W/m²) in the
545 layers of (a) 250-150 hPa, (b) 400-250 hPa, (c) 600-400 hPa, (d) 800-600 hPa, (e) 925-800
546 hPa, and (e) 1000-925 hPa.

547 Figure 9. Vertical profile of pattern-amplitude projection coefficients of the patterns in Figs. 10-
548 13 onto the pattern shown in Fig. 8 (units W/m²). Note that “Total” corresponds to

$$\sqrt{A^{-1} \int_A a^2 (\Delta^{(T_{air})} R_j)^2 \cos \phi d\lambda d\phi} \sqrt{A^{-1} \int_A a^2 (\Delta^{(T_{air})} Q_j)^2 \cos \phi d\lambda d\phi} , \text{ the amplitude of } \Delta^{(T_{air})} R$$

$\Delta^{(T_{air})} Q$ at the j^{th} layer over domain A (90°E-90°W and 30°S-30°N).

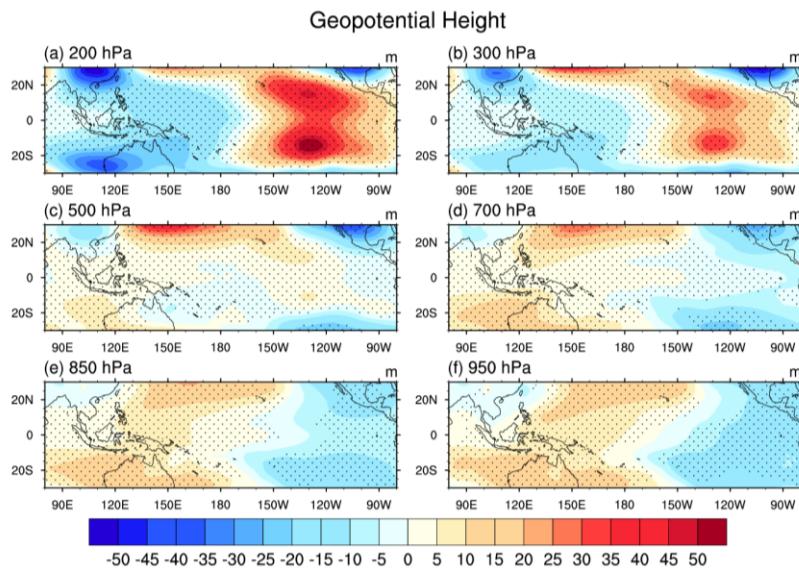
549
550
551 Figure 10. Same as Fig. 8 but for the SST-induced radiative heating rate anomalies in units of
552 W/m^2 .


553 Figure 11. Same as Fig. 8 but for the water vapor-induced radiative heating rate anomalies in units
554 of W/m^2 .

555 Figure 12. Same as Fig. 8 but for the cloud-induced radiative heating rate anomalies in units of
556 W/m^2 .

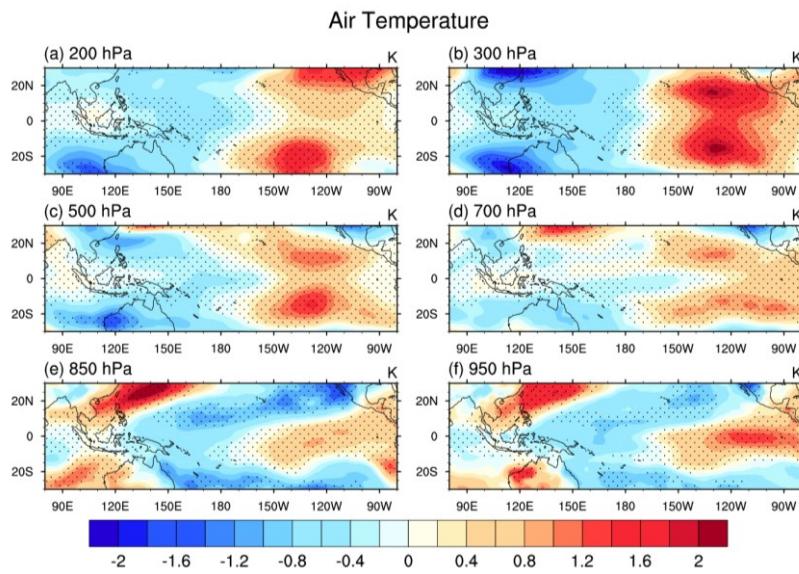
557 Figure 13. Same as Fig. 8 but for the non-radiative dynamic heating rate anomalies in units of
558 W/m^2 .

559


Field Code Changed
Field Code Changed

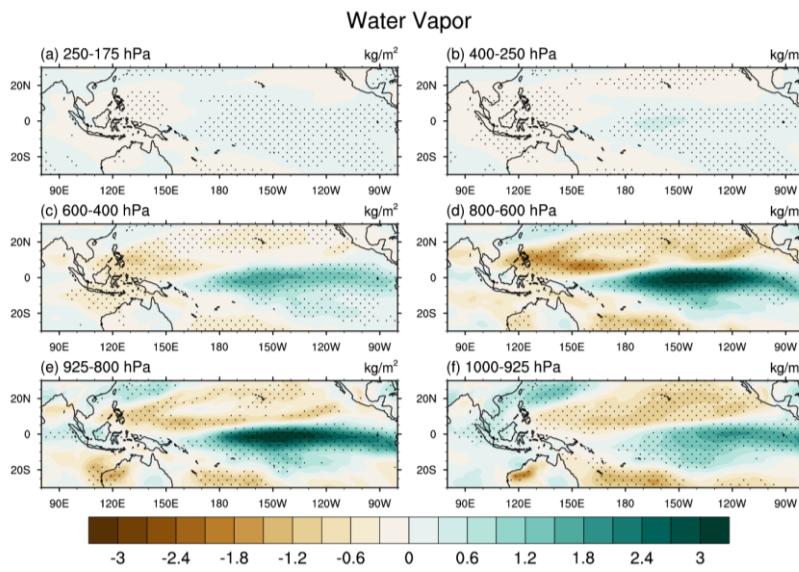
560

561 Figure 1. Composite DJF-mean anomalies in El Niño winters of observed (a) land and sea surface
 562 temperature anomalies (K) and (b) upward longwave radiative flux anomalies (W/m²).
 563 Stippling indicates the 90% confidence level of statistical significance. Zonal means are
 564 excluded.


565

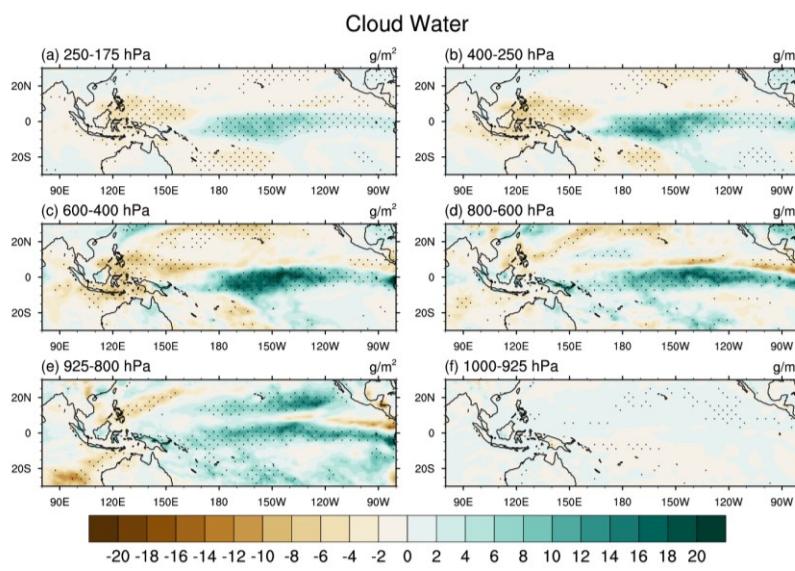
566

567 Figure 2. Composite DJF-mean anomalies of observed geopotential height anomalies (in units of
568 m) at (a) 200 hPa, (b) 300 hPa, (c) 500 hPa, (d) 700 hPa, (e) 850 hPa, and (f) 950 hPa for El
569 Niño winters. Stippling indicates the 90% confidence level of statistical significance. Zonal
570 means are excluded.


571

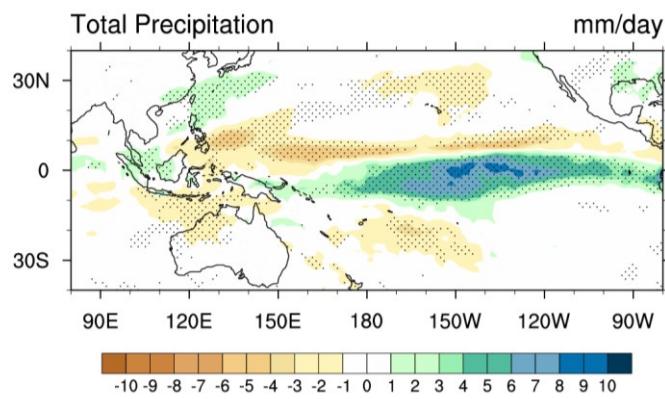
572

573 Figure 3. Same as Fig. 2 but for air temperature anomalies in units of K.

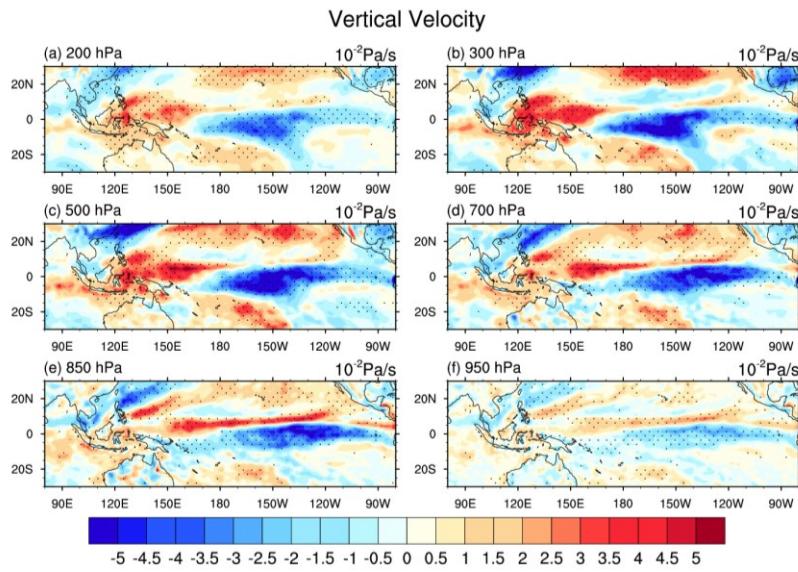

574

575

576 Figure 4. Composite DJF-mean anomalies of observed water vapor anomalies (in units of kg/m²)
 577 in the layers of (a) 250-150 hPa, (b) 400-250 hPa, (c) 600-400 hPa, (d) 800-600 hPa, (e) 925-
 578 800 hPa, and (e) 1000-925 hPa for El Niño winters. Stippling indicates the 90% confidence
 579 level of statistical significance. Zonal means are excluded.

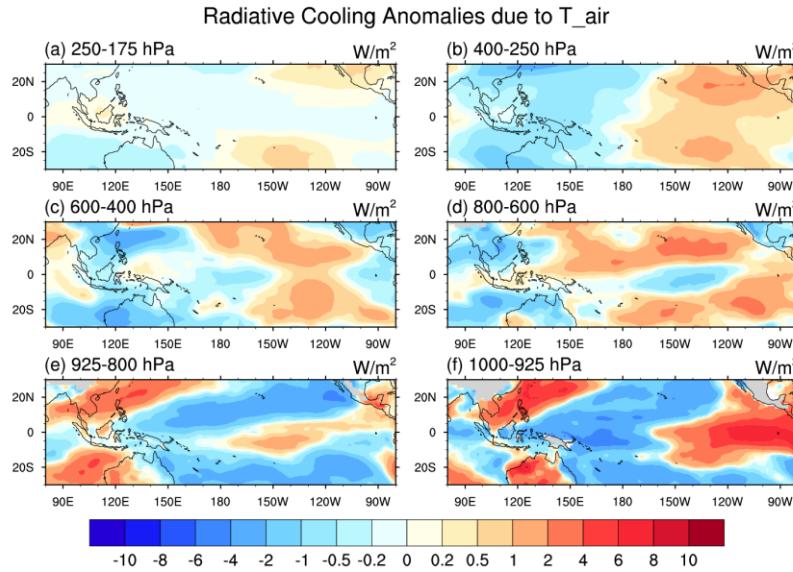

580

581


582 Figure 5. Same as Fig. 4 but for cloud water/ice content anomalies in units of g/m².

583

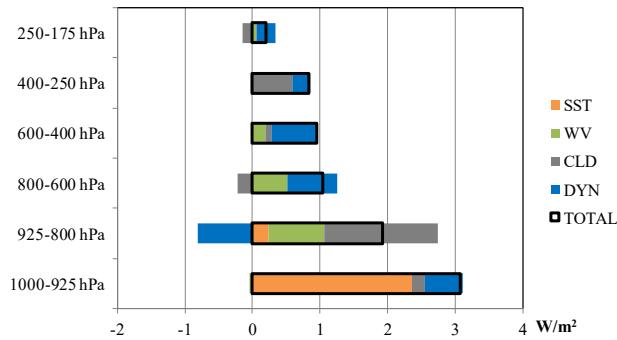
585 Figure 6. Composite DJF-mean anomalies of total precipitation (in units of mm/day) for El Niño
 586 winters. Stippling indicates the 90% confidence level of statistical significance.


587

588

589 Figure 7. Same as Fig. 2 but for vertical velocity (ω) anomalies in units of Pa/s.

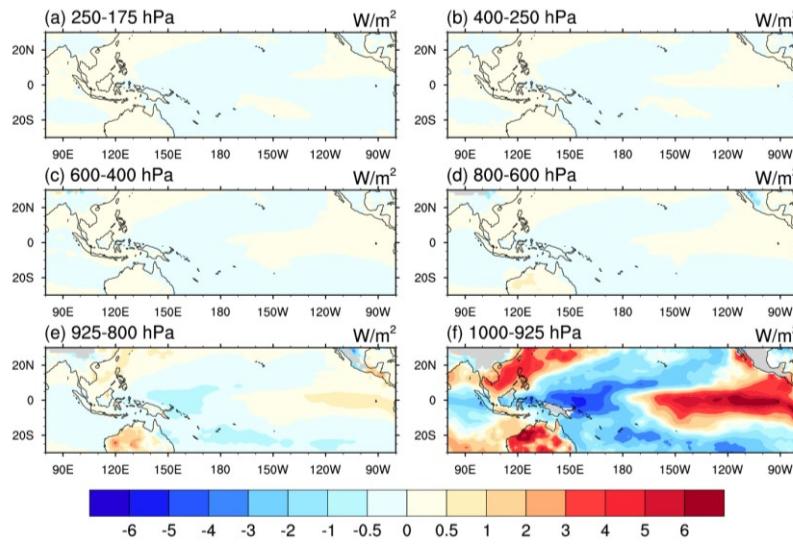
590



591

592 Figure 8. Air temperature-induced radiative cooling rate anomalies in units of W/m^2 in the layer
 593 of (a) 250-150 hPa, (b) 400-250 hPa, (c) 600-400 hPa, (d) 800-600 hPa, (e) 925-800 hPa, and
 594 (f) 1000-925 hPa.

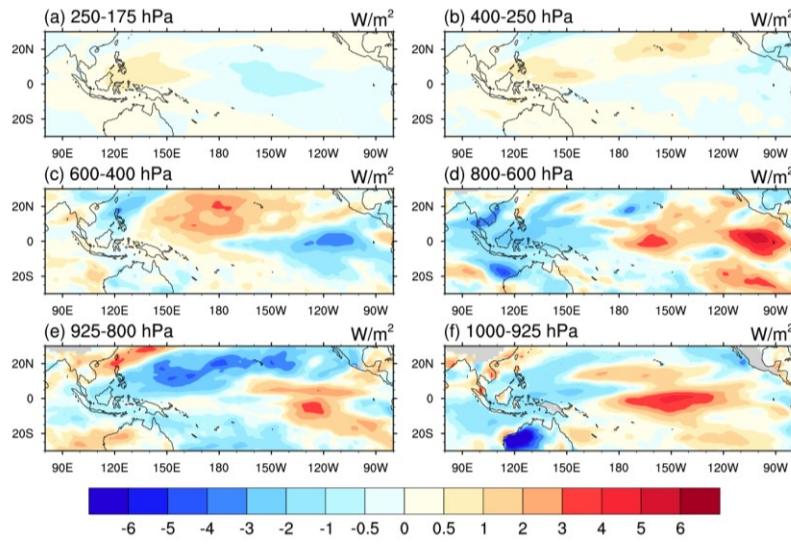
595


596

597 Figure 9. Vertical profile of pattern-amplitude projection coefficients of the patterns in Figs. 10-
 598 13 onto the pattern shown in Fig. 8 (units W/m²). Note that “Total” corresponds to
 599 $\sqrt{A^{-1} \int_A a^2 (\Delta^{(T_{air})} R_j)^2 \cos \phi d\lambda d\phi}$, the amplitude of $\Delta^{(T_{air})} R$ at the jth layer over domain A (90°
 600 E-90° W and 30° S-30° N).

Field Code Changed
Field Code Changed

601 Figure 9. Vertical profile of pattern amplitude projection coefficients of the patterns in Figs. 10-
 602 13 onto the pattern shown in Fig. 8 (units W/m²). Note that “Total” corresponds to
 603 $\sqrt{A^{-1} \int_A a^2 (\Delta^{(T_{air})} Q_j)^2 \cos \phi d\lambda d\phi}$, the amplitude of $\Delta^{(T_{air})} Q$ at the jth layer over domain A (90°
 604 E-90° W and 30° S-30° N).

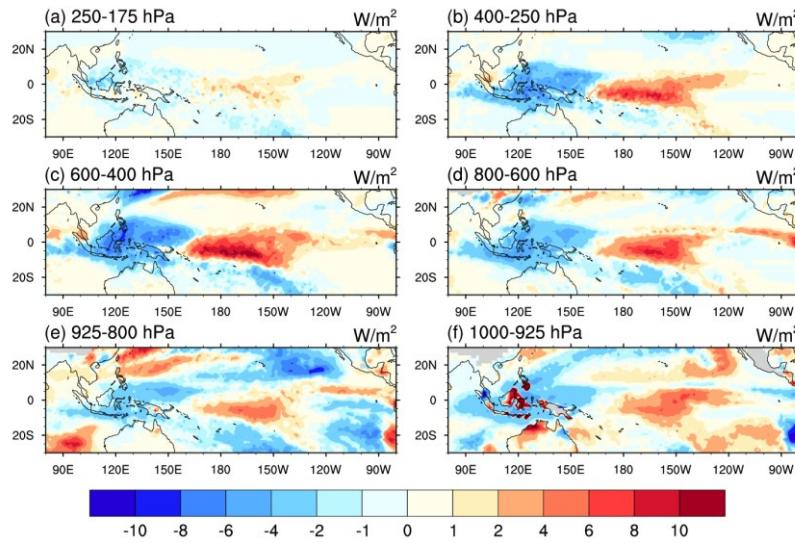


606

607 Figure 10. Same as Fig. 8 but for the SST-induced radiative heating rate anomalies of

608 W/m^2 .

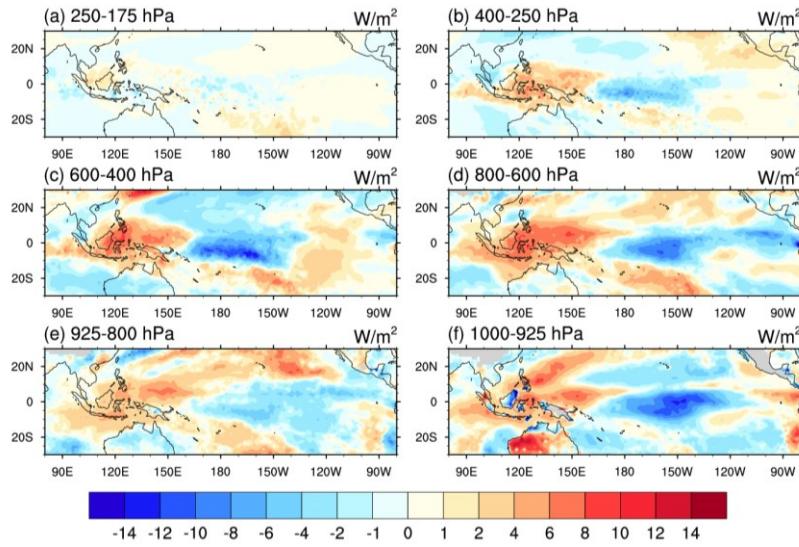
609



610

611 Figure 11. Same as Fig. 8 but for the water vapor-induced radiative heating rate anomalies in units

612 of W/m^2 .


613

614

615 Figure 12. Same as Fig. 8 but for the cloud-induced radiative heating rate anomalies of
 616 W/m^2 .

617

618

619 Figure 13. Same as Fig. 8 but for the non-radiative dynamic heating rate anomalies of
 620 W/m^2 .

621