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Topological constraint theory classifies network glasses into three categories, viz., flexible, isostatic, and stres-
sed-rigid, where stressed-rigid glasses have more topological constraints than atomic degrees of freedom. Such
over-constrained glasses are expected to exhibit some internal stress due to the competition among the re-
dundant constraints. However, the nature and magnitude of this internal stress remain poorly characterized.
Here, based on molecular dynamics simulations of a stressed-rigid sodium silicate glass, we present a new
technique allowing us to directly compute the internal stress present within a glass network. We show that the

internal stress comprises two main contributions: (i) a residual entropic stress that depends on the cooling rate
and (ii) an intrinsic topological stress resulting from the over-constrained nature of the glass. Overall, these
results provide a microscopic picture for the structural instability of over-constrained glasses.

1. Introduction

Since the birth of glass science and Zachariasen's seminal con-
tribution in 1932, one has wondered whether the propensity for a liquid
to crystallize or form a glass upon cooling could in some ways be in-
ferred from its atomic structure [1,2]. In 1990, Gupta and Cooper de-
veloped a mathematical foundation for the Zachariasen's rules [3]. This
framework is based on a topological description of glass networks in
terms of interconnected polytopes, wherein an infinite disordered net-
work can exist if it exhibits a non-negative number of degrees of
freedom per vertex f and is rigid if the number of degrees of freedom is
zero (or lower) [3]. Based on this framework, Gupta postulated that
networks featuring f = 0 should exhibit optimal glass-forming abil-
ity—a topological condition that is satisfied for SiO, and B,O3 [4]. This
was rationalized by the facts that, (i) for f > 0, the network is floppy
and can easily deform into some new configurations, which may pro-
mote crystallization, whereas, (ii) for f < 0, an extended disordered
network with independent constraints cannot be formed [4].

Almost at the same, Phillips developed an alternative framework
that is mathematically equivalent to that of Gupta and Cooper but relies
on a different viewpoint [5,6]. Rather than describing the glass network
as interconnected polytopes, Phillips' approach describes the atomic
network as mechanical trusses, wherein the nodes (the atoms) are
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connected to each other by some radial and angular constraints (the
chemical bonds) [6]. In Phillips' approach, molecular networks com-
prise two kinds of constraints, viz., the radial bond-stretching (BS)
constraints that maintain the inter-atomic distances fixed around their
average values and the angular bond-bending (BB) constraints that
prevent the inter-atomic angles from significantly deviating from their
average values. As per Maxwell's stability criterion, glasses can be
classified into three categories based on their connectivity: (i) flexible,
if they comprise fewer independent constraints than atomic degrees of
freedom (i.e., 3 per atom), (ii) stressed-rigid, if they exhibit more in-
dependent constraints than atomic degrees of freedom, and (iii) iso-
static, if all the atomic degrees of freedom are exactly balanced by the
inter-atomic constraints. Phillips predicted that isostatic glasses exhibit
optimal glass-forming ability [6].

Based on these seminal works, Phillips and Gupta are the founding
fathers of topological constraint theory (TCT) [2,7]. Since then, TCT has
enabled the development of various analytical models relating the
connectivity of glass networks to their engineering properties, including
glass-forming ability [2,5,8], glass transition temperature [9,10],
hardness [11-13], fracture toughness [14], and dissolution rate
[15,16]. These models rely on the level of simplification offered by
TCT, which reduces the complex, disordered atomic structure of glasses
into simpler topological networks comprised of nodes [2,7].
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Fig. 1. The three states of an atomic network. The dashed red line denotes a
redundant constraint that is here under tension. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version
of this article.)

Although they adopt different viewpoints, the approaches from
Gupta and Phillips are mathematically equivalent and rely on the same
fundamental idea, namely, that there exists an optimal degree of atomic
connectivity for which the propensity for vitrification is maximum. This
can be understood as follows. On the one hand, due to the deficit of
constraints, flexible glasses feature some internal floppy modes, that is,
some internal low-energy degrees of freedom—which may facilitate the
structural reorganization that is needed for crystallization [17,18]. On
the other hand, stressed-rigid glasses are over-constrained, so that some
constraints are mutually redundant and may compete against each
other—just like the angles of a triangle with three fixed edges cannot be
changed to arbitrary values. This competition among constraints in
over-constrained glasses has been expected to result in the formation of
some internal stress, which arises from some internal “frustration”
within the atomic network [5,6] (see Fig. 1). This stress is expected to
play a key role to explain the propensity for stressed-rigid glasses to
crystallize. For instance, (Na»0),(SiO);_, glasses have been noted to be
stressed-rigid for 0 < x < 20% [19,20]. This also corresponds to the
range of compositions wherein sodium silicate glasses exhibit low glass-
forming ability [8,21]. This likely arises from the fact that the internal
stress resulting from mutually-dependent constraints provides a ther-
modynamic driving force for crystallization. In turn, the formation of a
crystalline structure wherein all the constraints are compatible with
each other (due to the periodic structure of crystals) can alleviate in-
ternal stress, that is, by converting mutually incompatible independent
constraints into compatible dependent constraints.

However, the nature and magnitude of this internal stress remain
poorly characterized. Although it was noted that the internal stress may
manifest itself in the Raman scattering patterns of glasses [22], it re-
mains challenging to experimentally probe its magnitude. Alter-
natively, atomistic simulations offer a direct access to the atomic po-
sitions and inter-atomic forces and, hence, should allow one to compute
the internal stress within a given atomic network. However, although
the manifestation of internal stress has been studied in some “toy
models” of glasses (e.g., triangular 2D lattices or spring networks
[23-271), no general method has been proposed thus far to isolate and
quantify the internal stress in more realistic glasses.

Here, we present a new computational technique based on mole-
cular dynamics (MD) simulations aiming to describe and quantify the
internal stress in glasses and illustrate its application to an over-con-
strained sodium silicate glass. We show that, although the atomic net-
work of the glass is macroscopically at zero pressure, it exhibits some
internal stress, which manifests itself as some inter-atomic bonds being
under compression, whereas others are under tension. Specifically, we
show that the internal stress comprises two distinct contributions,
namely, a residual stress of entropic origin arising from the fast cooling
rate and an intrinsic topological stress resulting from the over-con-
strained nature of the atomic network. These results establish a mi-
croscopic foundation behind the structural instability of over-con-
strained glasses. By directly tracking the magnitude of stress within the
network, this technique paves the way toward an accurate tracking of
rigidity transitions (i.e., transition from unstressed-to-stressed net-
works) in structural glasses as a function of composition, temperature,
or pressure [9,28,29].
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2. Methodology
2.1. Preparation of the glasses

To establish our conclusions, we perform here some MD simulations
of a sodium silicate glass (Na5;0), (5i02)100_x With x = 10%. This spe-
cific composition is here chosen as it belongs to the stressed-rigid do-
main of binary sodium silicate glasses (i.e., 0 < x < 20%) [19,20].
The initial liquid configuration consists of 3000 atoms, among which
200 are Na atoms, 900 are Si atoms, and 1900 are O atoms. These 3000
atoms are first randomly placed in a cubic simulation box while en-
suring the absence of any unrealistic overlap. The system is then melted
at 3000 K for 100 ps in the NPT ensemble at zero pressure to ensure the
loss of the memory of the initial configuration. To assess the effect of
the thermal history of the glass on its internal stress, we subsequently
quench the liquid from 3000 to 0K with five select cooling rates,
namely, 1000, 100, 10, 1, and 0.1 K/ps in the NPT ensemble at zero
pressure. All simulations are conducted with the LAMMPS package
[30]. We adopt the well-established force-field parametrized by Teter
[31], as it has shown to offer a realistic description of the structure and
properties of sodium silicate glasses [32-40]. The short-range interac-
tion cutoff is chosen as 8.0 A and Coulomb interactions are evaluated by
the Ewald summation method with a cutoff of 12 A [32]. A timestep of
1 fs and the Noosé-Hoover thermostat/barostat is used for all simula-
tions [41,42]. Fig. 2 shows a slice snapshot of the sodium silicate glass
simulated herein.

3. Simulations of isolated atomic clusters

To isolate the internal stress acting in the atomic network of a glass,
our approach consists in comparing the state of Si atoms present the
network to those belonging to isolated atomic clusters (i.e., where no
internal stress resulting from redundant constraints can be formed). To
this end, we simulate a series of isolated atomic clusters. Each of the
clusters considered herein consists of a distinct Q" unit, that is, an SiO4
tetrahedral unit connected to n other Si atoms, i.e., comprising n
bridging oxygen (BO) atoms and 4 — n non-bridging oxygen (NBO)

-Si @-0 @-Na

Fig. 2. Snapshot of the atomic structure of a slice of the over-constrained so-
dium silicate glass simulated herein. Si, O, and Na atoms are represented in
yellow, red, and blue, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 3. Snapshots of the isolated clusters simulated herein. Si, O, and Na atoms are represented in yellow, red, and blue, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

atoms (see Fig. 3). The initial configuration of each cluster is first cre-
ated by manually placing the atoms at their designated position, that is,
based on the average values of the Si—O and Na—O bond lengths, as
well as those of the O—Si—0O, Si—BO—Si, and Si—NBO—Na inter-atomic
angles [34]. The atoms are placed at the center of a large cubic box with
fixed volume (with a side of 50 A) and with no periodic boundary
conditions. The clusters are then relaxed at 300K for 100 ps and sub-
sequently cooled from 300K to 0 K in the NVT ensemble with a cooling
rate of 1 K/ps while fixing to zero the linear and angular momentum of
the cluster to avoid any drift of the system. The force-field and other
simulation parameters are here similar to those used to simulate the
bulk glasses (see Section 2.1).

4. Computation of the internal stress

To determine the magnitude of the internal stress acting within the
network, we adopt here the “stress per atom” framework formulated by
Thompson et al. [43]. Note that, strictly speaking, stress is ill-defined
for individual atoms and can only be meaningfully calculated for an
ensemble of atoms. Nevertheless, we define here the stress o; of each
atom i as being its contribution to the total virial of the system:

3oV = mv? + T F &)

where V;, m;, v;, and 7] are the volume, mass, velocity, and position of
the atom i, respectively, and 777 is the resultant of the force applied on
the atom i by all the other atoms in the system. Here, we define the
volume V; of each atom based on its Voronoi volume. Several previous
studies have utilized this approach to quantify the extent of local in-
stabilities within the atomic network [44-48]. Note that, although the
decomposition of the virial in terms of individual atomic contributions
does not have a clear physical interpretation, it provides a convenient
means to capture the local state of stress (i.e., compression or tension)
experienced by each atom. Here, this local stress does not result in any
macroscopic stress as the glass is maintained at zero pressure, that is,
local compressive and tensile stress mutually compensate each other.
By convention, a positive stress refers here to a state of tension, whereas
a negative stress denotes a state of compression.

In the following, we calculate the internal stress within the atomic
network as the difference between the stress experienced by the atoms in

the bulk glass (referred hereafter as the “network stress”) and that experi-
enced in the isolated clusters (referred hereafter as the “reference stress”).

5. Results and discussion
5.1. Reference stress in isolated clusters

We first focus on the computation of the reference stress, that is, the
local stress experienced by the atoms in the simulated isolated Q"
clusters. Fig. 4(a) first shows the Voronoi volume of the central Si atom
in each isolated cluster. We observe that the volume of Si atoms gra-
dually increases from Q' to Q* unit. This is in agreement with the fact
that Si-BO bonds are slightly more elongated than Si-NBO bonds, as BO
atoms are equally attracted by the two neighboring Si atoms they
connect to [38]. In contrast, Si atoms in Q° units exhibit the highest
volume, which may arise from the fact that their Voronoi volume is not
well defined due to the lack of surrounding atoms.

Based on these Voronoi volumes, the reference stress per Si atom can
be calculated based on 3c;V; = m;v? + 71)-71) (Eq. 1). Note that, here, we
focus on the Si atoms as the Voronoi volume of the O atoms is not well
defined in the isolated clusters. Fig. 4(b) shows the reference stress per Si
atom for each type of Q" unit. We observe that Si atoms are system-
atically under tension (which, by convention, corresponds here to a po-
sitive stress). The origin of this state of tension is depicted in Fig. 5 and
can be understood as follows. Si and O atoms are mutually attracted to
each other. However, the O atoms surround Si atoms mutually repulse
each other due to mutual Coulombic repulsion (which results in a tet-
rahedral environment around the Si atoms). These two effects compete
against each other since the attraction between Si and O brings O closer
to each other, whereas their mutual repulsive brings them apart from
each other. Overall, at equilibrium, the balance between these two forces
result in the formation of an equilibrium structure wherein (i) the O
atoms experience a state of compression as they are forced to partially
overlap with each other whereas, (ii) in turn, the central Si atom un-
dergoes a state of tension as the mutual repulsion among O atoms tend to
stretch the central Si. This illustrates the fact that, even though the
overall atomic structure is at equilibrium, some bonds may actually ex-
perience a local stress of tension or compression.

Further, we note that the reference stress per Si atom decreases with
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Fig. 4. (a) Voronoi volume and (b) reference stress per Si atom in isolated Q" unit clusters.

Fig. 5. Schematic illustration of the origin of the tensile stress undergone by Si
atoms.

the number of surrounding BO atoms, reaches a minimum for Q° units,
and slightly increases in Q* units. This supports the idea that Q® units
represent an optimal state of connectivity for Si atoms. This is in
agreement with the fact that sodium silicate glasses systematically ex-
hibit an excess of Q® units with respect to what would be expected from
a random model [34,35,49]. This also agrees with the fact that the
fraction of Q® units in sodium silicate tends to increase upon relaxation,
which suggests that this Q® structure energetically favored [33]. Fi-
nally, this echoes the fact that a silicate glass entirely made of Q® units
would be topologically equivalent to a B,O3 (or As,Ses) glass, which is
characterized by an isostatic state of rigidity [5]. It is worthwhile to
note that the stress values presented in Fig. 4(b) should not be com-
pared to typical values of glass strength. Indeed, the specific stress
values are somewhat arbitrary (as they depend on which convention is

used to define the volume of each atom). Also, inter-atomic forces are
concentrated on very small surfaces and, hence, should indeed corre-
spond to very large stress values.

6. Network stress in bulk glass networks

We now focus on the state of stress experienced by the atoms in the
bulk network. Fig. 6(a) shows the Voronoi volume distribution of each
atomic species in the sodium silicate glass (for a cooling rate of 1 K/ps).
As expected, we find that Si atoms exhibit a volume that is fairly similar
to those obtained in the isolated clusters (~7 A3). In turn, Na atoms
show the largest average volume, which is in agreement with the fact
that these atoms are typically found to be located in some empty
pockets within the silicate network [37]. Finally, we observe that the
volume of the NBO atoms is slightly larger than that of BO, which arises
from the fact that the O—Na bond is larger than that of O—Si. Besides
the average value of these distributions, their broadness is also of in-
terest. Overall, the distribution of the volume of the Si atoms is the
sharpest, which is in agreement with the fact that these atoms exhibit a
well-defined tetrahedral environment. In contrast, BO and NBO atoms
exhibit a significantly broader distribution, which echoes the fact that
the inter-tetrahedra Si—O—Si angle exhibits a greater variability than
that of the intra-tetrahedron O—Si—O angle [33]. Finally, we note that
Na atoms exhibit the broadest distribution, which suggests that their
local environment exhibits a great variability.

The distribution of the network stress of each atomic species is
shown in Fig. 6(b). Interestingly, we find that Si and O atoms are sys-
tematically under tension and compression, respectively. This agrees
with the interpretation presented in Fig. 5. As expected, the average
network stress undergone by Si atoms exhibits an order of magnitude
that is similar to those belonging to isolated clusters (although the
network and reference stress differ from each other, see below). In turn,

0.4 P T TR TR 0.4 [ Fig. 6. (a) Voronoi volume and (b) network stress distribu-
(a) si i tion of each atomic species in a sodium silicate glasses
b « BO Tcompre ons Tension F quenched with a cooling rate of 1 K/ps. Positive and negative
03 e NBO | e ¥ : | stress values denote a state of tension and compression, re-
: ° = Na spectively. The data are fitted with Gaussian distributions.
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Fig. 7. Fraction of the Q" species in the sodium silicate glass considered herein
as a function of the cooling rate.

Na atoms exhibit an average network stress that is close to zero, which
is in agreement with the fact that these atoms act as network modifiers,
occupy the empty space left within the silicate network, and do not
create any strong bond with the surrounding atoms [50].

7. Contributions to the internal stress

In the following, we focus on the characterization of the internal
stress acting within the network, that is, the difference between the
network stress in the bulk glass (see Fig. 6(b)) and reference stress in
the isolated clusters (see Fig. 4(b)). We focus here on the Si atoms as the
computation of their reference stress is more straight-forward than for
the other atomic species. Nevertheless, note that, since the overall glass
network is at zero pressure, it is equivalent to focus on the atoms under
tension (i.e., Si) or on the atoms under compression (i.e., O atoms). To
this end, we compute the network stress of each Si atom individually
and determine which Q" structure it belongs to, that is, to infer its re-
ference stress.

As shown in Fig. 7, we observe that the distribution of the Q" units
hardly depends on the cooling rate. This contrasts with the trend ob-
served in a (Nay0)30(Si02)7o glass (simulated with the same method
and forcefield), wherein the fraction of Q® units was found to increase
(at the expense of Q% and Q* units) upon decreasing cooling rate [33].
This can be explained by the fact that the (Nay0)3,(SiO2)70 glass be-
longs to the flexible domain. Therefore, its structure exhibits some
degree of flexibility and can change upon relaxation toward lower fic-
tive temperatures. In contrast, the sodium silicate considered herein
belongs to the stressed-rigid domain and, hence, exhibits an atomic
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network that is fairly locked and unable to significantly reorganize
upon decreasing cooling rate. Overall, the fact that Q" distribution only
weakly depends on the cooling rate indicates that, in the present case,
the average reference stress remains fairly constant with decreasing
cooling rate (see Fig. 8(a)).

Finally, we compute the average internal stress based on the dif-
ference between the network and reference stress experienced by the Si
atoms (see Fig. 8(a)). We find that, in contrast with the case of the
reference stress, the average network stress per Si decreases upon de-
creasing cooling rate. As shown in Fig. 8(a), the dependence of the
network stress o on the cooling rate y can be fairly well captured by a
power law, in agreement with the prediction from mode-coupling
theory [51]:

o =0y + (Ap)'/° (2

where A and § are some fitting parameters. Nevertheless, the extra-
polation toward lower cooling rates values reveals that the network
stress does not converge toward the reference stress and, rather,
eventually plateaus o = 0y at low cooling rate.

This allows us to discriminate two contributions to the internal
stress (see Fig. 8(b)), viz., (i) a residual entropic stress that depends on
the cooling rate (05 = (Ay)l/ %) and (ii) an intrinsic topological stress
resulting from the over-constrained nature of the glass oi, = 0p. The
first contribution to the internal stress (residual entropic stress) results
from the structural defects forming upon the fast quenching of the glass
(e.g., small silicate rings [52]). This arises from the fact that, when the
cooling rate is high, the glass “freezes” in some high-energy domains of
the energy landscape, that is, the glass structure is virtually similar to
that of a high-temperature supercooled liquid (i.e., high fictive tem-
perature) [53]. In turn, as the cooling rate decreases, the system can
reach a lower energy state before freezing, thereby achieving a lower
fictive temperature and, hence, a lower residual entropic stress. This
residual stress is here found to contribute up to about 3 GPa (at the
highest cooling rate) to the total internal stress. However, when ex-
trapolated toward infinitely small cooling rate, the internal stress con-
verges toward a constant value, which allows us to isolate the intrinsic
topological stress resulting from the over-constrained nature of the
present glass (0p). In contrast to the residual stress, this topological
stress arises from the fact that the glass simulated herein comprises
more constraints than degrees of freedom. As a consequence, all the
constraints cannot be satisfied at the same time—so that some con-
straints are experiencing a state of tension, while others are under
compression (wherein tension and compression mutually compensate
each other so that the overall glass is at zero pressure). This intrinsic
topological stress is here found to be around 5 GPa per Si atom.

Fig. 8. (a) Average network stress (in the bulk network) and
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8. Conclusion

Overall, our MD-based stress computation method allows us for the
first time to capture the magnitudes of the stress acting inside isolated
atomic clusters (that is, acting within the SiO4 polytopes) and, based on
this knowledge, to isolate the internal stress within the glass network
(that is, the stress acting in between the rigid polytopes of the network
rather than inside the polytopes themselves). Although a fraction of the
internal stress results from the fast cooling of the glass, the main con-
tribution to the internal stress has a topological origin and arises from
the redundant constraints found in over-constrained stressed-rigid
networks. Overall, these results offer a microscopic interpretation to the
notion of “internal stress” commonly used in topological constraint
theory. By directly computing the magnitude of such internal stress, our
new method should facilitate the accurate tracking of flexible-to-rigid
transitions (i.e., transition from unstressed-to-stressed networks) in
glasses as a function of composition, temperature, or pressure—without
relying on any unproven guessed regarding the number of constraints
created by each atom.
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