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Classical molecular dynamics and Monte Carlo simulations of glassy materials critically rely on the availability of
accurate empirical forcefields. To this end, empirical forcefields must exhibit an optimal balance between ac-
curacy and simplicity—wherein forcefields that are too simple (underfitted) may not offer accurate predictions,
whereas those that are too complex (overfitted) may not provide a good transferability over various systems.

However, the development of new forcefields that capture the essential features of glassy materials while re-
taining minimum complexity has largely remained intuition-based thus far. Here, we report a new forcefield
parametrization method that is based on machine learning optimization. By taking the example of glassy silica,
we show that this approach allows us to identify the optimal degree of forcefield complexity in a non-biased
fashion. Our method could greatly accelerate the development of new accurate, yet transferable forcefields for

the modeling of silicate glasses.

1. Introduction

The development of accurate, yet transferable empirical forcefields
is key to model multicomponent glasses by molecular dynamics (MD) or
Monte Carlo simulations [1,2]. To this end, several forms of empirical
potentials are available, ranging from very simple (e.g., Lennard Jones
potential) to very complex (e.g., ReaxFF potential [3-5]). The degree of
complexity of empirical forcefields mostly depends on the number of
parameters that need to be parameterized, which can range from 2 (for
Lennard Jones potentials) to hundreds (for ReaxFF) of parameters for
pairs of elements. As such, the parameterization of a new forcefield
typically follows two steps: (i) selecting an appropriate analytical form
and degree of complexity and (ii) optimizing the value of the forcefield
parameters [2,6,7].

The second step has been extensively addressed, as several methods
have been proposed to optimize the parameters of a given forcefield
formulation to properly describe the structure and properties of a given
system. The parameterization of a forcefield can usually be described as
an optimization problem, wherein a given cost function needs to be
minimized. On the one hand, the cost function can be defined based on
the difference between the structure or properties of simulated and
experimental glasses. However, this approach can be problematic as the
cooling rates used in MD simulations and experiments are dramatically
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different, which renders challenging a meaningful comparison between
simulated and experimental glasses [8-10]. On the other hand, for a
given system, the cost function can be defined based on the difference
between the outcomes of classical and ab initio molecular dynamics
(AIMD) simulations [11-13]. Kob, Huang et al. have recently proposed
a new forcefield parameterization strategy that consists in defining the
cost function in terms of the difference between the pair distribution
function of a liquid simulated by AIMD and classical MD (i.e., as pre-
dicted by the forcefield that is to be trained) [11,14,15]. However, this
cost function is very “rough,” that is, it exhibits many local mini-
ma—i.e., the parametrization can yield several forcefields with dif-
ferent parameters, yet competitive accuracy [11,15]. As such, the out-
come of the parameterization strongly depends on the starting point
that is used [16]—so that the parameterization of the potential requires
some level of “intuition.”

In contrast, the first step of forcefield parameterization (i.e., se-
lecting an appropriate degree of complexity) has received very little
attention and often remains entirely based on “intuition” or “previous
experience.” However, selecting the right level of complexity is key to
obtain accurate, yet transferable potentials. In details, forcefields that
are too simple may not properly describe complex systems—for in-
stance, Lennard Jones only rely on two parameters and, hence, are
usually unable to properly predict at the same time the molar volume,
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molar energy, and stiffness of even simple systems (e.g., perfect gas). In
contrast, forcefields that are too complex may offer an extremely ac-
curate description of a targeted system, but offer very poor predictions
when applied to systems that were not explicitly accounted for during
the training of the forcefield (i.e., low transferability to new systems).
In general, this competition between accuracy, transferability, and
simplicity is known as a balance between “underfitting” and “over-
fitting.”

Here, we report a new forcefield parametrization method that is
based on machine learning (ML), which aims to reduce/suppress the
need for intuition when (i) selecting the appropriate level of complexity
for a forcefield and (ii) optimizing the value of the forcefield para-
meters. To illustrate this method, we take the examples of glassy silica
as a system and of a Buckingham formulation for the forcefield. Our
method allows us to quickly and robustly identify some optimal for-
cefield parameters for different degrees of forcefield complexity and,
based on these results, to identify the optimal balance between force-
field accuracy and simplicity. Overall, our method could greatly ac-
celerate the development of new accurate, yet transferable forcefield
for the modeling of silicate glasses.

This paper is organized as follows. First, Section 2 describes the
forcefield formulation (and complexity thereof) that is adopted herein
and offers a detailed description of our ML-based parameterization
strategy. We then investigate the influence of the forcefield complexity
in Section 3. Finally, some conclusions are given in Section 4.

2. Methods
2.1. Empirical forcefields of different complexity

Glassy silica (g-SiO») is an archetypal ionocovalent system—whose
interatomic potential energy can be well described by the Buckingham
form relying only on two-body interactions between each pair of atom i,
j [6,11,12]:
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where ry is the distance between each pair of atoms, g; are the partial
charges of each atom (go for oxygen, gs; for silicon, so that go = —qs;/
2), g is the dielectric constant, and the parameters Ay, pij, Cyj, and Dy
describe the short-range interactions. A cutoff of 8 A is here consistently
used for the short-range interactions. The long-range coulombic inter-
actions are evaluated by damped shifted force (dsf) model [17] with a
damping parameter of 0.25 and a cutoff of 8 A. Here, the last term is
added as a strong repulsion at short-distance to avoid the “Buckingham
catastrophe” [11], wherein the D; parameter is fixed to prevent any
atomic overlap based on Ref. [11] (viz., D; =113, 29, and
3,423,200 eV-A%* for 0—0, Si—0, and Si—Si interactions, respectively).
In total, 10 independent parameters need to be parameterized for this
forcefield formulation (Eq. (1)), namely, the partial charge gs; and the
short-range parameters {A;, p;, Cy} for each of the three atomic pairs
(Si—0, O—0, and Si—Si). This set of parameters is denoted E thereafter.

In the present case, the degree of complexity of this forcefield can be
quantified by the number of parameters that are non-zero (out of the 10
independent parameters). For instance, although they are both based on
the same Buckingham formulation, the well-established van
Beest-Kramer—van Santen (BKS) [12] potential does not comprise any
Si—Si energy terms, whereas such terms are present within the Car-
ré-Horbach-Ipsas—Kob (CHIK) potential [11]. Here, to assess the in-
fluence of the potential complexity, we parameterize via a novel ML
approach three potentials featuring an increasing level of complexity,
namely (i) ML-SiO, wherein only Si—O interaction energy terms are
considered (i.e., 4 non-zero parameters in E), (ii) ML, wherein only
Si—0 and O—O interaction energy terms are considered (i.e., 7 non-zero
parameters in E), and (iii) ML-ALL, wherein all the Si—0, O—O0, and
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Si—Si interaction energy terms are considered (i.e., 10 non-zero para-
meters in E).

2.2. Forcefield parameterization from ab initio simulation

Following Kob and Huang et al., the determination of the optimal
parameters = is conducted by minimizing the difference between the
outcomes of classical MD and AIMD while simulating an equilibrium
silica liquid [11,14,15]. To this end, we define the cost function R, as
follows:

2 2 2
R, = \/XSiO + Xoo * Xsisi
x 3 @)

where the )5 terms capture the level of agreement between the partial
pair distribution functions (PDFs) obtained by classical MD and AIMD
[18]:

2 g - e P
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where g,5*™P(r) and g,"""(r) are the partial PDFs for each pair of atoms
a-f3. Note that, among potential alternative structural metric describing
the structure of the simulated glasses or liquids, the PDF offers a con-
venient description of the short-range environment around each atom
[11,14,19]. We purposely exclude from the training set any of the
properties of glassy SiO- (e.g., experimental density or stiffness) as such
properties are not uniquely defined and depend on the cooling rate.
This training scheme is motivated by the fact that Buckingham-type
potentials have been shown to properly describe (i) the temperature-
dependence of glass and liquid properties and (ii) the dependence of
glass properties on the cooling rate (see Refs. [8-10]), so that training
the system for a fixed temperature should yield a good description of its
behavior as a function of temperature, including in the glassy state. A
similar approach was used in Refs. [11, 14]. The technical details of MD
and AIMD simulations are provided below.

2 _
Xag =

2.2.1. Reference AIMD simulations

The “reference” liquid silica structure is prepared by Car-Parrinello
molecular dynamics (CPMD) [20]. 38 SiO5 units (114 atoms) are placed
within a periodic cubic simulation box of length 11.982 A to match the
experimental density of 2.2 g/cm® [21]. The electronic structure of the
atoms is described within the framework of density functional theory.
The choice of pseudopotentials for each atom-type, exchange and cor-
relation functions, and the plane-wave cutoff (70 Ry) are based on
previous CPMD simulations of glassy silica [11,14]. A timestep of
0.0725 fs and a fictitious electronic mass of 600 a.u. are used. A liquid
configuration obtained by classical MD simulation at 3600 K using the
well-established BKS potential is used an initial configuration (see
Section 2.1) [12]. This configuration is then relaxed via CPMD at
3600 K and constant volume for 3.5 ps—which duration is long enough
due to the small relaxation time of the system at such elevated tem-
perature. A subsequent dynamics of 16 ps is then used for statistical
averaging and to compute the Si—Si, Si—0, and O—O PDFs of the si-
mulated liquid system. Note that, although certain properties strongly
depend on the system size (e.g., ring size distribution, vibrational
properties, transport properties, etc.), partial PDFs have been shown to
be fairly unaffected by the system size (as long as it is larger than 100
atoms, see Refs. [13, 22]). More details on the CPMD simulations can be
found in Ref. [11, 14].

2.2.2. Classical MD simulation

For each set of forcefield parameters = considered herein, we con-
duct a classical MD simulation of the same liquid silica system. The
simulated system comprises 1000 SiO5 units (3000 atoms) placed in a
periodic cubic simulation box of length 35.661 A—in accordance with
the experimental density of 2.2 g/cm® [21]. The configuration is first
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Fig. 1. Flow-chart of the machine-learning-based parametrization strategy proposed herein.

fully relaxed for 10 ps at 3600 K in the NVT ensemble. The partial PDFs
of the simulated systems are then computed based on statistical aver-
aging in a subsequent NVT dynamics of 10 ps. A timestep of 1fs is
consistently used for all simulations.

2.3. Machine learning forcefield optimization

We now introduce the ML-based optimization scheme that is used to
minimize the cost function and, thereby, parametrize the three force-
fields considered herein (i.e., with different level of complexity). Fig. 1
shows an overview of the parametrization process. First, we construct
an initial dataset containing some “known points,” that is, the values of
the cost function R,, for select sets of parameters E. This dataset serves
as a training set for the machine learning algorithm, which is able to
“learn by example” the relationship between the parameters E and the
cost function R,,. To this end, we use Gaussian Process Regression (GPR)
[23,24] to interpolate the known points (and assess the uncertainty of
the interpolation) over the entire parameter space. The Bayesian Op-
timization (BO) method [23] is then used to analyze the interpolated
function and its uncertainty in order to predict an optimal set of
parameters =—which offers the best “exploration vs. exploitation trade-
off”, that is, the best balance between (i) exploring the parameter space
and reducing the model uncertainty and (ii) exploiting the present
apparent minimum and finding the global minimum of the cost func-
tion. The “true” cost function R,{E} associated with the set of para-
meters predicted by BO is subsequently calculated by conducting a
classical MD simulation and comparing the simulated structure with the
reference AIMD configuration (see Section 2.2). This new datapoint
R,{E} is then added to the dataset. The new dataset is then used to
refine the GPR-based interpolation and predict a new optimal set of
parameters by BO. This cycle is iteratively repeated until a satisfactory
minimum in the cost function is obtained, that is, when R, does not
decrease any further. Finally, the global minimum predicted by BO is
further refined by conducting a conjugate gradient (CG) optimization
[16]. Each of these steps is further described in the following.

2.3.1. Initial dataset

As a starting point for our optimization method, we construct an
initial dataset, which contains as inputs a selection of potential para-
meters = and as outputs the associated cost function R,. Each of these
datapoints is obtained by an independent MD simulation (see Section
2.2). This initial dataset offers an ensemble of known values for the cost
function in 10-dimensional parameter space (i.e., for the 10

components in E), which is used as a starting point for the iterative
interpolation/exploration process described in the following. These
initial values of E are chosen so as to uniformly span the targeted range
of parameters (chosen based on previously available forcefield). In the
case of wide target ranges, we divide the target range into several small
pitches for fast exploration. The initial dataset comprises about 1000
known points, which corresponds to a minuscule fraction of the para-
meter space. For instance, with 10 independent parameters, considering
only two values for each parameter would yield 2'° = 1024 possible
combinations. Each known point is obtained by conducting an MD si-
mulation that takes about 1 min of computation using 16 CPU cores.
Overall, it takes about 17 h to establish the initial dataset.

2.3.2. Interpolation by Gaussian Process Regression

The basic principle of GPR is to infer the (Gaussian-type) probability
distribution of the values of the function that is interpolated based on a
set of known points [23,24]. The interpolation process follows the
following expression:

Ry(E1) Mo (E1)
PR(E Ry Einonn)) = | 5 |-Normall | (_ |

x \=n o\=n

Ry (E) Ho(E)

Zo(ELED -+ Zo(B,Ep) Zo(E,EY

ZO(En’ El) o ZO(Em En) ZO(EH’ E*)
Zo(ESEr) -+ Zo(B%En) Zo(E,EY) )
where P(RX(E*)| {R,(Bxnown)}) is the conditional probability of the
value of the cost function R,, for a given set of parameters E* given the
dataset of all the known points {Ry (B, Ry(By), - Ry (En)}, as de-
noted as {Ry(Exnown)}. The conditional probability of R,(E") is calcu-
lated using multivariate Gaussian distribution [25], where (") is the
mean operation and Xy(-) is the covariance operation. There are many
possible choices for the function-type of po(-) and Zo(-) and most can
offer a reasonable extrapolation in the framework of multivariate
Gaussian distribution [25]. Here, we adopt the Matern-type kernel for
Uo() and Zo(+) [24,25]. In addition, to add some white-noise background
during the interpolation [23], we also checked the intrinsic uncertainty
of the cost function values yielded by the MD simulations by conducting
a series of 10 independent MD simulations while keeping the same set
of parameters E and calculating the standard deviation of the associated
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proach used herein. Only the partial charge of the Si
atoms (g; is here optimized, while the other 9 for-
cefield parameters are kept fixed. (a) Interpolation
of the cost function (R,, see Eq. (2)) offered by
Gaussian Process Regression (red line) as a function
of the ¢g;. The prediction is based on an initial
- training set comprising 5 datapoints (i.e., known
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yielded by the Bayesian optimization method, which
predicts the set of parameters (here, gs;) that offers
the best tradeoff between “exploration” (i.e., mini-
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cost functions R,. We find that the computed cost function values have
a relative uncertainty of about 2% when R,, < 100% (i.e., for realistic
forcefields) and can increase up to 10% for higher values of R, (i.e., for
fairly unrealistic forcefields). This level of noise is not expected to
significantly affect the shape of interpolation around the minimum
positions of the cost function R,

Fig. 2(a) shows an example of the outcome of a GPR-based inter-
polation. For illustration purposes, only the partial charge of the Si
atoms gs; is here optimized, while the other 9 forcefield parameters are
kept fixed and equal to those found in the original BKS potential [12]. A
dataset comprising the values of the cost function R, for 5 values of gg;
ranging from 1.6-to-3.2 is first constructed. The interpolated function
and the uncertainty thereof (95% confidence interval) predicted by GPR
is shown in Fig. 2(a). As expected, we observe that the interpolated
function exhibits a minimum with respect to gg; (note that the gs; value
used in the BKS potential is 2.4). Unsurprisingly, the uncertainty of the
prediction is low at the vicinity of the known points and increases in
between them.

2.3.3. Minimum exploration by Bayesian optimization

Based on the interpolated function R,(Z) and uncertainty o(&)
thereof predicted by GPR, the BO method is used to determine the next
optimal set of parameters E to try based on an acquisition function that
depends on R, (E) and o(E). Here, we adopt the expected improvement
(ED) function, which is commonly used as acquisition function [23]:

EiE) = | Re® ~ Re(®]@@) + 0(@)9(2) ifo(®) >0
0 ifo(E) =0 )

where Z = [R, (@) — R, (8)]/0(8), R, (@) is the current minimum value
of R, among all the known points (in other words, £ is the current
optimal set of parameters), and ®(Z) and ¢(Z) are the cumulative dis-
tribution and probability density function of the standard normal dis-
tribution, respectively. By construction, the value of EI(E) is high (i)
when the expected value of R,(E) is smaller than the current best value
R, (@) or (ii) when the uncertainty o(E) around the point g is high.
Therefore, the maximum position of EI(E) indicates either a point for
which a better minimum position of R, than the current one is expected
or a point belonging to a region of R, that has not been explored yet
(i.e., o(E) is high). Namely, the maximum position of EI(E) offers the
best tradeoff between “exploration” (i.e., minimizing the uncertainty
o(8)) and “exploitation” (i.e., minimizing the cost function R,(&)).

As an illustration of the BO approach, Fig. 2(b) shows the computed
expected improvement function based on the interpolated function and
uncertainty thereof shown in Fig. 2(a). As mentioned above, only the
partial charge of the Si atoms qg; is here optimized, while the other 9

136

mizing the uncertainty of the model presented in
panel (a)) and “exploitation” (i.e., minimizing the
cost function R,). (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)

forcefield parameters are kept fixed and equal to those found in the
original BKS potential [12]. As expected, we observe a noticeable
maximum in the expected improvement function where the inter-
polated function R,, is minimum (exploitation). Some secondary peaks
are also observed in the high-uncertainty regions of the function in the
vicinity of the minimum position.

2.3.4. Iterative refinement of the forcefield

Finally, at each step of our iterative optimization scheme, the set of
parameters E corresponding to the maximum of the expected im-
provement function is used to conduct an MD simulation and calculate
the associated cost function value R,. In turn, this new datapoint is
added to the dataset. This enhances the accuracy of the GPR inter-
polation, which contributes to further refine the sampling of the cost
function R, at the vicinity of its minimum positions. This iterative
scheme is repeated until convergence is achieved, that is, until the cost
function reaches a plateau and does not further decrease within 100
iterations.

This iterative refinement method is illustrated in Fig. 3. Here, for
illustrative purposes, only two parameters (gs; and As;o) are optimized,
while the other 8 forcefield parameters are kept fixed and equal to those
found in the original BKS potential [12]. Fig. 3(a) shows a contour plot
of the cost function R, as a function of the two free parameters used in
the optimization. We observe that, even in the case of only two free
parameters, the cost function shows a rough dependence on the para-
meters and exhibits two distinct minima (i.e., the dark blue domains in
Fig. 3(a)). Fig. 3(a) also shows the pathway that is explored by the
optimization algorithm in the (gs;, Asio) space, that is, the set of para-
meters for which the expected improvement function is maximum after
each step. We observe that the optimization quickly converges toward
the global minimum of the cost function after only 5 iterations, after
which the cost function R, shows a plateau around 10% (see Fig. 3(b)).
This illustrates the efficiency of our optimization technique.

2.4. Final refinement by conjugate gradient (CG)

Finally, the minimum identified by the iterative BO scheme is fur-
ther refined by the CG method. Indeed, although the BO method can
quickly identify the vicinity of the global minimum of a rough function,
the CG method is more efficient to pinpoint the minimum position in a
local basin of the cost function. Here, we adopt the nonlinear CG al-
gorithm detailed in Ref [16]. In short, we first use the secant method to
construct a quadratic interpolation of R,(Z) at the vicinity of the
minimum identified by the iterative BO scheme and determine the new
minimum predicted by the CG interpolation. We then repeat the
quadratic construction (i.e., the linear search) around this new
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Fig. 3. Illustration of the iterative optimization ap-

x10° 10

proach used herein. Only the partial charge of the Si
atoms gs; and the parameter Ag;o are here optimized,
while the other 8 forcefield parameters are kept
fixed. (a) Contour plot showing the cost function R,,
as a function of gs; and As;jo. The white dashed line
indicates the path explored by the Bayesian optimi-
zation method until the global minimum in the cost
function R, is identified. (b) Evolution of the cost
function R,, of the best-tradeoff position predicted by
the Bayesian optimization during the optimization
process. (For interpretation of the references to color
in this figure, the reader is referred to the web ver-

T

minimum position. This is used to approximate the minimum position
of R, along the CG direction (i.e., the search direction). The maximum
number of iterations of linear search in a search direction is set as 3.
Then, starting from the identified new minimum position, we calculate
the local gradient and find a new search direction based on Polak-Ri-
biere formula [16]. A new search direction is then determined from this
starting point to identify a new minimum position. The iterative scheme
is repeated until convergence, that is, when the new minimum position
largely overlaps with the last minimum position, R, shows a plateau,
and the squared sum of the local gradient converges toward zero and
remains lower than the “zero” threshold (taken as 5 herein) within 10
iterations.

Fig. 4 shows an illustration of the CG refinement step—starting from
the minimum identified by the BO iterative scheme illustrated in Fig. 3.
By exploring “downhill” the local minimum of the cost function
(Fig. 4(a)), the CG allows us to further refine the position of the mini-
mum—the cost function decreasing from 10% to about 9% (see
Fig. 4(b)). As expected, the local gradient converges toward zero as the
CG optimization proceeds (see Fig. 4(c)). Note that, due to the high
roughness of the cost function, CG optimization alone cannot yield a
satisfactory minimum for the cost function as it easily gets stuck in local
minima [26].

sion of this article.)

6 8 10 12 14
Iteration

(b)

3. Results
3.1. Accuracy of the forcefields

We now assess how the degree of complexity of the forcefield
controls its accuracy. To this end, we compare the outcomes of our ML-
based parametrization method for three forcefields featuring increasing
degrees of complexity (see Section 2.1), namely, (i) ML-SiO, which only
comprises Si—O energy terms, (ii) ML, which comprises Si—O and O—O
energy terms (i.e., like the well-established BKS potential [12,27]), and
(iii) ML-ALL, which comprises Si—0, O—O0, and Si—Si energy terms (i.e.,
like the CHIK potential [11]). Note that, in all cases, the Coulombic
interactions are computed for all the pairs of atoms—so that only the
“Buckingham” contribution of these three potentials is varied. In order
of increasing complexity, the three potentials comprise 4, 7, and 10
variable parameters, respectively (i.e., 3 parameters per interatomic
pair and the Si partial charge). From a physical viewpoint, this analysis
allows us (i) to investigate whether accounting for O—O interaction
terms (i.e., besides the Coulombic repulsion) is truly necessary to pre-
dict a realistic structure for glassy silica and (ii) to assess the extent to
which incorporating Si—Si energy terms can improve the performance
of the forcefield. More generally, this analysis is conducted to identify
the right level of complexity, that is, to develop a forcefield that is
neither underfitted nor overfitted.

The parameters obtained for the ML potential are listed in Table 1,
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(b) (c)

Fig. 4. Illustration of the final conjugate gradient optimization. Only the partial charge of the Si atoms gs; and the parameter Asg;o are here optimized, while the other
8 forcefield parameters are kept fixed. (a) Contour plot showing the cost function R, as a function of gg; and Ag;o. The white dashed line indicates the path explored
by the conjugate gradient optimization method until the minimum in the cost function R, is identified. (b) Evolution of the cost function R, during the conjugate
gradient optimization process. (¢) Evolution of the squared-sum of the local gradient § during the conjugate gradient optimization process.
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Table 1
Parameters of the optimized potential “ML” (see Eq. (1)). The partial charges
are indicated as superscripts for each pair of atoms.

Atomic pairs g +1:955 _ 09775 009775 _ 0-9775 §j*1-955 _
Si+1.955
A (eV) 20,453.6 = 0.2 1003.4 = 0.2 0
p (A) 0.191735 = 0.000005 0.356855 =+ 0.000005 1
C(eV-AG) 93.5 = 0.5 81.5 = 0.5 0
Table 2

Parameters of the interatomic potential “ML-SiO” (which only considers Si—O
interactions). The partial charges are indicated as superscripts for each pair of
atoms.

si+1.484 _ 0—0,742 0—0,742 _ 0—0.742 Si+1.484 _ Sl+ 1.484

Atomic pairs

A (eV) 3968.5 + 0.2 0 0
p Q) 0.187600 + 0.000005 1 1
C (eV-A®%) 0.7 + 0.5 0 0

whereas those obtained for the ML-SiO and ML-ALL potentials are listed
in Tables 2 and 3. Overall, we find that the parameters of the ML-SiO
forcefield significantly differ from those of the ML forcefield. In parti-
cular, we obtain a very small Si partial charge of +1.484. In contrast,
we note that the parameters of the ML-ALL forcefield are largely similar
to those of the ML potential—with a partial charge for Si atoms that is
around 1.955. This value is fairly close to that of the CHIK (+1.91 [14])
and Wang-Bauchy potentials (+1.89 [6]).

Fig. 5 presents a comparison of the accuracy of the three forcefields
(as quantified in terms of the final cost function R,). We note that the
low-complexity ML-SiO potential offers a very poor description of the
structure of silica (i.e., high final R, value—note that a threshold of
10% is typically used to discriminate “good” from “bad” forcefields
[18]). This confirms that, as expected, the O—O interactions play a key
role in predicting a realistic SiO, structure and that the ML-SiO model is
clearly underfitted. In contrast, as shown in Fig. 5, the high-complexity
ML-ALL potential offers a slight improvement in the description of the
structure of silica with respect to that predicted by ML potential, which
manifests itself by a slight decrease in R, from 8.77% to 7.20%. Al-
though this improvement is higher than the level of uncertainty in the
R, values, it remains small as compared to the difference between the
R, values yielded by the ML and ML-SiO forcefields. This suggests that
Si—Si interactions only play a minor role in controlling the structure of
silica. In turn, this small improvement comes with a significantly higher
degree of complexity (i.e., 3 extra parameters), which suggests that the
ML-ALL potential may be overfitted.

3.2. Partial pair distribution functions

We now further investigate the effect of the complexity of the for-
cefield on the structure of the simulated liquid silica system (i.e., at
3600 K). To this end, Fig. 6 shows a comparison of the partial PDFs
obtained by each of the three potentials. The data are compared with
the reference ab initio partial PDFs used for the training of the poten-
tials. We first focus on the ML potential (i.e., which exhibits the same
level of complexity as the BKS potential). Overall, we find that the ML
potential  provides an excellent agreement with AIMD

Table 3
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Fig. 5. Comparison of the final cost function values R,, obtained by including, in
order of increasing complexity: (i) only Si—O interactions (“ML-SiO” potential),
(ii) both Si—0 and O—O interactions (“ML” potential), and (iii) Si—O, O—0, and
Si—Si interactions (“ML-ALL” potential). The relative uncertainty in the R,
values is + 0.5%, = 0.25%, and + 0.25% for the ML-SiO, ML, and ML-ALL
forcefields, respectively.

simulations—although this is not surprising as our forcefield is speci-
fically trained to match these data. Nevertheless, these results illustrate
that the Buckingham formulation (see Eq. (1)) is adequate to describe
the SiO, system. This result also further supports the ability of our ML-
based optimization method to offer a robust parametrization. We note
that the average Si—Si distance predicted by ML potential is slightly
shifted compared with AIMD simulations (see Fig. 6(c)). This may arise
from a general limitation of the Buckingham formulation.

We now focus on the low-complexity ML-SiO forcefield (which does
not comprise O—O energy terms). Overall, we find that the ML-SiO
forcefield exhibits a very unrealistic structure. Although this forcefield
succeeds at predicting a reasonable average Si—O average interatomic
distance (see Fig. 6(a)), it completely fails to properly model O—O
correlations (see Fig. 6(b)). This confirms that including the O—O in-
teractions is necessary to properly describe the tetrahedral structure of
Si atoms and, hence, that the low-complexity ML-SiO forcefield is un-
derfitted.

In contrast, we note that the structure predicted by the ML-ALL
forcefield is largely similar to that offered by the ML potential, which
confirms that Si—Si interactions play a fairly trivial role in controlling
the structure of glassy SiO,. Although we observe that taking into ac-
count Si—Si interactions offers a slight improvement in the Si—Si partial
PDF, the average Si—Si distance remains overestimated with respect to
that predicted by AIMD. This further suggests that this discrepancy is an
intrinsic limitation of the two-body Buckingham formulation used
herein. Although the inclusion of 3-body energy terms could overcome
this limitation, this would come with a significant increase in com-
puting cost and model complexity. Overall, these results confirm that
the ML parametrization presented in Table 1 yields an excellent de-
scription of the structure of silica and offers the best balance between
accuracy and model simplicity.

3.3. Partial bond angle distributions

We now investigate the effect of the forcefield complexity on the

Parameters of the interatomic potential “ML-ALL” (which includes Si—Si interactions). The partial charges are indicated as superscripts for each pair of atoms.

Atomic pairs §i+1:955 _ 09775

0709775 _ 0.9775 g{+1:955 _ gj+1.955

A (eV) 20,453.6 = 0.2
o (A) 0.191735 + 0.000005
C (eV-A%) 93,5 * 0.5

1003.4 £ 0.2 2643.1 = 0.2
0.356855 + 0.000005 0.303616 + 0.000005
81.5 = 0.5 232.0 £ 0.5
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Fig. 6. (a) Si—O0, (b) O—O0, and (c) Si—Si partial pair distribution functions in liquid silica (at 3600 K) predicted by the different forcefields parameterized herein. The

data are compared with the ab initio reference [14].

partial bond angle distributions (PBADs). Note that, the PBADs are not
explicitly included in the cost function (see Eq. (2)) and that such 3-
body correlations are not fully encoded in the 2-body correlations (i.e.,
as captured by the partial PDFs). As such, the PBADs allow us to assess
the accuracy of the forcefield by comparing their predictions to a
structural quantity that is unknown during the training of the force-
fields. In that sense, the PBADs acts as a “test set,” that is, a group of
data that is deliberately kept invisible to the model during para-
metrization and can then be used to a posteriori assess the ability of the
model to offer realistic predictions for unknown data. In addition, this
analysis allows us to better understand the influence of the O—O and
Si—Si interactions in controlling the angular environment of the Si and
O atoms.

Fig. 7 shows the O—Si—O and Si—O—Si PBADs predicted by the
three potentials for the liquid silica system (at T = 3600 K). The data
are compared with those obtained by ab initio simulations [14]. We
first focus on the ML potential (i.e., which exhibits the same level of
complexity as the BKS potential). Overall, we observe that the PBADs
predicted by the ML potential offer a very good agreement with ab
initio simulations. As expected, the ML potential yields a tetrahedral
environment for Si atoms (with an average O—Si—O angle of about
109°). Nevertheless, we observe that the ML potential slightly over-
estimates the value of Si—O—Si angles with respect to AIMD simula-
tions, which appears to be a general limitation of the 2-body Buck-
ingham formulation adopted herein and is likely related to the fact that

our potential overestimates the Si—Si average distance (see Section
3.2).

We now focus on the low-complexity ML-SiO forcefield (which does
not comprise O—O energy terms). We note that the ML-SiO potential (i)
largely underestimates the average value of both the O—Si—O and
Si—O—Si angles and (ii) overestimates the broadness of the angular
distributions (i.e., the angular excursions) with respect to the AIMD
simulations. These unrealistic PBADs offers a strong a posteriori vali-
dation of the fact that the ML-SiO potential is underfitted. In turn, these
results demonstrate that explicitly accounting for the O—O interactions
is essential to correctly model the tetrahedral structure of the Si atoms.

In contrast, we find that the PBADs predicted by the ML-ALL for-
cefield are fairly similar to those offered by the ML potential, which
indicates that accounting for the Si—Si interactions may not be neces-
sary to properly model the angular environment of the Si and O atoms.
Further, a more detailed comparison of the PBADs predicted by the ML
and ML-ALL potentials with the reference AIMD data reveals that the
0—Si—0 PBAD predicted by the ML potential is slightly better than that
offered by the more complex ML-ALL potential (see Fig. 7(a)). Further,
we note that, thanks to the addition of Si—Si energy terms, the ML-ALL
offers a better description of the average value of the Si—O—Si angle.
However, in turn, the Si—O—Si PBAD predicted by the ML-ALL poten-
tial exhibit a large degree of asymmetry that is not supported by the
AIMD simulations (see Fig. 6(c)). This suggests that the fact of capturing
all the fine details of the partial PDFs used during the training (as

| \ | \ Fig. 7. (a) O—Si—O0 and (b) Si—O—Si partial bond

angle distributions (PBADs) in liquid silica (at
T = 3600K) predicted by the different ML-based
forcefields parameterized herein. The data are com-
pared with the ab initio reference [14].
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permitted by the high-complexity of the ML-ALL forcefield) results in
some overfitting, which, in turn, manifests itself by a decrease in the
ability of the potential to properly predict structural metrics that are not
explicitly included in the training set. In contrast, due to its higher
degree of simplicity, the ML potential only captures the essential fea-
tures of the partials PDFs and, hence, offers more robust predictions for
structural data that are kept invisible during training. This suggests that
the ML potential (i.e., which relies on Si—O and O—O energy terms
only) presents the best balance between under- and overfitting and,
thereby, offers the most accurate overall description of the structure of
glassy silica.

4. Discussion
4.1. Dependence on the initial training set

We now discuss the ability of our ML-based optimization scheme to
yield a proper optimal set of forcefield parameters (i.e., to identify a
proper minimum in the cost function) regardless of the choice of the
initial training set, that is, the parameter space used as a starting point
for the optimization (see Section 2.3). In particular, it is critical for the
parameterization method to be able to yield a minimum in the cost
function that is far from the initial training set. Indeed, this is key as we
aim to develop a non-biased parameterization scheme that do not rely
on “intuition” regarding the range of promising forcefield parameters.

Fig. 8 shows an illustration of the ability of our ML-based method to
efficiently explore the parameter space—even far away from the initial
training set—to yield a proper minimum in the cost function. Here, for
illustrative purposes, only two parameters (gs; and As;o) are optimized,
while the other 8 forcefield parameters are kept fixed and equal to those
found in the original BKS potential [12]. Fig. 8(a) shows a contour plot
of the cost function R, as a function of the two free parameters used in
the optimization. In this case, we purposely restrict the region of the
initial training set to qs; > 2.4 (i.e., the colored region in Fig. 8(a)),
which does not comprise the targeted global minimum position of R,.
We observe that our iterative learning model is able to quickly explore
the gs; < 2.4 and identify the global minimum around gs; = 2 despite
this position being far from the initial training set (see Fig. 8(b)). This
signals that the iterative Bayesian optimization is able to “learn” by
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itself that the global minimum of R, does not belong to the initial
training set. Overall, these results strongly support the ability of our
approach to yield optimal forcefield parameters regardless of the choice
of the initial training set considered at the beginning of the para-
meterization.

4.2. Comparison of the ML-based forcefield with previous Buckingham
potentials

Finally, we discuss how our new ML potential (i.e., that featuring
the optimal degree of complexity) compares with select previous SiO,
forcefields relying on the Buckingham form. Specifically, we focus on
(i) the BKS potential [12], which presents the same complexity as our
new ML potential but relies on a different parametrization method and
(ii) the CHIK potential [14], which presents a higher complexity (i.e., as
it comprises Si—Si energy terms).

Fig. 9 shows a comparison of the partial PDFs predicted by our new
ML forcefield with those predicted by the BKS and CHIK potentials. The
data are also compared with the reference ab initio partial PDFs. We
observe that both the ML and CHIK potentials offer a clear improve-
ment with respect to the classic BKS potential. Since the ML and BKS
forcefield relies on the same formulation and same degree of com-
plexity, these results clearly demonstrate the superiority of our ML-
based parametrization method over that used for the BKS potential—
which relies on ab initio calculations performed on small SiO4 clusters
and the incorporation of some bulk properties during training [12]. On
the other hand, we find that our new ML forcefield offers a slightly
more accurate prediction of the partial PDFs as compared to the CHIK
potential while relying on a lower number of parameters (i.e., lower
complexity). This confirms once again that Si—Si interactions are not
playing a critical role in governing the structure of glassy SiO and that,
in turn, using Si—Si interactions as free parameters during the training
of the forcefield can result in some degree of overfitting.

Finally, we assess whether our new ML forcefield offers a good
transferability to a-quartz—that is, whether it can properly describe the
structure and stiffness of a-quartz without being explicitly trained for
this system. To this end, we compute the unit cell parameters at 300 K
and elastic constants at 0 K of a-quartz using our potential (see Table 4)
and compare these values to available experimental data [28-30].
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Fig. 8. Illustration of the iterative optimization approach used herein in the case of the global minimum is far from the initial training set. Only the partial charge of
the Si atoms ¢s; and the parameter Ag;o are here optimized, while the other 8 forcefield parameters are kept fixed. In both cases, the contour plot shows the value of
the cost function R, as a function of qs; and Ag;o. The white dashed line indicates the path explored by the Bayesian optimization method until the global minimum in
the cost function R,, is identified. Panel (a) highlight in white the parameter space region that is purposely excluded from the initial training set, while panel (b)
shows the value of cost function over the entire domain to highlight the fact that the global minimum is indeed identified at the end of the optimization.
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Fig. 9. (a) Si—0, (b) 0—O0, and (c) Si—Si partial pair distribution functions (PDFs) in liquid silica (at T = 3600 K) predicted by our new “ML” forcefield and compared
with the ab initio reference [14]. The partial PDFs predicted by the BKS potential [12] and CHIK potential [14] are added for comparison.

Table 4

Unit cell parameters and elastic constants of a-quartz measured by experiments and offered by different Buckingham potentials.

Observable

Experiments [28-30] BKS CHIK ML

V(A% 112.93 119.30 = 0.06 125.18 + 0.05 128.8 = 0.3
ad) 4.9124 5.026 + 0.001 5.1166 = 0.0008 5.1593 =+ 0.0007
¢ (A) 5.4039 5.4526 *= 0.0006 5.5212 *= 0.0006 5.5862 * 0.0005
C1; (GPa) 86.8 909 = 3.1 98.4 = 0.6 89.2 = 5.6

Cs3 (GPa) 105.8 116.3 = 0.6 91.1 = 0.9 67.0 = 4.3

C44 (GPa) 58.2 48.6 = 0.9 50.3 = 0.5 46.1 = 0.4

Cess (GPa) 39.9 46.0 = 0.6 437 = 1.1 239 *+ 45

Cq2 (GPa) 7.0 —4.0 = 1.3 -0.2 = 0.7 —-2.8 £ 9.3

C;3 (GPa) 19.1 12.8 + 0.3 16.8 + 0.9 8.7 + 3.6

C14 (GPa) —-18.0 —-03 = 0.1 —-0.1 = 0.2 -0.3 * 1.0

These data are also compared with the values offered by the BKS and
CHIK potentials. Overall, we find that our potential reproduces ex-
perimental data with a degree of accuracy that is comparable to that
offered by previous potentials based on the Buckingham formulation
(i.e., BKS and CHIK). This is notable as (i) a-quartz is not part of the
training set used for the present ML forcefield and (ii) our forcefield was
not explicitly trained to reproduce any stiffness data. This demonstrates
that the pair distribution function (used to train the ML forcefield)
contains enough details about the simulated system to offer a realistic
description of the curvature of the interatomic potential (which largely
controls stiffness). More generally, this shows that our new ML poten-
tial shows a satisfactory transferability to new phases (i.e., a-quartz)
that are not explicitly considered during training.

5. Conclusions

Overall, this study establishes a general and versatile framework to
facilitate the development of accurate, yet transferable empirical for-
cefields for the modeling of disordered materials. By taking the example
of silica, our method is able to quickly parameterize forcefields fea-
turing different degrees of complexity in a non-biased fashion. This
robust method allows us to meaningfully assess the optimal degree of
complexity for the forcefield, that is, for which an optimal balance
between accuracy and simplicity is achieved. The assessment of the role
of the complexity of forcefields is key to avoid any overfitting, which
would likely decrease the transferability of the potential to new systems
that are not explicitly included during training. More generally, we
expect that the use of ML will decrease the importance of intuition for
the parametrization of future potentials for multicomponent silicate
glasses.
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