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A B S T R A C T

Understanding and predicting the compositional dependence of the stiffness of silicate glasses is key for various
technological applications. Here, we propose a new topological model for predicting the Young's modulus of
silicate glasses. We show that the Young's modulus is governed by the volumetric density of bond-stretching and
bond-bending topological constraints acting in the atomic network. The predicted Young's modulus values offer
an excellent agreement with molecular dynamics and experimental data over a wide domain of compositions
(the entire calcium aluminosilicate ternary system) and a large range of Young's modulus values (from around 80
to 160 GPa).

1. Introduction

Discovering new glasses with improved mechanical properties is key
to address present and future challenges in energy, communication, and
infrastructure [1–4]. Among all the mechanical properties that are of
interest to glasses, the Young's modulus (E) plays a critical role in the
performance of glass fibers [5–7]. More generally, the Young's modulus
of glasses is an important engineering property for a large range of
applications, including flexible substrates and roll-to-roll processing of
displays, architectural glazing, ultra-stiff composites, hard discs and
surgery equipment, or lightweight construction materials [1,8–10].

Accelerating the discovery of novel glasses with tailored function-
alities requires the development of new predictive models that decipher
the linkages between glass composition and properties [11]. To this
end, several studies have attempted to derive a relationship between
glass composition and Young's modulus. Thanks to its elegance and
simplicity, the Makishima–Mackenzie (MM) model may be the most
popular model to date [12,13]. This model is based on the idea that the
Young's modulus of silicate glasses can be expressed as a linear com-
bination of the dissociation energies of its oxide constituents, normal-
ized by the atomic packing density. Although the predictions offered by
the MM model are remarkably accurate considering the simplicity of
this model, it is essentially an additive model assuming that the con-
tributions of each oxide to the Young's modulus are proportional to

their concentration. However, the Young's modulus often shows a non-
linear dependence on composition, which cannot be captured by purely
additive models [14,15]. More generally, the failure of the MM model
to properly predict the non-linear relationship between composition
and Young's modulus is likely due to the fact that this model does not
embed any information about the atomic structure of glasses and the
compositional dependence thereof [16].

As an alternative route, topological constraint theory (TCT) offers a
promising route to predict the properties of glasses based on the to-
pology of their atomic network [17–24]. TCT reduces complex dis-
ordered atomic networks into simpler mechanical trusses, wherein
some nodes (the atoms) are connected to each other via some con-
straints (the chemical bonds). In molecular glasses, such constraints
comprise: (i) the radial 2-body bond-stretching (BS) constraints that
keep the bond lengths fixed around their average values and (ii) the
angular 3-body bond-bending (BB) constraints that fix the average va-
lues of the interatomic angles. As such, TCT captures the connectivity of
the glass network while filtering out second-order structural details that
do not significantly affect macroscopic properties. Based on this fra-
mework, glasses are classified as flexible, stressed-rigid, or isostatic
when the total number of BS and BB constraints per atom (nc) is lower,
larger, or equal to 3, respectively, which is the number of degrees of
freedom per atom.

Within the framework of TCT, glasses can be considered as a
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network of atoms that are connected to each other via some “small
springs” (the interatomic mechanical constraints)—so that the macro-
scopic stiffness of glasses should be related to the number of interatomic
constraints. This echoes some results obtained by Thorpe for model
random networks, wherein the stiffness was found to be zero in flexible
systems (nc < 3) and, subsequently, to scale with nc in stressed-rigid
systems (nc > 3) [25]. A similar relationship was observed in amor-
phous semiconductors [26–29] and chalcogenide glasses [16]. How-
ever, no topological model predicting the stiffness of ionocovalent si-
licate glasses is available to date.

Here, based on high-throughput molecular dynamics (MD) simula-
tions of calcium aluminosilicate (CAS) glasses, we present a new to-
pological model predicting the compositional dependence of the
Young's modulus of silicate glasses. We demonstrate that our topolo-
gical model offers realistic predictions of Young's modulus values over
the entire CAS ternary domain.

2. Simulation methods

To establish our conclusions, we conduct some high-throughput MD
simulations of 231 CAS glasses. The chosen compositions homo-
geneously cover the CAS ternary domain, with 5% increments in the
mol% concentration of the CaO, Al2O3, and SiO2 oxide constituents.
Note that, in practice, some of these systems would likely not exhibit
satisfactory glass-forming ability. All the simulations are conducted
using the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) package [30]. Each system comprises around 3000 atoms.
Since the quality of MD simulations mostly relies on that of the un-
derlying force field, we adopt here the interatomic potential para-
metrized by Jakse [31,32]—as this potential has been shown to offer a
realistic description of the mechanical properties of CAS glasses
[15,33–35]. A cutoff of 8.0 Å is used for the short-range interactions.
The Coulombic interactions are calculated by adopting the Fennell
damped shifted force model with a damping parameter of 0.25 Å−1 and
a global cutoff of 8.0 Å [36]. The integration timestep is 1.0 fs.

The CAS glasses are prepared by quenching liquids, as described in
the following [37]. First, some atoms are randomly placed in a cubic
box using the PACKMOL package while using a distance cutoff of 2.0 Å
between each atom to avoid any unrealistic overlap [38]. These initial
configurations are then subjected to an energy minimization, followed
by some 100 ps relaxations in the canonical (NVT) and isothermal-iso-
baric (NPT) ensembles at 300 K, sequentially. These samples are then
melted at 3000 K for 100 ps in the NVT and, subsequently, NPT en-
semble (at zero pressure) to ensure the loss of the memory of the initial
configurations and to equilibrate the systems. Next, these liquids are
cooled from 3000 to 300 K in the NPT ensemble at zero pressure with a
cooling rate of 1 K/ps. The obtained glass samples are further relaxed at
300 K for 100 ps in the NPT ensemble before the stiffness computation.
Note that this quenching procedure is slightly adjusted for select com-
positions. First, a higher initial melting temperature of 5000 K is used
for the samples wherein the SiO2 concentration is larger or equal to
95mol%—since these glasses exhibit high glass transition tempera-
tures. Second, a faster cooling rate of 100 K/ps is used for the samples
wherein the CaO concentration is larger or equal to 90mol%. Indeed,
although the cooling rate can affect the glass stiffness, the use of a
higher cooling rate here is necessary as these systems would otherwise
tend to crystallize with a cooling rate of 1 K/ps. Once formed and
equilibrated, the glasses are subjected to a series of 6 deformations (i.e.,
3 axial and 3 shear deformations along the 3 axes). Their stiffness tensor
(and Young's modulus) is computed from the curvature of the potential
energy (see Refs. [15, 33, 39, 40] for more details). Based on Ref. [15],
the computed Young's modulus values are rescaled by a constant factor
(0.86) to enhance the overall agreement with experimental data. The
relative uncertainty of the simulated Young's modulus values (± 2.5%)
is estimated by computing the stiffness of 6 independently-quenched
glasses for select compositions and calculating their standard deviation.

The coordination number of each atom is computed by enumerating the
number of neighbors present in its first coordination shell—wherein the
radius cutoff is defined as the minimum after the first peak of the partial
pair distribution function (i.e., 2.00, 2.35, and 3.05 Å for SieO, AleO,
and CaeO, respectively).

3. Topological model of Young's modulus

Our topological model is inspired by that developed by Smedskjaer,
Mauro, and Yue, wherein hardness is expressed as a linear function of
the number of constraints per atom nc [22,41–43]. Here, since the
Young's modulus has the dimension of an energy per unit of volume, we
postulate that E can be expressed in terms of the volumetric density of
the energy created by each constraint. A similar approach was used to
refine the original Smedskjaer model to predict hardness [44]. Further,
we postulate that the BS and BB constraints do not contribute with
equal weight to increasing the Young's modulus, which arises from the
fact that BS and BB constraints exhibit different free energies and that
different types of constraints may be activated under different loading
conditions [23,45,46]. Based on these considerations, we propose the
following model:

= +E ε n ε nBS BS BB BB (1)

where nBS and nBB are the volumetric density of BS and BB con-
straints, respectively, and εBS and εBB are some fitting parameters that
correspond to the typical energies of BS and BB constraints, respec-
tively. This model assumes that a fictitious glass comprising no BS and
BB constraints would have a zero Young's modulus. Note that, although
Eq. (1) expresses E as a linear function, some degree of non-linearity
can be captured in the number of topological constraints created by the
atoms or the volumetric density of atoms.

4. Results and discussion

4.1. Constraints enumeration

To assess the validity of our topological model, we first enumerate
the number of BS and BB constraints in CAS glasses as a function of
composition. In fully-connected covalent glasses, the number of BS
constraints created by a given atom is given by r/2, where r is the co-
ordination number—where the factor 2 arises from the fact that each BS
constraint is shared by two atoms [17]. In turn, the number of BB
constraints is usually given by 2r – 3, which corresponds to the number
of independent angles that need to be fixed to define the angular en-
vironment of the atom [17]. However, due to the existence of ionic non-
directional bonds, this counting scheme does not always apply to io-
nocovalent silicate glasses [46]. As such, to avoid relying on any
guesses in the enumeration of the constraints, we analyze the structure
of the simulated glasses to directly extract the number of BS and BB
constraints [19,46,47]. To this end, we compute the coordination
number of each atom. We then identify the different types of O species
present in the network, namely, (i) bridging‑oxygen (BO), i.e., con-
nected to 2 network formers (Si or Al), (ii) non-bridging oxygen (NBO),
i.e., connected to only 1 network former, (iii) “tricluster” oxygen (TO),
i.e., connected to 3 network formers [33,48], and (iv) “free oxygen”
(FO), i.e., connected to 0 network formers (i.e., only connected to Ca
atoms) [33].

Table 1 summarizes the average number of BS and BB constraints
created by each atomic species. In details, we find that, as expected, Si
atoms systematically create 4 BS and 5 BB constraints with their 4 O
neighbors—note that, for simplicity, the BS constraints are here fully
attributed to the cations. Although some fraction of over-coordinated Al
atoms is found in Al-rich glasses, most of them create 4 BS and BB
constraints with their 4 O neighbors. Due to the ionic nature of CaeO
bonds, the constraints enumeration is trickier for Ca atoms. First, these
atoms do not form any well-defined angular environment and, as such,

K. Yang, et al. Journal of Non-Crystalline Solids 514 (2019) 15–19

16



do not create any BB constraints [47]. Second, a statistical analysis
between the Young's modulus and the partial coordination number of
Ca atoms reveals that Ca atoms only create BS constraints with their
surrounding NBO and FO atoms [47]. In turn, Ca atoms do not create
any constraints with the surrounding BO and TO atoms. This can be
understood from the fact that the charge of BO and TO atoms is already
fully compensated by those of their surrounding Si and Al neighbors, so
that their interaction between Ca and BO/TO atoms is weaker than that
between Ca and NBO/FO atoms. Finally, we find that, as expected, BO
create 1 BB constraint, while TO atoms create 3 BB constraints to define
their trigonal environment. In contrast, due to the ionic nature of CaeO
bonds, NBO and FO atoms do not create any BB constraint. These inputs
then serve to compute the volumetric densities of BS and BB constraints
(nBS and nBB in Eq. (1)).

Fig. 1 shows the volumetric densities of BS and BB constraints as a
function of composition in the CAS ternary system. Overall, we find that
the densities of BS and BB constraints primarily depends on the [CaO]e
[Al2O3] molar difference. In details, we find that the density of BS
constraints is minimum when [CaO]][Al2O3] and increases in the Ca-
and Al-rich domains. This arises from the fact that both of these do-
mains exhibit a high average coordination number—i.e., due to the
presence of 6-fold coordinated Ca atoms in Ca-rich glasses and TO
atoms in Al-rich glasses [15]. On the other hand, the density of BB
constraints presents a significantly different compositional dependence
as it monotonically decreases with increasing [CaO]e[Al2O3] molar
difference. This arises from the fact that Ca atoms do not create any BB
constraints, whereas TO atoms contribute to increasing the number of
BB constraints in Al-rich glasses.

4.2. Prediction of Young's modulus

We then focus on the compositional dependence of the Young's
modulus (E) values computed by MD (see Fig. 2a). Overall, we observe

the existence of two main trends: (i) E tends to increase with decreasing
SiO2 concentration and (ii) E tends to increase with increasing [CaO]e
[Al2O3] molar difference. However, we find that the compositional
dependence of E is non-monotonic and that CaO and Al2O3 exhibit some
coupled effects. For example, we find that E increases with increasing
CaO concentration when [Al2O3]= 0mol%, whereas E decreases with
increasing CaO concentration when [Al2O3] > 40mol%. This high-
lights the fact that E exhibits a non-linear dependence on composi-
tion—so that additive models are unlikely to offer good predictions for
this system.

We now assess the validity of our topological model (Eq. (1)). To
this end, we conduct a polynomial regression using as inputs the vo-
lumetric densities of BS and BB constraints (nBS and nBB) shown in Fig. 1
and as output the simulated E values shows in Fig. 2a. This allows us to
determine the typical energies of BS and BB constraints (εBS and εBB) as
fitting parameters. We find εBS= 2.82 eV and εBB= 1.78 eV. These
values have the same order of magnitude as typical interatomic bond
energies in silicate glasses [49]. As expected, we find that εBS > εBB, in
agreement with the fact that the free energy of BS constraints is larger
than that of BB constraints [23,46]. A more detailed polynomial re-
gression using each type of constraints as independent inputs does not
significantly improve the quality of the fit and further suggests that all
the BS (and BB) constraints contribute to increasing the Young's mod-
ulus with a fairly similar energy “weight” ε.

Fig. 2b shows the E values predicted by Eq. (1). Overall, we find that
the E values predicted by Eq. (1) agree well with the simulated values
(see also Fig. 3a), although our topological model tends to slightly
underpredict the Young's modulus of select calcium aluminate glasses
on the CaO–Al2O3 joint. Although the simulated values are here used to
parameterize the εBS and εBB coefficients in Eq. (1), it is nevertheless
striking that the complex compositional dependence of the Young's
modulus of CAS glasses can be well reproduced with only two fitting
parameters. We also note that our topological model does not keep the
memory of the “noise” present in the MD data, which suggests that the
model is not overfitted.

As a final validation of our model, Fig. 3b and c show a comparison
between the Young's modulus predictions from our topological model
(Eq. (1)), the simulation data, and available experimental data [50–61]
for two joints, viz., [SiO2]= 60% and [CaO]][Al2O3]. These two
series specifically aim to investigate (i) the effect of the degree of
polymerization of the network (i.e., fraction of non-bridging oxygen)
and (ii) the effect of network-forming atoms (i.e., Si vs. Al) at constant
degree of depolymerization (i.e., in fully charge-compensated glasses).
We note that our TCT model tends to slightly under- and over-estimate
the Young's modulus of Ca- and Si-rich glasses, respectively—which is
reminiscent of the predictions of the MD simulations. Nevertheless, we
observe a good overall agreement between simulated data, topological
predictions, and experimental data. In contrast, we find that the MM
model systematically underestimates E and does not properly capture

Table 1
Summary of the average number of bond-stretching (BS) and bond-bending
(BB) constraints created by each atomic species in (CaO)x(Al2O3)y(SiO2)1–x–y
glasses. Note the BS constraints are here fully attributed to the cations. The
quantities rCa–NBO and rCa–FO refer to the average number of non-bridging
oxygen (NBO) and free oxygen (FO) atoms around each Ca atom.

Species Fraction BS BB

Si 1 – x− y 4 5
Al 2y 4 5
Ca x rCa–NBO+ rCa–FO 0
O 2− x+ y – –
FO – 0
NBO – 0
BO – 1
TO – 3

Fig. 1. Ternary diagram showing the volumic density of (a) bond-stretching (BS) and (b) bond-bending (BB) constraints as a function of composition in the
CaOeAl2O3eSiO2 glass system.
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the non-linear nature of the Young's modulus data. Overall, these re-
sults strongly support the ability of our new topological model to offer
reliable predictions of Young's modulus values over the entire CAS
ternary domain.

5. Conclusions

In summary, the results presented herein demonstrate that the
Young's modulus of aluminosilicate glasses can be accurately predicted
based on the volumetric densities of BS and BB topological constraints.
As such, topological constraint theory offers a powerful framework to
accelerate the design of new glass formulations with tailored stiffness.
The atomistic origin of the energy coefficients εBS and εBB and whether
their values depend on the considered glass system should be in-
vestigated in future work.
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