Extreme Mobile Broadband Tier-II Fronthaul Network
Enabled by a New DNN Machine Learning Framework
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Abstract: We propose a new DNN framework for the next-generation mobile fronthaul network
supporting tier-Il enhanced mobile broadband. The mobile fronthaul network integrates the GPU
for efficient resource-saving machine learning. In addition, the framework can achieve over 30%
relative capacity improvement.

1. Introduction

Machine Learning techniques have been known as the primary driving force for the coming Fourth Industrial
Revolution [1]. Recently, both academia and industry put togetherheroic efforts in delivering new machine learning
methodology as well as parallel computing hardware. New optimization algorithms like SGD [2] and Adamax [3]
have dramatically facilitated the robustness and efficiency of model training. Besides, advanced hardware like Tensor
Processing Unit (TPU) by Google and Graphic Processing Unit (GPU) by Nvidia provide the robust platform for
parallel computing execution [4-5]. Neural networks are the most popular methodology for machine learning due to
their robust modeling capability especially those with several hidden layers. Neural network based techniques have
already shown their strength in the field of natural language processing and computer vision [6-7]. However, their
applications into Mobile Fronthaul (MFH) are still new. Due to the rising data-demand through mobile access, and
the broader RF spectrumresource exploitation of the coming 5G new-radio (5G-NR) system, technicaland conceptual
revolutions are redefining the next-generation MFH network [8]. From the released 5G-NR specifications by 3GPP,
three primary use cases are defined, including enhanced mobile broadband (eMBB), massive machine-type
communication (mMTC), and ultra-reliable low-latency communication (URLLC). Since eMBB is targeting the larger
network capacity and the higher peak datarate, neural-network becomes an excellent candidate satisfying the eMBB

demands. Therefore, we propose the new framework for the next-generation MFH supporting eMBB.
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Figure 1. Proposed machine learning framework of the next-generation mobile fronthaul network.

2. Research Results

A conceptual diagram of next-generation MFH network implementing neural network is illustrated in Fig. 1. The
MFH network is consist ofthe central unit (CU), distributed unit (DU) and remote radio unit (RRU) [9-10]. The neural
network can be designed for realizing signal equalization or decoding in tier-Il MFH transmission connecting the CU
and DU. Here, we for the first time propose an innovative framework, namely cloud GPU in CU and remote GPU in
DU. Due to the massive number of parameters in a deep neural network, the model training from scratch to the
optimum is resource consuming. Shifting the initial training load to the CU with the powerful cloud GPU station will
be an efficient solution. Once the initial training is completed, the model can be passed down to the DU for adaptive
training to tackle the dynamic channelenvironment. There are three major types ofneural network, which are the deep
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neural network (DNN), convolutional neural network (CNN) and recurrent neural network (RNN) [11]. The design
and combination of the DNN, CNN, and RNN depend on the specific task goal.

The DNN signal recovery mechanism is implemented at the DU to decode the received signal from the CU. As
shown in Fig.2(a), the DNN takes thereceived sample with its previous L, and subsequently, L samples as the input.
K hidden layers are added to improve the model fitting capability. At the output layer, the number of neurons depends
on the specific modulation scheme. For example, PAM-M corresponds to M output neurons. ReLU activation
function, which is known for fast converging and ability to avoid gradient vanishing, is incorporated in each neuron
of the hidden layers. Softmax activation function is used at the output layer for classification, while loss function is
defined as categorical-crossentropy.
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Figure 2. (a) K hidden layers PAM-M decoding deep neural network. BER over (b) data rate, (c) ROP comparison.

In the experiment, we prove the framework’s functionality using an intensity-modulation direct-detection (IMDD)
system. A 20-Gbaud random PAM-8 signal with 256-K symbol length is generated through a 65-GSa/s arbitrary
waveform generator (AWG) and modulated onto a directly modulated laser in the CU. The modulated optical signal
is then fed into a 30-km standard single mode fiber (SSMF) and detected by a PIN photodetector in the DU for optical
to electrical conversion. An 80-GSa/s oscilloscope samples the electrical signal for offline digital signal processing.
After down-sampling and synchronization, the first 64 K received samples are used as the training set of the DNN.
The cloud GPU trains the initial optimized model, and then the remote GPU uses the pre-trained model for further
training to adapt the channel variations. We experimentally compare the BER performance between the DNN and the
2nd order Volterra over different data rate/received optical power (ROP). In Fig. 2(b), a 14.5-Gbps gain is achieved,
corresponding to 30.2% relative capacity improvement. Besides, the DNN demonstrates a 1.7-dB sensitivity gain at
the 7% overhead FEC-HD threshold as shown in Fig. 2(c). A 60 Gb/s over 30-km SSMF tier-Il MFH transmission
based on an IM-DD systemwithout dispersion compensation using the neural network is thus experimentally proved.

3. Conclusions

In this paper, we have experimentally demonstrated the efficacy of neural network’s implementation into the next-
generation MFH network between CU and DU. The proposed novel MFH framework achieved over 30% relative
capacity improvement. The framework shifts the machine-learning burden to the cloud GPU of the CU, with minimum
training resource required at the DU to tackle small channelvariance. Along with recent progress in machine-learning
algorithm and hardware, this new framework will be beneficial to enable extreme mobile broadband services.

References

[1] L. Floridi, “Attificial intelligence’s new frontier: Artificial companions and the fourth revolution,” Metaphilosophy,vol. 39,no. 4-5, pp. 651—
655,2008.

[2] Bottou, Léon."Large-scalemachine learning with stochastic gradient descent." In Proceedings of COMPSTAT2010, pp.177-186. Physica-
Verlag HD, 2010.

[3] D.P.Kingmaandl. Ba, “Adam: A method forstochastic optimization,” arXiv preprint arXiv: 1412.6980,2014.

[4] Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, W olfgang Macherey, Maxim Krikun et al. "Google's neural
machine translation system: Bridging the gap between human and machinetranslation." arXivpreprint arXiv:1609.08 144 (2016).

[5] Lindholm, Erik,John Nickolls, Stuart Oberman, and John Montrym. "NVIDIA T esla: A unified graphics and computing architecture." /[EEE
micro 28, no. 2 (2008).

[6] Collobert, Ronan, and Jason Weston. "A unified architecture for natural language processing: Deep neural networks with multitask leaming"
In Proceedings of the 2 5th international conference on Machine learning, pp. 160-167. ACM, 2008.

[71 C.H.Chen, ed. Handbook of pattern recognition and computer vision. World Scientific,2015.

[8] Lien, Shao-Yu, Shin-Lin Shieh, Yenming Huang, Borching Su, Yung-Lin Hsu, and Hung-Yu Wei. "SG Newradio: waveform, frame structure,
multiple access, and initial access." IEEE Communications Magazine 55,10.6 (2017): 64-71.

[9] Y. Alfadhli, M. Xu, S. Liu, P. C. Peng, and G.-K. Chang, "Real-Time Demonstration of Adaptive Functional Split in 5G Flexible Mobile
Fronthaul Networks," Optical Fiber Communication Conference (OFC 2018),paper Th2A.48,2018.

[10] M. Xu, J. Shi, J. Zhang, J. Yu, and G.-K. Chang, "High-capacity Tier-II fronthaul network with SSB-DD multiband OQAM/QAM-CAP,"
European Conference on Optical Communications (ECOC 2017), paper P2.SC8.58,2017.

[11] Deng, Li, and John C. Platt. "Ensemble deep learning for speech recognition." In Fifteenth Annual Conference of the International Speech
Communication Association.2014.



