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Differential Energy Profiling: Energy Optimization via Diffing Similar Apps

Abhilash Jindal and Y. Charlie Hu
Purdue University and Mobile Enerlytics, LLC

Abstract

Mobile app energy profilers provide a foundational en-
ergy diagnostic tool by identifying energy hotspots in the
app source code. However, they only tackle the first chal-
lenge faced by developers, as, after presented with the en-
ergy hotspots, developers typically do not have any guid-
ance on how to proceed with the remaining optimization
process: (1) Is there a more energy-efficient implementa-
tion for the same app task? (2) How to come up with the
more efficient implementation?

To help developers tackle these challenges, we devel-
oped a new energy profiling methodology called differ-
ential energy profiling that automatically uncovers more
efficient implementations of common app tasks by lever-
aging existing implementations of similar apps which
are bountiful in the app marketplace. To demonstrate
its effectiveness, we implemented such a differential en-
ergy profiler, DIFFPROF, for Android apps and used it
to profile 8 groups (from 6 popular app categories) of
5 similar apps each. Our extensive case studies show
that DIFFPROF provides developers with actionable di-
agnosis beyond a traditional energy profiler: it identifies
non-essential (unmatched or extra) and known-to-be in-
efficient (matched) tasks, and the call trees of tasks it ex-
tracts further allow developers to quickly understand the
reasons and develop fixes for the energy difference with
minor manual debugging efforts.

1 Introduction

Despite the prevalence of smartphones, the user expe-
rience has remained severely limited by their battery life.
As such, major mobile platform vendors such as Apple
and Google have taken initiatives encouraging app devel-
opers to take effort optimizing their apps [7, 26].

The typical development cycle for optimizing the en-
ergy drain of mobile apps is similar to that for optimiz-
ing the running time of traditional software — iterating
the process of (1) finding hotspots in the app source code
that contribute to a significant portion of the total app en-
ergy drain, and then (2) determining whether and how the
energy hotspots can be restructured to drain less energy.

However, modern mobile apps are highly complex,

easily consisting of millions of lines of source code
and third-party software, and interacting with the OS-
provided frameworks in complex ways. Without the help
of automatic tools, even finding energy hotspots in the
app source code by developers would be very hard.

To this end, mobile app energy profilers (e.g., [32, 31])
made a major step forward by providing a foundational
energy diagnostic tool that automatically identifies en-
ergy hotspots in the app source code. However, these
profilers only help with the first step of the app energy
optimization process, because after presented with the
energy hotspots, developers typically do not have any
guidance on whether and how the energy hotspots can
be restructured to drain less energy.

To help app developers with this remaining challenge
in the energy optimization process, in this paper, we de-
velop a new energy profiling methodology called differ-
ential energy profiling (or energy diffing for short) that
can automatically uncover more efficient implementa-
tions of common app tasks, and in doing so, not only
determines whether an energy-hotspot code segment can
be optimized, but also gives hints on how to optimize it.

The basic idea behind differential energy profiling is
intuitive: if we can find a set of similar apps by dif-
ferent developers that implement many identical app
tasks, chances are the implementations differ and will
have different energy footprint. Directly comparing their
source-code energy profile generated by an energy pro-
filer should expose more efficient implementation from
the less one for the same app tasks.

In this work, we first make three key observations
about the uniqueness of the mobile app marketplace and
common mobile app development practice: (1) Because
of the low barriers to entry of app development, for every
popular app in the app market, there are typically a few
dozen competing apps that implement similar or identi-
cal app functions or app features. (2) Using a traditional
energy profiler, we profiled 8 selected app groups from
6 popular app categories from Google Play, each consist-
ing of 5 similar apps and 5 different versions of one of
them, and we found similar apps can differ significantly
in energy drain in performing similar app functions. (3)
We further observe that mobile apps make heavy use
of the common framework services provided by modern

USENIX Association

13th USENIX Symposium on Operating Systems Design and Implementation 511



mobile OSes such as the Android framework, and our
profiling analysis of the above 8 app groups has shown
similar apps in each group share 38.6% to 81.9% of the
same framework method calls and spent 44.0% to 96.7%
of their app energy drain in calling framework services.

Observations (1) and (2) suggest it is possible to learn
more efficient implementation of the same app task by
comparing the energy profiles of similar apps, but if apps
have very different source code structures, such compar-
ison may not be effective. Observation (3) affirms such
comparison of similar apps is actually meaningful and
potentially effective.

We then present the design and implementation of
such a differential energy profiler, DIFFPROF. Develop-
ing DIFFPROF faces three challenges: (1) What should
be the diffing granularity? (2) How to identify the diffing
units in the source-code energy profiler output of each
app? (3) How to actually diff the energy profiles of simi-
lar apps? We address these challenges as follows:

(1) Using app tasks as the diffing granularity. We ar-
gue following the widely adopted modular programming
principle, an app is typically structured to implement a
number of app features or tasks. Since the ultimate goal
of energy diffing is to uncover more efficient implementa-
tions of app tasks, the ideal diffing granularity that most
directly helps the developers should be an app task.

(2) Characterizing how app tasks manifest in call
trees. Diffing at the app task granularity requires identi-
fying app tasks in the call tree output by a source-code en-
ergy profiler. To address this challenge, we examine the
call trees for top 100 non-game apps and find that app
tasks manifest themselves as Erlenmeyer flask-shaped
slices (denoted as EFLASKS) represented in (call path,
framework-method, subtree) tuples where the call path
identifies the context of the task, the framework-method
is used to invoke the framework service to accomplish
the task, and the subtree captures the particular execution
of the framework service.

(3) An efficient EFLASK matching algorithm. We
give insights on how and why different implementations
(EFLASKS) of the same app task differ which motivates
the need for approximate EFLASK matching. We de-
velop to our knowledge the first EFLASK-shaped tree
slice matching algorithm that accurately finds similar
EFLASKS corresponding to the same app task.

To demonstrate its effectiveness, we implemented
DIFFPROF on top of a state-of-the-art energy profiler
EPROF [32] for Android, and compared it to EPROF
in profiling 8 groups (from 6 popular app categories in
Google Play) of 5 similar apps each. We show DIFFPROF
accurately identifies matched tasks that account for 79%
of the app total energy drain on average as well as unique
tasks (21% of total energy on average), in similar apps.

Further, we conducted 12 case studies to show that

DIFFPROF provides developers with actionable diagno-

sis beyond a traditional energy profiler: (1) When EPROF

identifies energy bottlenecks, they may be necessary or
not inefficient; DIFFPROF identifies non-essential (un-
matched or extra) and known-to-be inefficient (matched)
tasks; (2) The EFLASK of tasks extracted by DIFFPROF
further shows the details of the more efficient implemen-
tation, which allows the developer to quickly understand
the reasons for the energy difference with minor manual
debugging efforts (e.g., setting breakpoints) since the de-
veloper did not author the similar app. Out of the 12 in-
efficient or buggy implementations in 9 apps, 3 of which
have already been confirmed by developers, and remov-
ing them reduces app energy drain by 5.2%-27.4%.

This work makes the following contributions:

* It presents differential energy profiling, which tackles
a key challenge faced by app developers in optimizing
app energy drain - determining whether and how en-
ergy hotspots in app source code can be optimized, by
identifying and comparing different implementations
of the same tasks in similar apps.

* It presents DIFFPROF, an energy diffing tool for An-
droid mobile apps. It describes DIFFPROF’s implemen-
tation and the core algorithm that finds approximate
matching of Erlenmeyer flask-shaped slices in calling
context trees of similar apps, and demonstrates its ben-
efits over traditional energy profilers.

2 Key Insights

The DIFFPROF design is motivated by three key in-
sights we make about the mobile app market.

2.1 Competing/similar apps are abundant

Our first observation is about a unique phenomenon
of the mobile app marketplace: (O1) for every popular
app, there are typically a few dozen competing apps that
implement similar or identical app functions or app fea-
tures. The top 100 non-game apps in Google Play belong
to 34 functionally similar app groups and each of these
categories consists of many competing popular apps. Ta-
ble 1 lists 8 such similar app groups with apps in the
top 100 as well as outside the top 100 apps; the major-
ity of them have 50M+ downloads.! We see that many
groups include over a dozen similar apps each. More-
over, similar apps, e.g., competing apps such as Pandora
and Spotify, or a popular app (Candy Crush Saga) and
its dozens of clones, typically have similar user interac-
tions. For example, the music playback screens of all
music streaming apps have an album cover image, the
song and the album title, a progress bar, elapsed and re-
maining time text, and buttons to control music playback,
and every app performs music playback.
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Table 1: Eight groups of similar apps from top 100 non-game apps, their competitors, and energy drain measurement.
“*7: Popular but not a top 100 app, “+”: Pre-installed app.

App App Group Similar/Competing Apps Max/min Perc. energy
Category energy ratio | inframework
Communica- Messaging & Whatsapp, Google Hangouts+, Facebook Messenger, BBM, Line, 8.0 60.2% - 90.3%
tion calling Wechat, Viber, Skype, Tango, Whatscall, Telegram, TextNow, imo
Email Yahoo Mail, Gmail, Outlook, Android mail+, Aqua Mail*, Email 4.6 56.6% - 90.9%
For Any*, MailRU*, myMail*
Music & Music Spotify, Pandora, Soundcloud, iHeartRadio, Youtube Music, Free 4.2 49.6% - 93.8%
Audio streaming music, Napster, Google Play Music+, Apple Music*
Personalization Launcher GO Launcher, CM Launcher 3D*, APUS Launcher*, Solo 3.1 44.0% - 93.8%
Launcher®*, Hola Launcher*
Productivity File explorer ES*, FX*, Solid*, File explorer*, File manager* 53 89.3% - 94.9%
Shopping Shopping Wish, eBay, Amazon, Walmart, AliExpress, Kohl*, letgo* 32 83.1% - 96.7%
Tools Antivirus Supo Security, CM Security AppLock AntiVirus, 360 Security, AVG 2.8 53.5% -91.3%
AntiVirus, DU antivirus, Mobile Security & Antivirus*, Kaspersky
Antivirus Security*
Cleaning Clean Master, DFNDR, Fast Cleaner - Speed Booster, Turbo cleaner, 3.6 78.5% - 93.9%
Power clean Lionmobi, OK clean lite, DU speed booster & cleaner*,
Ccleaner*

2.2 Similar apps differ in energy drain

Given the abundance of similar apps for every popu-
lar app, we next ask the question: how do they stack
against each other in energy drain, in performing similar
app functions? To answer this question, we profiled the
similar apps in the 8 popular app categories on a Nexus
6 phone running Android 6.0.1 while connected to WiFi.

We use automated tests to perform identical actions
on the similar apps in each group and measure the en-
ergy drained by these actions using EPROF. In particular,
we use UI Automator, the Android black-box UI testing
framework, which does not require app source code.

For each group of similar apps, we first write a generic
base test that interacts with common UI elements. Next,
for each app in the cluster, we launch the app on the
phone and find the unique ids of all the UI elements in-
volved in the base test using Android’s uiautomatorview
tool. Finally, we run the base test with app-specific UI
element ids, thus performing homogeneous interactions
across similar apps. The specific tests for the 8 app
groups are listed in the sub-captions of Figure 1.

Figure 1 contrasts the total energy drain of 5 similar
apps and 5 versions of 1 app under the same user interac-
tions in each of the selected 8 app groups from Table 1.
We observe that the maximal to minimal energy drain
across the 5 apps in each group range between 2.8x to
8.0x, as shown in Table 1. We thus draw our second ob-
servation that (O2) similar apps easily differ significantly
in energy drain in performing similar app functions.

The above observation suggests that directly compar-
ing the energy footprint of similar apps at the source-
code level is promising to diagnose energy hotspots.
However, such comparison will be fruitful only if their
source code have significant overlap.

2.3 Framework services dominate app en-
ergy drain

Our next observation is that mobile apps make heavy
use of the common framework services provided by
modern mobile OSes such as the Android framework.
To simplify app programming, such frameworks imple-
ment and export to apps many services that implement
commonly performed tasks, e.g., the Android frame-
work provides LocationManager, DownloadManager, Me—
diaPlayer, and WindowManager, among others. Typi-
cally, an app presents requirements via configuration pa-
rameters to the services, and the services then perform
the low-level work on the app’s behalf. We hypothesize
that the heavy usage of framework services leads to a
high percentage of app energy drain occurring in these
common services and the framework methods called in
similar apps have a high overlap.

To confirm this hypothesis, we use EPROF to decou-
ple the energy spent in app methods from those spent in
framework services. First, we run dexinfo [5] on all the
framework jar files located in /system/framework/ on
the phone to identify all the framework packages such
as android.view, dalvik.system and java.math. Next,
for each app, we identify all the framework methods in
its energy profiling output belonging to these framework
packages. Finally, we aggregate their energy drain to
compute the total framework energy drain. The remain-
ing energy drain is marked as app energy drain.

Our results (details for only 4 app groups are shown
in Figure 2 due to page limit) show that the apps in the 8
app groups have significant pairwise overlap in the frame-
work methods called during the profiling run, between
38.6% and 81.9% (61.7% on average). Further, Table 1
shows that a significant portion of the total energy of the
apps in each group was spent in framework API calls,
ranging between 44.0% to 93.8% for Launcher apps to
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Figure 1: Energy consumption of similar apps in 8 app groups. Energy drain numbers (in ¢ Ah) are direct output of
EPROF, for the actual tests, which vary between 30 seconds to 1 minute long for different app groups.

between 89.3% to 94.9% for File explorer apps. We thus
draw our third observation that (O3) the heavy usage of
framework services leads to a high percentage of app en-
ergy drain occurring in these shared services, up to over
90% of the app energy consumption. This phenomenon
suggests learning more efficient implementations of app
functions by comparing their energy footprints not only
is possible, but actually is a meaningful and practical ap-
proach.

3 How to Diff Energy Profiles?

The above three key insights suggest comparing the en-
ergy profiles of similar apps generated by a source-code
energy profiler has the potential to automatically identify
inefficiencies in implementing common app functions in
similar apps. We call this approach differential energy
profiling, or energy diffing for short.

Developing such a differential energy profiler has to
address three challenges: (1) What is the diffing granu-
larity? (2) How to identify the diffing units in the energy
profiler output of each app? (3) How to actually diff the
energy profiles of similar apps?

3.1 What diffing granularity?
A mobile app typically implements many features. We
refer to the implementation of individual app features in

the source code and their invocations at runtime as app
tasks. Similar apps are expected to implement a common
set of core tasks pertaining to the apps’ common, main
functionality, e.g., music playback along with some basic
UI features (e.g., progress bar) for music streaming apps.

In addition, similar apps by different vendors often
support some differentiating features which result in dif-
ferent tasks at runtime. For example, among the five
streaming apps, SoundCloud uniquely depicts the audio
track using a waveform animation during music play-
back.

Since there are two potential factors that contribute to
the different energy drain of similar apps: (1) different
implementation of common app tasks, and (2) app tasks
unique to each of the similar apps, the natural granularity
for energy diffing of similar apps should be an app task.

3.2 How do app tasks manifest in call trees?

Diffing at the task granularity, however, faces a funda-
mental challenge: app tasks are not explicitly labeled by
developers. To overcome the above challenge, we exam-
ine how app tasks manifest in the call trees of Android
apps.

Android app programming is event-driven where the
Android framework implements frequently used tasks as
services. These Android framework services provide sev-
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Figure 2: Pairwise overlap of similar apps. Lower triangle boxes show the percentage of overlapping framework
method calls (0.30 means 30%). Upper triangle boxes show the matched app tasks in percentage of all tasks.

L=

A Framework subtree
Figure 3: A typical call tree.

eral Java interfaces and classes with callback methods
that apps can override. Apps then use the associated
registration-callback mechanism to register the overrid-
den callback app methods with the framework. Upon
an event, the Android framework calls these overridden
methods registered for the event.

We refer to Android framework methods as F-methods
and app methods as A-methods. The above asynchronous
programming suggests (1) an app’s energy profiling out-
put typically consists of many call trees [9], one for each
thread; (2) as shown in Figure 3, each call tree typically
starts with some framework method (Fj) that receives
call-back related messages and makes a callback into the
app (A1). The app callback method (A ) may call various
other app methods (folded in A) which later call another
framework method (F, or F3) to register more callbacks
(A») or for general processing that implements the task.

Using a script, we examined the call tree output by
EPROF for all the apps in Figure 1 and confirmed that
their call trees all follow the above structure, with one
minor variation: a path may contain only F-methods
(e.g., (Fp, Fp)). This happens when an app task
calls some framework method X that in turn regis-
ters an asynchronous callback of some other framework
method Y. When framework method Y is invoked, it
starts a new path off the root of the call tree consist-
ing entirely of framework methods. Typical general-
purpose framework methods that serve as the roots of
the call trees include Handler.dispatchMessage and

Binder.execTransact.

PRI

Main thread Thread - 1 Thread - n

(a) Call tree (b) Dynamic call graph (c) Calling context tree

Figure 4: Call trees, dynamic call graphs, and calling
context trees.

What constitutes a task in the call tree? The above call
tree structure suggests an app task typically manifests in
a call tree in an Erlenmeyer flask-shaped [19] slice with
three components 2, as shown in Figure 3:

* Call path: The call path from the root of the call tree
consisting of some F-methods followed by some A-
methods that lead to the F-method uniquely captures
the context of the task, i.e., under which the F-method
was called;

* F-method: The specific F-method invoked by the app
method that is the entry to the invoked framework ser-
vice that accomplishes the app task;

* Subtree: The actual execution of the F-method, given
the context and the parameters passed to the entry
method.

We denote the three-component structure as an EFLASK,

which is a (path, F-method, subtree) task tuple.

In practice, it is often not obvious to isolate all the
EFLASKS in a given call tree that correspond to app tasks,
due to the possibly many layers of interleaving of A-
methods and F-methods. Our EFLASK matching algo-
rithm described in §3.4 takes the call trees of two similar
apps and simultaneously identifies EFLASKS correspond-
ing to app tasks and finds matching tasks.

3.3 What tree structures to diff?

Before discussing the diffing algorithm, we first ex-
plore different options of tree structures to perform diff-
ing, as shown in Figure 4.

Call tree Since EPROF outputs a call tree for each exe-
cution profile, the baseline approach would be to directly
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diff the two call trees (CT). However, this is not practi-
cal, since an app task may be invoked many times during
a profiling run and thus its task tuple may appear many
times in the call tree output. Further, the call tree be-
comes hopelessly large, up to several million call tree
nodes in just a few minutes of a typical profiling run.

Dynamic call graph An alternative approach is to con-
vert call trees to dynamic call graphs (DCG) [9] and diff
DCGs instead, where every method executed has just one
corresponding method node in a DCG. However, using
DCG faces a fundamental challenge that a DCG is not
path preserving, i.e., it may contain code paths that never
occurred during the profile run. For example, the DCG
in Figure 4(b) contains path M — A — B — D which never
occurred in the CT in Figure 4(a). Paths need to be pre-
served for matching the EFLASKS of the same app task.

Calling context tree DIFFPROF overcomes the above
shortcomings of CT and DCG by building and using call-
ing context trees (CCT) [9], a middle ground between
call trees and dynamic call graphs. In a nutshell, two
method call nodes in the call tree are merged in the CCT
whenever both nodes have an identical path from the
root. In addition, recursive calls are merged to the non-
recursive ancestor to keep the tree bounded in size, for
example node A in Figure 4(c)’. Thus, using a CCT pre-
serves the valuable path information while significantly
reducing the number of nodes in the tree. In practice, we
found CCT to contain only tens of thousands of nodes in
a few minutes of profiling run, allowing our sophisticated
matching algorithm to run in less than 30 seconds (§5).

3.4 How to perform EFLASK matching?

We first discuss the need for approximate matching to
find EFLASKS corresponding to the same app tasks. We
then review prior tree matching algorithms, discuss their
drawbacks when applied to our problem, followed by our
EFLASK matching algorithm.

3.4.1 Need for approximate DIFFPROF matching

The above understanding of how app tasks manifest in
call trees in §3.2 suggests that different implementations
and hence their EFLASK structures of the same task in
two apps can differ in the following ways:

* The corresponding call paths may differ slightly. This
can happen for two main reasons. First, apps may
use slightly different mechanisms to achieve the same
app callback. For example, an app can start its
Runnable.run method directly from a new thread, or
via ExecutorService; the two lead to different paths
from root. Second, the app can use different app call-
backs for receiving similar events. For example, the
Turbocleaner app handles the “clean” button press us-
ing .onclick callback while the DFNDR app uses

.onItemClick callback after which both apps call ac-
tivity.startActivity to perform a common task.

o The entry F-methods may differ due to two main rea-
sons. First, the same task API can be provided by many
different framework classes. For example, both Https
URLConnectionImpl.getInputStream and HttpURL-
ConnectionImpl.getInputStream get data from a
server, one from an https and another from an http
connection.  Second, the same framework class
may provide many alternate APIs to perform the
same app task. For example, three different apps,
Wish, Kohl and letgo, share 8§ common nodes in
the call path from the root call and finally call
three different APIS, ImageView.setImageDrawable,
ImageView.setImageBitmap and ImageView.
setImageResource, respectively, for setting an image.

o The subtrees that reflect the actual executions of the
app task in similar apps can differ. Even when the de-
velopers use the same framework API call to accom-
plish a task, the program state and the call parameters
passed in can differ which lead the framework service
to take different paths resulting in different subtrees.

3.4.2 Prior tree matching algorithms

How to match two trees to find similar components
has been previously studied with a diverse set of ap-
plications such as matching RNA structures, structured
text databases and image analysis [12]. However,
prior matching algorithms are not suitable for matching
EFLASKS.

Exact path matching Let 77 and 7, be two CCTs
rooted at r; and rp, with the set of nodes denoted
by V(Ti) and V(7). Formally, exact path matching
produces a maximal one-to-one node matching* M C
V(T1) x V(T»), where for any pair (v,w) € {M — (r1,r2)}:

(r1,r2) €M and (P(v),P(w)) €M
(Path Condition) (1)

where P(v) and P(w) are parents of nodes v and w respec-
tively. However, exact path matching cannot match paths
(e.g., of EFLASK) with minor variations.

Prior approximate tree matching algorithms Tai et
al. [38] gave the first approximate tree matching algo-
rithm. This algorithm produces a maximal one-to-one
matching M where for any pair (vi,w), (v2,w2) € M:

vy is ancestor of v; iff wy is ancestor of wy
(Ancestor Condition) 2)
The output matching replaces the Path Condition in
Eqn. 1 with a significantly weaker Ancestor Condition

(i.e., Path Condition implies Ancestor Condition). How-
ever, the algorithm is Max-SNP hard.
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To reduce the running time, Zhang et al. [44] added a
Structure Respecting Condition to output matching. This
algorithm produce a matching M, such that for any pairs

(vi,w1), (v2,w2), (v3,w3) € M:
nca(vy,vy) =nca(vy,v3) iff nca(wy,wy) = nca(wy,ws)

(Structure Respecting Condition) 3)

where nca(x,y) is the nearest common ancestor of nodes
x and y. Due to the additional constraint, fewer match-
ing possibilities need to be considered, making the algo-
rithm’s running time polynomial.

However, these algorithms may match EFLASKS with
very different call paths. In contrast to the exact path
matching algorithm which focuses on matching the path
(component of EFLASKS) without considering the sub-
trees underneath, the above approximate matching algo-
rithms match two nodes only based on similarity of sub-
trees (another component of EFLASKS) underneath them
disregarding the call paths. The EFLASK matching al-
gorithm we propose below leverages both the path and
subtree information in matching two nodes, and in doing
so, matches two EFLASKS.

3.4.3 The EFLASK matching algorithm

The EFLASK matching algorithm relaxes the Path Con-
dition incrementally, i.e., the paths from root to matched
nodes in two trees can differ by at most o nodes, and
maximizes the subtree overlap. We replace the Path Con-
dition in the exact matching algorithm with a Relaxed
Path Condition while retaining the Structure Respecting
Condition (Eqn. 3) and Ancestor Condition (Eqn. 2) to
find such matching. Formally, we wish to produce a max-
imal one-to-one matching M, that satisfies Eqn. 2 and
Eqn. 3 and for any pair (v,w) € M:

w € Cq(v)
(Relaxed Path Condition) 4)

where Cy(v) C V(Tz) is the candidate set, where the path
from T»’s root to each node in C (v) differs from the path
from 77’s root to v by less than or equal to & nodes. For
example, Figure 5 highlights the nodes in the candidate
set Co (D) for o equal to 0, 1 and 2. Cy(b) contains just
1 node that has the same path from its root as the b in
Ti. Ci(b) includes 3 additional nodes a, b and ¢ whose
path from root becomes identical to &’s from 7;’s root,
r — a — b by doing exactly one operation — deleting b,
deleting a and replacing b by c, respectively.

Notations Before presenting the algorithm we define a
few notations. Let 77,7, denote two unordered labeled
tree with maximum degrees D and D», respectively. We
denote the set of children nodes of node v by child(v)
and its label by label(v). The path from the root to node
v thus forms a string of labels and is represented by s(v).

Ca(b)

T — Q0 +— =
O
(3]
o

«» | Cy(b) b [¢

T L

Figure 5: Candidate set Cy(b) for & =0, 1 and 2.

Let 6 denotes an empty tree and let 7 (v) denote the sub-
tree of 7 rooted at a node v € V(T') and F(v) denote the
forest under node v, F(v) =T (v) — {v}.

While matching the nodes in two trees, we can per-
form three types of edit operations to the tree nodes — (1)
arelabeling operation to change the node label, (2) a dele-
tion operation to delete node v and make all the children
of v the children of P(v), and (3) an insertion operation,
the complement of deletion.

Let A denote a special blank symbol. The cost of each
edit operation can be specified using a cost function, 7.
Thus, y(I,L) is the cost of replacing /; by I, y(I1,A) is
the cost of deleting /; and y(A,1;) is the cost of inserting
l1. yis generally assumed to be a distance metric, i.e., Y is
non-negative, symmetric and follows triangular inequal-
ity. We extend the notation such that y(v,w) for nodes
v and w denotes y(label(v),label(w)). We assume unit
cost distance in the design of algorithm, i.e., Y(l1,5) =1
when 11 75 lz.

Now we are ready to define a few functions and their
properties which form the basis of our algorithm.

Path edit distance function We first find Cy(v) by
computing a path edit distance function p. For some
v € V(T1) and w € V(Ta), p(s(v),s(w)) is the to-
tal cost of edit operations required for v and w to
have identical paths from the root. Thus Cy(v) =
{weV(n)lp(s(v),s(w)) < a}.

Since paths s(v) and s(w) are strings, path edit distance
function p(s(v),s(w)) is thus equal to the string edit dis-
tance [41] between s(v) and s(w) and hence can be cal-
culated in a similar manner.

Since we only care about path edit distance when it is
less than or equal to ¢, we prune some computation as
soon as the distance exceeds ¢.. We can show the runtime
for computing Cq, is O(min(N; D2, NiN2)).

Subtree match function Next, we define a subtree
match function [y between two trees. For v € V(T})
and w € V(Ta), to(T1(v), To(w)) is the size of maximal
matching of subtrees 7;(v) and T>(w) where the match-
ing nodes’ paths differ by at most .
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Before providing the next lemma, we need the fol-
lowing definition. A restricted matching RM(v,w) is a
matching between nodes of Fj(v) and F»(w) and is de-
fined as follows: (1) RM(v,w) follows all the match-
ing conditions — Relaxed Path Condition (Eqn. 4), Struc-
ture Respecting Condition (Eqn. 3), Ancestor Condition
(Eqn. 2), and (2) if (p,q) is in RM(v,w), p is in T} (v;)
and ¢ is in T>(w;), then for any (p',q') in RM(v,w), p’
is in 7j(v;) iff ¢’ is in Tr(w;) where v; € child(v) and
wj € child(w). In other words, node from a subtree 7; (v;)
must only map to nodes of one subtree 7>(w;) and vice
versa.

Motivated by the constrained edit distance algo-
rithm [44], we derive the recurrence relationship for .

Lemma 3.1. Forallve V(T\) andw € V(Tr),
Ha(Ti(v),0) =

Ha (0, Ta(w))
Ha(T1(v), Ta(w)) =

0
0
0 ifwé Ca(v)

w;’erc"}uc'll)fl(w)ua 7). Taw)

max U (T (vi), Th(w))

Ua (Tl (1})7 T2 (W)) = max leChild(V) ;
RM
o )pta( (v,w))
+(1=y(vw))
otherwise

Proof. Proof is similar to [44], we skip the details here.
O

Again, for any v € V(T}), we need to compute
the Uy (71 (v),Ta(w)) function described above for all
w € Cq(v). The runtime for computing py is O(N; -
min(DS™ N>) - (D1 + D) - log(Dy + D5))>.

The EFLASK matching algorithm Putting things to-
gether, the flexible tree matching algorithm makes two
passes. First, it makes a top-down pass to compute Cy (V)
forall ve V(Ty), i.e., find nodes with call paths different
by at most o nodes. Next, it makes a bottom-up pass to
compute Uy (T1,72). Third, it uses a simple backtrack-
ing mechanism to find for each node v € T; the matching
node w € T, that maximizes the 77-75 tree match. Finally,
it finds the matching EFLASKS based on these maximally
matched nodes.

The two passes together simultaneously accomplish
matching of both the call path and the subtree compo-
nents of similar EFLASKS.

3.5 Preprocessing CCTs to facilitate effec-
tive matching

The «a value affects the tradeoff between finding more

matching tasks (that vary in their call paths) and false

positive matches. To make the algorithm more effective,

we identified several factors that may increase the path

O Framework method

bar.onClick foo.onClick —‘ *onClick %

bar.X
ar foo.A foo.B O O
Q mo.c é
N O (a) CCTof (b) CCTof (c) CCT of
app-1 app-2 app-3

App method

(a) CCT of (b) CCT of app 2 (c) CCT with
app 1 merged app nodes

Figure 7: Class hi-
Figure 6: App namespace problem. erarchy problem.

distance between the paths for the same app task, and pre-
process the CCTs to remove such factors so that more
matchings can be found with smaller & values.

App namespace problem The call paths for the same
task in two CCTs can contain many app methods that are
unique to either app as different developers are likely to
structure and name the app methods differently. Such
app-specific app methods can easily blow up the path
edit distance of the call paths of a matching task. Fig-
ure 6(a,b) show an example of two paths with differing
app methods.

We observe that all the callback app methods must
override some predefined framework methods, and the
remaining internal app methods called from other app
methods have arbitrary names and are also often obfus-
cated. We thus merge all the internal app method calls
into the app callback method root node as shown in Fig-
ure 6(c), and drop the app specific class names from
app’s callback node to allow matching callback methods.

We note that like using DCGs, merging app methods
to address the app namespace problem conceptually also
reduces path sensitivity, but it actually improves the ef-
fectiveness of task matching. This is because the internal
methods of different apps tend to be named very differ-
ently and thus path sensitivity to app method names actu-
ally harms path similarity matching.

Class hierarchy problem A similar issue arises due to
the object-oriented nature of Java, as shown in the follow-
ing example. The two apps in Figure 7(a,b) share a same
task pointed by the dashed arrow, but the first app uses
method s.a which extends and calls method T.2 and the
second app directly uses T.a. Each such occurrence in
the path increases the path edit distance by one, and more
occurrences will quickly inflate the path edit distance.

We solve this problem in two steps. First, we merge
T.A into the caller node s.a (s’ .a). Second, we tweak
the distance function Yy to allow matching s.a with T.a,
i.e., ¥(s.a,T.a) = 0. This allows matching the common
task in Figure 7(a,b) with a path distance of zero while
retaining the same path edit distance for sibling classes
in Figure 7(a,c).
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F-method only paths A third situation happens when
a path off the root consists entirely of framework meth-
ods as discussed in §3.2 (path (Fy, Fy) in Figure 3). When
this happens, in energy profiling, the energy consump-
tion of the call path is not propagated to its asynchronous
caller, i.e., the app task, which leaves the developer clue-
less as to what app task caused the energy drain.

DIFFPROF patches such asynchronous framework
only subtrees to its parent app task by adding additional
logging in the Android framework. In particular, it logs
the callback object’s .hashcode () along with the current
timestamp and thread id, when an asynchronous callback
is enqueued in framework and when the callback is later
dispatched. During post-processing, for each dispatch
method call, the nearest preceding enqueue method call
with matching object . hashcode log is patched as the dis-
patch method call’s asynchronous caller.

4 Implementation and Usage

We implemented DIFFPROF on top of EPROF [32]
with 5.7K lines of Java code. DIFFPROF is packaged
as an IDE plugin that can be installed on a laptop, with
a GUI front-end, for interacting with the developer and
computing and showing the energy diffing result. EPROF
traces are collected on a phone running a modified An-
droid 6.0.1 framework version that adds 95 lines to cap-
ture hidden causal relationships due to asynchronous pro-
gramming (§3.5). ¢

After collecting EPROF traces of two similar apps, the
developer specifies these traces to DIFFPROF, and DIFF-
PROF performs energy diffing in the following steps. (1)
First, DIFFPROF patches the call tree dumped by EPROF
using the call timing and the log timestamp as described
in §3.5. (2) Next, DIFFPROF converts EPROF’s CT out-
put into CCT and dumps the CCT along with the inclu-
sive and exclusive energy consumption by and the num-
ber of recursive and non-recursive invocations of each
CCT node. (3) Next, the developer is presented with
a list of Java package names that appeared in either app
trace to determine app packages used for merging app
methods as described in §3.5. By default, all packages
not belonging to the Android framework are marked as
app packages. For comparing two different apps, devel-
opers can skip this step, since packages not belonging to
the Android framework are already marked as app pack-
ages. When comparing two versions of the same app,
however, this presents an opportunity for the developer
to unmark certain app packages to expose app-internal
path information (Figure 6) during matching. (4) DIFF-
PROF performs the EFLASK matching algorithm on the
pair of CCTs. (5) Finally, since the EFLASKS of multiple
tasks may share a common path, DIFFPROF assigns the
energy drain for each task as the inclusive energy of the

Table 2: Average running time and matched tasks when

adjusting a. The results are averaged over all app pairs

in each group. a=0 gives the exact matching algorithm.
o 0 1 2 3 4 5
Avg. time (sec) 020 | 1.12 | 489 | 7.79 | 164 | 25.7

Avg. % of | 10.8 15.6 18.0 | 19.5 | 21.3 | 229
matched tasks

F-method.

DIFFPROF gives two outputs: (1) a merged list of
matched (with the other app) and unmatched tasks in the
app, sorted by the energy drain for unmatched tasks and
the energy difference for matched ones, i.e., based on the
potential room for improvement; and (2) upon selection,
a task’s EFLASK in a graphical view.

5 Evaluation

Our evaluation answers the following questions:
(1) Does DIFFPROF effectively identify matching and
unique tasks among similar apps? (2) Does DIFFPROF
offer added benefits over EPROF, in particular, how does
it help developers with understanding and coming up
with more efficient implementation?

5.1 Experimental setup

We use DIFFPROF to profile popular apps belonging
to the 8 app groups in Table 1. For each group, we pick
5 different apps and 4 older versions of one of the 5 apps,
same as in Figure 1. In running the tests, we ensure user
interaction homogeneity using automated testing as de-
scribed in §2.2. All app tests are less than 1 minute long
and are run on a Nexus 6 phone running DIFFPROF’s
modified version of Android 6.0.1. The traces are post
processed and task matching is performed on a Macbook
pro laptop with a 2.5 GHz Intel i5 CPU and 8GB 1600
MHz DDR3 main memory.

Impact of & We first evaluate the impact of changing
o on the EFLASK matching algorithm’s running time and
output. Table 2 summarizes the results. We see that as
expected, the running time grows close to exponentially
with the a value (from 0 to 2 and from 2 to 4). On av-
erage, the algorithm produces the energy diffing output
within half a minute for all values of o < 5.

Next, we observe that the average percentage of match-
ing tasks grows steadily as we increase the value of «,
starting 10.8% on average at o=0 up to 22.9% at o=5.
The growth slows down at o = 5.

Based on the above result, when profiling the 8 app
groups, for each app pair in a category, we run DIFFPROF
to find the matching tasks using the lowest « that can
match 20% of the tasks, up to & = 5 (shown as dynamic
a in Table 3).
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5.2 Diffing results

The pairwise task overlap for 4 app groups (Music
streaming, Cleaning, Email, Launcher) are shown in the
upper triangles in Figure 2. We see that the task overlap

between similar apps is significant, ranging between 7%— Table 3: Task overlap for all apps.
61%, with an averag.e of 27%, 24%, 28%, and 17%, for Dynamic & =0
the 4 groups, respectively. App 0 1 [ 2] 3] 4] Unique| 0
Table 3 gives the details of diffing results for each app tasks’
in the 8 app groups. For each app, we classify all its e‘;'g"y
tasks into tasks that could not be matched with any of the ATTVIrS
4 other apps in its category and tasks that were matched AVG 424 T 191] 45 5 [ 5 [ 727% | 498
with 4, 3, 2 or 1 other app(s). The columns under “Dy- CMSecurity | 433 | 1691 36 | 6 | 5 | 20.36% | 532
namic ¢ show that the count of such tasks for each app bu 252 | 68 1 271 8 | 5 | 14.10% | 286
. . . . Kaspersky 126 | 48 | 28 | 7 5 26.01% | 149
varies for dlfferent categories, e.g., Email apps have 17 MobileSee | 165 | 52 1391 9 | 5 | 300205 | 227
5-way matching tasks while Music apps have only 2, sug- Cleaner
gesting the apps in different categories have different lev- CCleaner 301 | 100 41 | 18 | 8 | 23.43% | 395
els of overlapping tasks. We manually examined 20% of M 797 | 2901 92 1 441 8 | 29.18% | 863
. ... DFNDR 402 | 138 | 77 | 46 | 8 | 26.48% | 495
the matched tasks and did not find any false positives. Fast 265 | 3561 92| 551 8 | 5.11% | 286
Table 3 also shows that the percentage of energy Turbo 250 | 234| 69 | 46 | 8 | 11.54% | 259
drained by matched tasks (i.e., 1 minus that of unique Email
tasks energy) is over 70% of the total energy drained by f/{“q;md S8 67 125 | 11| 171 17.26% | 656
. ar
the app fgr'32 out of the 40 apps. This suggests that AquaMail | 223 | 59 | 28 | 21| 17| 6.67% | 308
although it is hard to measure the coverage (false nega- Email For | 331 | 154| 193| 40 | 17 | 3.79% | 338
tive) of task matching produced by DIFFPROF, in prac- Any
. Mail RU 131 | 129 199| 47 | 17 | 0.60% | 145
tice, DIFFPROIf Rroduces matched tasks that already. ac myMail 51 | 200l 202 20| 171 310% | as4
count for a majority of the app energy qralp which gives File Explorer
app developers enough focus for optimization. ES 244 | 43 | 14] 4 | 5 | 25.15% | 272
DIFFPROF also exposes app unique tasks that drain FX 83 |33 | 5 | 2|5 | 497% | 97
significant amounts of energy. Table 3 shows Sound- E}Z f/;‘;; ;;(2) ‘5? 193 i 2 éggég" ;2(6)
. . . ‘0
Cloud and.CM launcl:ler dra.ln 53.7% and 43.7% of the to- Solid 260 47 16 2 5 7.31% 295
tal energy in performing unique app tasks/features, wave- Instant Messaging and Calling
form animation and rotation animation, respectively. Hangout 780 | 160| 44 | 7 | 8 | 36.50% | 881
To show the effectiveness of the EFLASK algorithm, Line 201 | 88 | 351 21\ 8 | 29.14% | 4ll
. . Messenger 928 | 256 59 | 13 | 8 | 28.00% | 1167
Table 3 last column lists the number of tasks in each app TextNow 1405 1941 40 | 4 | 8 | 38.47% | 1542
that do not get matched using the exact path matching al- Whatsapp 274 | 107| 26 | 15| 8 | 40.51% | 391
gorithm (o = 0). We see that the EFLASK matching algo- Launcher
rithm with dynamic ¢ reduces the number of unmatched Apus 430 1 112346 1 8 ) 32.77% | 495
. CcM 252 | 65 | 30| 11 | 8 | 43.65% | 318
tasks by 13.5% on average (shown in second column). Go 61 | so 111l s 1 8 | 2621% | 204
Hola 212 | 45 | 21| 4 8 | 29.74% | 252
5.3 Effectiveness Solo 560 132 31| 7 8 26.23% | 640
Music
We discuss how DIFFPROF offers added benefits over FreeMusic 11 6161 1121 133% %
a standard energy profiler through extensive case stud- Pandora 97 | 18 | 5 | 3 | 2 | 17.34% | 107
ies. Our case studies show that DIFFPROF provides de- SoundCloud | 123 | 24 | 10 | 3 | 2 | 53.72% | 135
| ith acti ble di isb d a standard Spotify 14 5 3 3 2 6.23% 14
velopers with actionable diagnosis beyond a standard en- {HeartRadio | 98 | 34 | 8 | 3 | 2 | 872% | 104
ergy profiler in two ways: (1) DIFFPROF identifies non- Shopping
essential (unmatched or extra) and known-to-be ineffi- Amazon 1030 [ 135] 54 [ 17| 10 [ 32.03% | 1118
cient (matched) tasks; (2) the EFLASKS of tasks extracted Kohl 900 | 218 80 | 24 | 10 | 27.84% | 1041
by DIFFPROF further expose the reasons for the more Wish 13211 2641 94 ) 30110 ) 23.13% | 1473
y DIt urther exp . _ eBay 715 | 172| 86 | 32 | 10 | 26.69% | 840
efficient implementation. For convenience, in the fol- letgo 618 | 222 108 31| 10| 19.55% | 729
lowing, we often refer to a task by the F-method in its Average 400 | 119 51| 16 | 8 | 21.14% | 473

EFLASK 3-tuple.

Methodology We ran DIFFPROF on the top 3 energy-
draining apps in each of the 8 groups against the least
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Table 4: Buggy and inefficient tasks in case studies and
their energy drain.

App Task Task % of
energy total
drain energy
(1LAh) drain
Unmatched tasks
Hangout ContentResolver.query 443 10.1%
Kohl ObjectInputStream.readObject 12.8 3.9%
Kohl ObjectOutputStream.writeObjec  10.5 3.2%
Kaspersky | Thread.getStackTrace 39.6 14.8%
Pandora SharedPreferencesImpl ~ $Edi- 22.9 17.5%
8.0 torImpl.apply
DFNDR Runtime.exec 19.5 5.2%
Matched tasks
Wish Bitmap.compress 100.9 15.9%
letgo p-comp 7.14 3.6%
Wish . 126.3 19.9%
letgo BitmapFactory.decodeStream 501 259
Pandora5.7 . 43.6 28.1%
Pandora.3 | 1o view.setText 074 | 07%
Spotify 29.2 20.2%
Pandora ProgressBar.setProgress 174 1.6%
TextNow . . 230.5 40.6%
Whatsapp ViewRootImpl.performTraversal 24.0 28.4%
Solid N 355 18.9%
FX Drawable.invalidateSelf 124 2.0%

energy-draining app in the same group, and looked at
the top energy-draining app tasks output by DIFFPROF.
Out of these, we skip the cases where the app tasks are
for supporting unique app features (e.g., 47.2% of Sound-
Cloud’s total energy was by a task supporting the wave-
form animation feature). The remaining 12 tasks, sum-
marized in Table 4, all belong to buggy or inefficient im-
plementations, removing which reduces the app energy
drain by 5.2%-27.4% (based on the energy difference).

5.3.1 Unmatched (extra) tasks

Instant Messaging Table 5 shows Google Hangout’s
energy output from EPROF and from DIFFPROF when
compared with Whatsapp. When sorted by inclusive en-
ergy, EPROF shows really high-level Android methods
such as Looper. loop on the top, and when sorted by ex-
clusive energy, it shows really low-level Android meth-
ods such as BinderProxy.transactNative on the top.
Such top energy drainers in both inclusive and exclusive
energy lists are F-methods that do not directly call app
methods and are not directly called by the app; the devel-
opers thus do not get useful guidance on what to focus
on from the long list of EPROF output.

In contrast, DIFFPROF outputs tasks sorted by en-
ergy drain. It shows Hangout consumes more than 10%
of its total energy in an unmatched task contentRe-
solver.query. Since tasks’ F-methods are directly
called by the app, the top task’s name provides direct
hints to developer on how to optimize the app. EPROF,

Table 5: Rank ordered EPROF’s method energy out-
put and DIFFPROF’s task energy difference output for
Google Hangout compared to Whatsapp. Energy in ttAh.
”#7”: unmatched tasks.

Rank | Method name (EPROF output) Inclusive
energy
1 (toplevel) 436.8
2 void Looper.loop() 220.6
3 void Handler.dispatchMessage( Message ) 207.3
4 void Thread.run() 176.9
5 Object Method.invoke() 175.4
27 Cursor ContentResolver.query() 443
Rank | Method name (EPROF output) Exclusive
energy
1 boolean BinderProxy.transactNative() 50.8
2 void VMRuntime.runHeapTasks() 11.6
3 void MessageQueue.nativePollOnce() 9.86
4 Object Throwable.nativeFilllnStackTrace() 9.39
5 void Trace.nativeTraceBegin() 7.81
1336 | Cursor ContentResolver.query() 0.00
Rank | Task name (DIFFPROF output) Task
energy
1 Cursor ContentResolver.query()* 443
2 int TelephonyManager.getSimState()* 24.9
3 Cursor SQLiteQueryBuilder.query()* 17.2
4 void ObjectOutputStream.writeObject() 11.2
5 Spanned Html.fromHtml() 6.49

however, does not highlight such methods; the top task
method appeared at position 27 when sorted by inclusive
energy and at 1336 when sorted by exclusive energy.

Finding the reasons and optimization for task con-
tentResolver.query would have been easy for its de-
veloper from the EFLASK output, e.g., the ContentRe-
solver.query method was called 116 times. But since
we did not write the app, to understand this energy drain,
we set a breakpoint at the contentResolver.guery
method and reran the app to examine the parameters
passed to the method. In one call to the method, the app
queries multiple fields that are stored in a local database.
We found that at one message send, the app queries for
81 unique database fields which often are repeated across
two different queries. Moreover, 36 out of the 81 fields,
such as author_chat_id and author_first_name, do not
change across two send key presses, but keep on getting
queried at each send. This suggests that there is ample
room for optimization by keeping a staleness flag; only
when the user navigates away from a chat window, the
36 fields can be declared stale and re-queried later.

Shopping Table 6 shows the Kohl’s app’s output from
EPROF and from DIFFPROF when compared with letgo.
DIFFPROF shows objectInputStream.readObject and
ObjectOutputStream.writeObject are two top energy
draining extra tasks, consuming 3.9% and 3.2% respec-
tively of its total energy consumption. In contrast,
EPROF outputs them at positions 90 and 133 when sorted
by inclusive energy and at 1516 and 1547 when sorted by
exclusive energy, respectively.
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Table 6: Rank ordered EPROF’s method energy output
and DIFFPROF’s task energy difference output for Kohl
compared to letgo. Energy in uAh. “*”: unmatched
tasks.

Rank | Method name (EPROF output) Inclusive
energy
1 (toplevel) 329.71
2 Object Method.invoke() 149.74
3 void Looper.loop() 134.65
4 void ActivityThread.main() 132.89
5 void Zygotelnit$MethodAndArgsCaller.run() 132.89
90 Object ObjectInputStream.readObject() 12.82
133 void ObjectOutputStream.writeObject() 10.53
Rank | Method name (EPROF output) Exclusive
energy
1 void VMRuntime.runHeapTasks() 26.11
2 boolean BinderProxy.transactNative() 11.9
3 Bitmap BitmapFac- 10.34
tory.nativeDecodeByte Array()
4 void DdmVmlInternal.threadNotify() 10.02
5 String StringFactory.newStringFromChars() 7.96
1516 | Object ObjectInputStream.readObject( ) 0.0
1547 | void ObjectOutputStream.writeObject() 0.0
Rank | Task name (DIFFPROF output) Task
energy
1 Object ObjectInputStream.readObject()* 12.82
2 Bitmap BitmapFactory.decodeByteArray() 11.19
3 void ObjectOutputStream.writeObject()* 10.53
4 boolean Class.isAnonymousClass() 9.55
5 String JSONObject.toString() 8.24

Since we did not write the app, we dug into the energy
drain by setting breakpoints. We found that the app keeps
the entire catalog and current discount campaigns on the
SD card in catalog.tmp and cms.tmp files respectively
which were 227 KB and 21 KB at the time of the exper-
iment. Whenever a new catalog or a new campaign is
synced with the server, the entire files are dumped again,
rewriting the previous entries; using a database just to
update new entries would have been more efficient.

Note that task view.draw consumes 12.16 uAh energy,
more than the above extra tasks, but does not appear in
the top task list. This is because DIFFPROF prioritizes
the tasks with the most room for optimization: since the
letgo app consumes 8.29 pAh for the same task, the dif-
ference is less than 4 yAh.

Antivirus DIFFPROF highlights
Thread.getStackTrace as an extra task in the Kasper-
sky app which consumes 39.57 uAh, 14.8% of the
app’s total energy drain (position 1 in DIFFPROF
output, but 22 in EPROF output). After decompiling
the app apk using dex2jar [4], we inspected the caller
of Thread.getStackTrace in the app source code and
found that the app collects logs with unicode characters
but in every such attempt, the code throws Unsupport-
edEncodingException Wwhich internally collects the
thread stack trace thus unnecessarily wasting energy.
This bug was confirmed by Kaspersky developers.

Music DIFFPROF highlights
Impl$Editor.apply as an extra task in Pandora v8.0
that consumes 17.5% of its total energy drain (position
4 in DIFFPROF output but 42 in EPROF output). This
method is used to change app preferences. The Android
developer manual suggests that apps should call shared-
PreferencesImpl$Editor.edit repeatedly to keep
making changes in memory and then call sharedPref-
erencesImpl$Editor.apply once at the end to commit
all the changes to the disk. However, the app mistakenly
calls once
every second. This bug was confirmed and fixed in the
latest version of the Pandora app.

SharedPreferences—

SharedPreferencesImpl$Editor.apply

Cleaner DIFFPROF shows that the DFNDR app calls
framework method Runtime.exec, consuming 19.52
UAh, 5.2% of the app’s total energy consumption (posi-
tion 3 in DIFFPROF output but 50 in EPROF output). We
set a breakpoint at this method and examined its parame-
ters and found that the app runs ps | grep <app-pkg> for
each app installed on the phone. Since ps walks down the
entire /proc directory, it would be more efficient to just
obtain the ps output once and parse it to find the fields
related to each app.

5.3.2 Matched tasks

Shopping In diffing Wish and letgo, although the
CCTs of the two apps differ a lot structurally as
shown in Figure 8(a), DIFFPROF is able to match
two commons tasks, Bitmap.compress and Bitmap-—
Factory.decodeStream, by collapsing app methods to
x.run and its flexible EFLASK matching algorithm.

For the Bitmap.compress task, DIFFPROF shows that
Wish consumes 100.94 uAh, 15.9% of its total energy
drain whereas letgo consumes only 7.14 y Ah. To find the
root cause of energy difference, we examined the param-
eters passed to the F-method by setting a breakpoint and
rerunning both apps. We found that Wish compresses
the image into a png image with quality set to 100 while
letgo compresses into a jpg image with quality set to 90.
This causes the large energy difference while the images
shown by both apps are visually similar.

The above image format difference also explains the
energy drain difference between the second common task
BitmapFactory.decodeStream Where Wish consumes
126.32 pAh, 19.9% of its total energy drain while letgo
consumes only 5.01 uAh.

Music — Pandora In diffing two versions of Pandora,
DI1FFPROF matches the common task TextView.setText
even though structurally their EFLASKS look different,
as shown in Figure 8(b) (merged to save space). DIFF-
PROF shows that the common task consumes 43.63
WA, 28.1% of its total energy consumption in Pandora
v5.7 but only 0.74 pAh in the latest Pandora app, v8.3.
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(a) Wish vs letgo. App methods get collapsed into *.run to facilitate matching. Flexible EFLASK matching
algorithm successfully matches tasks even in the presence of extra CCT nodes.

(b) Pandora 5.7 vs Pandora 8.3. Skipped Pandora 8.3 tree
due to page limit. Pandora 5.7 consumes higher energy
due to an extra subtree in the matched task’s EFLASK.

Figure 8: Matched tasks between (a) Wish and letgo, (b) Pandora v5.7 and v8.3.

DI1FFPROF further highlights the reason for the differ-
ence: in Pandora v5.7, the subtree additionally contains
the viewRootImpl.scheduleTraversal subtree that tra-
verses and measures the entire view hierarchy. We used
a premium account to disable ads and played the same ra-
dio station on both Pandora versions for two hours while
leaving the phone on the playback screen. We found that
Pandora v5.7 drained 9.2% battery per hour whereas Pan-
dora v8.3 drained only 6.7% battery per hour. We re-
ported this bug to Pandora engineers, who verified that
Pandora v5.7’s layout.xml file erroneously declared the
width of elapsed time and remaining time text views to
wrap_content. This flag signals Android’s viewManager
that the text view must be just large enough to enclose
its content. As a result, every second when the app up-
dates the elapsed time and remaining time text views, An-
droid viewManager traverses the entire view hierarchy to
recompute the size of the text boxes. The text boxes were
set to a fixed size in later versions of Pandora.

Music - Spotify In diffing Pandora and Spotify
apps, DIFFPROF shows that the common Progress-
Bar.setProgress task consumes 43.63 uAh, 28.1% of
its total energy in Spotify, but just 1.74 uAh in Pandora.
The EFLASK output further shows that Spotify calls this
method from App . doFrame 596 times while Pandora calls
it only 29 times from App.onTrackElapsedTime during
the 30 second music playback, i.e., while Pandora up-

dates the progress bar once per second, Spotify updates it
on every frame, which is unnecessarily frequent as many
frame draws lead to no pixel change.

Instant Messaging In diffing TextNow and Whatsapp,
DIFFPROF shows that TextNow consumes 230.46 uAh,
40.6% of its total energy drain, in calling a common
task ViewRootImpl.performTraversal, almost 10 times
that in Whatsapp. On inspecting the layout of the two
apps with Android’s HierarchyViewer, we found that
TextNow contains 226 views compared to 76 in What-
sapp. Our closer inspection of view properties shows that
172 views in TextNow are in fact not even visible on the
screen. The app statically loads all the possible Ul inter-
actions such as pause_playing-voice_note_button and
changebilling details_button_icon, keeping them all
in the view hierarchy instead of dynamically loading
views on demand as recommended by Android [3] and
thus inflating the view hierarchy traversal energy. More-
over, the app contains several LinearLayout with just an
ImageView and a TextvView Which are recommended to
be compressed into one compound view [8] to reduce
the size of the view hierarchy.

File Explorer DIFFPROF shows that Solid explorer
consumes 35.52 uAh, 18.9% of its total energy in task
Drawable.invalidateself whereas FX file explorer
only consumes 1.24 puAh. DIFFPROF further shows
that Solid calls prawable.invalidateself 1002 more
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times than FX and that the EFLASK contains objectAn-
imator.animatevalue followed by Solid’s circularan-
imatedDrawable$l.set. Upon inspecting this class, we
found that the app does the animation when a new folder
is created. At each frame, it draws an arc and requests
another frame. However, after the folder gets created,
the app stops drawing the arc but keeps requesting new
frames, unnecessarily wasting energy.

6 Discussions

DIFFPROF’s effectiveness in finding energy optimiza-
tions stems from the large overlap of Android libraries
used among competing Android apps and accurate
source-level energy profiling. As such, its central idea of
diffing source-code-level profiling of similar apps in prin-
ciple can be extended to find optimization opportunities
in other performance metrics of interests to developers,
such as latency, scalability and memory efficiency.

One of the central principles of software engineering,
DRY (Don’t repeat yourself) [24], preaches the use of
reusable code, by abstracting all common reusable code
into standalone libraries. The principle improves modern
software developers’ productivity and has gained wide
adoption in recent years; almost every major build tool
today [1, 6, 2] allows developers to specify library depen-
dencies which are downloaded from a central repository
and packaged with their software. We envision that DIFF-
PROF’s approach can be extended to effectively compare
source-code level profiling measurements of software in
broader domains beyond mobile such as games, web
frontends and server backends.

7 Related work

Performance and energy profiling There is a large
body of work on performance profiling of sequential pro-
grams [20, 15, 30] and concurrent programs [17, 39].
There are also several works on energy profiling for
mobile apps [32, 31, 34, 18]. EPROF [32] performs
source-code-level energy profiling and accounts the en-
ergy drained by each phone component to individual app
method calls. ARO [34] performs cross-layer profiling
for network usage to expose apps’ inefficient interactions
with lower layers. Wattson [31] estimates app energy
consumption on the developer workstation by emulating
different environments such as network conditions, CPU
speed and display technologies. GfxDoctor [18] quanti-
fies the energy drain spent in traversing the entire frame
rendering stack due to each UI update. All such profilers
stop at finding performance/energy hotspots. DIFFPROF
builds on top of such traditional profilers and tackles the
hard but critical question in the app energy optimization
process: whether and how energy hotspots in app source
code can be restructured to drain less energy.

Diffing programs and runtime behavior. (1) Pro-
grams. There has been a large body of research to find re-
gressions introduced from code revisions [13, 36, 22, 23],
and on data mining application source code to detect soft-
ware bugs, e.g., [40]. DIFFPROF allows app developers
to catch and debug energy drain regressions by compar-
ing source-code energy profiles after code revisions. (2)
Runtime behavior. Execution indexing [43] aligns event
logs of two executions of the same program under dif-
ferent input or perturbations and has been used in detect-
ing and understanding security leaks [27], deadlocks [28]
and failures [45, 21]. DIFFPROF aligns calling context
trees of two executions that may be from apps written by
different developers to find energy inefficiencies.

Diffing beyond programs. More generally, diffing is a
pervasive technique that celebrates and exploits diversity
and has been applied to many other scenarios in com-
puter systems and networking. Diffing data has been
applied to storage data for data compression (e.g., [29]),
to network traffic for traffic reduction (e.g., [11, 10]), to
data structures in memory images for detecting polymor-
phic malware [16], and to frames for reducing graphics
energy for mobile devices [25].

Beyond data, many systems, e.g., PeerPressure [42],
ClearView [33], Shen et al. [37], Encore [46], and Diff-
Prov [14], apply diffing to learn or detect deviations from
the correct or reference behavior, via statistical analysis
or data mining, for detecting and diagnosing misconfig-
urations, performance anomalies or faulty events in the
network and distributed systems.

8 Conclusion

This paper presents differential energy profiling which
tackles the hard but critical question in the app energy op-
timization process faced by app developers: whether and
how energy hotspots in app source code can be restruc-
tured to drain less energy. By performing approximate
matching of energy profiles of similar apps by a tradi-
tional energy profiler, energy diffing automatically un-
covers more efficient implementations of common app
tasks and app-unique tasks among similar apps. We
show how our prototype DIFFPROF tool provides de-
velopers with actionable diagnosis beyond a traditional
energy profiler: it effortlessly reveals 12 inefficient or
buggy implementations in 9 apps, and it further allows
(non)developers to quickly understand the reasons and
develop fixes for the energy difference.
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Notes

"We did not include social networks because their main app func-
tions appear to differ (e.g., Facebook, twitter, snapchat).

2F-method-only paths will be patched to other tasks as discussed in
§3.5.

3Refer to [9] for more details on calling context tree construction.

4A maximal one-to-one matching matches the most nodes in the
two trees.

5Qur approach to tracking events is similar to ApplInsight [35], but
instead of instrumenting app binary, we directly modify the Android
framework to track asynchronous calls. Since we use timestamp and
thread id in addition to hashCode to track objects, we did not see prob-
lems due to hashCode collisions in our experiments.

6 Since EPROF does not break down app energy drain into native
code methods - it simply folds native code’s energy into JNI boundary
method for Java, DIFFPROF would not be able to identify tasks in native
code. In practice, tasks typically start from framework callback Java
methods and hence most of the task structures are captured in the Java
methods that invoke the native code.
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