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Abstract—A loss function measures the discrepancy between
the true values (observations) and their estimated fits, for a
given instance of data. A loss function is said to be proper
(unbiased, Fisher consistent) if the fits are defined over a unit
simplex, and the minimizer of the expected loss is the true
underlying probability of the data. Typical examples are the zero-
one loss, the quadratic loss and the Bernoulli log-likelihood loss
(log-loss). In this work we show that for binary classification
problems, the divergence associated with smooth, proper and
convex loss functions is bounded from above by the Kullback-
Leibler (KL) divergence, up to a multiplicative normalization
constant. It implies that by minimizing the log-loss (associated
with the KL divergence), we minimize an upper bound to any
choice of loss functions from this set. This property justifies
the broad use of log-loss in regression, decision trees, deep
neural networks and many other applications. In addition, we
show that the KL divergence bounds from above any separable
Bregman divergence that is convex in its second argument (up to
a multiplicative normalization constant). This result introduces
a new set of divergence inequalities, similar to the well-known
Pinsker inequality.

I. INTRODUCTION

Consider a weather forecaster that estimates the probability
of rain on the following day. Its performance may be evaluated
by different statistical measures. For example, we may count
the number of times it assessed the chance of rain as greater
than t = 50%, while it eventually did not rain (and vice versa).
This corresponds to a 0-1 loss (Table I). Alternatively, we may
choose different threshold values, t, or completely different
measures (quadratic loss, Bernoulli log-likelihood loss, etc.).
Choosing a “good" measure is a well-studied problem, mostly
in the context of scoring rules in decision theory [1]. Assuming
that the desired measure is known in advance, the weather
forecaster may be designed accordingly, to minimize that
measure. In practice, different tasks entail inferring different
information from the provided estimates. It means that the
forecaster shall be designed according to a single measure
that is “suitable" for a variety of possible purposes. This
requirement is obviously quite challenging.

In this work we address this problem, as we show that for
binary classification, the Bernoulli log-likelihood loss (log-
loss) is a “universal" choice which dominates any alternative
“analytically convenient" loss function (smooth, proper and
convex). Specifically, we show that by minimizing the log-
loss we minimize the regret (defined in Section II) associated
with all possible alternatives in this set. This result justifies
the use of log-loss in many learning applications, as it is the
only measure that provides such universality guarantees.

Over the years, the log-loss was shown to have several
favorable properties (for example, [2]–[4]). However, these
properties are mostly motivated by information-theoretic prin-
ciples. Here, we justify the use of log-loss directly from a
decision theory perspective.

In addition, we show that our universality result may be
viewed from a divergence analysis viewpoint, as we show that
the divergence associated with the log-loss (KL divergence)
bounds from above any separable Bregman divergence that
is convex in its second argument, up to a multiplicative
normalization constant. This result provides a new set of
divergence inequalities, which have a similar nature as the
well-known Pinsker inequality [2]. In that sense, our Bregman
analysis may be viewed as a complementary set of results to
the well known Pinsker-like f -divergence inequalities [5].

II. BASIC DEFINITIONS

Let Y ∈ {0, 1} be a Bernoulli distributed binary random
variable with a parameter p. Let Ŷ be an estimate of Y . A loss
function l(y, ŷ) quantifies the difference between a realization
of Y and its corresponding estimate. In this work we focus
on probabilistic estimates, for which ŷ ! q ∈ [0, 1]. In other
words, ŷ ! q is a “soft" decision that corresponds to the
probability of the event y = 1 (as opposed to a ”hard decision"
in which ŷ ∈ {0, 1}). A Binary loss function is defined as

l(y, q) = {y = 0}l0(q) + {y = 1}l1(q) (1)

where {·} is an indicator function and lk(q) is a loss function
associated with the event y = k. Several examples of typical
loss functions, such as 0-1 loss, quadratic loss and others are
provided in Table I. Let

L(p, q) = EY l(Y, q) (2)

be the expected loss with respect to Y . Notice that L(p, q) only
depends on the Bernoulli parameter p and the estimate q. A
proper loss function is a loss function for which the minimizer
of the expected loss is the true underlying distribution of the
random variable we are to estimate, p = argmin

q
L(p, q).

This property is also known as Fisher-consistent or unbiased
loss. A strictly proper loss function means that q = p is a
unique minimizer. In this work we require several regularity
conditions for proper loss functions. We say that a proper
loss function is fair if l0(0) = l1(1) = 0. This means that
there is no loss incurred for perfect prediction. Further, We
say that a proper loss function is regular if limq↘0 ql1(q) =
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limq↗1(1−q)l0(q) = 0. Intuitively, this condition ensures that
making mistakes on events that never happen should not incur
a penalty. In this paper we consider loss functions that are fair
and regular unless stated otherwise.

Define the minimum of the expected proper loss as G(p) !
L(p, p). This term is also known as the generalized entropy

function [1], Bayes risk [6] or Bayesian envelope [7]. For
example, assuming l(y, q) is the log-loss, then the generalized
entropy function is Shannon entropy. Additional examples
appear in Table I. The regret is defined as the difference
between the expected loss and its minimum. For proper loss
functions we have that ∆L(p, q) = L(p, q) − G(p). Savage
[8] showed that a loss function l(y, q) is proper and regular
iff G(p) is concave and for every p, q ∈ [0, 1] we have that

L(p, q) = G(q) + (p− q)G′(q).

This property allows us to draw an immediate connection
between regret and Bregman divergence. Specifically, let f :
S → R be a convex function over some convex set S ∈ Rn.
Then its associated Bregman divergence is defined as

Df (s||s0) = f(s)− f(s0)− ⟨s− s0,∇f(s0)⟩

for any s, s0 ∈ S, where ∇f(s0) is the gradient of f at
s0. By setting s = [0, 1] we have that ∇f = f ′ and
∆L(p, q) = D−G(p, q). This means that the regret of a proper
loss function is uniquely associated with a Bregman diver-
gence. An important example is the Kullback-Leibler (KL)
divergence, DKL(p||q) associated with the log-loss. Additional
examples appear in Table I.

Convex loss functions hold a special role in learning theory
and optimization [6], [9]. Let X and Y be a set of explana-
tory variables (features) and an independent variable (target)
respectively. Given a set of n i.i.d. samples of X and Y , the
empirical risk minimization (ERM) criterion seeks to minimize
1
n

∑n
i=1 (yi = 0)l0(qi)+ (yi = 1)l1(qi), where qi ! qi(xi).

As the complexity of this problem increases, it is desirable for
this minimization problem to be convex in the optimization pa-
rameter. Alternatively, assuming that p is known, minimizing
the expected loss L(p, q) has many desirable properties, both
analytically and computationally, when the problem is convex.
It is important to mention that convex proper loss functions
correspond to Bregman divergences that are convex in their
second parameter. This family of divergences are of a special
interest in many applications [10], [11], and have an important
role in our results.

III. MAIN RESULT

Our main result is as follows,
Theorem 1: Let l(y, q) be a smooth and proper binary loss

function with a corresponding generalized entropy function G.
Assume that l(y, q) is convex in q. Then for every p, q ∈ [0, 1],

DKL(p||q) ≥
1

C(G)
D−G(p||q)

where C(G) > − 1
2G

′′(p)|p= 1

2

is a normalization constant
(that does not depend on p or q).

A proof of this theorem is provided in Appendix A.

This result established that the KL divergence, associated
with the log-loss, bounds from above the divergence of any
smooth, proper and convex loss function, up to a multiplicative
constant. In other words, by minimizing the log-loss we
minimize an upper bound on any choice of such loss functions.
The practical implications of this result are quite immediate.
Assume that the performance measure according to which
a learning algorithm is to be measured with is unknown a-
priori to the experiment (for example, the weather forecaster,
discussed in Section I). Then, minimizing the log-loss provides
an upper bound to any possible choice of measure, associated
with an “analytically convenient" loss function. This property
makes the log-loss a universal choice for classification prob-
lems as it governs a large and significant class of measures.

We notice that the normalization constant C(G) seems to
provide a bound that is untight. However, it is unavoidable
since proper loss functions are closed under affine transforma-
tions. It is important to mention that typical minimal values
of C(G) are relatively “small". For example, we have that
C(G) = 1 for 0-1 loss and C(G) = 2 for both the quadratic
loss and Boosting loss [9]. The corresponding quadratic bound,
for example, is DKL(p||q) ≥ (p− q)2.

In addition to the universality property, Theorem 1 allows
us to analyze the local behavior of divergences associated with
smooth, proper and convex loss functions, as demonstrated in
Corollary 2.

Corollary 2: Let l(y, q) be a smooth and proper binary loss
function with a corresponding generalized entropy function G.
Assume that l(y, q) is convex in q. Then for every p, p+dp ∈
[0, 1],

1

C(G)
D−G(p||p+ dp) "

dp2

2
I(p)

where I(p) is the Fisher information of a Bernoulli distributed
random variable with a parameter p, and " refers to inequality
up to second order of Taylor expansion terms, O(dp2).

A proof of this theorem is provided in Appendix B.

Corollary 2 implies that when q is “close enough" to p,
the divergence associated with the set of smooth, proper
and convex binary loss functions is governed by the Fisher
information of a Bernoulli random variable with a parameter
p (up to the second order terms of the Taylor expansion).
Since I(p) corresponds to the KL divergence (and henceforth,
to log-loss) we conclude that the rate of convergence of any
D−G(p||q) in this set is bounded from above by the rate of
DKL(p||q), when q = p + dp. This provides an interesting
trade-off between the universality of the log-loss, and its
slower rate of convergence.

As stated in Section II, the divergence associated with a
convex and proper loss function is a Bregman divergence that
is convex in its second argument. This allows us to present
our results from a divergence analysis perspective. Further,
it allows us the extend our study to a greater alphabet size.
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Define a separable Bregman divergence as

Dg(p||q) =
m
∑

i=1

g(pi)− g(qi)− g′(qi)(pi − qi)

for any p, q ∈ [0, 1]m and a convex function g : [0, 1] →
[0,∞]. Notice that in the general case, the Bregman divergence
is not restricted to the unit simplex. Separable Bregman
divergences hold a fundamental role in divergence analysis,
as shown in [4], [12].

Theorem 3: Let Dg(p||q) be a separable Bregman diver-
gence, that is convex in q. Then, for every p, q ∈ [0, 1]m,

DKL(p||q) ≥
1

C(g)
Dg(p||q)

where DKL(p||q) =
∑m

i=1 pi log
pi

qi
−
∑m

i=1 pi +
∑m

i=1 qi and
C(g) > g′′(p)|p=1 is a normalization constant.
As a corollary, we further show that Theorem 3 holds for the
case where p and q are constrained to the unit simplex. Proofs
of Theorem 3 and its corollary are provided in Appendix C.

As in Theorem 1, we notice that the constant C(g) is un-
avoidable since affine transformations preserve the convexity
of Dg(p, q). For example, for the squared error case we have
that

DKL(p||q) ≥
1

2

m
∑

i=1

(pi − qi)
2. (3)

Notice that the multiplicative constant in (3) is different than in
the binary case (C(g) = 1). This is a result of the fundamental
difference between the optimally conditions when minimizing
some function f(p1, p2) under the constraint that p1+p2 = 1,
as opposed to minimizing the same function using a single
parameter, f(p1, 1− p1).

Further, it is important to mention that (3) resembles the
well-known Pinsker inequality [2], that states

DKL(p||q) ≥
1

2

(

m
∑

i=1

|pi − qi|

)2

. (4)

Notice that the right-hand side of (4) is not a Bregman
divergence (in fact it is a squared Csiszár divergence [2]) and
therefore it is not considered in Theorem 3.

It is easy to verify that the Pinsker inequality is tighter than
(3). However, the squared-error bound (3) is just a simple case
of our broader result. In this sense, Theorem 3 may be viewed
as an extension of Pinsker-like inequalities to the family of
separable Bregman divergences that are convex in their second
argument.

IV. ILLUSTRATIONS

We demonstrate our results in two illustrative experi-
ments. In the first experiment we focus on ternary alphabet
y ∈ {−1, 0, 1} with a corresponding distribution p(y) =
[1/4, 1/2, 1/4]T . We are interested in q such that Eq(Y ) is a
given fixed value. This implies a fixed expectation constraint
on q. We examine smooth, proper and convex loss functions
through their corresponding Bregman divergences (that are

convex in their second moment), as discussed above. Notice
that our constraint is linear in the q, so that our optimization
problem is convex minimization over a convex set. Notice
this problem may be easily generalized to larger alphabets
and additional constraints on greater moments of Y . Fig. 1
demonstrates the results we achieve. The blue (upper) curve is
DKL(p||q) and the rest of the curves correspond to different
Bregman divergences including quadratic loss and separable
Mahalanobis distances [1]. We first notice that Ep(Y ) = 0.
This means that by allowing Eq(Y ) = 0, we get an unbiased
estimate and the divergence is zero. On the other hand,
different values of Eq(Y ) result in bias. In this case, it is
evident that the KL divergence bounds from above any choice
of divergence, as expected.
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Fig. 1. Fixed expectation experiment: Y ∈ {−1, 0, 1}, p = [1/4, 1/2, 1/4]T

and we optimize over q under a fixed expectation constraint, Eq(Y ). The
blue (upper) curve is DKL(p||q) while the rest of the curves are Bregman
divergences, that are convex in q.

In the second experiment we show that our bound holds
for a broader range of practical problems. Assume that there
exists some constraint that prevents q from converging to p.
This constraint may be statistical, computational or even algo-
rithmic. We model this problem by stating that Dϵ(p||q) ≥ ϵ
for some (unknown) divergence measure Dϵ and ϵ > 0.
In other words, we restrict q to be ϵ-far from p (in a
Dϵ(p||q) sense). Fig. 2 demonstrates the results we achieve
for Dϵ(p||q) =

∑m
i=1 |pi − qi| (total variation, in the upper

charts) and Dϵ(p||q) =
∑m

i=1
(pi−qi)

2

qi
(Chi-Square, in the

lower charts). The charts on the left show different divergence
measures (in the same manner as in the previous experiment)
for different ϵ values. The charts on the right demonstrate
the KL divergence (blue curve on top), and the quadratic
divergence, when we plug the minimizer of the KL divergence.
Specifically,

∑m
i=1 pi log

pi

qKL
i

and
∑m

i=1(pi − qKL
i )2 where

qKL = argmin
q

DKL(p||q).

We first notice that our bound holds for the two choices of
Dϵ(p||q), where greater ϵ values result in a greater bias than
lower values, as expected. Second, notice that

DKL(p||q) ≥ DKL(p||q
KL) ≥

1

C(g)
Dg(p||q

KL) (5)
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TABLE I
EXAMPLES OF BINARY LOSS FUNCTIONS

Loss function l(y, q) G(p) = L(p, p) D
−G(p||q) w(p)

0-1 loss
y {q < 1

2}+
(1− y) {q ≥ 1

2}
p {p < 1

2}+
(1− p) {p ≥ 1

2}
(1− 2p) {p < 1

2 , q ≥ 1
2}+

(2p− 1) {p ≥ 1
2 , q < 1

2}
2δ( 12 − p)

Quadratic loss y(1− q)2 + (1− y)q2 p(1− p) (p− q)2 2

Log loss
y log 1

q
+

(1− y) log 1
1−q

p log 1
p
+

(1− p) log 1
1−p

p log p
q
+ (1− p) log 1−p

1−q
1

p(1−p)

Boosting loss
2y

√

1−q
q

+

2(1− y)
√

q
1−q

4
√

p(1− p)
2
(

p
√

1−q
q

+ (1− p)
√

q
1−q

)

−

4
√

p(1− p)

1
(p(1−p))3/2

for any separable Bregman divergence that is convex in q. This
means that we may use the minimizer of the KL divergence
as an (untight) approximated “solution" for Dg(p||q). Indeed,
the charts on the left demonstrate this inequality for quadratic
divergence.
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Fig. 2. Divergence constraint experiment: we minimize Dg(p||q) under the
constraint that Dϵ(p||q) ≥ ϵ for Dϵ(p||q) being total variation (upper charts)
and Chi Square (lower charts). Dg(p||q) are the same as in Fig. 1. The charts
on the left demonstrate Theorem 3 and the charts on the right demonstrate
inequality (5), as described in the main text.

V. CONCLUSIONS AND DISCUSSION

In this work we introduce a fundamental inequality for
divergence measures associated with smooth, proper and con-
vex binary loss functions. We show that the KL divergence,
associated with the Bernoulli log-likelihood loss function,
bounds from above any divergence associated with this set of
losses. This property makes the log-loss a universal choice,
in the sense that it controls any “analytically convenient"
alternative one may be interested in. The implications of
this result span a broad variety of applications. In binary

classification trees, the split criterion in each node is typically
chosen between the Gini impurity (which corresponds to
quadratic loss) and Information-Gain (corresponds to log-loss).
The choice of a suitable splitting mechanism holds a long
standing discussion with many statistical and computational
implications (for example, [13]). In deep neural networks,
the objective function is cross-entropy minimization (which
again corresponds to log-loss) where several alternatives have
(empirically) shown to be less successful over the years.
Further, our result may extend the fundamental PAC-Bayes
bound [14] to a universal setup which is independent in the
choice of the loss.

As demonstrated in Theorem 3, our results may be viewed
from a Bregman divergences perspective. Here, the applica-
tions of our results are universality guarantees for distribu-
tional clustering [15], clustering with Bregman divergences
[16] and many others.

APPENDIX A: SKETCH OF PROOF FOR THEOREM 1

A smooth and proper binary loss function satisfies

∂

∂q
L(p, q)|q=p = pl′0(p) + (1− p)l′1(p) = 0.

This means that

−l′1(p)

1− p
=

l′0(p)

p
! w(p)

where w(p) is defined as the weight function. Shuford et at.
[17] showed that the converse is also true: a smooth binary
loss function is proper only if the above holds, for w(p) that
satisfies

∫ 1−ϵ

ϵ
w(c)dc < ∞, for all ϵ > 0. Typical examples

of weight functions for different losses appear in Table I. In

addition, it is easy to verify that d2

dp2G(p) = −w(p) for all
proper binary loss functions. The convexity of the loss (with
respect to q) implies that

∂2

∂q2
L(p, q) = w(q) + (q − p)w′(q) ≥ 0
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for every fixed p ∈ [0, 1]. Plugging p = 0 and p = 1 we get

−
1

q
≤

w′(q)

w(q)
≤

1

1− q

for all q ∈ (0, 1). Integrating both sides achieves

For 1 > q ≥
1

2
:

w
(

1
2

)

2q
≤ w(q) ≤

w
(

1
2

)

2(1− q)
(6)

For
1

2
> q > 0 :

w
(

1
2

)

2q
≥ w(q) ≥

w
(

1
2

)

2(1− q)
.

Similar results appear in Theorem 29 of [6]. Let us now look
at R(p, q) = C · DKL(p||q) − D−G(p||q) for a fixed p and
find such C for which R ≥ 0 for all p, q. We have

∂
∂q
R(p, q) = (q − p)

(

C
q(1−q) − w(q)

)

∂2

∂q2
R(p, q) = C

(

p
q2

+ 1−p
(1−q)2

)

− w(q)− (q − p)w′(q).

We require that q = p is a minimum. Notice that the
second derivative condition, together with (6), yield that
C > 1

2w
(

1
2

)

= − 1
2G

′′(p)|q=p. This further implies that
C

q(1−q) − w(q) > 0 so that q = p is the global minimum
(according to the first derivative condition), as desired. #

APPENDIX B: SKETCH OF PROOF FOR COROLLARY 2

Assume that p, p + dp ∈ [0, 1]. Then, we may derive the
Taylor expansion of D−G(p||p+ dp) around p:

D−G(p||p+ dp) =
dp2

2

d2

dp2
D−G(p||q)|q=p +O(dp2) ≃ (7)

dp2

2

d2

dp2
L(p, q)|q=p =

dp2

2
w(p) <

dp2

2

C

p(1− p)
=

dp2

2
· C · I(p). #

APPENDIX C: SKETCH OF PROOF FOR THEOREM 3

Let us begin by stating the derivatives of a separable
Bregman divergence,

∂
∂qi

Dg(p||q) = g′′(qi)(pi − qi)

∂2

∂q2i
Dg(p||q) = g′′′(qi)(qi − pi) + g′′(qi).

Assuming a fixed p, the convexity of Dg(p||q) implies that
its second derivative is non-negative for every pi ∈ [0, 1].
Specifically, for pi = {0, 1} we get that

−
1

qi
≤

g′′′(qi)

g′′(qi)
≤

1

1− qi
.

Integrating the left inequality with respect to qi attains

g′′(qi) ≤
g′′(1)

qi
. (8)

As in Appendix A, we define R(p, q) = C · DKL(p||q) −
Dg(p||q) and show that it is non-negative. Let us fix q and

analyze R(p, q) with respect to p. We have that

∂
∂pi

R(p, q) = C
(

log pi

qi

)

− g′(pi) + g′(qi)

∂2

∂p2
i
R(p, q) = C

pi
− g′′(pi).

Notice that the second derivative, together with (8) implies that
R(p, q) is convex (in p) if C ≥ g′′(1). This further means that
pi = qi is a unique minimizer, for this choice of C. Repeating
the same derivation for any fixed q yields the desired property.

Assume now that p is given and it is over the unit sim-
plex, while q is constrained to the same domain. Then, we
may repeat the derivation above with corresponding Lagrange
multipliers and reattain condition (8). Further, we may show
that in this case, R(p, q) ≥ 0 for every p, q ∈ [0, 1]m. This
means that our inequality hold for any subset of [0, 1]m, such
as the unit simplex, for example. #
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