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Exploiting Occlusion in Non-Line-of-Sight
Active Imaging
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Abstract—Active non-line-of-sight imaging systems are of grow-
ing interest for diverse applications. The most commonly proposed
approaches to date rely on exploiting time-resolved measurements,
i.e., measuring the time it takes for short-duration light pulses to
transit the scene. This typically requires expensive, specialized, ul-
trafast lasers, and detectors that must be carefully calibrated. We
develop an alternative approach that exploits the valuable role that
natural occluders in a scene play in enabling accurate and practical
image formation in such settings without such hardware complex-
ity. In particular, we demonstrate that the presence of occluders in
the hidden scene can obviate the need for collecting time-resolved
measurements, and develop an accompanying analysis for such
systems and their generalizations. Ultimately, the results suggest
the potential to develop increasingly sophisticated future systems
that are able to identify and exploit diverse structural features of
the environment to reconstruct scenes hidden from view.

Index Terms—Computational imaging, computer vision,
LIDAR, non-line-of-sight imaging, time-of-flight cameras.

I. INTRODUCTION

N CONTRAST to classical photography, where the scene
I of interest is in the observer's direct line of sight, non-line-
of-sight (NLOS) imaging systems only have indirect access (o
a scene of interest via reflections from intermediary surfaces.
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Such systems are of considerable interest for applications span-
ning a wide variety of fields including medicine, manufacturing,
transportation, public safety, and basic science.

Despite their obvious appeal, there are inherent challenges
in the design of NLOS systems. In particular, lypical surfaces
(e.g., walls, floors, etc.) diffusely reflect light, effectively remov-
ing beam orientation information, and rendering the problem of
scene reconstruction poorly conditioned. In order to compensate
for the losses induced by diffuse reflections, initial demonstra-
tions of NLOS imaging used ultrafast transient-imaging modal-
ities [1], [2] that involved a laser source to send optical pulses
of sub-picosecond duration, and a streak camera exhibiting
temporal resolution in the picosecond range. A computational
algorithm then used the fine time-resolved light intensity mea-
surements to form a three-dimensional reconstruction of the
hidden scene.

The system requirements posed by these systems, for trans-
mission of very short-duration, high power optical pulses on
the transmitter side, and for very high temporal resolution on
the receiver side, inevitably imply high system complexity and
cost. Thus, much of the follow-up work has focused on devel-
oping reduced cost and power implementations. For example,
[3] uses a single-pixel, single-photon avalanche diode (SPAD)
detector for reduced power consumption and cost: [4] uses
a multi-pixel SPAD camera to demonstrate tracking of hid-
den moving objects; and [5] uses modulated illumination and
low temporal-resolution CMOS time-of-flight sensors, includ-
ing photonic mixer devices, to substantially reduce overall sys-
tem cost, albeit at the expense of impairing the spatial resolution
of the reconstruction.

A. Our Contribution

To address the limitations of such existing approaches, we
introduce a rather different imaging modality for such prob-
lems. In particular, we develop the beneficial role that natural
occlusions—which would traditionally be viewed as an im-
pediment to imaging—can play in facilitating robust image
reconstruction in NLOS settings. In fact, we demonstrate—
analytically and experimentally—that in some cases the pres-
ence of occluders in the hidden scene can obviate the need for
collecting time-resolved (TR) measurements, enabling imaging
systems of significantly reduced cost. In turn, and in contrast
to existing methods, this means our approach is compatible
with wide field-of-view detectors, enabling the collection of
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more photons per measurement and thus accelerating acquisi-
tion times so as to facilitate real-time operation.

We introduce the key concepts and principles in the context of
imaging a hidden wall of unknown reflectivity. For this problem,
we develop a framework of analysis that involves a mathematical
formulation, as well as numerical and experimental illustrations.
We further study diverse features of the proposed occlusion-
based imaging system, such as robusiness (o modeling errors,
and optimal selection of measurements. More generally, the
ideas that we introduce open opportunities in designing more
accurate, robust, and cost-effective NLOS imaging systems that
relax the stringent temporal resolution requirements for optical
measurements in the presence of occluders. We envision that our
results will motivate further research towards the development
of NLOS imaging systems that opportunistically exploit known
structural features in the environment, such as occluders.

B. Related Work

To the best of our knowledge, this paper is the first to exploit
the presence of occluders for high-resolution reconstruction of
hidden-surface reflectivity from measurements of diffuse reflec-
tions. However, there is a variety of related work in computa-
tional imaging thal investigales exploiting physical structure in
the space between the scene of interest and the measurement
system. Perhaps the best known is what is referred to as “coded-
aperture imaging,” in which occlusion in the optical path takes
the form of a carefully designed physical mask that modulates
the light transferred from the scene of interest (o a detector ar-
ray. Among the earliest and simplest instances of coded-aperture
imaging are those based on pinhole structure [6] and pinspeck
(anti-pinhole) structure [7], though more complex structure is
commonly used. Such methods are of particular interest in ap-
plications where lens fabrication is infeasible or impractical,
such as in x-ray and gamma-ray imaging. More generally, a
number of rich extensions to the basic methodology have been
developed; see, e.g., [8] and the references therein.

In other developments, the value of using a mask in conjunc-
tion with a lens has been investigated in computational photogra-
phy for motion deblurring [9], depth estimation [10], and digital
refocusing and recovery of 4D light-fields [11]. More recently,
there has been an increased interest in using masks with ap-
propriate computational techniques, instead of traditional lens-
based cameras, to build cameras that have fewer pixels, need not
be focused [12], and/or meet physical constraints [13]. All these
methods are passive imagers: only very recently has the addition
of an active illumination source and time-resolved sensing been
proposed to reduce acquisition time in lensless systems [14].

Perhaps the work most closely related to the present paper is
that demonstrating how information about a scene outside the
direct field of view can be revealed via “accidental” pinhole or
anti-pinhole camera images [ 15]. The accidental camera is based
on the use of video sequences obtained only with ambient illu-
mination, and requires a reference frame without the occluder
present. Another similar study has very recently demonstrated
the ability to use an occluding wall edge to deduce a hidden
subject’s pattern of motion [16]. While also relying on the
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Fig.1. Red lines trace beam paths reflecting from the virtual laser points £, £,
where a laser heam hits the illumination surface towards point x on the hidden
object. The beam emanating from £ is blocked by the occluder. Upon hitting the
point x light reflects back towards a virtual camera position ¢, where a focused
camera is steered.

presence of occlusions (albeit, specific occluding patterns in-
duced by wall edges) for NLOS imaging, the results in [16] are
limited to one-dimensional tracking of a hidden object that is
assumed to be moving. In effect, the present paper can be viewed
as quantifying the high-resolution imaging performance achiev-
able without the aforementioned limitations, and in particular
when we actively illuminate the scene with a scanning laser.

Finally, there have been recently demonstrations ol a method
for tracking moving objects in NLOS scenes via non-time-
resolved intensity images of a visible wall [17]. By con-
trast, our framework emphasizes imaging withoul requiring the
presence—and exploitation—of scene motion, so it can be ap-
plied much more broadly.

C. Paper Organization

The paper is organized as follows. Section II introduces a
forward propagation model for NLOS imaging that accounts
for sources of occlusion, and Section ITT introduces an analysis
framework for NLOS imaging in the presence of such occlu-
sion. Section ['V then establishes the limitations of time-resolved
measurements with respect to the temporal resolution of the de-
tector, and Section V shows how to transcend these limitations
by opportunistically exploiting occluders in the hidden scene.
An experimental demonstration of the methodology is presented
in Section V1. Finally, Section VII contains a discussion of ex-
tensions and opportunities for future research.

1. FOrRWARD MODEL FOR NLOS IMAGING

The goal of NLOS imaging systems is to process reflected
light-intensity measurements and perform joint estimation of
both the geometry and reflectivity properties of a hidden three-
dimensional scene, as illustrated in Fig. 1. A focused laser beam
is steered towards a visible illumination surface and reflects
back towards a hidden object. Upon hitting the object light is
reflected back towards the illumination surface and is measured
by a focused camera. This forms a three-bounce problem in
which light beams follow paths of the form

Laser — £ — X — ¢ — Camera,
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where £, ¢ lie on the illumination surface and X lies on the hidden
object surface. By raster scanning the laser and/or changing the
focal point of the camera, we retrieve multiple measurements
corresponding to a set of K parameters P = {(£;,¢;)},

In this section we formulate a forward propagation model lhal
determines the irradiance waveform ye o (¢) measured at point ¢
on the illumination surface in response to a single optical laser
pulse p(t) fired towards position £. We let S be a parametriza-
tion of the hidden object surface, and f(x), x € § denote the
spatially varying reflectivity function (or, albedo). The model
assumes that the illumination and hidden object surfaces are
both ideal Lambertian reflectors.

In order to account for the presence of occluders in the scene
(as illustrated in Fig. 1), we introduce a binary visibility function
V(x, z) which determines whether point X on the hidden object
surface S and point z on the illumination surface are visible to
each other:

1, clear line of sight between x and z,
Vix,z) = (D

0, no line of sight between x and z.
With these, the forward model is given as follows':

0nv
Yee(t) = jf( ) xfnzux(x CLE G(x,£,¢)
p(t ey g

Here, (G is the Lambertian Bidirectional Reflectance Distribu-
tion Function (BRDF):

G(x,€.c) = cos(x — £,ng)cos(X — £,ny)

ccos(X — €, g ) cos(X — ¢, ng ),

Iy, N, Ng are the surface normals at x, ¢, £, respectively and
¢ is the speed of light. The model can easily be generalized to
account for non-Lambertian BRDFs for the illumination wall
and the hidden object by appropriately adjusting G.

Several remarks are germane with respect to (2):

Virtual laser and camera positions: For simplicity in the ex-
position we have excluded from the model the attenuation, delay,
and BRDF contributions accrued along the path from the laser
to £ as well as those accrued from ¢ to the camera. Note that
those quantities are fixed and known to the observer, hence can
be easily accounted for. In general, it is useful for our exposition
to think of £ and ¢ as virtual unfocused illumination and camera
positions (Fig. 1), and (2) is consistent with that interpretation.

Visibiliry functions: The visibility functions in (2) account for
obstructions of light beams in the imaging process, identifying
hidden-object patches that are either not reached by the virtual
illumination from £ or are not observable by the virtual camera
at c. Implicit in this description is the partition of the objects
occupying the space facing the illumination wall into: (a) the
hidden objects, which are objects of interest in the reconstruction

! A similar forward model is used in [5], and is based on well-known princi-
ples. namely quadratically decaying power with propagation distance for optical
beams, and Lambert’s cosine law for diffuse reflection. Equation (2) further ac-
counts for possible occlusions in the scene through the visibility function.

f(x)

: o

Hidden wall
I

S X

— D
0
L

C
Illumination wall

Fig. 2. The proposed imaging setting in which the objective s to reconstruct
the reflectivity f{x) of a flat hidden wall that is parallel to the illumination wall
at known distance ). The positions and sizes of the fully absorbing occluders
are known.

process; (b) the occluders, which are not of immediate interest
(in fact, we usually assume that they are known), blocking at
least some light paths between the illumination and hidden-
object surfaces.

Third-bounces: The model (2) accounts for the contributions
in the measurements resulting from three bounces (at £, x, ¢) that
are informative about the hidden objects. Higher-order bounces
are neglected, since they typically experience high attenuation
in the setting considered. Also, in deriving (2) we model the
occluders as fully absorbing objects.”

Temporal resolution of the camera: The camera averages the
incident irradiance at ¢ with a finite temporal resolution Af
resulting in measurements ye ., 7 = 1,2,....T,

At
Yeer = f' yt,c(”di‘
(r—1)At

Since only third-bounce reflections involving the hidden object
are of interest to us, with some abuse of notation we shift the
time axis such that time { = 0 is the first instant when third
bounce reflections reach the camera and T'At is chosen such
that all relevant third-bounce reflections from the hidden object
are included in the interval [0, T'At].

(3)

III. SCENE AND SYSTEM MODEL

To develop the key principles of approach, we turn to a specific
instance of the general NLOS imaging scenario described in
the previous section (also, Fig. 1), which we now describe.
Extensions are discussed in Section VII.

A. Representative NLOS Imaging Sefting

Our setupis illustrated in Fig. 2. Tt includes a planar hidden ob-
jectand a parallel planar illumination surface, which we refer to
as the hidden wall and the illumination wall, respectively. These
two surfaces of known geometry are placed distance ) apart.

2This model also applies for reflective occluders of known reflectivity pattern
since their contribution in the measurements can be accounted for.
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In between the illumination and the hidden walls lie occlud-
ers, whose effects on the imaging process are captured through
the visibility function defined in (1). The occluders are fully ab-
sorbing objects of known geometries and locations. Hence, their
visibility functions are known. The NLOS imaging objective un-
der this setting is then to reconstruct the unknown reflectivity
function f({x) of the hidden wall from the measurements.

Under the aforementioned selling, the measurements ¥y e -
in (3) are linear in the unknown reflectivity function f(x). Let
X1,.... Xy be a discretization of the hidden wall, then, ac-
cording to (2), each measurement Vg . » corresponds (0 a mea-
surement vector agcr © R" suchthatyec - = a; . f, where
fi=1[f(x1),..., f(xx)]". Repeating the measurements for a
total of K (£, ¢) pairs, obtaining T time samples per each pair,
and collecting them in a vector y of dimension M = K - T', this
gives rise to the linear system of equations y = Af where A
is an M » N measurement matrix whose rows are the vectors
ay. - that correspond to the chosen (£, c) pairs and temporal
resolution Af. In this study we consider measurements that are
contaminated by additive noise €:

4)

The noise term can be thought of as a simple means to caplure
system modeling errors, camera quantization errors, background
noise, etc. We introduce the physics-based noise model for low-
photon-count operation with a SPAD detector in [18].

v=Af+e

B. Bayesian Scene Model

The idea of imposing Bayesian priors is well-established in
image processing [19], [20]: past studies have considered vari-
ous forms of Gaussian prior distributions on the unknown target
scene, including variations promoting sparse derivatives [10],
and natural image statistics [21]. Such priors offer enough flexi-
bility and at the same time are amenable to analysis and intuitive
interpretation. In this work, we let*:

f N-'\'r(os Ef)1 (5)

with a smoothness promoting kernel function such that the en-
tries of the covariance matrix are [E¢l; = exp(—55r % —
¥

x;|?) and the spatial variance o7 controls the extent of smooth-

ness. Additionally, we consider an ii.d. Gaussian distribu-
tion for the measurement noise €, ~ N(0,c?) such that the
Signal-to-Noise Ratio in our problem is given by SNR =
tr(AX;AT)/(Ma?), where M denotes the total number of
measurements. For the reconstruction, we consider the mini-
mum mean-squared error (MMSE) estimator, which under the
Gaussian framework is explicitly computable as

f=AT(ASAT +070) y. (6)

#The zero-mean assumption is somewhat simplistic, but not particularly re-
strictive. Strictly speaking, in order lo respect the nonnegative nature of the
reflectivity function, a positive mean should be added in all the scenarios consid-
ered in this paper. Similarly, a global scaling can be applied to ensure reflectivity
values that are not greater than 1. However, these additions have no effect on
the qualitative conclusions drawn from our results. This is further validated by
the successful use of the Gaussian prior in the experimental demonstrations of
Section VL

We measure and compare reconstruction performance in differ-
ent semngs using the normalized mean squared error NMSE =
E||f — f||3/E|/f|j3, which equals the (normalized) trace of the
posterior covariance matrix

NMSE = —tr(Er SATASAT + 2 T) AR,
Note that the NMSE can be evaluated before collecting mea-
surements ¥. Also, the reconstruction in (6) remains the optimal
linear estimator under given first and second order statistics for
f. even beyond Gaussian priors.

IV. TIME-RESOLVED MEASUREMENTS

In this section we study the limits of traditional NLOS imag-
ing that is based on collecting fine time-resolved (TR) measure-
ments, and thus set up a reference against which to compare the
newly proposed imaging modality that uses occlusions and no
TR information, which we formally introduce in Section V.

A. Virtues of Time-Resolved Measurements

Assuming an ideal pulse p(t) = 4(t), and considering the
propagation of optical pulses at the speed of light ¢, the mea-
surement Ye o - taken at time step 7 forms a linear combination
of the reflectivity values of only those scene patches x; whose
sum distance to £ and ¢ corresponds to a propagation time around
TAt. These patches fall within the elliptical annulus with focal
points £ and c described by the following inequalities:

(r—1)-cAt < |x;, — €] + || % — || < 7 - cAt.

The thinner the annulus (eqv. the lower At), the more infor-
mative the measurements are about the reflectivity values of
these patches. Furthermore, by scanning the laser and camera
positions (£, c), different sets of light paths are probed, each
generating a different set of elliptical annuli. For a total of K
(£, ¢)-pairs, this forms the linear system of (4).

We performed a simple numerical simulation to demonstrate
scene reconstruction performance in a TR setup. For the pur-
poses of illustration the simulations presented here and in the
rest of the paper are in a two-dimensional world. This allows for
easy visualization of important concepts such as the visibility
function and the forward measurement operator, and it enables
useful insights, but is otherwise non-restrictive. The room size
was set such that the width of the walls is | m, the distance
between the walls is 1) = 2 m and the temporal resolution was
et at Af = 100 ps. K = 8 (£, ¢) pairs were randomly chosen,
S was drawn according to the Gaussian prior with a'} = (.1, and
we set SNR = 13.7 dB. The results are summarized in Fig. 3,
where we plot the measurement matrix A, the true reflectiv-
ity f and the estimated f with the corresponding reconstruction
uncertainty depicted in shaded color around the MMSE esti-
mator. The reconstruction uncertainty for our purposes is the
square-root of the diagonal entries in the posterior covariance
matrix corresponding to the standard deviation of f; — f; for
the individual points i on the wall. For this setup and resolution
we collect T = 16 temporal samples per (£, ¢) pair such that
the total number of measurements is Al = 8 - 16 = 128. These
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, True and estimated reflectivity

o 1.5
20 40 B0 80 100 0 0.5 1

Fig. 3. Reflectivity reconstruction from TR measurements. (left) Measure-
ment matrix, where each row corresponds to a specific choice for the (£, ¢)
pair and time index 7. The columns correspond to a discretization of the hidden
wall to N = 100 points. (right) True reflectivity function versus the MMSE

estimate f.

are the rows of A depicted in the figure, where each block of 8
conseculive rows corresponds to the measurements collected at
a single time instant and for all (£, ¢) pairs. Notice that the last
few blocks are zero as at that time no patch on the hidden wall
contributes to the measurements.

B. Performance Dependence on Temporal Resolution

The simulation results shown in Fig. 3 demonstrate high-
fidelity reflectivity reconstruction when the available temporal
resolution is fine (At = 100 ps). We show next that reconstruc-
tion fidelity depends on having access to measurements with
high enough temporal resolution, and that it deteriorates sub-
stantially with lower temporal resolution of the measurements.
As such, when we only have access to low temporal-resolution
measurements, reconstruction fidelity may be severely limited.

Let us first consider an extreme situation where the temporal
resolution is so low that the distance that light travels during
a single resolution window of the detector is longer than the
enlire spatial extent of the scene. As an example, for the setup
in Fig. 3 this happens when A¢ = 1.5 ns. In this extreme case,
which is essentially equivalent to collecting non-time-resolved
measurements, each (£, ¢)-pair effectively generates just a single
scalar measurement which we denote y; . and which is a linear
combination of all the entries of f. The combination coefficients
are determined by the decay and cosine factors in (2). Focusing
on the distance factors ||x — £||2?||x — ¢||? for intuition, the
range of values that these can take is clearly determined by the
geomelry of the problem, and can be very limited; forexample, if
the two walls are far apart. This weak variation can result in poor
conditioning of the measurement matrix A and subsequently
poor reconstruction fidelity.

This ill-conditioning is illustrated in Fig. 4(a). Here, for the
Fig. 3 setup. we plot the NMSE versus the temporal resolution
for K = 30 measurements and various SNR values, where for
each data point we average over 10 random draws for (£, ¢). Ob-
serve that as At deteriorates, reconstruction fidelity decreases.
Considering finite SNR for the purpose of this evaluation is key

NS vorous lomporsl meselution, D-2m

L ]
10 ——BNR=10 48
—— SNR.13 OB =
oL SNR=17 d8 ]
WE | sNR=20 0B E
~——— BNR=30 d8

%w’
10 4
1wt =i E
0? At [pe) 1t 10*
(a)

Nlllsgi versus umpunl reool.ntion, snndl'o ".ﬂ

—Dalm 7

10 1]

0? Af [ps] 1o? 1t
(k)

Fig. 4. Study of the reconstruction error as a function of the available temporal
resolution At of the detector in TR sensing. (a) Normalized mean-squared
error in reconstruction versus temporal resolution for different SNR values.
(b) Normalized mean-squared error in reconstruction versus temporal resolution
for different wall separations [J,

as reconstruction in an ideal noise-free experiment could result
in high-fidelity reconstruction even if A is ill conditioned.*

When imaging more distant walls, the poor conditioning of
A further deteriorates as the distance decay factors become
less varied and approach constants |xX — £|| = ||x — ¢|| = D,
as illustrated in Fig. 4(b) where reconstruction performance is
parametrized against I for a fixed SNR in a setup with otherwise
identical parameters as those of the first subfigure. In particular,
notice in this plot the limit of non-time-resolved measurements,
At > 1.5 ns, where the NMSE is always poor but is especially
bad for larger I. This limit is separately summarized in the inset,
which reveals that unless the room size is particularly small (i.e.,
just a few cm) high-fidelity reconstruction is impossible.

Summarizing, we see that unless very fine time-resolved mea-
surements are available, NLOS scene reconstruction becomes
ill-posed and reconstruction is not robust. To be more specific,
notice that reconstruction from non-TR measurements in this
NLOS setting fails, despite the fact that we are considering a
simplified imaging problem with known geometry.

4Each curve in Fig. 4(a) corresponds (o a different SNR. In practice, when
comparing setups of different temporal resolutions, the equipment involved will
be technologically different, so that a fair comparison does not necessarily entail
assuming a fixed SNR common to all setups. Notice however the general trend of
worsening reconstruction performance with diminishing temporal resolutions,
which holds for all SNR levels.
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In the next section we show how occluders can enable high-
fidelity reconstruction in non-time-resolved and practical room-
size settings,

V. IMAGING WITH OCCLUDERS

The inversion problem in the poor temporal-resolution regime
is inherently difficult as rows of the linear forward operator A
are smooth functions over the spatial target coordinate x, result-
ing in bad conditioning of the operator. The situation changes
drastically when the line of sight between £ (and c) and the hid-
den wall is partially obstructed by an occluder: for each (£, c)
pair, certain segments of the hidden wall (that are different for
different pairs) are occluded from £ or from c¢. The occlusions
are encoded in the linear forward operator A via zero entries
on the corresponding spatial target coordinates x, such that its
rows are choppy and varied. Consequently, the inverse prob-
lem (4) becomes significantly better conditioned. This section
builds on this idea and studies situations in which high-fidelity
reconstruction becomes possible without TR measurements.

A. Informative Measuremenis Through Occlusions

Non-TR measurements yg . correspond to integrating (2) over
time. Assuming [ p(t) dt = 1, we get

- Vix,£)Vix.c)
Yee = Lf{x) Ix — € |Ix — C”QG(K: £, c)dx.

Let L be the number of distinct occluders @,, ¢ = 1, ..., L that
are present in the scene. We associate a distinet (binary) visibility
function V;(x, z) to each of them. The overall visibility function
V(x, z) becomes V(x,z) = [, Vi(x,2), such that:

A=Ago (Vo .oV

(N

(8)

Here, Ay is the operator corresponding to a scene with no oc-
cluders, and V is the (binary) visibility matrix, which has K
rows (as many as the number of (£, ¢) pairs), N columns, and
each of its entries takes values as follows:

(Vl'}[l,c],x = %{xa&,v’i()n ('.}. (9}

Lastly, o denotes the Hadamard entry-wise product of matrices.
On the one hand, the operator Ay is generally badly conditioned:
successive entries of any of ils rows exhibit small and smooth
variations due only to the quadratic distance attenuation and
the BRDF factors & in (7). On the other hand. the Hadamard
multiplication with nontrivial binary visibility matrices results
in an operator with much better conditioning.

This behavior is demonstrated through an example in Fig. 5,
which compares reconstruction performance in the presence
and absence of occluders. The setup, illustrated in Fig. 5(a),
is as reported in previous simulations, with the addition of
occluders as depicted. We collect K = 30 measurements with
randomly drawn £, ¢ parameters and noise variance such that
SNR = 25 dB. The occluded measurement matrix A and the
non-occluded matrix A, are depicted in Fig. 5(b) alongside
their corresponding singular values. Observe that the singular
values of Ay decay substantially faster than those of A,
which exhibits a much flatter spectrum. As expected, this
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Fig. 5. Ilustrating the beneficial role of occluders, by comparing imaging
in their absence and presence. (a) (left) Room setup. On the illumination wall,
positions that are marked with * " (resp. 'o") indicate virtual 1aser (resp. camera)
points. (middle) Binary visibility matrix, with 0 (1) depicted in black (white).
(right) Reflectivity reconstruction with (in green) and without occluders (in red),
(b) (left) Measurement matrix when occluders are present in the room. The
values of its entries are depicted in Matlab's jet colormap as in Fig. 3. (middle)
Measurement matrix in the absence of occluders. (right) Singular values of the
two matrices in decreasing order,

better conditioning translates o better image reconstruction, as
illustrated in the rightmost panel of Fig. 5(a): in solid red is the
poor reconstruction without the occluder (NMSE = 54%), and
in solid green is the successful reconstruction with the occluder
(NMSE = 2.4%). The dashed lines indicate the standard
deviations of the error f; — f; for each spatial coordinate x;,
which correspond to the square-root of the diagonal entries of
the posterior covariance matrix.

B. Measurement Schemes

So far we have considered a generic setting in which a fo-
cused laser source and a focused camera generale measurements
corresponding to some given set of (£, ¢) pairs on the illumina-
tion wall. In principle, all possible such £ and ¢ combinations
are allowed. In this section we discuss the following special in-
stances of this general scheme: (i) selection of most informative
subset of (£, ¢) pairs under a budget constraint on the number
ol allowed measurements; (ii) measurement collection with a
wide field-of-view camera and (iii) specific measurement sets
that are favorable from an analysis viewpoint.

Optimal measurement configuration:; We consider a situa-
tion where collection of at most K measurements is allowed,
e.g., in order to limit the acquisition time of the imaging system.
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Under such budget constraini, we suggest an efTicient strategy
to choose an optimal set P of (£, c) pairs and we study the
imaging performance as a function of the number of allowed
measurements.

Let D be a (uniform) discretization of the illumination wall,
and (£, ¢) € D x D. The idea is to choose a subset 7P such that
the corresponding measurement vector yp := {yzc | (£,¢) €
P} is the most informative about the unknown reflectivity f.
Using I(-;-) to denote the mutual information between two
random vectors, this amounts to solving

P — (P), ®(P)= (10)

argmax
P:PCDD,P|<K

I(yp; ).

The oplimization problem in (10) is NP-hard in general. How-
ever, it turns out that under the framework of Section III the
objective function ®(P) is monotonic and submodular (see
for example [22], [23] for similar derivations). The theory
of submodular optimization then suggests that an efficient
greedy solver obtains near-optimal solutions P¥ satisfying:
®(PF) > (1 — L)B(P*) [24]. The greedy algorithm augments
the set P with an additional choice (£, ¢) per iteration, for a to-
tal of K iterations. The solution has the property Py C Py _ |,
where we have used subscript notation for the budget constraint
on the allowable size of P. The algorithm picks the next el-
ement myopically given the solution set built so far, i.e, the
algorithm picks the next element as the one which maximizes
the marginal information gain. Submodular set functions are
well studied and have many desirable properties that allow for
efficient minimization and maximization with approximation
guarantees, e.g., [24].

We illustrate the efficacy of this approach via numerical sim-
ulations. For the purpose of clearly illustrating the solution in
a simple setting our setup is similar to that of Fig. 5(a), except
we only position one of the two occluders (the one centered
around 0.5 m). The noise variance is kept constant at 0% = 0.1,
and we seek an optimal set P of measurements under a budget
constraint |P| < K. Fig. 6(a) shows the output of the greedy
algorithm for the most informative (£, ¢) pairs for values of K
up to 30. The selected parameters, marked with red crosses are
accompanied by a number indicating the iteration cycle at which
they were retrieved. Notice how the first two measurement con-
figurations are selected one to the left and the other to the right
of the occluder, thus casting effective shadows on different parts
of the hidden wall. Fig. 6(b) validates the optimality features of
the output P of the greedy algorithm by comparing it to an
equal size subset of measurements chosen uniformly at random.
For a fixed desired NMSE the number of measurements required
when randomly picking can be as large as double the number
required with optimal choice. On the other hand, observe that
under both schemes the NMSE drops significantly for the first
few added measurements and the marginal benefit degrades as
more measurements are added.

Single-pixel camera with a wide field of view: An additional
benefit from exploiting occlusion for scene reconstruction
with non-TR measurements is the ability to use a single-pixel
camera with a wide field-of-view in lieu of the focused detector
that is typically required for TR imaging techniques. This
camera change offers several advantages, such as reduced

w?

~xer

(b

Fig. 6. IHlustration of the efficient greedy selection algorithm for choosing
informative measurements under a budget constraint. (a) Coordinates of virtual
laser (£, on the horizontal axis) and camera (¢, on the vertical axis) positions.
The set T x D of all possible locations is marked with black dots, The set
P selected by the greedy algorithm for a budget constraint K = 30 is marked
with red crosses. The numbers indicate the order of selection. (b) Reconstruction
perfumunoe versus total number of measurements for the random (dashed Im&s}
and optimized by the greedy algonlhm (=olid lines) configurations for various
values of the spatial correlation rr parameter,

equipment cost (no lens required) and a dramaltically increased
SNR as more photons are collected per measurement. To the
best of our knowledge, this is the first demonstration of NLOS
imaging with a wide field-of-view detector. A camera that is con-
figured for wide field-of-view operation detects light reflected
from multiple positions ¢ on the illumination wall. Thus, it cap-
tures more of the backscattered photons from the hidden scene
and modifies the forward measurement model as explained
next. Let C represent the surface of the illumination wall that is
in the camera’s fixed field of view, while the laser source raster
scans the illumination wall as before. This procedure yields
measurements that are now parametrized only by £, as follows:
Ye e

[ll — |2

YN
= [ S
[ V(x, c)G(x, £, ¢c)cos(I — ¢, m)d
¢ |x —e¢|?|le = T?

cos(T — ¢, ne )de

c] dx. (11)
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In deriving (11), we used (7) and we further explicitly
accounted for the quadratic power decay from the illumination
wiall to the position of the camera that is denoted by T'. The
measurements are again linear in the unknown reflectivity,
hence, the same reconstruction technigues can be used. In the
presence of occluders, the nontrivial visibility function V' (x, z)
results in a better-conditioned measurement operator and a
successful image reconstruction. In particular, our experimental
demonstration in Section VI is based on the forward model in
(11). We mention in passing that the dual setting, where a wide
field-of-view light projector is utilized instead of a focused
laser illumination, with measurements collected at multiple
locations ¢ on the illumination wall, might also be of interest.

Other measurement configurations: Lastly, we mention a
specific configuration that reduces the dimensionality of the
parameter space by imposing the restriction £ =c¢ on the
measurements.” This results in a strict subset of the entire mea-
surement set D x D that is convenient for analysis purposes and
for drawing insights about the features of the imaging system,
and will be useful for our analysis in Section V-C,

C. Robustness

Here, we study in more detail the structural properties of the
visibility function, which we use in turn to study the robust-
ness of reconstruction with respect to a misspecified occluder
location.

More on the visibility function: Henceforth, we focus on a
simple, vet insightful, case of flat horizontal occluders, i.e. oc-
cluders aligned horizontally at some fixed distance from the
illumination wall (see Fig. 2). This family of occluders is useful
as any occluder that is small compared to the size of the room
may be well approximated as being flat and horizontal. We show
that the visibility function V' associated with a flat horizontal
occluder has a simple structure. To be concrete, suppose that the
occluder O lies on a horizontal plane at distance H = oD from
the visible wall for some (known) 0 < « < 1. Further define the
occupancy function s(x) such that for all points X on that plane
s(x) = 0 if O occupies x and s(x) = 1 otherwise.® A point x
on the hidden wall is nor visible from a point z on the illumi-
nation wall if and only if the line that connects them intersects
with the occluder, or equivalently, if at the point of intersection
it holds that s(ax + (1 — a)z) = 0. This translates to:

Vi(x,z) = s(ax + (1 — a)z).
In particular, when £ = c, it follows from (9) and (12) that
(V){t,cj,x = s(ax + (1 —a)f),

and the visibility function V| has a band-like structure. Ignor-
ing edge-effects, its discretization corresponds to a convolution

(12)

IStrictly speaking, when £ = ¢, the camera focused at ¢ sees a first-hounce
response in addition to the informative third-bounce. We assume here that the
dimensions of the entire scene are such that it is possible to use ime-gating to
reject that first-bounce. Note that this is possible with mild temporal resolution

uirements,

Here, occluder () is allowed to be composed of several patches as long as
they all lie on the same plane. Equivalently, the set of values for which s{x) = 0
need not be connected.

Hidden wall

:.’n

=

H &

J——
x

Mumination wall

(a)

Fig. 7. Tllustrating the effect of modeling mismatches on reconstruction,
(a) A shified pccluder setup. The occluder appears in its actual position in
black. We perform reconstruction under imperfect knowledge of its position;
taken to be as appears in red. (b) Reconstruction with a mispositioned occluder.
(left) Small and (right) large vertical and horizontal shifts in a far field setup.

matrix, which is favorable since the convolution structure makes
possible deriving analytic conclusions regarding the effect of
the occluder’s parameters on the image reconstruction as shown
next.

The effect of modeling mismatches: We study scene recon-
struction under a mismatched model for the position of the
occluders to evaluate the robustness of our imaging method
with respect to such modeling errors. Fig. 7(a) illustrates our
setup, where the true position of the occluder appears in black,
and our mismalched model assumes the occluder is positioned,
as appears in red, with 4, and 4y vertical and horizontal
shifts, respectively. We study the resulting reconstruction under
the following simplifications: (i) measurements are noiseless,
(ii) measurements are taken with parameters satisfying £ = ¢,
(iii) continuous measurements are collected, i.e., ye 18 avail-
able for all points £ on the visible wall, and (iv) we assume
that the hidden wall is far from the illumination wall such that
|Ix — £|%||x — ¢||* and G(x, £, ¢) are approximately constant.

Under these assumptions, the measurements y are expressed
(up to a constant) as

ye— [f{x)s(ax+ (1 - a)€)dx, 13)

where we have used (12), and f(x) is the true reflectivity of the
hidden wall.

In the presence of errors &, d5, the misspecified visibility
function can be expressed as V(x,2z) = s(a/(x — 8,) + (1 —
o')(€ — d,)), where o' == 1Ll = o 4 2L This results in a
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misspecified model:
Ve= /f(x)s(o-'(x -8 )+ (1 —a)(£-4:))dx.  (14)

In order to study how f(x) relates to f(x) it is convenient
to work in the Fourier domain.” Manipulating (13) and (14)
accordingly, we show in the Appendix that

. 1-o/ S(-128) s 1-o
Flw) = 1_‘; 3{1_%) . Jwﬁp(gﬁw)r (15)

where H (w) denotes the Fourier transform of a function f(x).
Of course, this holds for spatial frequencies at which S{w) is
non-vanishing.

The following conclusions regarding reconstruction distor-
tion under mismatched occluder position are drawn from (15).
(a) In the absence of errors (4., dy = 0), the reflectivity function
is perfectly reconstructed for those frequencies for which the
occluder’s occupancy function is non-zero. (b) Horizontal oc-
cluder translation errors (8, # 0, g = 0) result in simple shifis
of the true reflectivity. (¢) Vertical occluder translation errors
(6; = 0.0y + 0) result in two Kinds of distortion. The first is a
scaling effect, while the other is a distortion that depends on the
shape of the occluder through the term S{—-ll:—‘;" £)/8(—%).
For this latter term, observe that its effect diminishes for a spec-
trum S(w) that is mostly flat over a large range of spatial
frequencies. This property is approximalely (due to the finite
support” of s(xr)) satisfied by a very narrow occluder.

Recall that the above conclusions hold analytically in the limit
of a distant hidden scene and a continuum of noiseless mea-
surements. However, the conclusions are also suggestive and
insightful for practical scenarios, as illustrated by the numerical
study shown in Fig. 7, where we illustrate high SNR (35 dB)
reconstruction with a mispositioned occluder. The room setup is
D = 5 m, with a single occluder of width 0.25 m positioned at
[0.5, 2] m. Measurements are collected with random £ and ran-
dom ¢ # £. Black solid lines show the true reflectivity f(x). The
dashed green line depicts reconstruction under perfect occluder
knowledge. The red curves show reconstructions with horizon-
tally and vertically mispositioned occluders. The mispositioning
is larger in the right subplot. Tt is evident from the images that
horizontal mispositioning mostly results in a shifted reconstruc-
tion, whereas vertical mispositioning results in axis-scaling of
the reconstructed scene. Our analysis-based conclusions seem
to be valid for the middle section of the reflectivity function,
whereas edge effects appearing close to the boundaries x = 0, 1
are not captured by the analysis.

The robustness of our imaging method with respect (o oc-
cluder positioning errors is further supported by the experimen-
tal demonstration in Section VI, where such occluder modeling
inaccuracies are unavoidable, yel the reconstruction resulls we
demonstrate are satisfactory.

"The variable of integration x in (13) and (14) ranges over the finite surface
of the hidden wall. Correspondingly. f(x) and s(x) are only defined over this
region. Formally, when it comes to taking Fourier transforms, we exiend the
functions on the rest of the space by zero-padding.

D. Reconstruction of Reflectivity With Unknown Distance

Thus far, we have demonstrated the use of occluders to re-
construct the unknown reflectivity of a hidden wall when its
geometry is known. Here, we develop a simple algorithm for
reflectivity reconstruction with the aid of occluders when the
distance I between the visible and hidden walls is unknown.

In line with the Bayesian approach in Section I11-B, we asso-
ciate some distribution with the unknown depth I, and attempt
joint estimation of both ) and f by solving the maximum a
posteriori probability (MAP) problem:

(D, 1) = arg max p(D,f'|y), (16)
where y = Apf + ¢ as in (4). Observe that the distance D en-
lers the measurement equations via the forward operator, which
we have parametrized as Ap. For a fixed [ the maximization
in (16) with respect to f has already been studied in terms of
(efficient) implementation and performance. Namely, under a
Gaussian prior assumption on f, each maximizer fp, coincides
with the MMSE estimator of Section ITT-B. Based on this ob-
servation, a simple and effective strategy for solving the joint
oplimization in (16) is as follows. Start with a range of candi-
date distance values, )y, Da, . ... Dy . Foreach candidate, form
the measurement matrix A p, and solve for the corresponding
reflectivity vector f’g,. Then, for i =1,2,..., N, compute i,
that maximizes the likelihood (we assume here a uniform prior
among the D;’s):

i = argmax p(y|fp,, D:).

Finally, return (D, f) = (D, ., ). In particular, under the Gaus-
sian prior assumption, it can be shown that

—logp(ylfp,, Di) =y (Ap, EeAj, +0°I) 'y.

Note however that the algorithm can be readily adapted to dif-
ferent priors on f.

Fig. 8 includes an illustration of the algorithm and a numerical
demonstration of its performance for difTerent values of param-
eters such as SNR and number of measurements. The room
setup is the same as in Fig. 5. In particular, the true distance
of the hidden wall is I =2 m and the reflectivity is drawn
from a Gaussian prior with a} = 0.05. A total number of K
randomly selected (£, ¢)-measurements are collected. Observe
in Fig. 8(a) that the negative log-likelihood in (17) shows a
valley in the neighborhood of the true distance 1. Higher val-
ues of SNR result in sharper valleys and the minimum occurs at
the true distance (here [? = 2 m) provided that enough measure-
ments are available (see Fig. B(b)). The plots shown are averages
over 200 realizations drawn from the Gaussian prior with each
instance measured by 30 randomly selected (€, ¢) pairs.

(17)

E. Collecting TR-Measurements in Occluded Settings

Thus far we have focused on imaging systems that use either
TR measurements or non-TR measurements and occlusions.
It is natural to attempt combining the best of both worlds. A
full study of this topic is beyond the scope of the paper, but we
present numerical simulations to illustrate its promise. Consider
the familiar setting of Fig. 5(a) and a detector with a nontrivial
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Fig. 8. Ilustration of the proposed algorithm for reflectivity estimation when

the distance [7 is unknown. (a) Plots of the negative log-likelihood (nLLL) func-
tion versus each candidate distance value D, (see (17)) for two different values
of the SNR and for K = 30 measurements. The solid lines represent averages
over 200 realizations of the reflectivity and of the measurement positions. The
dashed lines show the nLL for a specific such realization. (b) Plots of (normal-
ized) reconstruction error for the reflectivity and the distance as a function of
the SNR for different numbers of measurements.

NMSE versus temporal resolution, SNR=20 dB
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Fig. 9. Comparing reconstruction performance versus temporal resolution in
the presence and ahsence of occluders.

temporal resolution Af. We sweep At over a range of values,
and plot the resulting NMSE in Fig. 9 (solid curve). For compar-
ison, we also plot in dashed line the NMSE performance in the
absence of an occluder (this corresponds exactly to the plot
in Fig. 4(a)). For a large range of temporal resolutions (here,
At 2 150 ps) the presence of occlusions leads to a substan-
tial improvement in reconstruction performance, allowing the
same level of performance to be maintained at inferior temporal
resolution levels, When very fine temporal resolution is
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Fig. 10. Experimental semp. Visible wall to hidden wall: ~ 106 cmy; visi-
ble wall to SPAD: ~ 156 cm; visible wall to occluder: ~ 37 cm; Diameter of
the circular occluder is 3.4 cm. Scene reconstruction was done with non-TR
measurements by discarding the time stamps obtained from the SPAD.

available, the reconstruction performance is almost identical
whether occluders are present or not. Note here that TR mea-
surements can be further utilized to improve other aspects of the
system. For instance, one might imagine using (coarse) TR mea-
surements o find the position of the occluder more effectively
than could otherwise be possible. We comment more on this in
Section VII.

V1. EXPERIMENTAL ILLUSTRATION

We experimentally demonstrale an instance ol opportunis-
tic exploitation of occluders to perform NLOS active imaging
with non-TR measurements. More extensive experiments can
be found in [18], where our methods are extended to the low-
photon-count regime by means of a physics-based noise model
for a SPAD detector.

Experimental Setup: The schematic setup of our experiment is
shown in Fig. 10. A 640 nm laser source (Picoquant LDH-640B)
operaling at average output power ~ 1 mW transmils optical
pulses with ~ 350 ps pulse width (full-width half-maximum),
at a 5 MHz repetition rate towards a nearly Lambertian-surface
visible wall (1st bounce). The scattered light travels to the
hidden wall, which scatters the light back (2nd bounce). Fi-
nally, the backscattered light from the visible wall (3rd bounce)
is collected by a SPAD detector (Micro Photon Devices PDM)
with 35% quantum efficiency and ~ 350 ps timing resolution.
This process is repeated multiple times as the laser illumination
is raster scanned along a uniform grid of illumination points £ on
the illumination wall, and for each £ we record the total number
of photons detected by the SPAD over a fixed dwell duration.

The SPAD is capable of providing time-resolved measure-
ments. However, for the purpose of this experiment we operale
the SPAD as a regular camera, discarding the temporal infor-
mation by integrating its response over time,* yielding a single

7o be precise, we only use the SPAD's time-resolution capability to gate-
out the first-bounce response from the illumination wall. Beyond that, no TR
information is employed in our scene reconstructions us they employ just the
sum total of post-firsti-bounce photons that were detected. Nodice that the illu-
mination wall ig in the direct line of sight of the imaging equipment, thus itz
location can be well-estimated based on standard imaging techniques. With this
information, the time window that corresponds to the first-bounce response is
a-priori known. Hence, the same operation achieved here with a SPAD camera
can in principle be performed using a time-gated camera collecting non-TR
intensity measurements.
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(first col.) Ground truth of the tested scene patterns on the hidden wall, The patterns are placed in the upper-left corner of the hidden wall. (second col.)

Raw measurement counts for 100 x 100 raster-scanning laser points. At esch laser point, we tum on the SPAD for a fixed dwell time such that ~3500 photon
counts are recorded on average. (third col.) Reconstruction results from (18). (fourth col.) Reconstruction resulis for the linear method in (6) that is based on the

Gaussian prior model.

scalar intensity measurements per each £ configuration. In front
of the SPAD, an interference filter (Andover, 2 nm bandwidth)
centered at 640 nm is used to remove most of the background
light. In the experiment, the SPAD is lensless and configured for
wide-field-of-view observation of the left side of the visible wall
to minimize first bounce light detection. On average, for each
raster scanning laser point, the SPAD detects approximaltely one
third-bounce photon per 3000 illumination pulses. The occluder
is a black-surface circular patch without any back reflections.
During the experiment, we turned off all ambient room light to
minimize background noise.

Computational processing: Based on the forward model in
(11) we obtain an estimate f of the true reflectivity from the
measurements by applying one of two computational methods.

The first computational method we apply is solving the fol-
lowing non-smooth convex optimization program:

. 1
f = argmin Sy AS|3 + MIE[lrv, (18)

where || - |[|1v is the Total-Variation (TV)-norm and X > 0 is
a regularization parameter. To solve (18) we use an efficient
dedicated iterative first-order solver [25], which is based on
the popular FISTA algorithm [26]. TV-norm penalization is a
standard technique that has been successfully applied in other
imaging tasks (e.g., image restoration [10], [26], [27]). Its use
is motivated by the observation that the derivatives of natural
images have heavy-tailed prior distributions [10], [27].

The second computational method we use is obtaining an
estimate of the scene f by positing a Gaussian prior (GP) and
performing Bayesian inference from the measurements to the
scene using the linear methodology of (6).

Resulrs: Our experimental results are summarized in Fig. 11.
Two different reflectivity patterns on the hidden wall were tested
(first column). The laser light was raster scanned on a 100 = 100
&rid and, at each point, the SPAD detector was turned on for a
fixed dwell time such that a total number of ~9 million laser
pulses were emitted and ~3500 back-reflected third-bounce

photons were recorded on average. The laser’s rasler-scanning
area is such that the hidden pattern, which is placed in the top-
left quadrant of the hidden wall, is completely scanned by the
occluder’s shadow pattem (i.e., the projection of the circular
object on the hidden wall). The raw measurement counts for
each of the hidden patterns are shown in the second column of
the figure: each one of the 100 x 100 entries corresponds 1o a
measurement y; for the corresponding virtual laser position £.

A pre-imaging measurement of background light, in the ab-
sence of a target pattern on the hidden wall, was made over a long
observation time and used to subtract the average background-
count level from the raw counts collected (over a much shorter
measurement interval) when there was a target present. The
background-corrected raw counts were then used to reconstruct
hidden-wall reflectivity using the TV and GP methods.®

Reconstruction results using the optimization method in (18)
are shown in the third column. The regularization parameler A
was tuned independently for each pattern to yield a reconstruc-
tion that is empirically closest to the ground truth. Tuning in this
manner is convenient for such demonstrations, but in the ab-
sence of ground truth, one typically resorts to a cross-validation
procedure.

Finally we performed reconstruction according to the lin-
ear scheme in (6) that assumes a Gaussian prior on f(x) (see
Section 111-B) with o7 = 0.02 and o tuned to achieve good
results. These results are shown in the fourth column of Fig. 11,
where we threshold the reconstruction to only keep the positive
values of f, and scale such that the maximum is 1.

Comparing the two processing methods, we note that TV
regularization is more accurate and emphasizes the edges in the
scene, as expected. The linear reconstruction is blurry but satis-
factory and yields a reconstruction thal is easily interpretable by

“See [18] for a more effective background-suppression technique that relies
on the binomial-likelihood which models SPAD operation in the low-photon-
count regime. Ref. [18] also points out that operation at 1550 nm wavelength,
instead of the 640 nm wavelength employed there and here, would greatly aid
in reducing background-light detection and its accompanying shot noise.



430

human eyes. One should also note that the linear reconstruction
is more computationally efficient. Both methods require tuning
of the involved parameters: a} and & for GP, and A for TV."

These results validate the forward model and the performance
of the reconstruction algorithm.

VIL. Discussion AND FUTURE WORK

In this paper we introduced and explored the benefits of
exploiting occlusions in NLOS imaging. We focused on the
problem of reconstructing the reflectivity of a hidden surface
of known geometry from diffuse reflections, further assuming
that the occluders in this setup were absorbing and of known
geomelry. This served as a useful testing ground for demonstrat-
ing basic principles in occluder-assisted NLOS imaging. At the
same time, our promising results suggest that it is of interest to
extend the study to more complicated system models. It further
suggests exploring the premises of opportunistic NLOS imag-
ing under even broader settings. In what follows, we elaborate
on relevant directions of future research.

Beyond the problem of reflectivity estimation, it remains to
explore extensions towards full 3D reconstruction of more com-
plicated scenes. While much of our focus has been on identifying
scenarios where the use of occluders can alleviate the need to
collect TR measurements, we speculate that combined use of
both TR measurements and occluders can assist in approaching
more complicated problems such as the aforementioned.

Another interesting extension is as follows. Rather than using
known occluders to reconstruct the reflectivity function, one can
imagine scenarios where the reflectivity function of a back wall
is known, thus il can be exploited to idenlify the position of
unknown objects in the hidden room. In terms of the forward
madel in (2) this essentially asks for an estimate of the visibility
function given the measurements and the reflectivity f(x), since
the visibility function is in turn informative about the shape of
the occluders.

Continuing along the same lines it is natural to consider
the fully blind problem, in which both the reflectivity func-
tion and the occluder shape are unknown. A natural approach
to solving this problem is an iterative alternating-optimization
method, which iterates between the two subproblems that were
previously discussed: solve for f(x) given the occupancy func-
tion, and vice versa. For each subproblem, we can use convex-
oplimization with appropriate regularization to promote the sta-
tistical or structural properties of the desired quantities (e.g.,
Gaussian prior on f(x) and a low total-variation assumption
on the occupancy function). Analyzing the convergence proper-

1%In [18], we replace the additive white-Gaussian noise model employed
herein with a physics-based model for SPAD operation in the low-photon-count
regime. This model combines the Poisson statistics of photedetection shot noise
with the effect of SPAD detection’s dead time to arrive at a binomial likeli-
hood function, Experiments reported in [18], whose reconstructions used the
binomial likelihood function together with TV regularization, showed a 16x
reduction in the number of detected photons per pixel needed to achieve satis-
factory NMSE's as compared 1o those obtained from the Gaussian likelihood
function and TV regularization, Use of the Gaussian likelihood function in the
experiments reported here, however, suffices for the present purpose, which is
to provide validation of the paper’s forward model and reconstruction algonithm
in the high-photon-count regime.
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ties of such procedures and further understanding the extent to
which different priors are sufficient to identify the true underly-
ing quantities are compelling research questions,

Similar to the use of occluders as a form of opportunistic
imaging, it is possible that exploiting other structural features
of the environment results in enhancement of NLOS imaging.
As already discussed, one such example involves exploiting
the possibly known reflectivity pattern on back walls. Another
example is utilizing coincidental bumps or edges on the illu-
mination wall itself, and the occlusions that those introduce.
Finally, it is natural to attempt extensions of the discussed meth-
ods to dynamic environments. For instance, moving occluders
will generate measurements with additional diversity that can
be exploited towards more accurate and robust reconstructions.

APPENDIX

Here, we provide a detailed derivation of (15).
First, we make the substitutions X’ = ax, f'(x) = f(%),t" =
—(1 — @))€ in (13) to arrive at the following,

Y £ = %[f'(x’)s(x’ — £)dx".

Taking the Fourier transform'' of the expressions in both
sides above, with 0 < a < 1 we have:

(1-a)Y(~(1 - a)w) = éF*cw:S(—u) = F(ow)S(~w),
which can be written as:
Y(u):ljnF(—lfnw)s(liuw)

Next, in (14) we make the substitutions x" = a'x, f’(x) =
f(Z),# =6, — (1 — &)£ 10 reach the following,

(19)

1 -
Yodmts day = ?ff(x')s(x' — #)dx’.
By taking the Fourier transform we find that
(1 — a’}e-jwé. Y(—{l _ ar)w) _ ﬁ'{QFWJS(—w):

which can be written as:

e IwrE o 1
= F (_l—a'd) S(l —a'd)‘ (20)
Equating (19) and (20) and solving for F(u) we arrive al
(15). as desired.

Y(w) =
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