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Sensor Array Design Through
Submodular Optimization

Gal Shulkind“, Student Member, IEEE, Stefanie Jegelka, and Gregory W. Wornell~, Fellow, IEEE

Abstract— We consider the problem of far-field sensing by
means of a sensor array. Traditional array geometry design
techniques are agnostic to prior information about the far-
field scene. However, in many applications such priors are
available and may be utilized to design more efficient array
topologies. We formulate the problem of array geometry design
with scene prior as one of finding a sampling configuration that
enables efficient inference, which turns out to be a combinatorial
optimization problem. While generic combinatorial optimization
problems are NP-hard and resist efficient solvers, we show how
for array design problems the theory of submodular optimization
may be utilized to obtain efficient algorithms that are guar-
anteed to achieve solutions within a constant approximation
factor from the optimum. We leverage the connection between
array design problems and submodular optimization and port
several results of interest. We demonstrate efficient methods
for designing arrays with constraints on the sensing aperture,
as well as arrays respecting combinatorial placement constraints.
This novel connection between array design and submodularity
suggests the possibility for utilizing other insights and techniques
from the growing body of literature on submodular optimization
in the field of array design.

Index Terms— Array design, submodular optimization, far
field sensing.

I. INTRODUCTION

ENSOR arrays for spatial sensing are widely deployed in a

wide range of applications including radar, sonar, medical
imaging and radio astronomy and there is a vast literature on
the topics of array design and array processing from the last
century [1], [2].

A major goal in designing arrays is efficiently meeting
sensing specifications with a limited budget of sensing ele-
ments, which is often a main determinant of system cost in
terms of dimensions, weight, complexity and manufacturing
cost. However, traditionally most studies assume a uniform
and linear design, often a truncated half-wavelength array, or
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restrictions thereof. Indeed, the problem of designing
non-uniform arrays hints at combinatorial optimization and is
computationally intractable as we discuss later.

In beamforming arrays attaining a desired resolution level is
often a primary concern, achieved by means of manipulating
beam pattern parameters such as lobe widths and positions.
The problem of designing efficient array geometries that facil-
itate desired beam patterns has been widely studied in the past.
Techniques involving array thinning start with a dense uni-
form geometry, removing elements while maintaining perfor-
mance within specified bounds [3]. Other approaches consider
various methods such as swarm optimization [4], dynamic
programming [5], genetic algorithms [6], inversion [7] and
Bayesian compressive sampling [8].

In direction-of-arrival estimation applications other spe-
cialized techniques have emerged for finding efficient array
designs, such as optimizing the corresponding Cramer-Rao
error bound [9], or designing according to the nested array
methodology for increasing the available number of degrees
of freedom [10], and theoretical results for estimation perfor-
mance in these settings have been developed [11], [12], [13].
Alternatively, other studies have addressed array design from
the point of view of performing efficient compressive sam-
pling of a Wide Sense Stationary (WSS) process, e.g. for
a setting with a parametrized covariance matrix [14], for
wide-band power spectrum estimation [15] and evaluating
performance in the presence of modeling errors [16]. How-
ever, these samplers are optimized for reconstructing the sec-
ond order statistics of the scene and not the actual scene
realization.

In virtually all design methodologies some assumptions
are made on the scene of interest. These represent beliefs,
constraints or knowledge that hold over the unobserved scene.
A favorable design is one meeting requirements while taking
into account these assumptions. For example, in direction of
arrival applications we may assume some limit on the number
of point targets present in the scene [9]. In beamforming we
assume some separation level between objects of interest that
implies a certain resolution level is required [1], or some scene
sparsity structure [17], [18].

In this paper we study the problem of inference on a scene
of interest through measurements collected by an array of
sensors. The approach we take for designing array geometries
is novel in that we consider settings where some Bayesian
prior on the scene is available at the time of design and propose
exploiting this knowledge by adapting the array geometry
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accordingly to achieve efficient inference with a limited budget
for sensors.

Prior knowledge is in fact not a rarity at all. Frequently,
the same device is used to sense multiple similar scenes, where
past examples are indicative. A medical imaging device, for
instance, is typically used to image the same organ across
different patients. In other cases, we may have prior knowledge
in the form of scene properties such as smoothness or adher-
ence to spatial constraints. We incorporate such knowledge
as a prior in a Bayesian model, such that sensing the scene
is equivalent to performing inference in this model, and the
problem of array geometry design asks to select a geometry
that optimizes the quality of inference. This naturally turns
out to be a combinatorial optimization problem, which can be
extremely hard to solve even approximately without exploiting
additional structure.

We show how to choose a cost function for the
array geometry design problem that holds the property of
submodularity [19]. A submodular set function is one that
exhibits diminishing marginal gains, i.e. adding additional
elements results in diminishing benefit. Recently, there has
been significant progress on the theory of optimizing submod-
ular functions [20]-[23]. In particular, these results state that,
while NP-hard, submodular maximization admits variants of
greedy algorithms that are guaranteed to achieve near-optimal
solutions, i.e. within a constant factor. Submodularity has
been used in connection with sensor placement problems, for
example in [24]-[26], however these works are not tailored to
the far field scenes and models that we focus on here.

Our connections and formulations open avenues for lever-
aging those results for efficient array design with strong
guarantees. We demonstrate this by showcasing the design
of array geometries in settings with arbitrary apertures and
settings where sensor placement respects matroid combinato-
rial constraints by porting results from the growing body of
literature on submodular optimization. We demonstrate that
together with our new adaptive formulations, the exploitation
of prior knowledge leads to higher quality inference at lower
cost in terms of the number of sensing elements.

The paper is structured as follows: In Section II, we review
far-field sensing and introduce a statistical framework for
modeling a-priori scene distributions. In Section III, we define
a cost-function to quantify the inference loss associated with
array configurations and derive a corresponding array design
optimization problem. We show that this optimization problem
belongs to the class of submodular optimization problems and
adapt established algorithms and guarantees to our setting.
In Section IV, we review the theory of matroids and showcase
its use in designing array geometries with combinatorial
placement constraints. Finally, in Section V we summarize
numerical experiments exemplifying and validating our theory.
The appendix provides proofs for some of our claims.

II. PROBLEM FORMULATION

In this section we formulate the array design problem.
We focus on far-field sensing applications, although, as will
become apparent, the same techniques could also be gen-
eralized to other settings where the measurement process

X

Fig. 1. Far-field sensing. Antenna elements are depicted as blue dots.

is linear. For simplicity we consider a one dimensional setting
as the extension to multiple dimensions is straightforward.
We begin with a review of the far-field sensing model to
establish notation, and then pose the sensing problem as a
Bayesian inference problem.

A. Far-Field Sensing

The far-field sensing setup is depicted in Fig. 1. At a
distance from an observation axis x we have a scene of
interest, characterized by an illumination function £(#) that
depends on the angle 9!‘:‘[—%, —I—%] between the direction of
observation and the axis of measurement broadside. We are
to place N sensors along the observation axis at positions
S={x,..., x5}

The passive sensors pick up the radiation emitted from the
scene, which is assumed to be narrow-band around a fixed
wavelength A. Recall that in an ideal noiseless setting, r(x),
the reading collected at position x, is given according to [1]:

+3 +3
re)= [ B0 F O cosora0= [ perFvay,
“z -

1)
where we have introduced w = % such that y € [—%, —|—%]
and B(y) = BGsin™' 2y)).

Eq. (1) bears close resemblance to the definition of the
Fourier transform. Namely, defining f(f) to be the Fourier
transform pair of f(y)

. F ‘
f(f):/ﬁ(w)eﬂxt#’dw ‘;::—fl ﬁ(‘f’):/f(l‘)e_ﬂ“wdr
2)

we immediately identify, comparing (1) and (2) that r(x) =
f (%x). That is, collecting measurements at x € {x,} is equiv-
alent to sampling the function f () at f € {x,}. Notice that
since the support of f(y) is restricted to w € [—%, —|—%] we
observe that f(f) is band-limited with bandwidth 1. Thus, as a
consequence of the Whittaker-Kotelnikov-Shannon sampling
theorem we have that perfect reconstruction of f(f), and
subsequently the scene B(y), is possible from an infinite set
of samples taken atf € {..., —1,0,+1, ...} which are exactly
the samples collected by an infinite %-spaced array.

Finally, we consider the effect of noise by introducing the
vector of N noisy measurements }“ = fl, Ceey fN]T modelled
according to:

ﬁ,;r(x,,)—l—w,,:f(%xn)—i—wn n=1,...,N (3

where w, are additive noise components. Stacked into a
vector w = [wy, ..., wy]T, we assume throughout that the
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noise is a complex, circular, Gaussian random vector w ~
CN(0, ,,,,) [27]. We assume the noise to be independent
across different sensors, i.e., Zpw = o-f,[ N, Where Iy is
an Nx N identity matrix such that the noise is i.i.d. across
different sensors.

B. Bayesian Formulation

The sensing problem we consider in this paper entails the
estimation of the illumination function f(w) or equivalently
its inverse Fourier transform f(f) from the set of noisy
measurements } Even in the noiseless setting this problem
is gravely ill-posed as infinitely many wildly varying scenes
map to any given finite set of observations'.

To cope with this ill-posedness, some prior belief or knowl-
edge pertaining to B(w) (or equivalently f(f)) must hence
be incorporated into the model, and this could be achieved
in several ways. Wingham [29] proposed selecting one spe-
cific f(t) of the multiple such functions consistent with the
samples, namely the minimum norm solution. Alternatively,
some constraints or other preferences may be imposed on the
solution by penalizing the inversion. For example one may
require the solution to satisfy some constraints, e.g. lie in
some pre-specified sub-space of the function space, or reg-
ularize the inversion, e.g. to promote smoothness or low total
variation [30].

In this study we take a Bayesian approach and impose
a prior distribution on the scene B(y). Subsequently, sensing
is equivalent to performing inference in this model. The
prior may be assigned based on past observations over the
distribution of scenes or based on a-priori knowledge of scene
properties.

We conceptually think of our scene as a natural image, and
as such, our Bayesian formulation entails posing a prior that
is consistent with its expected characteristics, tailored to the
specific application that is of interest to the user. Utilizing
Gaussian distributions as priors for natural scenes and images
has been successfully applied in the past [31], [32], [33] and
our work uses similar notions, with the Gaussian prior specif-
ically expressed in the frequency domain (e.g., as in [9]).
We note that this Gaussian description naturally captures the
statistics of spread-out scenes and is not immediately suitable
for serving as a prior for point-source target models. The for-
mulations and methods that we develop in subsequent sections
can be adapted for use with other scene priors in lieu of the
Gaussian one we focus on for this study. In particular, our
formulations may account for settings with point-source scenes
by posing a point-process prior (e.g. a determinantal point
process, DPP [34]) that is better suited for capturing priors
of point-targets in specific environments. With this alternative
prior we could follow similar steps to develop efficient array
designs for those applications. Studying such alternative priors
and resulting formulations is a possible interesting extension
to our work.

In what follows, to be concrete we detail one specific choice
for the form of the scene prior, expressed as a Gaussian
distribution in the frequency domain:

IThe mapping between a band-limited function f(#) and a finite set of its
(generally non-uniform) samples { f(f,)} is not bijective [28].

1) Discrete Representation: Assigning a prior on a contin-
uous function f(w) may seem like a daunting task. However,
in many scenarios this can be considerably simplified if the
scene may be efficiently expanded in a countable basis of
functions such that the prior may be imposed in the discrete
domain of expansion coefficients. In what follows, we con-
sider expanding B(yw) by means of Fourier basis functions
{e/27mV|m = ..., —1,0,+1,...} in y e [, +1]. Alter-
natively, other expansions may be used with similar results.
We write:

_ 2rm _1 1
ﬁ(vf)—;ﬂme‘ Y, wel—g 43l )
+5
Pm = f B(w)e /™ dy )

1
-z
where {f,,} are the Fourier expansion coefficients. The usual
Parseval relation holds:

/ 1Bw)Pdy =D |Bnl®

In lieu of the prior on B(y) we will impose a prior distribution
over {fm}. As will become evident such a description is
especially suited for applications involving real world smooth
scenes B(y) as suggested by the following properties of the
Fourier series expansion [35]:

(a) (Riemann-Lebesgue lemma) Let £(w) be any integrable

. o0
function. Then | S| Imﬁ> 0.

(b) Let f(y) € C" where C" is the space of r-times
continuously differentiable functions over some domain.
Then |Bn| < 27 with a = sup,, |27 B(w)| [35].
Thus, for any nicely behaved scene S(w) the high fre-
quency Fourier expansion coefficients diminish to zero with
an asymptotically polynomial rate determined by the level of
smoothness.
2) Prior: In the sequel we use Gaussian priors on the
coefficients {f,,}:

6)

Bm ~ CN(0,52) ©)

where g, are independent, complex, circular and Gaussian,
and a,i are the corresponding variances, which are assumed
known in advance. Using (6) we define the expected scene
power:

P EE/ B)IPdy = o ®)
m

The {02} can be set following some initial measurements of

sample functions B (y) or taking into account prior knowledge.

For example if we have a-priori knowledge that f(y) € C”

we may use
a
= a
mar

with a a scaling factor which is a very simple distribution
respecting the polynomial variance decay. For the rest of the
paper we adopt the prior in (9) and take @ = 1 and r = 1

m=10
m#£0

o

®
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to promote continuously differentiable functions. Also notice
that the resulting prior distribution on f(y) is Wide Sense
Stationary (WSS), with the coefficients %21 determining the
shape of the power spectrum, based on the available prior
information we have on the scene.

C. Observation Model

With the prior stated in the discrete {f,]} domain as
described above, our next goal is to circumvent S(w) by

directly stating the problem in terms of the measurements f,,
and the coefficients S, replacing the continuous representa-
tion with manageable discrete counterparts. Substituting the
sum (4) into Equation (1) we have:

1

+3
r(x,) = f Zﬂmeﬂxmwejifxnwdw _ Z KumPBm (10)
1 m m
-z

where
+1 )
Ko = / e Gratmy g, — sinc(m+-x,) (1)
1
-z
with sinc(x) = %1 Plugging this into (3) we finally have
the full observation model

Ja=D KumPm+wn n=0,...,N—1  (12)
m

and the sensing problem amounts to estimating the coefficients
{Bm) given the observation vector f. As we have assumed a
Gaussian distribution for the noise vector w as well as for the
prior over {fn} the posterior distribution p({8,}|f) turns out
to be Gaussian with a convenient analytic expression, as we
detail in Section III-D.

III. ARRAY DESIGN WITH AN APERTURE CONSTRAINT

In the previous section we formulated the problem of
far-field sensing in a Bayesian setting with a prior on the
distribution of the underlying scene. In this section we design
corresponding array geometries to facilitate efficient sensing
that exploit the prior knowledge and model. Initially we
consider simple constraints on the total number of sensors we
can place and on the aperture where these can be situated.
Specifically, we assume that up to N sensors are free to
be placed over some aperture A on the real line, e.g. for
simplicity we can consider A = {x| —a <x <a},a € R*.
In Section IV we consider more sophisticated combinatorial
placement constraints and show that the same formulations we
develop here may be adapted to those more challenging use
cases.

A. Formulating a Cost Function

In order to make the problem of optimal array design
well-posed in our Bayesian setting we need to specify a
performance measure that will be used as a cost function to

compare different designs and choose the best one. Revis-
iting our observation model (12) we notice that the array
design determines the coefficients K, through the set of
sensor positions S, as defined in Section II-A. With any
given design the sensing problem amounts to inferring the
posterior p({fn} |f). A natural performance measure in this
setting quantifies the quality of inference, i.e., the information
gained by performing the sensing experiments which results in
updating our beliefs about the coefficients {§,,} from the prior
p({Bm}) to the posterior p({fm)} |}“). This problem has been
extensively studied in the context of statistical inference and
experimental design [36], [37]. If we are interested in making
general inference to learn the state of the world (represented
by the posterior distribution of the Fourier coefficients) then
the natural performance measure, which is referred to as Bayes
D-optimality is the mutual information between the expansion
coefficients and the collected measurements [36], [37]:

I(f 5: {Bm) = H{Bn)) — H(UBn} | ) (13)

where 7(-; -) is the mutual information and H (-) the Shannon
entropy. The subscript S explicitly emphasizes the dependence
of the measurements on the set of sensor positions &. Notice
that this cost function measures the reduction in uncertainty
of the scene expansion coefficients before and after measure-
ments are made. The larger the mutual information the more
we trust the values of the coefficients {£,,} |}S-

With the cost function in place the array design problem
becomes

S*= argmax I(fg; {Bm)),
SCA,IS|=N
which is an NP-hard combinatorial optimization prob-
lem. However, we will show later that we can obtain a
constant-factor approximation for (14) using efficient compu-
tational techniques.

(14)

B. Finite Dimensional Approximation

Solving (14) under our model (12) involves manipulations
of the infinite sequence {f,,} which may not be amenable to
computer representation. To make our formulation tractable we
approximate the infinite sequence {f,,} with a finite truncated
set of coefficients {f,,|m € M}, where M is some finite set.
Stacked in vector form B, we consider the simplified finite
dimensional approximation of (12):

fs=Ksp+w (15)
where K g is an N x| M| matrix formed by restricting Kp,, on
m € M and the dependency on the sampling set S again made
explicit. Notice that hat notation is replacing the previous tilde.

We show that the approximate finite-dimensional model (15)
is a good proxy for the original infinite-dimensional
model (12) for a suitably selected M. Indeed, if M is chosen
to only exclude those f, coefficients that in expectation
contribute a marginally small part of the energy of the full
infinite sequence {f,} then the mutual information derived
from the approximate model (15) will closely track that of the
infinite dimensional model in (12). More precisely we have
the following result:
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Lemma 1: Let the prior on {fm} be z i.d. according to ﬁm
CN(0,02), M fixed, and e = > o2 satisfies € < 62N~ 3,

mgM
We have:

3

eNZ ~ >
—Nlog(l—l—g—z) <I(fs: {PmD—1(fs: B)
EN%
< —N lOg(l—g)

Proof: See Appendix A. 0

e—0

By virtue of the last lemma and N log(1 + éNT) — 0

we have that I( f S3 B) is an arbitrarily accurate proxy for
I(fs;{Bm}) for € small enough, such that in lieu of prob-
lem (14) we now continue with the simplified finite dimen-
sional approximation:

8* =

argmax 1(fs; B) (16)

SCA,|S|=N

and the results will be accurate to within the approximation
bounds from Lemma 1.

C. Grid Discretization

Next we turn to discretizing the aperture A to cast the
array design problem in the form of a generic finite selection
problem. We thus restrict the choice of sampling positions to
the finite set

Vz{x],...,xW']CA (17)
For the sequel we take V to be a uniform J-spaced grid
of positions in .4. We adapt the array design problem (16)
accordingly as:

S;= argmax I(fgs:p)
ScV,|S|=N

(18)

with the subscript d implying discretization. The next result
can be used to quantify the level of discretization J necessary
to guarantee performance close to optimum within some
specified error bound:

Lemma 2: With'V a uniform grid of sampling positions with
distance 6 between adjacent positions we have:

I(fs5:B) < I(Js: B) < I([s3 B)

I\N3

4+ N lOg(l—|—4(SP(i+W
Proof: See Appendix B. v 0
With this last lemma in place the array design problem (16)
may be further approximated in the more convenient finite
combinatorial problem form of (18) with guarantees on the
accuracy of the resulting designs. In the sequel we assume
that § is chosen such as to meet desired accuracy levels,
as prescribed in Lemma 2, and work with the simplified

formulation (18).
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D. Sensing

With the observation model of (15), coupled with a
Gaussian distribution for the noise vector w and a Gaussian
prior for the coefficients vector B, calculation of the posterior
distribution 8| f s 1is particularly simple and can be performed
analytically. Concretely, we have as a result of all random vari-
ables being Gaussian 3] f s ~CN(jt, ¥) and the parameters
are given according to the conventional Gaussian conditional
parameters:

oyt

B8~ 2pi i a9

T T
where X5 = XppKg, Xjp = KsXpgpKg + Xyww and
Tpp = diaglof, ..., 0%,

E. Submodular Optimization

The next step is to prescribe an efficient algorithm for the
solution of (18). As we will show shortly (18) is an instance
of a known NP-hard problem such that it is widely believed
that no efficient algorithm for its solution exists. However, due
to the structure of the cost function an efficient approximation
algorithm is known to exist with strong theoretical guarantees.
In this subsection we survey the relevant results and adapt
them to our needs.

1) Submodularity: We begin by invoking the submodularity
property of set functions [19]:

Definition 3: Let G : 2V > R be a set function.

(a) G is submodular if it satisfies the property of decreasing
marginals: ¥S,T < V such that S € T and x € V\T it
holds that G(SU {x}) — G(S) = G(T U {x}) — G(T).

(b) G is monotonic (increasing) if ¥S,7 €V 5.t. S < T we
have G(S) < G(T).

As it turns out, our cost function is monotonic and sub-
modular as the next result shows (this is almost identical to
[38, Corollary 4]. We reproduce it here with adaptations to
our setting for completeness):

Lemma 4: Let V be defined as before, and define the set
function G : 2V 5 R according to G(S) = I(fs B). Then
G is submodular and monotonic (increasing).

Proof: Expanding the mutual information according to
I(x;y) = H(x)—H(x|y) we have:

G(SU{x)—G(S) = H(f sup)—H(f5)
—[H(f su)|B)—H(FsIB)] = H(f )| F$)—H(f )] B)
(20)

where in the last equality we used the conditional indepen-

dence of the components of f g ) given B. Substituting 7

for S we immediately get:

[G(SUxD—G(S)]-IG(T U {x)—G(T)]
=H(fiylfs)—H(fxlfr) 2D

Using & € 7 we have H(}“{x”fé-) > H(}“{x”}“;r) such that
G(SU{xD—G(S) = G(TU{x})—G(T) and G is submodular.
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To prove monotonicity it is enough to show G(SU {x})—
G(S) = 0. This time expand the mutual information according
to I(x;y) = H(y)—H(ylx):

GEUD=G(S) =HBIfs)—HBIfsup  (22)
Conditioning can never increase entropy so H(ﬂ|}“5)2
H(B| f suiyx)) and the result follows. 0

2) Efficient Solvers: Our optimization problem (18) is the
maximization of a monotonic submodular function. A greedy
algorithm, shown as Algorithm 1, solves this problem to

within the best possible approximation factor, as the following
fundamental theorem states.

Algorithm 1 Greedy Submodular Maximization
1: function GREEDYMAX(G(-), V, N)

2: S«

3 fori =1to N do

4 X* = argmax, ., s G(SU{x)H
5 S« SU{x*}

6 Return S

The following theorem guarantees that the greedy algorithm
achieves approximately optimal performance:
Theorem 5 (Nemhauser [19]): Let G be a monotonic, sub-

modular set function and 8* = argmax G(S).
SCV,IS|=N
Let S8 be the set retrieved by the greedy maximization

Algorithm 1. We have the following guarantee for the perfor-
mance of the greedy algorithm:

G(SE) > (1— (1 — %)”)G(S*) >(1- %)G(S*)

Moreover, no polynomial time algorithm can provide a better
approximation guarantee unless P=NP [39].
Combining the guarantees of Theorem 5, Lemma 1 and 2 we
derive an approximation bound on the original problem (14):
Corollary 6:

162 +45P(1+5)N2
A62—€eAN?

<I(fse: B) (23)
We hence apply Algorithm 1 to solve our optimization
problem (18). The algorithm runs in time O(|V|N), linear in
the size of the set V' and the number of selected elements
N [40] such that it is easily implementable for problems
of large size. However, as it turns out even more efficient
variants of the algorithm have been introduced and studied.
One such variant commonly referred to as the ’lazy greedy’
algorithm was studied in [40] and it was shown to offer
substantial running-time improvements in practice (with an
unlikely worst-case theoretical performance upper bounded
by that of the conventional greedy algorithm). Our numerical
experiments described in Section V implement this more
efficient variant to reduce running time.

1 ~
(1-2) [I(fsﬁ {(Bu})~N log

3) Improved Approximation Bounds: While Theorem 5
guarantees an approximation bound of (1 — %) ~ 63% for
the efficient greedy algorithm this guarantee is not tight. It is
possible to derive a tighter data-dependent online bound on
the gap between the cost of the greedy solution G(S2") and
that of the optimal solution G (S*) [41]. Specifically, we have:

G(SF)>G(S*)— max

2T 2 (G(SFU{e)—G(S%)) (24)

which takes O(|V|log|V|) evaluations of G(S) to compute
and sort. We use (24) to improve the distance from optimality
bound in some of our numerical solutions in Section V.

FE. Design Example: A Simple Ideal Setting

In the previous subsections we formulated the array design
problem in a setting with constraints on the aperture .4 and
the number of sensors N and showed how a greedy algorithm
(Algorithm 1) is guaranteed to efficiently find an approximate
solution.

Here, we study a particular instance of that problem, where
the Signal to Noise Ratio (SNR) is high, and the aperture
is effectively unconstrained (the N sensors may be placed
anywhere on the real line). Under these conditions a trun-
cated %-spaced array is traditionally considered the design
of choice in the conventional non-Bayesian setting (this is a
truncated version of the infinite %-spaced design mentioned
in Section II-A). We show next that the truncated %-spaced
design naturally emerges as the approximately optimal solu-
tion as retrieved by our schemes in Bayesian settings where the
a-priori 8 distribution satisfies some conditions. Specifically,
we have the following result:

Theorem 7: Consider the high SNR regime ;Pg — 00 and
assume the prior from (7) takes a symmetric, :ﬁonomnical{y

decreasing form, i.e. a,ﬁ = azm and a,il > .cr,%l2 whenever

0 < my < ma. In addition, take V as an arbitrarily dense
set of sampling points on R, and M = —M,..., M with
M — cc.

We then have that a greedy solver on (18) will return a
length N, %-spaced truncated uniform array centered around
x=0.

Proof: See Appendix C. O

The last theorem studies one class of simple idealized
problems where the greedy solution is reminiscent of generic
non-Bayesian array designs. However, notice that our formal-
ism is also useful in more challenging design problems such
as when the aperture .4 takes on arbitrary forms, and the
effects of noise and application-tailored priors are considered.
Furthermore, in Section IV we demonstrate that additional
combinatorial constraints may be naturally incorporated into
our formulation such that even more challenging problems
become manageable.

IV. ARRAY DESIGN WITH MATROID CONSTRAINTS

In Section III we formalized the array design problem
in a setting where we imposed constraints on the aperture
and the number of sensors. Specifically, the constraints were
S € V,|S| = N. In many practical scenarios these may
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be too simplistic to accurately represent real world design
constraints. For example in applications where sensors are
heavy and mounted on support beams we may want to restrict
the number of sensors in specific sections of the aperture.

In this section we briefly review key elements from matroid
theory which is a branch in combinatorics [42] and survey
results from submodular optimization with matroid constraints
guaranteeing the existence of efficient approximate solvers
for this class of problems. We continue to show that these
mathematical structures may be utilized to impose constraints
of interest in array design enriching the set of problems our
Bayesian formulation can describe and solve.

A. Submodular Optimization With Matroid Constraints

We begin by defining matroids and their corresponding
independent sets [19]:
Definition 8: A finite matroid M is a pair (V,1) where V
is a ground set and T is a collection of subsets of V (the
independent sets) that satisfies the following properties:
1) The empty set is independent: ¥ € 1
2) A subset of an independent set is independent:
XcY,Yel = Xel

3) If X is an independent set and Y is a larger indepedent
set, X can be augmented to a larger independent set by
adding an element from Y\X:
X, Yel, [X|<|Y] = FeeV\X st XUlelel

A matroid structure may be used to classify subsets of a
ground set V' into permissible subsets which belong to 7 and
non permissible subsets which do not belong to Z. In the next
subsection we show that using this formalism we can express
interesting array design constraints.

From the theory of submodular optimization we have the
following results for submodular optimization with matroid
constraints [43], [44]. Let M = (), T) be a matroid and G(S)
a monotonic, submodular set function. There exists an efficient
approximate solver for the problem argmaxg_7 G(S). Specif-
ically, a greedy solver (maximizing the immediate marginal
benefit at each step) taking the form

argmax

SFSEy
e:edSE SEUle}eT

[G(Sgru {e})—G(Sg")]} (25)

and stopping when no more elements e can be added is

guaranteed to achieve a half-approximation bound:
1

G(S%) = - max G(S). 26

(5¥) = 5 max G(S) (26)

The constant factor may be tightened to (1 — 1) by utilizing
specialized randomized algorithms [44].

B. Combinatorial Constraints in Array Design

Here we invoke one specific well known matroid structure
and show its application in expressing useful array design
constraints. Let V be a ground set of grid points where sensors
are allowed to be placed as before. Let Vi,...,Vx be a
partition of the set V,i.e. JWe =V, ViNV; =90, Vi # j,

k

and let N,nq,...,ng be a set of integers.

We define the (cardinality constrained) partition
matroid [44] M = (V, I) with the following definition for the
collection of independent sets: a subset SCV is an independent
subset S€7 if it holds [SNV| < N, |SNV;| <n;, Vj.

In the context of array design the partition matroid may be
useful in expressing practical constraints over sensor place-
ment configurations. For example if the subsets V; represent
closed line sections, e.g. a physical partitioning of the aperture
into zones, and 7 represents the collection of all permissible
designs then the structure of the matroid limits the number
of sensors that may be placed in the ith zone to n; which
may be an important engineering constraint coupled with some
specific application. We solve:

S* = argmaxg.7 I (fs: B) 27

Applying the results from the previous subsection we imme-
diately have an efficient approximate solver for the array
design problem coupled with a partition matroid constraint.
In Section V we detail such a design for one numerical
example.

V. NUMERICAL EXPERIMENTS

In this section we perform numerical experiments validating
our theoretical results and exemplifying them. We showcase
an array design with cardinality and aperture constraints as
prescribed in Section IIT and design arrays adhering to matroid
constraints as prescribed in Section IV.

Our initial setting is as follow. We fix A = 1 throughout as
the wavelength only serves to scale the x axis. The aperture
is set as A4 = {x]—3.5<x <3.5} and the selection set
V is chosen as a uniform grid of 113 positions from A
spaced 6 = 0.0625 apart. We set out to design an array
consisting of N = 11 sensor locations. The prior for {£,}
is set as per (9) with r = 1 and normalized to sum to
P = 1. For the simulations we consider the truncated vector
B formed when restricting the set of m coefficients to 901
consecutive elements centered around the origin, i.e., we set
M = {—450,...,+450}. For the preliminary design we
implement the lazy greedy algorithm of Section III and plot
the results in the left column of Fig. 2 as a function of the
SNR which we define here as N—iz'. Blue markers denote the
full selection set V and red markers delineate the active S
selected by the algorithm.

In the high SNR regime (SNR = 10dB or higher values) the
resulting design is a truncated % uniform array as predicted
according to Theorem 7. As the SNR decreases the reliability
of the measurements deteriorates and the algorithm prefers
locating samplers right next to each other on expense of
widening the array as this serves to average out the noise.

The performance in terms of mutual information (}“S; B)
for the selected locations S appears in the title of the plots
(in natural units). Notice for example that for the 5dB SNR
design the achieved mutual information is 12.54. Using Theo-
rem 5 we have that the optimal design cannot achieve mutual
information better than 1__1512'54 = 19.83. This bound can

be improved using the imeproved bounding method briefly
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P/Ns2=10.0dB, 1=19.88

P/No;=10.0dB, 1=19.88

= -3 -2 -1 0 1 2 3 4

-4 -3 -2 -1 0 1 2 3 4

Fig. 2.
SNR levels.

described following Theorem 5 to show that the optimal
performance is not greater than 17.45.

The truncation level dictated by our choice of M translates
to € = le—4 and the truncation bounds from Lemma 1 read
(for the lower, extreme SNR case): —0.455!(f3; {Bm}) —
I(fs; B)<0.47. We find empirically that these bounds are
extremely loose and M can be shrunk considerably without
substantially compromising accuracy. To achieve a similar
upper bound on I(}“S*; B) — I(}SE; pB) as per Lemma 2
a discretization level of 6 = 2e—4 is needed. However,
we empirically find that our choice of § = 0.0625 is accurate
enough as further refining the grid does not significantly
change the design. Our lemmas prove to be extremely pes-
simistic as is expected given that the proofs take into account
worst-case scenarios.

The array geometries above, derived according to the
formulations of Section III, are designed to optimize the
quality of inference between the measurements and the scene
expansion coefficients 8. Many sensing applications of interest
specifically involve imaging the scene, that is reconstruct-
ing f(w) from the measurements. Our next experiment was
designed to empirically evaluate the Mean Square Error (MSE)
performance in scene reconstruction from measurements col-
lected using the prescribed designs. First, we designed five
array geometries as described above, optimized for several
target SNR levels {30dB, 12dB, 10dB, 5dB, 0dB}. We set up
a Monte-Carlo experiment where 1000 scenes were randomly
drawn from the distribution of Section II-B.2. For each
scene, noisy measurements were collected by each of the five

(left) Array designs with an aperture constraint and various SNR levels. (right) Array designs with combinatorial placement constraints and various

" . _ MSEvs. SNR .
: : e SNR,=30dB
; i ; e SNR,;=12dB
-6 . ........... e et oo e |
a s o SNR,=5dB
| E— il e ee SNR,=0dB |

MSE [dB]

; ; :
a 10 15 20 25 30
SNR [dB]

Fig. 3. Reconstruction MSE for various arrays designed for fixed SNR levels,
with actual SNR levels swept.

optimized arrays. The measurements were repeated with five
different synthetic noise levels corresponding to the five target
SNR levels.

We repeatedly performed maximum likelihood estima-
tion [45] of the expansion coefficients 8, and synthesized an
estimated scene {;‘ (w) according to (4). The MSE discrepancy
between {;‘(y/) and the true scene is depicted in Fig. 3. It is
evident that the quality of inference criterion is indicative of
MSE performance, as each of the five geometries yielded the
best MSE performance at its specified target SNR level.
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Next we solve a corresponding set of design problems
with matroid constraints installed to limit the number of
sensors in given aperture segments. Specifically, we use the
(cardinality constrained) partition matroid from Section IV-B
with N = 11,n; = 1,Vi and V; spanning consecutive
line segments of length 0.5: V;=[—0.25+0.5-i, +0.2540.5-i).
The matroid constraints limits the proximity between sensor
elements, which may be useful in real world use cases. We plot
the results for the matroid constrained designs in the right
column of Fig. 2. Notice that while the theoretical guarantees
pertaining to the greedy matroid optimization scheme of
Section IV is 0.5 compared to 1 — % with the cardinality
constraints of Section III, the actual performance achieved in
the constrained design instances is not far from those achieved
with the simple cardinality constraints.

VI. CONCLUDING REMARKS

We introduced a novel framework for designing sensor
arrays. Our setting is Bayesian in the sense that our model
incorporates the notion of prior beliefs about the scene of
interest. Our goal is designing arrays that are adapted to the
scene and perform efficient inference. We showed that this
NP-hard combinatorial selection problem may be efficiently
approximated by porting results from the theory of submodular
set function optimization.

Initially, we showed how to apply our formalism in design
problems with straightforward cardinality and aperture con-
straints. Later we showed that more challenging combinatorial
constraints may be enforced by utilizing results and concepts
from the field of matroids and submodular optimization with
matroid constraints.

Our formulation connecting the array design problem and
submodularity may further be extended to reap additional
benefits, namely tackling problems such as robust array
design or adaptive design that evolve as the scene is learned.
We leave the treatment of some of these and other problems
to separate study [46].

APPENDIX A
PROOF OF LEMMA 1

For simplicity of notation, we suppress the subscript
S throughout. Begin by expanding the mutual information
expressions:

I(f: Bn)) = H() = H(F1{Bn])
I(f;B)=H(f)—H(fIB)
Examining (12) and (15) we have H(f|{Bn}) = H(f|B) =
H(w) and so:
I(F; {Bm)) = I(f3 B) = H(F) — H(])

Next, notice that j’ and j’ are both circular, complex, Gaussian
random N-length vectors, such that their entropies are given
according to [27]:

(28)

(29)

H(f) =log((ze)Ndet(¥)) Z;j =
H(f) =log((me)Vdet(X)) Zij =

Further expand using the independence between w and /3, and
E[ﬁmﬁ;r] = 5mm’0'31:

i = ]E[(Z KimPm + wf)(z K}m’ﬁ:” * wj)]

= [Zwwlij + D KimK}yon (1)
m
i = EI( D KinBn +wi)( D KBy + 0]
meM m'eM
= [Zwolij + D KinK},0p (32)
meM
Comparing (31) and (32) and using:
Copx 2 w2 2 _
> KimKjpop| = 3 |KinK,02| < X o2 =
méM mgM mgM
(33)
we have |fl,-j — f];j| < € such that we may write:
E=%+eX (34)

for some N x N matrix X satisfying |X ij | < 1. We use (34) to
bound the determinants. ¥ is positive-definite and invertible
such that we can write:

det($) = det(F + €X) = det(E)det(Iy + €7 X) (35)
Substituting (35) in (30) we have:

H(}) —H (}“) = lOg(dﬁt(IN'l'Ei_l X))= log(det(i’))
(36)

- -—1
with X = Iy +€X X. We turn next to bounding the term
log(det(X)). First notice:

o —1 +—1
zzim ij EEleimejl
m m

- -1 -1
< e |5 | s elE o < eVNIET 2
m

|[ei"X],-j| —c

= NG — eV < YN
Omin(X) O
)

Where we have used the matrix norm equivalence ||A|x <
VNJA|l2 (for NxN matrices) and omax(-) (Gmin(-)) is the
maximal (minimal) singular value such that amin(f) > ai.
Thus we have that X has diagonal elements centered around 1:
)h(,',- — 1‘ < Ea@ and the row-sums over non-diagonal entries

satisfy > |X,'m| < @M
mi w

Applying the Gershgorin circle theorem we have for the
eigenvalues of X:

e/NN e/NN
1- 2 = |’:|-J| = 1 + 72
o’w o’lﬂ

det(X) is a positive real number as the quotient of the
det(%)

determinants of two positive definite matrices det(i’ )= det(3)
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such that we can write det(X) = [I; 4 = [II;|4i| and
consequently:
3 3
Nlog(1 — ) < log(det(X)) < Nlog(l + —) (38)
This finally leads to:
3
eN2 -~ -
—Nlog(l+—) < I(F: (Bu)~1(F: B)
3
b
< Niogi-5) @39
o-l'.D
APPENDIX B

PROOF OF LEMMA 2

The left inequality is trivial. We have I (}“S;; B) <

I (}“S*; p) as the second optimization is over a larger set.
To prove the right inequality we show that for every S € A
there is Sy < V such that

. . 45P(14+9)N 1
I(fs:B) <I1(fs,: BN 1og(1+T (40)

w
we will show this for |S|=N but the proof for other cardinal-
ities is identical.

With distance J between adjacent elements of V, for every
S={x1,...,xn} C A there is a set Sy={x{,...,x§} such
that Sy C V and |x; —xd| < é for all i. We have similarly

to Appendix A:

I(fs:B)—I(fs;:B)=H(fs)—H(fs) (41
Using the model (15):
H(J ) = log((ze)V det(£%))
H(Js,) = log((xe)V det(3)) “2)
where:
25 = E[}“s}“fs] = KSEpK§+ Zuw
$% = Elfs, [5,] = Ks,EpK5, + Zuw
4 = EIBBT] (43)

N N -8 .S,
and H(fs) — H(fs,) = log(det(X ")) — log(det(X d)).
Both Kg and K g, are size N x | M| matrices defined as per
the definition in (11), such that:

2 2
|[K8]nm_[KSd]nm| = |Sirlc(m—|—Ix,,)—sinc(m—l—zx;f)l

2 4 2
= 21 |xq_xq| = 15
where for the first inequality we have used the fact that sinc(-)
is Lipschitz with constant smaller than 2. We can thus define
A = Ks—Kg, and we have |A,;| < %5. Substitution in (43)
yields:

(44)

~8 ~ S : :
27 =37 4 AZgpAT + AX KL + Ks,TppAl (45)

We bound the perturbation terms by noticing:

|[AE,3,3A‘}];}| = Z Aim[Zpplmm A jm
< 5)22[2ﬁﬁ]mm < —52
|[AzﬁﬁKjgd]U| = Z Aim[zﬁﬁ]mm[KSd]jm
< 251 S (S pplum < S0P (46)
=7 - Bpimm = 2
and overall we have:
” N 4 J
125 - 51 < S0P + A—zazp = —5P(1 +7) @D
define: €’ = iéP(l + i) and we have
$° 5% L ox (48)

with N x N matrix X satisfying |X;;j| < 1 which is akin
to (34). We thus port the results from Appendix A here (we
only need the lower bound):

!

;B)—I(fs:B)  (49)

which, upon substitution of €’ is equivalent to (40).

APPENDIX C
PROOF OF THEOREM 7

The greedy algorithm sequentially selects elements accord-
ing to the rule x* = argmax, .y, I(fSU{x] B) where S
is the set of elements selected so far. We recursively show
that the added elements can be selected on a %-spaced grid
centered around x = 0. Expanding the mutual information as
in Appendix A we have:

argmax, ey s I (f supeys B)=argmax,cy\s H(fsup)  (50)
We begin by showing that the first selected element is x1 = 0.
Indeed, using the results from Appendix A:

argmax H(}“M) = argmaxdet(fn) = argmax ) 11 (51
xeV xey xey

where again using Appendix A and under the assumptions of
the theorem (high SNR):

o _ZKlmKlm " 251nc2(m—|— ~x)o2

< 0p Z sinc? (m—l— x) = ‘70 (52)

where we used crm < ag, Vm # 0 and the identity:

Z sinc(m+a)sinc(m—+b) = sinc(b—a) (53)
m
It easy to see that in (52) equality is achieved for the choice
x1 = 0 which is the claim.

Next, assume that the greedy algorithm has already picked
aset S = {x1,...,xs)} of adjacent elements on a %-spaced
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grid centered around x = 0 and show that the next element to
be added is an adjacent location on the same %-spaced grid.
We have using H (x, y)=H (x)+H (v|x):

argmax H(}Sle}):argmax H(f[x“fs):argmax 03|8 4
S xeV\S xeW\S

xeVy

where crfl s is the conditional variance of the Gaussian obser-
vation collected at x given the Gaussian observations made at
the set S:

ols =0l —Z,sT5sE!g (55)

with the usual definitions for the covariance matrices (as in
Appendix A):

[Z.:shi = ;sinc(m—k%x)sinc(mjL%xi)gi

. N2 9
= smc(m(z)—l—Ix)am(i}

. 2 . 2
[Zsslij = Zsmc(m—|—Ix,-)smc(m—i—Ix;)ai:é;;ai(i} (56)

where in the last equations almost all sinc(-) functions nulled
out as the x;’s are situated on a % grid, and we have defined
m(i)z—%x,-, such that I = {m(i)} is a set of consecutive
integers. Additionally, we have:

2
o Zsincz(m+1x)a,i (57)
m

Substituting back into (55) we have:

gfls = Zsir](:z(m'z—l—%)c)a"]f1 — Zsincz(m(i)—i—%x)aim
m iel
= 3 sin(n+5x)a (58)

mel

and this is similar to the optimization over the selection of the
first location in (52) with the optimum achieved by selecting
x such that %x = m for the first m ¢ I which is the next
adjacent location on the ’21 grid which completes the proof.
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