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Abstract

It is tempting to believe that we now own the genome. The ability to read and re-write it at will has
ushered in a stunning period in the history of science. Nonetheless, there is an Achilles heel exposed by
all of the genomic data that has accrued: we still don’t know how to interpret it. Many genes are subject
to sophisticated programs of transcriptional regulation, mediated by DNA sequences that harbor binding
sites for transcription factors which can up- or down-regulate gene expression depending upon environ-
mental conditions. This gives rise to an input-output function describing how the level of expression
depends upon the parameters of the regulated gene — for instance, on the number and type of binding
sites in its regulatory sequence. In recent years, the ability to make precision measurements of expres-
sion, coupled with the ability to make increasingly sophisticated theoretical predictions, have enabled an
explicit dialogue between theory and experiment that holds the promise of covering this genomic Achilles
heel. The goal is to reach a predictive understanding of transcriptional regulation that makes it possible
to calculate gene expression levels from DNA regulatory sequence. This review focuses on the canonical
simple repression motif to ask how well the models that have been used to characterize it actually work.
We consider a hierarchy of increasingly sophisticated experiments in which the minimal parameter set
learned at one level is applied to make quantitative predictions at the next. We show that these careful
quantitative dissections provide a template for a predictive understanding of the many more complex
regulatory arrangements found across all domains of life.

1. Introduction

The study of transcriptional regulation is one of the centerpieces of modern biology. It was set in
motion by the revolutionary work of Jacob and Monod in the postwar era, which culminated in their
elucidating the concept of transcriptional regulation in the early 1960s [1, 2, 3], and it has continued apace
ever since. Based on their study of the lac operon and regulation of the life cycle of bacterial viruses,
Jacob and Monod hypothesised that transciption was controlled using a mechanism sometimes known as
the repressor-operator model, in which repressive factors bind to promoters at sites called operators to
prevent activation of genes. Here, we will refer to this regulatory architecture as the simple-repression
motif.

Jacob and Monod suspected that there would be a universal mechanism for transcriptional regulation
that followed the strictures of the repressor-operator model; indeed, simple-repression, defined diagram-
matically in Figure 1(A), has since been shown to have widespread applicability as seen in Figure 1(B).
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Figure 1. The distribution of regulatory architectures in E. coli. (A) Several of the simplest regulatory architectures are
shown, featuring activator and repressor binding sites. We adopt the notation (m,n) to characterize these architectures
where the first number m tells us how many activator binding sites there are for our gene of interest and the second
number n tells us how many repressor binding sites are controlling that same gene. Within this notation, a (0, 0)
architecture is unregulated, a (1,0) architecture is a simple activation motif and a (0, 1) architecture is a simple repression
motif and is the central focus of the present article. (B) Relative probability of different classes of regulatory architecture
for those genes that have been annotated in E. coli [7, 8]. For transcription factors that can act both as activators and
repressors, we consider their specific mode of action in the context of each regulatory architecture. For example, if a
transcription factor binds to a single site near a promoter and acts as an activator, we consider it to fall within the (1,0)
nomenclature even if this same protein can act as a repressor on other regulatory units.

However, transcriptional reality is — as is usually the case in biology — far more complicated [4], and,
as Figure 1 reveals, many genes are in fact subject to both negative and positive regulation. Ironically,
the genetic circuit used by Monod to formulate the repressor-operator model — the lac operon shown
in Figure 2 — is itself subject to positive regulation, which shows the repressor-operator model to be
incomplete [5, 6].

The lac operon is one of the canonical case studies learned by high-school and college students alike
when they are first introduced to the logic of gene regulation in modern molecular and cellular biology [9,
10]. Figure 2 shows in cartoon form how the gene that encodes the enzyme for digesting lactose is activated
only when lactose is present and glucose is absent. This textbook case of transcriptional regulation has
been studied to death, but how well do we really understand it? The sketch in Figure 2 is a broad-
brush view of transcriptional control at the lac operon, but it gives us no sense of how the level of gene
expression is affected by, for example, changing the copy numbers of the Lacl and CRP transcription
factors, changing the positioning of the operator, or titrating the relative concentrations of glucose and
lactose. We argue that achieving real understanding of this system requires that we are capable of making
precise and quantitative predictions about its regulatory response as a function of all these parameters,
and then that we are able to confirm these predictions experimentally.

How could we achieve this mastery? First, we would need theoretical models able to provide quan-
titative predictions that can be tested with careful experiments. Importantly, both the predictions and
the experiments themselves would need to access the same underlying knobs to control the level of gene
expression. Second, we would need to start with the simplest of regulatory architectures. If we are unable
to understand the most basic regulatory kernel, we have no hope of doing so for more complex regulatory
circuits. Third, to dissect more subtle features of a regulatory circuit — for instance, to understand how
expression noise depends on changing parameters — we must be able to use quantitative information
gleaned from one type of experiment to formulate further predictions that are tested in subsequent ex-
periments of a different type. Therefore, we would need to conduct all these experiments in the same
system and under standardized conditions.
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Figure 2. The high school lac operon. The classic story of how bacteria utilize lactose rather than glucose as a carbon
source is the canonical example used to teach the concept of genetic regulation. The figure shows that only when lactose is
present and glucose is absent will the gene for the enzyme used to digest lactose be turned on. The activator is shown in
green, the repressor is shown in red, and RNA polymerase is depicted in blue.

This review summarizes such an approach, which we have taken in our own laboratory over the past
decade. We discuss how, working with a set of specifically-designed synthetic constructs and challenging
theoretical models with experiments, we have been able to tackle increasingly subtle behaviors of the
simple repression architecture in E. coli. The strategy we have taken results in a pyramidal structure, as
shown in Figure 3, in which parameters inferred at one level are used to make quantitative predictions
about gene expression behavior in successive, more sophisticated experiments.

At the foundation of the simple repression pyramid are experiments to determine how gene expression
responds to changes in operator strength and repressor copy number. With this information in hand,
we can then consider the entire distribution of expression levels among a population of cells, as opposed
to simply the average expression. At the next level in the hierarchy, we address a number of subtle
and beautiful effects that arise when there is more than one copy of our gene of interest or competing
binding sites for the repressor elsewhere on the genome (or on plasmids). This repressor titration effect
provides a very stringent test of our understanding of the simple repression motif. Of course, much of gene
expression is dictated by the presence of environmental signals and the next level in the simple repression
pyramid is to ensure that these same kind of predictive models can describe induction of transcription.
Further, changes in the environment such as media quality or growth temperature certainly have an
effect on the bacterial doubling rate. The next challenge is then to retain predictive power by describing
how these different conditions affect the magnitude of parameters that are the basis of these models,
such as repressor copy number and binding energy. Finally, evolution of transcription acts both at the
level of transcription factor binding sites and the transcription factors that bind to them. Ultimately, the
simple repression pyramid will be topped off by learning the rules that relate transcriptional regulation to
fitness [11, 12, 13, 14]. At every level in the pyramid, we demand that the parameters be self-consistent.
That is, regardless of how our experiments are done or which new question we ask, the same minimal
parameter set is used without recourse to new fits for each new experiment.

Note that this paper is not a review of a field; rather it is a review of a concept, in which one
minimal parameter set is asked to describe all measurements on a particular realization of the simple-
repression motif. This objective is not served by an approach in which different measurements are taken
from disparate sources on different strains under different conditions. We focus instead on measurements
made using the same strains under the same growth conditions throughout, and this renders the discussion
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Figure 3. The simple repression pyramid. A progression of different experiments makes it possible to assess increasingly
subtle regulatory effects for the simple repression motif. Parameters inferred from lower levels in the pyramid are used in
the analysis of the experiments at the next level. The repressor (and its binding site) is shown in red, RNAP polymerase
(and its binding site) is shown in blue, and inducer in green.
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Figure 4. Regulatory ignorance in E. coli. The central figure which schematizes the E. coli genome shows the fraction of
the operons for which we know nothing about how they are regulated. The left panels show examples of the knowledge of
regulatory architectures required to unleash the kind of theory-experiment dialogue described here. The right side panel
shows the more common situation which is complete regulatory ignorance.

highly self-referential. But everything we have done was enabled by beautiful work that has come before
and inspired by wonderful experiments since; we point the reader towards as much of this literature as
possible.

The goal of this review is to address whether, for simple repression, we have reached a self-consistent
theoretical picture that stands up to careful experimental scrutiny. After an overview of regulatory
architectures in F. coli, and the simple repression motif in particular, we describe our systematic effort
to make the strains, tune the relevant knobs, and make the high precision measurements that enable us
to test theoretical predictions about how the simple repression architecture behaves. In the following
sections we then address the key critiques of the theoretical framework, before stepping back to discuss
what our results entail for future efforts in understanding gene regulation. We argue that we have
achieved significant success using this hierarchical approach and that it provides hope for understanding
other, more complex, gene regulatory circuits. Indeed, the great work done by others in lac [15, 16, 17],
MarA [18, 19], GalR [20, 21, 22], Lambda [23, 24, 25, 26], and AraC [27] lends itself to providing the
fundamental stepping stones for building other transcriptional pyramids.

2. The Regulatory Landscape in E. coli and the Ubiquitous Simple Repression Architecture

Despite the dominance of E. coli as a model system for studying gene regulation, we remarkably have
little or no idea how most of its genes are controlled. As Figure 4 demonstrates, for the majority of genes
we don’t know the identity of the transcription factors that turn them on/off, where the binding motifs
for those transcription factors are, or what the regulatory logic is (at the most basic level, whether they
are controlled by repressors, activators or a combination of both). Figure 1 provides an incomplete, but
state-of-the-art picture of our current knowledge of the regulatory landscape by showing the distribution
of different architecture types in E. coli. Shortly after the elucidation of the repressor-operator model (the
(0,1) motif) that introduced the simple repression architecture we focus on here, the idea of activation
as a regulatory mechanism also took root. But as we see in Figure 1(B), at the time of this writing,
most genes in F. coli are annotated as unregulated. This sounds counterintuitive, but for many genes it



likely reflects ignorance of the binding motifs and regulators as opposed to actual lack of any regulation.
Simple repression (along with simple activation) comes in as the next most prevalent architecture, and
we now turn our attention there.

Simple repression is a common regulatory motif in E. coli [7], but we know little of the general prin-
ciples by which it is used. To tackle this, we used annotated regulatory information from RegulonDB [§]
to survey 156 promoters with a simple repression architecture, controlled by 50 different transcription
factors. We first wanted to know how the concentrations of these regulators change under different growth
conditions, and how this relates to their probability of binding to the promoters in question.

To characterize each promoter, we used published data that quantified protein abundance across the
bacterial proteome under various growth conditions using either ribosomal profiling or mass spectrometry
[28, 29]. Figure 5(A) shows the distribution of repressor and activator copy numbers genome wide, while
Figure 5(B) shows the copy numbers for just those repressors that target the (0,1) architectures in which
we are interested. The transcription factors vary in copy number from 0 to about 10,000 per cell. Of the
repressors, just over half of them bind 10 or fewer binding sites, while some targeted over 100 binding sites
across the genome (Figure 5(E)). Given the wide range in repressor copy number, we wondered whether
it related to the number of target binding sites that exist for each of these repressors in the genome.
Indeed, when we calculated the ratio between protein copy number and number of target binding sites
for each transcription factor (as indicated by the dashed lines in Figure 5(B)) we found a median ratio
of about 15 transcription factor copies per binding site. The majority of the transcription factors (about
80%) have no more than 100 copies per binding site. Given that the number of transcription factors per
binding site is on the order of 10 - 100, we can infer that their typical effective binding constants (defined
in detail below) are in the 10 - 100 nM range, since 1 copy of a protein per bacterial cell corresponds to
a concentration of roughly 1 nM.

We next asked how these simple repression promoters are regulated by the transcriptional repressors
that control them. It might be the case that the promoters respond to changes in repressor copy number;
alternatively, the copy number may remain constant but a repressor be induced by an external signal
to switch to an active state. Using mass spectrometry measurements of protein copy number across 22
growth conditions (varying carbon source, minimal versus rich media, temperature, pH, growth phase,
osmotic shock, and growth in chemostats), Schmidt et al., 2016 [29] had found that most repressor
copy numbers do not vary dramatically as a function of growth condition (Figure 5(C)). Figure 5(D)
gives a quantitative picture of the variability in transcription factor copy number for the repressors that
target simple repression architectures. Most repressors exhibit a low coefficient of variation (standard
deviation/mean copy number) in their abundance across these growth conditions (median coefficient of
variation of 0.33, compared with an 0.51 across the entire proteome). In Figure 6 we replot these data to
show how the total proteome changes as a function of growth rate, as compared to how the total number
of transcription factors or copies of Lacl do. This plot provides a more nuanced picture of the challenges
theoretical models must face in treating expression levels over all growth conditions as will be discussed
in the final section of the paper.

While it is possible that the growth conditions considered were not appropriate to elicit major changes
in the copy number of each repressor, an alternative explanation of the low variability in repressor copy
number is that these transcription factors, instead of relying on the modulation of their copy number,
depend on ligand binding and allosteric transitions to alter their potency in regulating transcription.
Ligand binding followed by conformational changes between inactive and active conformations provide
allosteric control of the repressors by altering their DNA binding strength, allowing for immediate changes
in gene expression without relying on the much slower process of changing the transcription factor copy
number through protein synthesis or degradation. As shown in Figure 5(F), we indeed find that the
majority of these repressors (65%) are either known to bind DNA in response to binding to a ligand,
or for those less well-characterized, predicted to have a ligand binding domain. In addition, several
of the other repressors that were identified are part of two-component systems that bind DNA in a
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Figure 5. Summary of transcription factors that target the (0,1) simple repression architecture. (A) Transcription factor
copy numbers in E. coli [28]. The cumulative distribution of transcription factor copy numbers indicates that activator
copy numbers are generally lower than repressor copy numbers. Roughly half of the activators have copy number less than
10 while roughly half of all repressors have copy number less than 100. Several representative examples of well known
transcription factors are shown for reference. (B) Cumulative distributions are shown for transcription factors that target
the (0,1) simple repression architecture. Data is shown from measurements using ribosomal profiling (41 of the 50
identified repressors were measured in MOPS minimal media with 0.2% glucose; [28]) and mass spectrometry (31 of the 50
identified repressors were measured in M9 minimal media with 0.5% glucose; [29]). (C) The variability in cumulative
distribution is shown for the 31 transcription factors regulating the (0,1) architecture measured across 22 different growth
conditions, using mass spectrometry. The shaded region represents the 95th percentile region in cumulative distributions
across growth conditions, with the distributions for four growth conditions shown explicitly. (D) Coefficient of variation
for copy numbers of transcription factors regulating the (0,1) architecture across the 22 different growth conditions,
measured by mass spectrometry. Several examples are identified along with Lacl and the complete list is summarized in
Table 1. (E) Number of target binding sites for each of the transcription factors that target a (0,1) architecture (using
annotated information from RegulonDB [8]). (F) Mechanisms of target binding modulation for transcription factors that
target a (0,1) architecture. Ligand-dependent transcription factors contain a known or predicted protein domain for
binding by a ligand (using information from EcoCyc [30]).

phosphorylation-dependent manner.

3. Simple Repression as the Hydrogen Atom of Gene Regulation: Hic Rhodus, Hic Salta

In physics, when we establish some model system that shows our complete command of an area, it is
often christened “the hydrogen atom” of that subject. This badge of honor refers to the far-reaching power
of the hydrogen atom in the context of the modern quantum theory of matter. The theory not only informs
the classic analysis of spectral lines in hydrogen, but also many more nuanced behaviors ranging from the
Stark and Zeeman effects to some of the most subtle effects seen in quantum electrodynamics [31]. Using
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Figure 6. Protein census in E. coli as a function of growth rate. The figure shows the cellular copy number for all
proteins, only transcription factors, and for Lacl. The low copy number observed for Lacl exemplifies the low protein
counts that are commonly observed for such regulatory proteins. Each growth rate represents a different growth condition
that was considered in the work of Schmidt et al. [29].

the tools of quantum mechanics, the hydrogen atom is simple enough to explore — both mathematically
and experimentally — many of the most important ideas in modern physics. It can also teach us what a
solution to the problem looks like, in a way that is instructive when going on to tackle more complicated
problems such as the behavior of heavier atoms.

We argue that this analogy is helpful in thinking about the simple repression motif as a foundation
for launching into the study of more complicated regulatory architectures. One of Aesop’s fables recounts
the exploits of a braggart who after a trip to the island of Rhodes claimed to have made a long jump that
could not be equaled by others. A witness to the braggart’s commentary replied “hic rhodus, hic salta’
meaning, “Here is your Rhodes, jump now”. The simple repression motif is our Rhodes. Here, we take
the leap to see the extent to which we can construct predictive theoretical models for how this regulatory
circuit behaves.

The simple repression motif that forms the basis of our work was originally constructed by Oehler
and colleagues [32, 33]. In a set of now classic experiments, they pared down the complex lac operon
and rewired it as a powerful model system, stripped of all but its most essential features. As shown
in Figure 7, Oehler et al. reduced the number of repressor binding sites (operators) from three to one,
creating precisely the repressor-operator model originally envisaged by Jacob and Monod. This remaining
binding site was placed so as to compete directly with RNA polymerase for promoter binding. Oehler
et al. furthermore recognized the key control parameters for the simple repression motif — the repressor
copy number and the operator binding strength — and figured out how to manipulate them over different
values in parameter space as shown in Figure 8. Using the DNA sequence of the binding site as a way
to manipulate its affinity, they could then tune the strength of repression, providing a well-conceived
model system for testing the theoretical predictions of various modeling frameworks aimed at describing
transcriptional regulation. We now consider the kinds of theoretical predictions needed to carry out the
experiment-theory dialogue advocated here.

4. Mathematicizing Transcriptional Regulation

While some may say that Figure 2 makes predictions as to when gene expression will be turned “on”
or “off”, we protest this loose use of the term “prediction” which in our minds has a very special meaning.
To earn the title of “the hydrogen atom of X”, one must understand the system not only qualitatively,
but with quantitative precision as well. In this article, “prediction” is used with care to emphasize the
quantitative concreteness of our thinking. Our aim in the coming sections is to examine the myriad
of different physical/mathematical approaches that have been set forth to think about gene regulation
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Figure 8. Classic experiments reveal key regulatory knobs of the simple repression motif. Oehler et al. deleted the
auxiliary binding sites in the lac operon rendering it into a simple repression architecture [32, 33]. Different operators were
used as the repressor binding site and several different repressor counts were tuned resulting in different values of the
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present. Changes to operator sequence with respect to the O1 operator are highlighted in blue.
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in a predictive fashion. Figure 9 shows the different classes of models that will be entertained in the
remainder of the article as a result of their prevalence in the literature and their impact on the field
itself. Figure 9(A) provides a schematic of how thermodynamic models are used to compute promoter
occupancy, an approach that will be described in greater detail below. Figure 9(B) focuses instead on
mRNA dynamics using differential equations to account for the mean number of mRNA as a function
of time given the microscopic processes that lead to both an increase and decrease in the number of
mRNAs. An even more ambitious strategy is presented in Figure 9(C) which focuses on the dynamics
of the full distribution p(m,t), which is defined as the probability of finding m mRNAs at time ¢t. To
be concrete, our strategy is to focus on the use of each of these different methods in the specific case
of simple repression with special focus on what the different classes of models say and how experiments
have been used to test those predictions.

4.1. The Occupancy Hypothesis and Thermodynamic Models

The thermodynamic models presented schematically in Figure 9(A) implicitly assume one of the most
important and ubiquitous assumptions in all of regulatory biology, namely, the occupancy hypothesis. This
hypothesis, which will be described, criticized and contrasted with experiments in detail in Appendix 77,
informs approaches ranging from the bioinformatic search for transcription factors to the use of ChIP-Seq
experiments to the kinds of thermodynamic models that are our focus here. Stated simply, the central
assumption is that the rate of mRNA production is proportional to the probability of RNA polymerase

occupancy at the promoter,
dm

dt
where we introduce the notation ppoyng for the probability that RNA polymerase is bound to the promoter
of interest. More generally, if we have N transcriptionally active states (e.g. polymerase by itself,
polymerase and activator together), then we write

= TPbound; (1)

N

dm
at = Zripz'- (2)

=1

The idea behind this equation is that the net average rate of transcription is given by the fraction of
time the promoter spends in each transcriptionally active state, p;, multiplied by the rate of transcription
corresponding to that state, r;.

But before we can use this result, we need to know the physical nature of the individual states and how
to compute their probabilities. We adopt notation in which the probability of the i*" transcriptionally
active state can be thought of as

pi=pi((TH],[TF), ) (3)

where the notation indicates that this probability is a function that reflects the occupancy of the regula-
tory DNA by the various transcription factors (i.e. regulatory proteins) that interact with the regulatory
apparatus of the gene of interest. Hence, each transcriptionally-active state denoted by the label “i”, cor-
responds to a different state of the promoter characterized by a different constellation of bound transcrip-
tion factors. These ideas were first put into play in the gene regulatory setting by Ackers and coworkers
and have since been explored more deeply by number of groups [35, 36, 37, 38, 39, 34, 40, 41, 42, 17].
For the case of the simple repression motif, the thermodynamic model is illustrated in Figure 10.

As in Figure 9(A), the idea is to identify the relevant microscopic states of the promoter and to assign
to each such state its corresponding statistical weight. The details of how to use statistical mechanics to
compute this probability has been described elsewhere [34, 43] so here we resort to simply quoting the
central result of the thermodynamic models for the simple repression motif, namely, the probability of
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Figure 9. Summary of approaches to computing the level of expression from the simple unregulated promoter. These
same approaches can be used for computing the response of more complex regulatory architectures such as the simple
repression motif that is the central preoccupation of this article. (A) Thermodynamic models compute the probability of
promoter occupancy using the Boltzmann distribution. The graph shows the probability of promoter occupancy for a
weak (lacP1) and a strong (T7 Al) promoter sequence as a function of the number of polymerases. (B) Dynamics of mean
expression using kinetic models. The graph shows the number of mRNA molecules as a function of time with the
steady-state number shown as a dashed black line. The mRNA dynamics corresponding to two different initial conditions
are shown. (C) Dynamics of mRNA distribution using the chemical master equation approach. The bar graph shows how
the distribution of mRNA copy numbers changes over time, ultimately settling on a steady-state Poisson distribution. (A,
adapted from [34]; B and C, r = 10 mRNA/min and v = 1 min™1)
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coli). (B) The different regulatory states of our simple repression promoter. The statisical weight associated with each
state is shown using the statistical mechanical and thermodynamic formulations. The binding energies of the R repressors
and P RNA polymerase to their binding sites on the promoter are given by Aecr and Aep, respectively. These energies
are given relative to the energy of nonspecific binding to the genomic background. In the thermodynamic formulation, [P]
and [R] are the cellular concentrations of the RNA polymerase and repressor, respectively. Their dissociation constants are
given by Kp and K. Nyg represents the number of nonspecific binding sites for both RNA polymerase and repressor.
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finding RNA polymerase bound to the promoter given by

P e*ﬂAEP

Nns
Pbound = (4)
oun 1+ 7N§S e—BAep 4 7N§s e—BAer’

where R is the number of repressors, Nyg is the size of the genome (i.e. number of nonspecific sites) and
Acp is the binding energy of repressor to its operator. Similarly, P is the number of RNA polymerase
molecules and Aep is its binding energy to the promoter.

In the language of these models, we can now relate the experimentally measurable repression, which
is obtained by quantifying the rate of mRNA production, or the steady state levels of mRNA or protein,
in the presence and absence of repressor, to the theoretically calculable quantity ppoyng such that

dm/dt(R=0) _ rpoouna(R =0) _ poounda(R = 0)
dm/dt(R#0)  TPbound(R#0)  Prouna(R # 0)’

Alternatively, we can write the fold-change as

repression =

()

Pbound (R 7& O)

fold-change = ,
8 pbound(R = 0)

(6)

where we have made used of the occupancy hypothesis introduced in Equation 1. We now use the
expression for ppoung from Equation 4 and obtain

14 g efer

P —BAep 4 _ R —BAep’
1+ NNSe + NNSe

fold-change =

(7)

Finally, we assume that binding of RNA polymerase to the promoter is weak such that P/Nyge 85¢P <«
1. In the context of this weak promoter approximation, which is discussed in detail in [34, 44], the
fold-change reduces to

1

fold-change = ——5————.
& 1+ —Nf]s e—PAcr

(8)

The conceptual backdrop to this result is shown in Figure 10. As we will describe in great detail
later in this article and in Appendix 77, there is much confusion about the mapping between statistical
mechanics language, which we believe is more microscopically transparent, and thermodynamic language
using dissociation constants. In that language, our result for fold-change can be written as

1
fold-change = ———, 9
1+ 4 ©)

Kr

where [R] is the concentration of repressor and Kp its dissociation constant to operator DNA. This
equation for the fold-change is precisely what is plotted as a theory prediction in the top left pane of
Figure 11(A).

4.2. Beyond the Mean: Kinetic Treatments of Transcription

Up to this point, we have examined the simple repression architecture in a manner that describes
the steady-state mean level of expression. But this is not to say that mRNA dynamics or the mRNA
distribution are not of interest; quite the opposite. Knowledge of the higher moments of the distribution
provide great insight into the kinetics of the system, and we turn to these now.

We begin by considering a dynamic description of repression that can be used to calculate the temporal
evolution of the number of mRNA molecules as shown for the case of the constitutive promoter in
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Figure 11. Theory/experiment dialogue in simple repression. (A) Three examples of predictions about the simple
repression motif that can be subjected to experimental scrutiny using precision measurements. The left figure shows the
fold-change in gene expression as a function of repressor copy number for different operators, the middle panel shows
predictions of induction for different numbers of repressors and the right panel shows how gene expression noise (Fano
factor = variance/mean) varies as a function of the mean gene expression level for different promoter strengths. (B) Bulk
and single-cell measurements of both repressor copy number and gene expression. For copy number, bulk measurements
can be done using immunoblotting, while counting statistics can be used at the single-cell level. To measure gene
expression, bulk enzymatic assays have excellent dynamic range. Single-cell measurements can be done either by

examining the level of mRNA or protein gene product.
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Figure 12. Kinetic model of simple repression. The promoter can be empty, occupied by repressor, or occupied by RNA

polymerase. Transitions between the different states are characterized by rate constants shown in the caption. Note that
when transcription commences from state 3, the promoter returns to the empty state (state 2).

Figure 9(B). Specifically, we think of simple repression using the kinetic scheme presented in Figure 12.
For the kinetics of the first state, in which the promoter is occupied by the repressor molecule, the linear
reaction scheme shows that there is only one way to enter and exit this state and that is through the
“empty” state (state 2). This results in the dynamical equation

1)

R
o = KDp(2) — K p(L). (10)

The dynamics of the empty state (state 2) are more complicated because this state is accessible to both
the repressor and the polymerase, meaning that the dynamics can be written as

dp(2 R P
W) kp(2) + K1) — K p(2) + KEIp(3) + o). (1)
Note that the final term in this equation reflects the fact that mRNA is produced at rate r from state 3
and once mRNA production begins, polymerase leaves the promoter and hence the system goes back to
state 2. The state with polymerase occupying the promoter evolves similarly as can be seen by writing
dp(3)

= Rap(@) — kn(3) - ro(3). (12)

To close the loop and come full circle to the real question of interest, namely, the production of mRNA
itself, we have

dm
— = —ym + rp(3). (13)

What this equation tells us is that the promoter is only transcriptionally active in the third state, namely,
that state in which the polymerase binds the promoter. The above equations can be solved in order to
obtain the temporal dynamics of mRNA concentration, as we have illustrated in Figure 9(B) for the
unregulated promoter.

An interesting feature of the kinetic description of simple repression presented here is that enables us
to go beyond the steady-state and equilibrium assumptions that were invoked to calculate the fold-change
in gene expression in Equations 8 and 9. Instead, we can use the kinetic scheme shown in Figure 12 to
solve for the fold-change, but now only invoking steady-state by setting the left side in each equation
above to zero. We begin by solving for the steady-state level of mRNA, m,, and find

mp(3)
-

(14)

Mss =

But what is p(3)? In seeking the unknown steady-state probabilities, we must respect the constraint that
the probabilities sum to one, namely,

p(1) +p(2) +p@3) = L. (15)
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We will not go into the details of the algebra of resolving these three linear equations as these details are
described in [43]. Instead, we will simply quote the result as

1
3) = , 16
P = (16)
TN Tl

which enables us to make contact with the types of experiments discussed earlier, by computing the
fold-change:

mgs(R # 0) 1
fold-ch = = . 17
old-change mss(R =0) w0+ (17)
ISR 5 Y
NI
R
Note that we can write k((,g) = kiR)R, where we have acknowledged that the on-rate for the repressor

is proportional to the number of repressors present in the cell. Interestingly, we see that this implies
that the functional form of the fold-change is the same even in this steady-state context as it was in
the thermodynamic model framework, though now at the price of having to introduce an effective Kjf f ,

resulting in
1

1+ i) .
( KelT

By comparing Equations 9 and 18, we see that their scaling with repressor number is identical. To
further explore the common features between these two expressions for fold-change, note that we can

write .
(kggrtr)
k(R) (1 + kfg%) >

fold-change = (18)

Keff — of f 19
(N R T e )
kS
We can simplify this further by noting that we can write K éR) = kg?} / kS_R) resulting in
(1 n <k£’;}+r)>
(D)
Kelf — (B on ) 20
T (20)
kb

This equation reveals that the thermodynamic and kinetic treatments of simple repression have some
interesting differences and clearly shows the consequences of imposing the equilibrium assumption in the
thermodynamic calculation. The validity of this assumption will be explored in detail in Appendix ?7.

An alternative way of viewing these same problems is by going beyond the description of the dynamics
of the mean mRNA number and appealing to the kinetic theory of transcription in order to work out the
time-evolution of the probabilities of the different states [45, 46, 47, 48, 49, 50, 51, 52]. Our goal is to
write equations that describe the time evolution of the probability of finding m mRNA molecules at time
t. This means that we need to define three coupled differential equations for the mRNA distribution in
each of the three states, namely, p;(m,t), p2(m,t) and ps(m,t). Intuitively, if we are thinking about the
possible changes that can alter state 1, there are only several transitions that can occur: i) the promoter
can switch from state 1 to state 2, ii) the promoter can switch from state 2 to state 1 and iii) an mRNA
molecule can decay resulting in a change in m. These transitions are expressed using the master equation
formalism and the rate constants defined in Figure 12 as

dpi(m,t
b Elt ) = - k:(()?}pl (m, t) + kD py(m, t) +y(m + 1)p1(m + 1,£) — ympy (m, t) . (21)
——

(1)_>(2) (2)—)(1) m+1l—m m—m—1
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The case of state 2 includes the same transitions between state 1 and state 2, as well as the transitions
between state 2 and 3 as a result of polymerase unbinding or promoter escape due to transcriptional
initiation. Incorporating these ideas leads to an equation of the form

dps(m,t
% = ko1 (m, 1) — kS pa(m, ¢) + kS hps(m, 1) — kD) pa(m, t) + rps(m — 1,2) (22)
—_— T
(1)—(2) )= (D) (3)—(2) (2)—=3) m—1—m

(3)-(2)
+y(m + 1)pa(m + 1,t) — ympa(m, t).

m+1—m m—m—1

Finally for state 3 we must account for the transitions between state 2 and state 3, and the mRNA
production at a rate r. Bringing all of these transitions together results in

dps(m,t
% = — kiyppa(m, t) + kS pa(m, t) = rps(m, t) + y(m + Dps(m + 1,t) = ymps(m, 1) (23)
(3)—=(2) (2)—(3) m—m+1 m+1—m m—m—1

(3)—=(2)

This set of coupled equations describes the time evolution of the probability distribution p(m,t).

As described in the following sections, the equations written above imply a steady-state mRNA
distribution that can be used to compute both the mean and variance in gene expression. In order to
render the different theoretical descriptions self-consistent, the thermodynamic parameters such as the
repressor binding energy Aepr must constrain the values that the repressor rates k:(()?} and kgff) can take.
Now that we have seen how theory can be used to sharpen our thinking, we turn to how experiments can

be designed to test those theoretical ideas.

5. “Spectroscopy” for the Simple Repression Hydrogen Atom: Precision Measurements on
Gene Expression

Figure 11 provides a picture of how theory and experiment come together in thinking about the simple
repression motif. As part (B) of that figure shows, there are a variety of approaches that can be taken
to count the repressors and to measure the level of gene expression. Expression levels can be quantified
using enzymatic or fluorescence assays. Note that by choosing to measure the ratio of level of gene
expression (i.e. the fold-change) rather than the absolute value of the gene expression itself, the system is
further simplified since various categories of context dependence such as the position of the gene on the
genome are normalized away. This is not to say that the description of such effects on the absolute level
of expression are uninteresting, but rather the focus on a predictive understanding of the fold-change in
gene expression reflects the spirit of little steps for little feet that are required to progressively develop a
rigorous view of these problems.

There are many facets to the regulatory response of the simple repression motif that can be subjected
to experimental scrutiny in order to compare them to the results of theoretical predictions, as shown in
Figure 11(A). Indeed, the seeds of this review were planted by many wonderful earlier works that explored
various aspects of the theoretical and experimental strategies laid out in Figure 11. Experimentally, as
noted above, Muller-Hill and Oehler led the way in the lac system (see Figure 8) as did Schleif in the
context of the arabinose operon [53, 54, 55]. On the theory side, Ackers and Shea laid the groundwork
for thermodynamic models which allow us to predict the mean level of expression [35, 36]. These models
were pushed even further by Buchler, Gerland and Hwa [37] and by Vilar, Saiz and Leibler [38, 39, 56].
Besides the thermodynamic model approach [34, 40, 41, 42], others have been interested in gene expression
noise, which demands kinetic models. These approaches to transcription have offered numerous insights
of their own [45, 46, 47, 48, 49, 52]. Much of the work presented here draws inspiration from modern
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quantitative dissections of the wild-type lac operon [57, 16], as well as from efforts that made it possible
to measure gene regulatory functions at the single cell level [58, 59], and from research that embodies
the same interplay between theory and experiment featured in this article but in the context of other
gene-regulatory architectures [60, 61, 62, 63].

6. Climbing the Simple Repression Pyramid: A Minimal Parameter Set to Rule Them All

In the previous sections we outlined how different kinds of theoretical frameworks enable us to formal-
izing our “pathetic thinking” in order to to refine our prejudices about how a complex system behaves [64].
One of the key requirements we insist on in using such theoretical frameworks to describe simple repres-
sion is that a single set of parameters applies across all different situations, as illustrated in Figure 11.
There is a long tradition of developing phenomenological theories that describe broad classes of behaviors,
in which the underlying microscopic processes that give rise to material response are captured in the form
of a small set of phenomenological, but measurable, parameters. Consider the steel used to build our
bridges and skyscrapers, or the aluminum used to build our airplane wings: several elastic constants,
a yield stress and a fracture toughness often suffice to fully characterize the material response under a
broad array of geometries and loading conditions [65]. Importantly, each time we go out and use those
materials for something new, we don’t have to introduce a new set of parameters. It is critical to realize
that there is no requirement whatsoever for an underlying “mechanistic theory” of what determines those
parameters in order for a phenomenological theory to be both beautiful and far-reaching in its predictive
value. Though perhaps the “microscopic mechanism” of, for example, how the interactions between the
nucleotides on the DNA and residues on the repressor dictate binding energy is attractive to some inves-
tigators, we do not need a microscopic understanding of these atomic-level “mechanisms” to construct
a predictive theory of gene regulation. Indeed, though much progress has been made in constructing a
microscopic basis for these parameters, we generally cannot predict these material parameters from first
principles.

Here, we adopt a phenomenological mindset in the context of the gene regulatory response. Though it
is clear that there are a huge variety of complicated processes taking place within the cell that we do not
understand, we address whether it is nonetheless possible to introduce a few key effective parameters that
will allow us to characterize the regulatory response of the simple repression motif under a broad array
of different circumstances. Figure 13(A) shows us how the theoretical ideas highlighted in the previous
sections demand a small number of parameters before we can use them predictively. For example, in
the simple repression motif, we require a binding energy Acp (or equivalently a Kg) to characterize
the strength of repressor binding to operator. Similarly, when describing the induction response of
transcription factors to inducer, we require parameters K 4 and K; that describe the affinity of inducer
to the transcription factor when it is in its active and inactive states, respectively [66]. We also require
a free energy difference Ae,; that characterizes the relative stability of the active and inactive states
in the absence of inducer. Finally, when describing gene expression dynamics, we require rate constants
for mRNA degradation (), transcript initiation (r), and the on and off rates of repressor and RNA
polymerase to their binding sites ( kéf) and k(gl;'])c for the repressor, and k’g};) and k:((f;} for RNA polymerase).
The question we ask is: once we have established this minimal set of parameters, how well can we then
range in our predictions across different classes of experiments involving the simple repression motif?

We now show how it is possible to ascend the simple repression pyramid introduced in Figure 3. In
Figure 13(B), we outline how we fully determined a single minimal set of parameters needed to characterize
a host of regulatory responses. Note that others have also made complete parameter determinations, but
did so across different experiments [17]. The lefthand panel of Figure 13(B) illustrates how experiments
like those of Oehler et al., with one particular repressor copy number and a specific operator sequence, can
be used to determine the parameter Aegr (or Kr). The second experiment highlighted in Figure 13(B)
shows how the transcription factor titration effect can be used to determine the parameter Ae4; (or
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Figure 13. Determination of the minimal parameter set for describing simple repression across a broad array of
experimental approaches and simple repression regulatory scenarios. (A) Parameters that are introduced in the
description of simple repression fold-change measurements, induction experiments and in the context of gene expression
noise. (B) Experiments used to determine the minimal parameter set. (B, left panel adapted from [44], middle panels

adapted from [66], right panel adapted from [67])
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alternatively L = e~#A41) which characterizes the equilibrium between the inactive and active states of
repressor in the absence of inducer. The third panel in the figure shows how a single induction response
curve can fix the parameters K4 and K; that determine the binding of inducer to the repressor in
the active and inactive states, respectively. Finally, the righthand panel demonstrates how, by going
beyond the mean and looking at the full mRNA distributions for the constitutive promoter and the
simple repression motif, it is possible to infer the rates of RNA polymerase and Lac repressor binding
and unbinding as well as the rates of mRNA production and degradation.

This kinetic approach takes advantage of the known closed form of the full mRNA distribution for a
two-state promoter [46]. Using this expression for the distribution we can perform a Bayesian parameter

inference to obtain values for the polymerase rates kgf) and kglfp}, as well as for the mRNA production
rate r that fit the single molecule mRNA count data from [67]. The kinetic rates for the repressor are
obtained by assuming that kS is diffusion-limited [67], and demanding that k‘g?} be consistent with
the binding energies obtained in the lefthand panel of Figure 13(B). We note, however, that this model
differs from the one presented in Figure 12 in the sense that upon initiation of transcription at a rate r,
the system does not transition from state 3 to state 2. Further comparison between this model and the
model presented in Figure 12 is still needed and will be explored in future work [68].

With our single minimal parameter set in hand, it is now time to take the leap and to see whether the
theoretical framework that has been used to describe various facets of the simple repression architecture
actually works. Figure 14 shows the diversity of predictions and corresponding measurements that partner
with the predictions given at the top of Figure 11. In fact, the understanding summarized in this figure
was developed sequentially rather than with the “all at once” appearance conjured up by Figure 13.
Indeed, that is the principal reason that the discussion is so self-referential since over the last decade,
inspired by the many successes of others [33, 69, 38, 15, 16, 17], we undertook a systematic effort to
design experiments that allowed us to control the various knobs of transcription already highlighted, to
construct the strains that make this possible and then to do the highest precision measurements we could
in order to test these predictions.

Figure 14(A) shows a modern and predictive incarnation of the experiments done by Oehler et al.
to determine the response of the simple repression motif to changes in repressor numbers and operator
sequence (we showcased their results earlier in Figure 8). In this set of experiments, our ambition was to
control both the copy number of repressors and operator binding strengths and systematically measure
the resultant expression over the entire suite of different constructs, using only one repressor copy number
for each DNA binding strength to determine the parameter Acg as described above. The measurements
were taken in multiple ways: we used both enzymatic and fluorescent reporters to read out the level of
gene expression, and we separately counted the number of repressors using quantitative immunoblotting
and fluorescence measurements. One of our central interests is in whether or not different experimental
approaches to ostensibly identical measurements yield the same outcomes. We were encouraged, at least
in this case, to find reasonable concordance between them.

The level of expression from our simple repression promoter can be significantly affected if the repre-
sors are enticed away from it by other binding sites. The results of this much more demanding set of
predictions surrounding the transcription factor titration effect [70] are shown in the next panel of the
figure, Figure 14(B). There are a number of ways to titrate away repressors: we can put extra copies of our
gene of interest on the chromosome or on plasmids (shown in the schematic below the data), or use plas-
mids to simply introduce decoy binding sites for the repressor that have no explicit regulatory role other
than pulling it out of circulation, effectively tuning the chemical potential of the repressor. Note that in
this case, the fold-change has a particularly rich behavior and this is on a log-log plot, where functional
forms often appear as straight lines. Figure 15(A) brings together all of the data from Figure 14(A) and
(B) under one simple conceptual roof by determining the natural scaling variable of the simple repression
motif. This data collapse implies that any combination of repressor concentration, binding site strength,
and number and strength of competing binding sites can be replaced by an equivalent effective promoter



21

(A) single-site repression (B) transcription factor competition

fold-change
fold-change
S

4 flow cytometry
10 o bulk enzymatic assay

. * single cell fluorescence 1074
10°
100 10! 102 103 100 10! 102 103
number of repressors per cell number of repressors per cell
\ |
\
(@] allosteric regulation (D) gene expression noise
9
1.0 rep. / cell 8
— 22 7
tU
) 0.8 60 5 6
< S
fos 1
kel . o
- c
04 — 1220 54
—— 1740 3
024 2
Os;;; 1
0 107 10% 10° 10% 103 102 1072 107! 100 10!
IPTG (M) mean mRNA copy number

per gene copy

Figure 14. Experiment-theory dialogue in simple repression. All curves are parameter-free predictions based upon the
minimal parameter set introduced in Figure 13. (A) Fold-change for simple repression as a function of repressor copy
number and operator strength for a single gene copy [44, 70]. (B) Fold-change for simple repression as a function of
repressor copy number and operator strength with repressor titration effect [70]. (C) Induction of the simple repression
motif for different numbers of copies of the repressor [66]. (D) Measurement of gene expression noise for simple repression

motif as reported by the Fano factor (variance/mean) [67].
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Figure 15. Data collapse of all data from the simple repression architecture. (A) Gene expression in the simple
repression motif is dictated by an effective repressor copy number [72]. (B) Level of induction depends upon inducer
concentration, repressor copy number and repressor binding strength all of which fold into the free energy difference
between active and inactive forms of the repressor [66].

consisting of one binding site and an effective repressor number.

The middle panel of Figure 11(A) highlights the next level in the hierarchy of theoretical predictions
that can be made about the simple repression motif, namely, how this motif responds to inducer. In
Figure 14(C) we show one example (from a much larger set of predictions [66]) of how the induction
response can be predicted for different operator strengths and repressor copy numbers. Here we high-
light predictions for the O2 operator ranging over the same repressor copy numbers already shown in
Figure 14(A). As with our ability to introduce the natural variables of the problem in Figure 15(A),
induction responses also have a scaling form that permits us to collapse all data onto a single curve (Fig-
ure 15(B)). Once again, the emergence of this natural scaling variable tells us that any set of repressor
number, binding energies and inducer concentrations can be mapped onto a simple repression architecture
with a corresponding effective binding energy.

The final part of our comparison of theory and experiment in the context of the simple repression
motif is shown in Figure 14(D). The predictions about gene expression noise were already highlighted in
the right panel of Figure 11(A). Here what we see is that the Fano factor (i.e. the variance normalized by
the mean) is quite different for constitutive promoters and promoters subject to repression in the simple
repression motif [67]. Discrepancies between the noise revealed in different regulatory architectures remain
to be resolved [71].

The hierarchical analysis presented in Figure 14 illustrates the unity of outlook and parameters af-
forded by performing all experiments in the same strains. When experimental consistency is placed front
and center, one minimal set of parameters appears to serve as a predictive foundation for thinking about
a broad variety of different constructs and conditions over a host of different experimental scenarios and
methods.

Nearly fifty years ago, Theodosius Dobzhansky wrote a beautiful article in American Biology Teacher
entitled “Nothing in biology makes sense except in the light of evolution” [73]. This phrase, now an
oft-quoted tenet of modern biology, has resulted in evolution as the capstone to numerous biological
pyramids. As such, there is a reason we talk about climbing the simple repression pyramid rather than
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saying that we have climbed it. Though the evolutionary aspects of transcription are represented by the
smallest part of the pyramid in Figure 3, they are perhaps the most daunting. At the time of writing,
many different groups are still working to construct this section of the pyramid for simple repression
[74, 75, 76, 77, 78, 79].

To make meaningful predictions about the evolutionary potential of the simple repression motif, it
is a requirement that we have a thorough knowledge of the minimal parameter set described in the pre-
ceding section. For example, we have shown that the sequence of the operator strongly influences the
maximum level of gene expression given an input such as the concentration of inducer. One could extend
this conclusion to make predictions of how the various properties of the induction profiles could change
due to mutation. It is reasonable to assume that mutations in the DNA binding pocket would alter only
the strength of DNA binding and leave the inducer binding constants the same as the wild type. Con-
versely, mutations in the inducer binding domain would alter only the inducer binding constants. With
quantitative knowledge of the single mutants, the theoretical underpinnings allow us to assume a naive
hypothesis in which the two mutations are additive, resulting in a predictable change in the induction
profile. Measurements of this flavor have been performed and published [80], however without knowledge
of the parameters, the predictive power is extremely limited.

7. A Critical Analysis of Theories of Transcription

Thus far, we have painted a rosy picture of the dialogue between theory and experiment in the study
of transcription in the simple repression motif. It is now time to critique these approaches and see what
such critiques imply about future efforts to dissect the regulatory genome. In the paragraphs that follow,
we have amassed a series of worthy critiques of the program laid out thus far in the paper, and in each
case, we set ourselves the task of sizing up these critiques to see what we can learn from them. Our
strategy is to discuss the high points of the analysis in the main body of the text and to relegate the
technical details behind that analysis to the appendices.

The Equilibrium Assumption in Thermodynamic Models. As already seen in Figure 9, there are mul-
tiple approaches to modeling transcription. One broad class of models sometimes goes under the heading
of “thermodynamic models”, but we would rather refer to them as models founded upon the occupancy
hypothesis. We can examine two critical questions about such models, shown diagrammatically in Fig-
ure 16(A): (i) to what extent is it true that the rate of transcription is proportional to the probability of
promoter occupancy and (ii) can promoter occupancy be fruitfully computed using the quasi-equilibrium
assumption?

Recall that the assumption that the rate of transcription is proportional to the probability of RNA
polymerase binding to the promoter is central to the thermodynamic models. Indeed, this assumption
makes it possible to connect a theoretically accessible quantity, ppound, t0 an experimentally measurable
quantity, dm/dt. This connection can be used to test the predictions stemming from these models. To
answer the question of whether the rate of transcription is proportional to pyound, we must remember that,
as shown in Figure 16(A), there is a plethora of kinetic steps between the binding of RNA polymerase and
transcription factors to the DNA, and the ultimate production of an mRNA molecule. Further, steps such
as “initiation” in the figure are an oversimplification, as the process leading to promoter clearance and
the initiation of productive transcription is composed of multiple intermediate steps [47]. In Appendix ??
we explore the conditions under which this occupancy hypothesis is fulfilled. In particular, we consider
a situation where the transition rates between intermediate steps correspond to zero-order reactions. To
illustrate this, we refer to the first transition in Figure 16(A), which shows that the fraction of RNA
polymerase molecules initiating transcription, denoted by I, is related to ppound. In a zero-order reaction
scheme, the temporal evolution of I is given by
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Figure 16. The occupancy hypothesis and the equilibrium assumption. (A) The multiple steps between RNA polymerase
binding and the termination of an mRNA raise the question of whether the binding probability (occupancy) of RNA
polymerase to the promoter can be used as a proxy for the quantity of mRNA produced, and whether RNA polymerase

binding is in quasi-equilibrium such that the tools of statistical mechanics can be used to compute this quantity. (B) The

equilibrium assumption is fulfilled if the rates of RNA polymerase binding and unbinding (kg,};> and kil;}, respectively)

are much faster than the rate of transcriptional initiation r. See Appendix 7?7 for details on this simulation.

where r; is the rate of transcriptional initiation. In this scenario, the rate of change in the fraction of
molecules initiating transcription is proportional to the fraction of molecules bound to the promoter. As
described in the Appendix, under this assumption, Equation 1 can be used to relate the probability of
finding RNA polymerase bound to the promoter to the rate of mRNA production.

Putting the occupancy hypothesis to a direct and stringent test requires us to have the ability to
simultaneously measure RNA polymerase promoter occupancy and output transcriptional activity. The
development of new approaches to directly measure DNA-binding protein occupancy in the vicinity of
a promoter and relate this binding to output transcriptional activity will make it possible to realize
such a test in the near future [81, 82, 83, 84]. While technology catches up to the demands of our
theoretical models, an indirect strategy for testing the occupancy hypothesis is to simply ask how well
the thermodynamic models do for the various predictions highlighted throughout the paper. Figure 14
suggests that, for the lac operon, the occupancy hypothesis is valid. However, it is important to note
that there are cases where this hypothesis has been explicitly called into question both in the lac operon
[85, 82] and other regulatory contexts [86, 87]. As a result, the validity of the occupancy hypothesis
should be critically examined on a system-by-system basis.

The second key assumption to be considered is the extent to which the system can be viewed as
being in “equilibrium”, such that the tools of statistical mechanics can be applied to calculate ppoynd
and the fold-change. This equilibrium assumption permeates the vast majority of the work presented
here. In Appendix ?? we dissect it in the context of the kinetic rates revealed in Figure 13(B). As we
showed in Figure 16(B), in order for equilibrium to be a valid assumption when calculating ppoynd for the
constitutive promoter, the rates of RNA polymerase binding and unbinding (k‘(()s) and kgl;}, respectively)
need to be much larger than the rate of initiation r. However, we find that the inferred rates do not justify
the use of the equilibrium assumption: the rate of RNA polymerase unbinding from the promoter is not
much faster than the subsequent rate of initiation, such that the system does not get to cycle through its
various binding states and equilibrate before a transcript is produced. However, our calculations reveal
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that, given these same rates, the fold-change in gene expression can be calculated based on the equilibrium
assumption. As discussed in detail in the Appendix, if kg? < k(()l;} + 1, then when the system transitions
to the polymerase-bound state, it will quickly revert back to the unbound state either by unbinding
or through transcription initiation. As a result of this separation of times scales, the repressor gets to
explore the bound and unbound states such that its binding is equilibrated even if the RNA polymerase
binding is not.

Finally, it is important to note that our conclusions about the applicability of equilibrium rely on
committing to the kinetic scheme presented in Figure 12 and on the inferred parameters shown in Fig-
ure 13(B). Changes to the molecular picture of the processes underlying repression and gene expression
could significantly affect our conclusions. Indeed, researchers have cast doubt on the applicability of
equilibrium to describe the lac operon [82] as well as other gene-regulatory systems [88, 89].

Reconciling Thermodynamic Models and Statistical Mechanical Models. Thermodynamic models of
transcription can be formulated either directly in the language of statistical mechanics, by invoking
binding energies and explicitly acknowledging the various microscopic states available to the system, or in
the language of thermodynamics, in which DNA-protein interactions are characterized using dissociation
constants. The literature is not always clear about the relation between these two perspectives and our
central argument (fleshed out in detail in Appendix ?7?) is that they are equivalent. That argument was
really already made in Figure 10, in which we saw that the statistical weights of the three states of the
simple repression motif can be written in either of these languages.

We personally favor the statistical mechanical language because we find that, in going to new regula-
tory architectures, it is more microscopically transparent to enumerate the microscopic states and their
corresponding energies than to invoke dissociations constants that combine these microscopic interactions
into an effective parameter as shown below for the case of the nonspecific background. One related point
of possible confusion concerns the use of parameters such as Nyg in the statistical mechanical approach
to occupancy models of transcriptional regulation. In the Appendix, we demonstrate that the dissociation
constant K is given by

Ky = NS -pac (25)
Veell
This equivalence shows that the parameter Nyg, which reflects the genome size and hence the size
of the nonspecific background binding landscape, is in fact just a contribution to the standard state
concentration used in conjunction with the dissociation constant K, in disguise.

The Energy of Nonspecific Binding. One of the key simplifying assumptions often invoked in the
context of thermodynamic models of transcription is the treatment of the binding of transcription factors
to the nonspecific background as though all such nonspecific sites are equivalent. For transcription factors
such as Lacl, there is wide-ranging evidence from diverse types of experiments (e.g. measurements of the
protein content of genome-free mini-cells and imaging using modern microscopy techniques) that these
transcription factors are almost always bound to the genome rather than free in cytoplasm [90, 91, 92].
As such, when computing the probability of promoter occupancy by either polymerase or repressors, we
need to account for the distribution of these molecules across the remainder of the genome.

With an approximately 5 x 10 basepair genome as in E. coli, it at first blush seems ridiculous to
proceed as though 5 x 10% — 1 of those sites have the exact same energy, eng. To explore the distribution
of nonspecific energies, one idea is to slide an energy matrix, much like those determined through Sort-
Seq [93, 94, 95, 96], across the entire genome, base pair by base pair, to get the full distribution. Such
a distribution is shown in Figure 17 where the energy matrix for the Lacl repressor was applied to the
entire F. coli genome. We see immediately that an exceedingly small number of sites have a negative
binding energy, meaning more preferable binding than the vast majority of sites, which are found to
be positive. The three native lac operators, shown as black, red, and green vertical lines, have highly
negative binding energies compared to the rest of the sites. With knowledge of the distribution, it is
tempting to use this directly in the thermodynamic calculations to possibly get a better treatment of the
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Figure 17. Distribution of nonspecific binding energies. The distribution shows the predicted binding energies for Lacl
to all possible 21 bp sequences on the E. coli genome (strain MG1655, GenBank: U00096.3). Binding energies were
calculated using an energy matrix obtained by Sort-Seq on the Lacl simple repression architecture [99].

nonspecific background. However, for now, it is a luxury to have an accurate energy matrix that reports
the binding energy of a given transcription factor to a DNA binding site in vivo. We certainly don’t
know the binding energy matrix for all transcription factors that would permit the determination of the
distribution of nonspecific binding energies.

But more interestingly, as we show in detail in Appendix 7?7, there really is no difference between
using the complete distribution of binding energies versus an effective energy of the entire genome.
This concept is explored in detail in the Appendix and agrees with more sophisticated treatments using
concepts from statistical physics [97, 98]. We treat this problem using the three toy models shown in
Figure ??. First, we assume that there is a uniform binding energy distribution in which all binding sites
have the same energy. By definition, this is the simplest approach where this energy can be used directly
in the partition function. The second example is the extreme case in which there are only two nonspecific
binding energies, €1 and €9, which are evenly distributed about the genome. In this case we can show
the nonspecific background behaves as though it has a single effective binding energy of the form

€1 — €2

=, (26)

ENS =
showing that the effective nonspecific binding energy eng tells the exact same story as using the full
distribution. Finally, we take the more realistic case in which we assume a Gaussian distribution of
binding energies across the genome with mean € and standard deviation o, much like what is seen in
Figure 17. Here, a few more mathematical steps outlined in the Appendix delivers us to the result,

_ Bo®
€eff. :6—7. (27)

Note that this shows that even if we have a Gaussian distribution of nonspecific binding energies, it can
be treated exactly as a uniform distribution with a single effective energy.

Promoter competition against nonspecific DNA-binding proteins. Up until this point, we have consid-
ered the effect of Lacl nonspecific binding throughout the genome on its regulatory action in the context
of the simple repression motif. However, just like in the simple repression motif where the promoter and
operator constitute the specific binding sites for RNA polymerase and repressor, respectively, these same
sequences serve as substrates for the nonspecific binding of other DNA-binding proteins that decorate
the bacterial genome. In Appendix 7?7, we show how the effect of these nonspecific competitors can
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be absorbed into an effective number of nonspecific binding sites Nyg such that the theoretical mod-
els describing the simple repression motif retain their predictive power. Interestingly, the calculations
presented in the Appendix also suggest that, as the concentrations of these DNA-binding proteins is
modulated due to changes in growth rate, the effect of these competitors on the rescaled Nyg remains
unaltered. This indifference to growth rate stems from the fact that, as growth rate increases, both the
overall protein concentration and the cell’s DNA content increase. This simultaneous increase in protein
and DNA concentration leads to a relatively constant number of proteins per DNA target in the cell
irrespectively of growth conditions.

Is Gene Ezpression in Steady State? A critical assumption in our experimental measurements of
gene expression is that gene expression is in steady-state. The definition of steady-state has different
meanings depending on the method of measurement. For mRNA FISH, for example, we assume that the
mRNAs are produced at rate r that matches the rate of degradation ymys, where myg; is the steady-state
level of mRNA. When measuring protein expression, we assume that the protein accrued over the cell
cycle is negated by the dilution of these proteins into the daughter cells upon division, as is shown in
Figure 18(A). Through this assumption, we are able to state that, on average, a single measurement
represents the level of expression for that particular time point rather than integrating over the entire
life history of the cell. A typical rule-of-thumb is that steady-state expression is reached when the cells
enter the exponential phase of growth.

We put this hypothesis to the test by directly measuring the expression level of exponential phase F.
coli over time. Using video microscopy, we monitored the growth of cells constitutively expressing YFP
in exponential phase (ODggopm ~ 0.3 — 0.4) in minimal medium with a doubling time of approximately
an hour (Figure 18(A)) following the experimental approach undertaken by Brewster et al. [70]. Starting
from a single cell, we tracked the lineages as the microcolony developed and compared the fluorescence
in arbitrary units of each cell to the founding mother cell. If steady-state gene expression has been
achieved, this approach, schematized in Figure 18(B), will result in an average difference in fluroescence
AT of zero. The results of this experiment are shown in Figure 18(C). In the figure, we see that individual
measurements (red points) are scattered about zero but that, once the mean difference in intensity is
considered (blue triangles), the data becomes very tightly distributed about zero (black dashed line).
These results show that, when cells are growing in exponential phase, gene expression levels are in
steady-state and the reporter is not accrued over the life history of the cell lineage.

Allosteric Models vs Hill Functions. Though many thermodynamic models of gene regulation attempt
to enumerate the entirety of microscopic states and assign them their appropriate statistical weights, it is
also extremely popular to adopt a strictly phenomenological model of binding described by Hill functions.
It is undeniable that the Hill function features prominently in the analysis of many biological processes (for
interesting examples see, [100, 101, 57, 78]). However, treating allosteric systems with Hill functions often
abstracts away the important physical meaning of the parameters and replaces them with combinations
of polynomials often referred to as “lumped parameters”. For example, one could treat the induction
profiles of Lacl discussed earlier in this work using a Hill equation of the form,

(&)
1+ (%)

where the leakiness is set as the zero point of expression. With increasing concentration ¢ of ligand, the
leakiness is modified by an expression describing the activity of the repressor using a Hill function. In
this expression, ¢ corresponds to the concentration of inducer. n is the Hill coefficient which describes
the cooperativity of repression, and Kp is an effective dissociation constant [16].

Note that nowhere in this expression is any treatment of the allosteric nature of the protein! While
structural biology has demonstrated that this repressor can exist in active and inactive states, each of
which has its own dissociation constant for the inducer, all of these details have been lumped into the Kp

fold-change = leakiness + dynamic range
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Figure 18. Test of the idea of steady-state gene expression for cells in exponential phase. (A) Diagrammatic view of
protein dilution through cell division. As cells grow, the expression of fluorescent proteins marches on. As the cell
approaches division, the total detected fluorescence is much larger than detected at the cells’ birth. On average, the
proteins are split evenly among the daughter cells, resulting in a comparable fluorescence level as the original mother cell.
(B) Schematic of experimental measurement. To test the steady-state hypothesis, we monitored the growth of several
bacterial microcolonies originating from single cells and tracked the difference in intensity with respect to their mother cell
as a function of time for each daughter cell through the family tree. (C) Fluorescence intensity difference between
mother/daughter pairs as a function of time. Red points indicated individual daughter/mother pairings in a given lineage.
Blue triangles represent the average difference at that time point. Error bars on blue points are the standard error of the
mean. A kernel density estimation of the Al distribution is shown on the right-hand side of the plot. The black dashed

line is at zero.
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Figure 19. Predictive versatility of the Hill function versus allosteric models. (A) Measurements of the fold-change of a
simple repression architecture as a function of IPTG concentration. Points and error bars represent the mean and
standard error of ten biological replicates of repression of the O2 operator with 260 repressors per cell. (A) Solid line is
the best-fit of the standard Hill function given in Equation 28. (B) Best-fit line for the data using the MWC model of
allostery coupled with the thermodynamic model is in red. Gray lines represent predicted induction profiles of other
combinations of repressor copy numbers and DNA binding energies. These predictions are made using only the
parameters fit from a single strain. Tests of these predictions were shown in Figure 14(C).

parameter. Figure 19(A) shows Equation 28 applied to an induction profile of the lac simple repression
motif with an O2 operator and 260 repressors per cell. Unsurprisingly, this equation can fit the data very
nicely when all of the coefficients are properly determined. In fact, this fit is nearly indistinguishable from
that obtained through a Monod-Wyman-Changeux (MWC) model inspired approach [66], as is shown
in Figure 19(B). However, fitting a Hill function results in a single curve. In the Hill framework, for
each induction profile we must fit Equation 28 once again for all parameters. As the parameters for an
allosteric model have a direct connection to the biological properties of the repressor molecule, we can use
the parameter values determined from one experimental circumstance to predict a wide swath of other
induction profiles. Examples of such curves are shown as gray profiles in Figure 19(B).

What distinguishes allosteric models such as MWC and Koshland-Nemethy-Filmer (KNF, [102]) from
Hill functions is that they make a tangible connection with what structural biology has taught us about
the conformational states of proteins. The existence of inactive and active states implies that activity
curves will be very special ratio of polynomials. While an individual fit may be comparable in quality to
that obtained by a Hill function, the loss of this physical context results in a fit that has no predictive
ability. The MWC and KNF models, however, open the door to a huge suite of predictions not only
about experiments like those described in this review but also for biochemical experiments at the level of
single molecules. For example, the allosteric treatment of induction hints at how mutating the repressor
directly would change the behavior of the system. It’s easy to hypothesize that mutations in the DNA
binding domain would alter the binding energy of the repressor to the DNA Aegr whereas mutations in
the inducer domain would alter the K4 and K (Figure 13(A)). If we were to redo the analysis by fitting
phenomenological Hill equations, we would be left in the dark as to how to predict the effect of either of
these perturbations.

Two-State vs Three-State Dynamics. Most of the theoretical work on mRNA distribution dynamics
has focused on the two-state model for a regulated promoter in which the promoter is treated as though
it has two available states, inactive and active [71, 46, 49]. Indeed, the predictions from [67] shown
in Figure 14(D) were calculated using this model. However, another critical question to be examined
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in the context of theoretical models of transcriptional noise is the relative merits of the two-state and
three-state models (for the three-state model see Figure 12). Note that within this framework, the
unregulated promoter itself becomes an effective two-state model since we now acknowledge both the
empty promoter and the promoter occupied by RNA polymerase. In this case, the mRNA distribution
can be fitted with the parameters k:((;};), k(()?}, 7 and ~y while still accounting for the variability in promoter
copy number across the cell cycle and this is the strategy used in the parameter determination described
in Figure 13(B).

We have found that it is possible to fit the full mRNA distribution using either the two-state or
three-state models as already described in ref. [67]. However, to get a fully self-consistent parameter set
in which the mean-fold change as described in both the thermodynamic and kinetic pictures are identical,
it is necessary to resort to the three-state model that explicitly accounts for repressor and polymerase
binding. Specifically, we demand that the repressor kinetic parameters k((,ff) and k(()lf?c are consistent with
the repressor copy number R and the repressor-DNA binding energy Aeg. The parameters reported in
Figure 13(B) were determined using these constraints, giving identical results for the mean fold-change
under both languages and not surprisingly, requiring the full three-state model for this self-consistent
picture to emerge.

8. Simple Repression in Other Contexts

Thus far, we have focused on one realization of the simple repression architecture. But in fact, the way
that cells use the simple regulatory architecture is much more diverse, as illustrated in Figure 20. Variants
of this architecture provide alternative means for the cell to perform signal transduction. Like Lacl, many
repressors are inducible, whereby binding of a small-molecule signaling ligand reduces their ability to bind
DNA. The identities of these ligands are generally related to the physiological role provided by the operon
under control. For example, while Lacl binds allolactose and is involved in lactose utilization, GalR binds
galactose and this in turn provides control over galactose usage [20, 103]. Among those having a simple
repression architecture, MprA has been reported to bind antimicrobial agents such as 4-dinitrophenol and
carbonyl cyanide m-chlorophenylhydrazone (CCCP), and negatively regulate the expression of multidrug
resistance pumps [104]. A related but opposite logic is also commonly observed, referred to as co-
repression, where binding of a small-molecule ligand instead will enhance the binding of the repressor
to DNA. For example, TrpR binds tryptophan and provides repression of the tryptophan biosynthesis
pathway, as well as repressing its own expression [105].

In both induction and co-repression, signaling is achieved by a ligand internal to the cell. Another
approach is to instead monitor the external environment directly, which is the role provided by two-
component signal transduction systems [106]. Here, the signal detection is typically carried out by
a transmembrane protein, a sensor histidine kinase, which then activates a transcription regulator by
phosphorylation. Such sensors that activate repressors involved in simple repression architectures include
PhoR, ArcB, and CpxA, which regulate the DNA binding activity of PhoB, ArcA, and CpxR, respectively.
The repressor PhoB is involved in regulating phosphorus uptake and metabolism, while ArcA primarily
acts as a repressor under anaerobic conditions [107, 108]. CpxR appears to act on at least 100 genes, in
response to cell envelope stress, but also plays roles associated with motility, biofilm development, and
multidrug resistance [109].

Cells have also devised ways to rapidly respond to stimuli by actively degrading regulatory proteins
under specific stimuli. The DNA damage, or SOS, response provides one such example, which is mediated
by the repressor LexA [110]. Under conditions of DNA damage, LexA undergoes a self-cleavage reaction
that is further catalyzed by the protein RecA, and this provides de-repression of about 40 genes [111].
Toxin-antitoxin systems such as RelB-RelE serve as another example of this. While the toxin RelE is
metabolically stable, with a cellular concentration dependent on the cell division time, the antitoxin RelB
is actively degraded by the protease Lon and this can lead to a much shorter half-life [112, 113].
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ADDITIONAL MODES OF REGULATION IN (0,1) TRANSCRIPTION REGULATORY ARCHITECTURES
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Figure 20. Simple repression in other contexts. Here we summarize several different modes of regulation that are
observed at (0,1) architectures. Like Lacl, many transcription factors are inducible and binding by a specific ligand leads
to a loss of repression. Conversely, a number of transcription factors undergo co-repression and bind the DNA more
strongly upon binding of a ligand to the repressor. For the examples identified, the transcription factor is shown in red
text, while the ligand is shown in black. Several transcription factors appear as part of two component signal transduction
systems, whose phosphorylation-dependent DN A-binding strength is changed by the activity of membrane bound sensor
kinases. Lastly, repression can be modulated by changing the copy number of the repressor in response to stimuli. This
can be achieved through self-cleavage (e.g., LexA), or by cellular proteases (e.g., RelB by Lon).
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protein copy number in standard deviation  coefficient of variation
glucose, minimal media  across 22 growth conditions
HU 87425 28629 0.37
H-NS 22541 7181 0.24
IscR 7687 2603 0.49
Fur 6492 1707 0.29
Lrp 6092 1339 0.20
IHF 5018 1223 0.25
ArcA 3367 1030 0.24
CRP 2048 646 0.24
AlaS 1948 605 0.33
MprA 1085 516 0.61
PepA 1076 259 0.23
MetJ 990 231 0.31
CpxR 933 158 0.17
NsrR 872 189 1.78
PurR 826 165 0.24
FNR 609 236 0.49
LexA 560 177 0.32
CysB 523 124 0.33
AllIR 206 68 0.43
FadR 186 75 0.34
RelB 178 61 0.53
TrpR 167 35 0.22
Cra 148 87 0.37
UidR 139 137 1.06
NagC 124 36 0.26
Lacl 23 8 0.65
AcrR 21 10 1.08
DicA 20 6 0.40
BirA 19 7 0.50
AscG 17 12 0.62
NadR 16 4 0.26
PaaX 11 19 0.64
PhoB 7 5 0.45

Table 1. Summary of transcription factors identified in (0,1) regulatory architectures. Protein copy numbers are per cell
and were determined by mass spectrometry [29]. The values for HU and IHF were taken as the average of their individual
subunits (HupA and HupB for HU, and IhfA and Ih{B for IHF).

The examples provided here serve as a testbed for signal transduction strategies that demand further
quantitative analysis and can be considered under the experimental-theoretical framework we have pre-
sented in this review. Table 1 gives us another way to get a sense of the diversity of simple repression
motifs in F. coli by showing us the copy numbers of the key transcription factors involved in simple
repression.

9. Beyond Simple Repression: Building New Pyramids

Of course, as we already showed in Figure 1, there is far more to transcriptional regulation than simple
repression. Since the original development of the repressor-operator model by Jacob and Monod, the
regulatory mechanisms of the lac operon have been resolved in exquisite detail, as shown diagrammatically
on the left-hand side of Figure 7 [9]. The picture that has emerged is a rather complex one, in which
Lac repressor monomers assemble into a dimer of dimers. These repressors can bind to two of the three
operators found in the lac operon simultaneously, resulting in DNA looping and the stabilization of
repressor action. Furthermore, the binding affinity of repressor to the DNA is modulated by inducer,
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which can be actively pumped into the cell by the Lac permease, which is one of the subjects of regulation
by the repressor. This panoply of regulatory features calls for a complex theoretical description of the
lac operon which can be nevertheless built on the parameters already obtained by building the simple
repression pyramid.

One of the most interesting features of regulation in prokaryotes and eukaryotes alike comes in the
form of DNA looping. Such biological action at a distance is seen in the wild-type lac operon itself,
allowing us to dissect this ubiquitous regulatory mechanism quantitatively. Just as it was possible to
engineer pared-down versions of the simple repression motif, similar exercises have been undertaken in
the context of DNA looping, as shown in Figure 21(A). Looping has been explored in a wonderful series of
experiments from the Miiller-Hill lab [33, 69], and has also been elegantly treated using thermodynamic
models [114]. These threads of research show how a pyramid of regulatory understanding for wild-type
operons can be constructed, featuring multiple binding sites and DNA looping.

Using the same minimal parameter set already identified in Figure 13(B), it is possible to make
predictions about how the regulatory response will work in the context of DNA looping. For example,
thermodynamic models of DNA looping identify one new key parameter with respect to those presented in
Figure 13(B): the DNA looping free energy [114, 34]. By fitting this model to the repression corresponding
to the looping architecture shown in Figure 21(A) for a particular number of repressors per cell, the
model predicts the repression value as repressor copy number is systematically varied. Similarly, it is
also possible to do an operator swap experiment in which the DNA loop itself, and hence the DNA
looping free energy, is unchanged, but instead the binding sites that the repressor uses to form the loop
are varied. Figure 21(B) shows the outcome of such experiments. In Figure 21(C), we also show that
the inferred looping free energy is indifferent to the choice of operators used to induce the loop. The
collection of results shown in Figure 21 provide further exciting evidence of the transferability of the
minimal parameter set determined in the simple repression architecture.

In our opinion, one of the most surprising aspects about the state of the art in regulatory biology
is our ignorance of regulation across genomes writ large. Even in the best understood of organisms,
namely F. coli, we have no idea how more than half of the annotated genes are rgulated, as we illustrated
earlier in Figure 4 [30, 8, 116]. There we represented the circular E. coli genome with those operons for
which there is some regulatory annotation shown in blue and those thus far featuring no such regulatory
knowledge shown in red. Faced with the kind of ignorance revealed in that figure, there is no prospect
of building up a regulatory dissection like that we have reviewed in the context of simple repression. To
rectify this, we need to establish methods that will allow us, first of all, to simply draw the cartoons
of how a given gene’s regulatory apparatus is wired. Recent work has begun to develop tools that
make it possible to go from regulatory sequence to the kind of regulatory architecture cartoons shown in
Figure 1 [93, 96, 117]. Figure 22 exemplifies how a combination of mutagenesis, deep sequencing, mass
spectrometry and information theory has made it possible to take the uncharacterized genes reported
in Figure 4 and figure out their regulatory architecture [93, 96]. Each time we identify how a given
regulatory architecture is configured we are then poised to construct a new pyramid based upon minimal
parameter sets like the one we describe here.

10. Gene regulation and statistical physics: Tactical Success But Strategic Failure?

An interesting reflection offered on the work presented here is that it should be viewed as a “tactical
success but a strategic failure”. There are two aspects to this critique, and each is worth addressing.
The first is that the architectures explored here are “synthetic” and thus anything we learn does not
apply to the “real biology”. In response, we note that we set out ten years ago to understand gene
regulation in bacteria in a quantitative and predictive manner with a view to exporting it to the entire
regulatory genome not only of E. coli, but other more complex organisms as well. However, what we
found was that even for the most well studied regulatory system, we had dispiritingly little quantitative
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looping, with the only requirement being to introduce a new parameter that captures the free energy of DNA looping. (A)

Repression for the case of DNA looping as a function of the number of repressors per cell. (B,C) Operator swap
experiment. In this case, for each DNA loop length, the operators that flank the loop were changed. (B) Using the

0id-O1 data to obtain the DNA looping free energy as a function of operator distance, the thermodynamic model makes a

parameter-free prediction of how repression will work out in this case shown in the red curve. (C) Inferred looping free

energy is the same regardless of which operators flank the loop. Adapted from [115].

Figure 22. Beyond the lac operon in regulatory dissection. Using the Sort-Seq method it is now possible to identify
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regulatory architectures and the transcription factors that mediate them, making it possible to do regulatory dissections

like that described here [96].
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understanding of how it would behave as the various “knobs” that control transcription were tuned. This
demonstrated that we could not tackle the complexity of real endogenous promoters with potentially
quite complex regulatory architectures without first proving to ourselves that we could understand the
most basic unit already introduced in Jacob and Monod’s repressor-operator model and denoted here as
the simple repression motif. Though we backpedaled from our original goals to do the most simple case,
we think the work showcased here demonstrates that we have laid the groundwork for a full regulatory
dissection of the E. coli genome. With the existence of methods like those highlighted in Figure 22 we
are now poised to extend these kinds of regulatory dissections to the entire genome and believe that such
work will unearth many generalizable principles [96].

The second thrust of the “tactical success but strategic failure” critique points out that, although
we were able to find a single self-consistent minimal parameter set to describe regulation of the simple
repression motif, it applies only to the particular conditions in which these specific strains were grown; if
the growth conditions are shifted then we will need to determine the relevant parameters all over again.
This might be true, but to consider its weight we turn to an analogous example from the long history of
the physics of materials. For a cubic material such as aluminum, we can measure the elastic constants
(C11, C12 and Cyy) of single crystals. Now if we want to use those elastic constants to compute what
will happen to a structure such as an airplane wing, we can confidently do so. However, if we alter the
temperature of the metal away from that under which the constants were measured, the values of those
elastic constants will change. Figuring out how elastic constants are modified by temperature entailed
a great deal of subsequent work [118]. But acknowledging that a material response is subtle does not
at all invalidate the original theory of linear elasticity, and for the gene regulatory situations considered
here, we think it possible that a similar scenario might reveal itself. The first step is to make predictions
and test them to determine whether different conditions do indeed require different parameters. The
only way to actually know what happens in complex regulatory circuits is first to master a predictive
understanding of the simplest case and subsequently build out from there.

Despite these worthy critiques, the point of this article was to show that with sufficient care, it is
indeed possible to use a single minimal parameter set to describe a broad array of different regulatory
situation. In our view, the results are sufficiently encouraging that it is now time to move to new systems
such as systematic studies of the regulatory landscape of newly sequenced genomes of microbes from the
ocean floor, for example. Having made the jump on the simple repression Rhodes, we are excited to see
what comes of efforts of the kind described here in novel microorganisms and in the more challenging
setting of multicellular organisms as well.
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