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ABSTRACT

Models of ice crystal vapor growth require estimates of the deposition coef-
ficient («) when surface attachment kinetics limit growth and when ice crystal
shape is predicted. Parametric models can be used to calculate « for faceted
growth as long as characteristic supersaturation (Scq,) values are known. How-
ever, previously published measurements of s.,. are limited to temperatures
higher than -40°C. Estimates of s.,q, at temperatures between -40 and -70°C are
provided here through reanalysis of vapor growth data. The estimated s.4q, follow
the same functional temperature dependence as data taken at higher tempera-
tures. Polynomial fits to s.. are used as inputs to a parameterization of «
suitable for use in cloud models. Comparisons of the parameterization with wind
tunnel data show that growth at liquid saturation and constant temperatures be-
tween -3 and -20°C can be modeled by ledge nucleation for larger (100s of pm)
crystals, however comparisons with free-fall chamber data at -7°C suggest that
dislocation growth may be required to model the vapor growth of small crystals
(~ 20 pum) at liquid saturation. The comparisons with free-fall chamber data also
show that the parameterization can reproduce the measured pressure-dependence
of aspect ratio evolution. Comparisons with a hexagonal growth model indicate
that aspect ratio evolution based on the theory of Chen and Lamb (1994) pro-
duces unrealistically fast column growth near -7°C that is mitigated if a theory
based on faceted growth is used. This result indicates that the growth hypothesis
used in habit-evolving microphysical models needs to be revised when deposition

coefficients are predicted.
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1. Introduction

Cold cloud systems are sensitive to the manner in which ice vapor growth is parameterized
(Gierens et al. 2003; Avramov and Harrington 2010), and while our knowledge is sufficient to
formulate approximate models the mechanisms controlling ice crystal growth remain poorly
understood. Laboratory data for vapor grown ice crystals exist at temperatures above -40°C,
but the quantities measured in many laboratory studies (Nelson and Knight 1998; Libbrecht
2003b) are often not amenable to direct inclusion in the capacitance analogy that is almost
universally used in atmospheric applications. This has led to an unfortunate situation in
which the methods used to represent ice growth in atmospheric models are almost entirely
divorced from process-oriented measurements. While popular parameterization methods
have difficulties reproducing laboratory measurements (Westbrook and Heymsfield 2011;
Harrington et al. 2013b), a more fundamental issue is that these methods do not account
for the growth of faceted ice. Popular parameterizations are rooted in capacitance theory,
which assumes that the vapor density is constant over the crystal surface. The aspect
ratio cannot evolve in this model (Nelson 1994, pgs. 83-85) unless it is supplemented with
an auxiliary hypothesis (Chen and Lamb 1994). In contrast, faceting requires a uniform
flux boundary condition. Moreover, faceting indicates that crystal evolution is controlled
by surface attachment kinetics (hereafter “attachment kinetics”) that are supersaturation
dependent, leading to growth rates that can be substantially lower than the those predicted
by the capacitance model (Nelson and Baker 1996). Only a handful of cloud modeling studies
include supersaturation-dependent attachment kinetics that are consistent with the theory

of faceted growth (MacKenzie and Haynes 1992; Wood et al. 2001; Zhang and Harrington
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2015). All other studies assume either perfectly efficient attachment kinetics (capacitance
growth) or constant attachment efficiencies (deposition coefficients, «), approximations that
are only valid for a narrow range of conditions (Nelson 2005). These simplifications are
not limited to the world of model parameterizations, but also appear in interpretations of
measurements (Fukuta and Takahashi 1999; Magee et al. 2006).

The ubiquitous use of diffusion-only growth models is driven by the undeniable complexity
of crystal growth. However, there has been a trend to develop approximate models that are
consistent with the growth of faceted ice. These methods use laboratory-derived parameters
to drive changes in particle shape (Chen and Lamb 1994) and to estimate the attachment
efficiencies that control mass growth and shape evolution (Wood et al. 2001; Zhang and
Harrington 2014). The models are simple enough that they are amenable to application
within cloud models, providing a simplified theoretical approach for treating the influences
of attachment kinetics on the overall mass growth rate and the evolution of the habits
of single crystalline ice (cf. Zhang and Harrington 2015). Moreover, these methods can
also be used to extract approximate estimates of attachment kinetic influences on vapor
growth from laboratory measurements, thus directly linking laboratory measurements with
model parameterizations. In this paper, we provide a composite data set of characteristic
supersaturations (Scq,) that are needed for supersaturation-dependent models of a. Ledge
nucleation has been proposed as the mechanism by which snow grows in atmospheric clouds
(Nelson and Knight 1998; Libbrecht 2003b), but this hypothesis has never been explored with
a crystal growth model. We show that the model of Zhang and Harrington (2014), referred
to herein as the Diffusion Surface Kinetics Ice Crystal Evolution (DiSKICE) model, can

reproduce the growth of single crystals at low pressures, and at high (liquid) supersaturations.
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We also critique existing growth hypotheses that are used to evolve crystal shape (Chen and
Lamb 1994; Nelson and Baker 1996). We first review attachment kinetics and vapor growth

since these are integral to our analysis.

2. Ice Crystal Vapor Growth and Simplified Models

The rate of vapor uptake by growing crystals depends on the link between surface attach-
ment processes and vapor diffusion. Vapor molecules that impinge upon the surface must
find suitable attachment sites before they can incorporate into the bulk crystalline lattice.
If suitable attachment sites are uncommon a surface supersaturation, sg,, s, will develop im-
mediately above the growing surface. Diffusion through the background gas supplies vapor
to the growing particle and removes the thermal energy generated by bond formation. The
rates of diffusion are driven by vapor and thermal gradients between the surface and the
ambient environment, and are therefore inextricably linked to the surface attachment rates.
The mass growth of crystals is therefore limited by both diffusion and attachment kinetic

processes, and is referred to as diffusion-kinetics limited growth.

a. Surface Processes and the Deposition Coefficients

During growth, a number of physical processes occur on the crystal surface that ultimately
determine the axis and mass growth rates. Vapor molecules must first adsorb to the crystal
surface, though not all molecules will necessarily do so. The efficiency of adsorption is often

referred to as a “sticking” probability, oy, and though it is thought that this quantity is near
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unity (Lamb and Scott 1974; Lamb and Chen 1995; Nelson 2001) at least one experiment
suggests it may be quite low (Asakawa et al. 2014). Adsorbed water molecules will migrate
across the surface and will desorb unless they find a suitable attachment site such as a ledge
or a surface vacancy. At relatively high temperatures (> -5°C), the surface becomes rough
on the growth (nanometer) scale and many attachment sites are available for impinging
water molecules (Elbaum 1991). A quasi-liquid layer exists on ice surfaces (Bartels-Rauch
et al. 2014) and measurements show occurrences of this layer to temperatures as low as -
30°C (Constantin et al. 2018). The existence of this layer has been used in theories of habit
development (Kuroda and Lacmann 1982). Attachment kinetics can also change in time
because of surface transitions: Frozen drops can undergo a faceting transition where small,
pyramidal facets quickly grow themselves out of existence leaving only slower growing, larger
facets (Gonda and Yamazaki 1984). The formation of grain boundaries in polycrystalline ice
at low temperatures (< -20°C) can be a source of dislocations that substantially alter crystal
growth (Pedersen et al. 2011). Low temperature ice is often complex in shape, is affected
by both cubic and hexagonal forms with stacking faults (Carignano 2007; Kuhs et al. 2012),
and with varied surface processes that control the growth. For example, crossed plates grow
with dislocations that propagate parallel to the grain boundary while the remaining facets
have slow growth rates (Furukawa and Kobayashi 1978). Scrolls appear to grow by either the
propagation of dislocations (Kobayashi et al. 1976) or by a protrusion mechanism (Nelson
and Swanson 2018).

Though the above surface processes control crystal growth rates, we lack the requisite
measurements to formulate general quantitative models. Consequently, surface processes

are typically treated in an aggregate sense, and with a single parameter for each facet called
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a deposition coefficient, a. The deposition coefficient is the probability that a molecule
impinging on the surface will contribute to bulk mass and axis growth, and it acts as a
growth efficiency. The deposition coefficient has been measured in numerous studies, often
with the approximation that « is constant. The measurements have been scattered from
low (~0.001, Choularton and Latham 1977; Magee et al. 2006) to high (>0.2, Skrotzki et al.
2013; Kong et al. 2014) values. However, treating « as a constant is only valid for a small
range of environmental conditions, crystal sizes, and specific, constant surface types.

The only available models of « are valid for faceted growth and they are supersaturation

dependent. A parametric model of a was proposed by Nelson and Baker (1996),

s = (222) (22 »

Schar Ssurf

where aj is the sticking probability which is assumed to be unity herein (see above), m is an
adjustable parameter, s, s is the surface supersaturation, and s.pq, is a laboratory-measured
“characteristic” supersaturation. This latter quantity is, effectively, a scaling parameter that
controls the supersaturation dependence of a!. The model treats growth by surface ledges
in the sense that o rises commensurately with sy, As sg,-r becomes larger the density of
ledges rises leading to more efficient growth. The transition from inefficient (« near zero)
to efficient growth (a near unity) is controlled by Scpe-. The parameter, m, determines the

growth mechanism with a value of m=1 corresponding to growth by permanent dislocations

Tt is worth noting that this scaling supersaturation is referred to as a ”critical” supersaturation in the
theory of ledge nucleation (e.g. Nelson 2001, Eq. 2) and as a ”transition” supersaturation when growth is
controlled by spiral dislocations (Lamb 2000; Magee et al. 2006). However, we avoid using these terms since
each of these two quantities has a specific theoretical definition, whereas the scaling supersaturation derived

from measurements is often a parametric value.
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as originally derived in the pioneering work of Burton et al. (1951), but given in the above
form by Lamb and Scott (1974) (their Eq. 43). Values of m > 10 were shown by Nelson
and Baker (1996) to be representative of growth by ledge nucleation. Dislocations are a
permanent source of ledges and produce relatively efficient growth even at low s, s whereas
ledge nucleation causes a rapid onset of growth when sg,,; is near scpe. Growth is not
strongly dependent on m once the value is larger than 10 (see Zhang and Harrington 2015,
their Fig. 1). In the studies below, we use m = 1 for dislocation growth and m = 10 for

ledge nucleation as these are thought to be the primary growth mechanisms for faceted ice.

b. Diffusion-Kinetics Limited Growth Model

Including a (Eq. 1) in calculations of the mass and axis growth rates requires a model
for the gas-phase diffusion of vapor and thermal energy. While methods exist for explicitly
solving the diffusion-kinetic growth problem for faceted single crystals (Nelson and Baker
1996; Wood et al. 2001), these methods are complex and simplified methods rooted in the
capacitance model are an attractive alternative. Zhang and Harrington (2014) developed a
modified version of the capacitance model that calculates o for the major and minor axes
of spheroidal ice crystals, which are used to represent the general shape of atmospheric ice.
The semi-dimensions are defined in relation to the hexagonal structure of single crystalline
ice where a is half the basal plane maximum width, and c is half the prism plane height.
The model deviates from the capacitance model in that axis-dependent vapor fluxes are used
to determine s, s and, therefore, the deposition coefficients for each axis (o, and a.) using

Eq. 1. This mimics the boundary condition for faceted growth, allowing different vapor
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densities over the a and ¢ axes and leads to (see Zhang and Harrington 2014, for details),

dmi 1 Pe ls ls -
Y - 4 1 . 2
g = rCle a)pegsi {Deff T ®T (RUT )} (2)

In the above equation m; is the crystal mass, C(c, a) is the capacitance (see Westbrook et al.

2008, for comprehensive formulations), p., is the ice equilibrium vapor density, s; is the
ambient ice supersaturation (hereafter supersaturation), R, is the water vapor gas constant,
ls is the sublimation enthalpy, T is the temperature, and K. is the thermal conductivity.
Equation 2 is identical to the capacitance model except that the diffusivity of vapor in air
(D,) is replaced with a modified form, D.s, that combines the influences of gas-phase vapor

diffusion and attachment kinetics (Zhang and Harrington 2014, their Eq. 11),

p._2 D, 1 D .
YIT3AC 4 € T 3ADC 4 O

where T, is the vapor mean molecular speed and Ca = C(a + A,c + A) is capacitance
evaluated at a distance A (approximately the mean free path) away from the crystal surface.
The axis-dependent a values, therefore, enter directly into the mass growth rate through
D.ss and are calculated as in Zhang and Harrington (2014). Since the deposition coefficients
are usually less than unity, D.s is less than D, leading to mass growth rates that can be
substantially lower than the capacitance model. At high supersaturation « can approach
unity, and D.s¢ then becomes very nearly D,. Therefore, the capacitance model is recovered
when « is near unity and growth becomes diffusion-limited. Since Eqs. 2 and 3 are applicable
to the diffusion and attachment kinetics growth limits we refer to it as the Diffusion Surface

Kinetics Ice Crystal Evolution (DiSKICE) model.
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c. Aspect Ratio Evolution

Aspect ratio evolution requires a theory for the distribution of mass along each axis,
and the theories of Chen and Lamb (1994) and of Nelson and Baker (1996) are generally
used. Chen and Lamb (1994) hypothesized that the ratio of the axis growth rates is directly

proportional to the aspect ratio (¢ = ¢/a) and the ratio of the deposition coefficients (T'),

d c
Qe I'¢ (aspect-ratio based hypothesis). (4)
da og4a

This hypothesis has been used in the development of habit-evolving microphysical models
(Chen and Lamb 1999; Hashino and Tripoli 2007; Chen and Tsai 2016; Jensen et al. 2017),
and in the interpretation of laboratory measurements (Sulia and Harrington 2011; Connolly
et al. 2012).

Crystals growing by ledge nucleation likely have ledges that form near crystal edges where
Seurs 1s greatest (Frank 1982, see Fig. 18). In this case, the ratio of the axis growth rates

depends only on the deposition coefficients (Nelson and Baker 1996),

d c .
d_c — Qe (facet-based hypothesis). (5)
a

This hypothesis is less commonly used in cloud modeling (Wood et al. 2001), but it has
been used to interpret laboratory growth data (Nelson and Knight 1998; Nelson 2001). It is
worth noting that this hypothesis also breaks down in some situations. Ledge sources can be
at locations besides crystal edges (Nelson 2001), crystal hollowing may require a transition
from dislocation to ledge nucleation growth (Nelson and Knight 1998), crystals often have
non-faceted “rough” regions that may affect habit development (Pfalzgraff et al. 2010), and
molecules may migrate across crystal edges thus influencing ledge nucleation rates (Frank

9
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1982). At this stage, however, there is no theoretical approach for including these more
detailed processes in a simplified model of single crystal habit development.

As the above discussion implies, our theoretical knowledge is insufficient to explicitly
model the development of secondary habit features that appear at high supersaturations,
such as dendritic branching and hollowing. These features are normally treated through
an “effective” density (pess) that is lower than the bulk density of ice and accounts for
the branches and hollowed regions that are not represented in the modeled particle. This
approach has a long history in modeling (Miller and Young 1979; Chen and Lamb 1994;
Thompson et al. 2008) and in data analysis (Fukuta 1969; Fukuta and Takahashi 1999).
Chen and Lamb (1994) approximate the density added during growth (the deposition density)
with an empirical equation that depends on temperature and supersaturation (their Eq. 42).
This form allows the effective density to decline during growth and is used in the simulations
presented below.

For the sake of completeness, we note that laboratory evidence suggests the aspect ratio
should be treated as a constant during sublimation with a sublimation coefficient of unity
(Nelson 1998), an approach we advocate here. This result has a physical basis: Measurements
suggest that crystal roughening during sublimation (Nelson 1998; Magee et al. 2014) causes
the sublimation coefficient to approach unity. As a consequence, the vapor density becomes
constant along the surface leading to a constant aspect ratio (shape is preserved) during

sublimation (Ham 1959).

10
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3. Characteristic Supersaturations
a. Synopsis of previously published data

Characteristic supersaturations are required as input to the a-dependent growth model,
however available measurements of s.,, (Fig. 1) are sparse and restricted to temperatures
above -40°C. Various laboratory devices along with different models of o have been used in
prior measurements of s.nq.. We therefore expect variations in s.,., that are due solely to
differences in the measurement techniques and analytical models employed in a given study.
It is beyond the scope of this work to assess and interpret these differences; instead we have
collected prior published data and use them to provide a proxy data-set.

The available data clearly indicate that s.,,, increases commensurately with the super-
cooling (T,-T, T, = 273.15K, Fig. 1). Values of s.q. are relatively low (< 2%) at tempera-
tures above -20°C and their variation with temperature is consistent with the primary habits
of ice for most of the data sets: At a given temperature, the major growth axis has lower
values of s.pq than the minor axis, and this difference will produce a larger o in Eq. 1 and
faster major axis growth. At temperatures above -20°C the data of Libbrecht and Rickerby
(2013) generally have the highest s.q, and these data show basal and prism values for sqpq
that are the opposite of the other published measurements. Libbrecht and Rickerby (2013)
point out that this result may be due to processes occurring on the crystal surface that are
not captured by the standard models of a. Nevertheless, using these data directly in Eq. 1
produces the wrong primary habits and they are not included in our studies above -20°C.

Values of s.,q- become progressively larger as the temperature falls below -20°C indicat-

ing that growth becomes more strongly limited by attachment kinetics. The data sets are
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relatively consistent with one another though substantial outliers occur near -30°C. Only
two published measurements of the basal and prism facet s..,. exist, and they are consis-
tent with one another below -20°C (Libbrecht 2003b; Libbrecht and Rickerby 2013). The
measured S.q. are nearly the same on the basal and prism facets, with habit development
controlled by the leading coefficient in the ledge nucleation rate equation (Libbrecht 2003b).
These results contrast with those of (Nelson and Knight 1998) in which the primary habits
are controlled by the difference in s.,,, between the basal and prism facets at higher tem-
peratures. Zhang and Harrington (2014) used the data of (Libbrecht 2003b) to derive values
of Senar consistent with the formulation of Nelson and Knight (1998), however these derived
values produce thick columns and plates at high supersaturation, whereas thinner particles
are often observed. Libbrecht (2003a) has hypothesized that the production of thinner plates
may be due to structure-dependent « that is currently not accounted for in theories. Un-
fortunately, there is no consensus on the modeling of the primary habits at temperatures
below -20°C, though the values of s.,, are relatively consistent among the data sets. At
lower temperatures we therefore estimate the reduction in the mass growth rate by using a
single, particle-averaged value of s.p,, following Zhang and Harrington (2014).

The use of a single s.,q- to characterize attachment kinetic influences on growth has
precedence. Our prior work (Zhang and Harrington 2014, their Fig. 10) showed that the
mass uptake of non-spherical single crystals is very nearly reproduced if a particle-average
value of S.uq and an equivalent volume sphere are used in the mass growth calculations.
Figure 2 shows a similar result for the instantaneous mass growth rate (normalized to the
capacitance rate) for a large range of aspect ratios, supersaturations, and for both ledge

nucleation and dislocation growth. The relative errors between the solutions using separate
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Schar for each axis, and the solutions using an average S.nq., are generally less than 5%,
however the relative error becomes substantial (20% or larger) when crystals are small (r <
10 pm) and the supersaturation is near Scq, (not shown). Given that an average value
of Scher and an equivalent volume sphere provide an accurate estimate of the overall mass
growth rate for highly anisotropic single-crystal growth, we hypothesize that it is reasonable
to employ this method for the growth of crystals with more complex facet morphologies, as
is observed near liquid saturation and in polycrystalline ice. This hypothesis underlies the

estimates of S.nq, provided in the following subsection.

b. FEstimating Characteristic Supersaturations at T < -40°C

To our knowledge, no data exist for s.,q, and the growth rates of individual crystal facets
at temperatures below -40°C. However, mass growth rate data do exist at these temperatures
for individually grown crystals (Magee et al. 2006). These growth data are particularly useful
as they record the vapor growth and sublimation of individual crystals, formed from frozen
small droplets (radius of 5 to 7 um), at nearly constant temperatures of -59.8, -50, -44, and
-42°C. Estimates of o were low (~ 0.006 £ 0.002) and different values of o were required
to fit each growth and sublimation portion of the time-series (Magee et al. 2006). Crystal
growth was likely inhibited by attachment kinetics indicating that it would be useful to
estimate an particle-average value of s.,,, from the data.

An example of the growth data is shown in Fig. 3a for a crystal undergoing cycles of
sublimation and growth at a temperature of -59.8°C and a pressure of 972 hPa. The

mass evolution of the crystal depends on its initial size, which can be determined to about
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1 pm. This size uncertainty dominates the errors in determining « and therefore s.pq,
whereas supersaturation errors have a smaller influence on o (Magee et al. 2006). We use
the DiSKICE model to fit the measured mass ratio time-series by minimizing on a value
of Schar- We assume spherical particles because the grown crystals were small (5 to 20 pym
in radius), and therefore had likely not developed pronounced habits. In the model we
also assume that the crystals grow by ledge nucleation. Equally accurate fits are possible
if dislocation growth is assumed, however a low sticking efficiency (a5 ~ 0.004) is then
required. Though this result is conceivable, it seems unlikely as high values of « (above 0.1)
that have been estimated at T" < -40°C (Skrotzki et al. 2013; Pokrifka 2018) would then
not be possible even for dislocation growth at liquid saturation.

The model fits to the measured mass ratios are shown in Fig. 3a for the most probable
initial radius (r, = 7 pm), and the upper (r, = 8.4 pm) and lower (r, = 5.4 pm) uncertainty
bounds. The fit has the same accuracy as that of Magee et al. (2006) except that « varies
with time (Fig. 3b), rising and decreasing commensurately with the supersaturation. The
rapid decline in « with decreasing supersaturation is the reason the model captures the
relatively flat region in the mass growth time-series (such as 500 to 1000 seconds) that is
not reproducible with a diffusion-limited growth model. More critically, the values of s.qr
(on Fig. 3b) required to fit each growth and sublimation period are relatively similar to one
another. These results suggest that a similar surface process is occurring on these crystals
throughout the growth cycle. Finally, note that the predicted time-series of « falls within
the range (grey shades) determined by Magee (2006) with « that are similar to his fitted
values (dashed lines).

The values of s, determined from the above growth time-series, and the other exper-
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iments at -50, -44, and -42°C (not shown), are given on Fig. 1. Note that values for the
sublimation portions of the time-series are not shown since the present study focuses on
depositional growth. The values of s.,,, determined from the fitting procedure are some-
what lower than prior measurements near -40°C, but show a similar temperature trend for
Schar s the higher temperature data. The approximate consistency of our results with prior
data is encouraging, but comparisons with independent data would be useful. In particular,
experiments run over a range of supersaturation for fixed temperatures and single crystalline
ice would be ideal.

It is important to point out that one should exercise caution in the use of the estimates
of Schar provided herein since it is always possible that experimental artifacts affected the
resulting growth curves. It is also not known whether the measured crystals developed facets
quickly after the periods of sublimation, though the observations of Gonda and Yamazaki
(1978) suggest that facets appear rapidly after droplet freezing and the electron microscope
studies of Pfalzgraff et al. (2010) show that facets rapidly re-appear (within 90 seconds to a
few minutes) during re-growth following sublimation. In addition, (Magee et al. 2006) found
that low values of o were required for sublimation, a result which is inconsistent with other

measurements (Nelson 1998; Magee et al. 2011).

c. Comparisons with effective capacitance measurements

Bailey and Hallett (2004) reported on thermal gradient diffusion chamber measurements
of crystals grown on a substrate. From these growth measurements capacitance values nor-

malized to the maximum dimension (L;) were extracted for hexagonal plates and columns
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(Bailey and Hallett 2010). These values were estimated by using the measured mass growth
rate and then solving for the capacitance in the capacitance mass growth model. The nor-
malized capacitance is a useful metric for vapor growth since it is independent of size, and
depends only on the aspect ratio for diffusion-limited growth. Normalized capacitance values
extracted from growth data would therefore fall approximately along the solid black lines
in Fig. 4 if growth is diffusion-limited. However, Bailey and Hallett (2010) found that the
measured normalized capacitance was substantially lower than capacitance theory (Bailey
and Hallett 2010, their Fig. 12). Their data span a relatively large range of L; (50 to 400
pum), pressure p (500 to 150 hPa), and supersaturation s; (1 to 13% at -40°C, and 5 to 25%
at lower temperatures), and an apparent aspect ratio dependence reminiscent of capacitance
theory appears in the data. The approximate ranges of their data are shown on Fig. 4.
There are many possible reasons why the extracted values of the normalized capacitance
are lower than capacitance theory (see Bailey and Hallett 2010), but one main reason is
that attachment kinetics are not included in the capacitance model. Therefore the extracted
values of LQ are convolved with the attachment kinetics, producing an effective normalized
capacitance (c.ss) that can be computed with DiSKICE. Values of c.ss are computed using
DiSKICE assuming ledge nucleation growth and using values of s;, L;, and p in the middle
of the measured range. The spread of model solutions is calculated using the range of
measured s; (light shades), and L; and p (dark shades). The calculated c.;; using the
Sehar Values derived in §2b (green lines, Fig. 4) are often consistent with the range of the
measurements, though at -40 and -50°C the calculated values are too high for planar crystals
and at -60°C the calculated values are at the lower end of the measured range. Including

the variability in s;, L;, and p produces a range of solutions that has a spread similar to the
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red and blue shaded regions (discussed below) and often encompasses the measured range
(omitted for clarity).

Because some of the c.s¢ calculations fall outside of the observed range, it is useful to
calculate adjusted values of s.pq, so that spread in the solutions is confined primarily within
the measured range of c.rs. This was done by adjusting scpq, until the accumulated error in
the spread of the model solutions as compared to the observed range of c.¢s is a minimum.
These are shown as the red and blue shaded regions on Fig. 4 along with model solutions
using the mid-range values of s;, L;, and p (solid red and blue lines). The spread in the
solutions for c.s¢ is weakly dependent on p and L;, but is dominated by s; with a spread
that is similar to that of the measured range; these are expected results since attachment
kinetics are dominated by the supersaturation dependence through «. The adjusted values
of schar, along with a large uncertainty based on the spread of s; values, are given in Fig. 4
and Fig. 1. These adjusted values are generally consistent with those from the data of Magee
et al. (2006), and also provide a data point at -70°C.

Naturally, one should bear in mind that these adjusted values of s.,. are very rough
estimates calculated from measured growth rates of crystals of various sizes over a range
of pressures and supersaturations. Furthermore, since numerous crystals were grown from
the substrate in these experiments, the vapor diffusion field in the chamber deviated from
that of a classic flat-plate diffusion chamber. The simulations of Westbrook et al. (2008)
show that crystal crowding could have reduced the measured growth rates by as much as
a factor of three, though Bailey and Hallett (2010) point out that they only analyzed data
from conditions that were not crowded (their Fig. 11). Though Bailey and Hallett (2010)

evidently took great care to exclude crowded conditions, the influence of the population of
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crystals on the three-dimensional vapor field, and the horizontal diffusion that must occur,
is not known. Moreover, as a reviewer of the current paper pointed out, the crystals grown
from the central strand are asymmetric since one end is attached to the substrate. The
attached end of the crystal therefore cannot grow naturally and deplete the vapor supply,

and it is unknown how important this effect would be to the measured growth rates.

d. Polynomial Fits to Characteristic Supersaturation Data

A subset of the data shown in Fig. 1 is used to produce polynomial fits (Table 1) to
Sehar as a function of temperature (black curves). The data subsets used in the fits were
selected as follows: At temperatures above -20°C, the data from Nelson and Knight (1998)
and Libbrecht (2003b) were used. The data from Libbrecht and Rickerby (2013) were not
used for reasons discussed earlier, and Sei and Gonda (1989) was excluded because the
growth was possibly influenced by thermal substrate effects (Nelson 1993). At temperatures
below -20°C the data of Libbrecht (2003b) are used along with S, estimated in §2b and
¢ above. The basal facet s for temperatures between -20 and -30°C (black solid curve)
is taken from the estimates made by Wood et al. (2001). We use a particle-average Scpar
and an equivalent volume sphere at temperatures below -30°C, since these values are rough
approximations of attachment kinetic influences on crystal growth. The only exceptions are
model tests of columnar growth for which an ad hoc reduction in the basal s.,, is applied

(black dotted curve) based on the analysis of Zhang and Harrington (2014).
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4. Single Crystal Evolution at Low and High Supersat-
uration

The evolution of the primary habits of single crystalline ice depends on the growth
hypothesis (Eq. 4 or 5) that is employed. A number of studies have shown that the aspect-
ratio based hypothesis of Chen and Lamb (1994) can reproduce the evolution of the primary
habits of ice at liquid saturation, however those works were predicated on the assumption
that the ratio of the deposition coefficients (I') is a constant at a given temperature. It is not
immediately evident which hypothesis (Eq. 4 or 5) provides a more accurate representation
of aspect ratio evolution when deposition coefficients are predicted. Moreover, it is not
clear whether ledge nucleation or dislocation growth provides a better representation of axis
evolution at high supersaturations. Below, we analyze the two growth hypotheses and extend

the studies to secondary habits (branching and hollowing) through a reduced density.

a. Assessment of Axis Growth Hypotheses

The hexagonal ice growth model developed by Wood et al. (2001) was used in prior work
to assess the axis-dependent growth of crystals using DiSKICE (Zhang and Harrington 2014).
The hexagonal model solves the Laplace equation on a triangular grid covering the basal and
prism facets of hexagonal ice using the constant-flux boundary condition for faceted growth.
The model is limited in that simulations of branched and hollowed crystals are not possible.
Nevertheless, the hexagonal model reproduces the general features of faceted growth and

provides a convenient comparison basis for simplified theories. For the simulations below,

19



410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

the hexagonal model is set-up as in Zhang and Harrington (2014) with ledge nucleation
growth occurring where sg,,s is a maximum and dislocation growth at the facet centers.
Characteristic supersaturations used in DiSKICE and the hexagonal model were calculated
from the polynomial fits in Fig. 1, though the short dashed curve is used for the basal facets
at temperatures below -20°C so that a columnar aspect ratio develops (discussed below).
Results of the comparison between the hexagonal and DiSKICE model in the work of
Zhang and Harrington (2014) were encouraging in the sense that the general dependence of
growth on aspect ratio and o were captured by the DiSKICE model. However, those studies
were limited in a number of ways: They only examined growth by dislocations at high s; and
ledge nucleation growth at low s;, but did not examine the facet-based growth hypothesis
(Eq. 5), nor growth where branching and hollowing are treated through a reduction in the
particle density. While the aspect-ratio based hypothesis was found to compare well to
the hexagonal model, there were indications that dislocations produced excessive columnar
growth near -7°C. This excessive growth is inherent in the aspect-ratio based hypothesis,
which becomes markedly clear for ledge nucleation growth as is shown in Fig. ba. After
10 minutes of growth at liquid saturation with the aspect-ratio based hypothesis, columnar
crystals at temperatures between -5 and -9°C are nearly an order of magnitude longer,
and significantly thinner, than the hexagonal model solutions. This result also occurs at
temperatures below -20°C, however the excessive growth is weaker here because of the larger
values of s.uq-. Aspect ratio evolution is also excessive for planar crystals, and so it appears
that at high supersaturation the aspect-ratio based hypothesis produces crystals that are
too large and with extreme aspect ratios. This excessive growth is substantially muted

at low supersaturations, and only an indication is seen near -7°C (Fig. 5b). In contrast,
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the facet-based hypothesis produces a much better match to the hexagonal model at high
supersaturations, though at low supersaturations there is less of a distinction between the
two hypotheses. Growth by dislocations produces a similar result at high (liquid) saturation
(Fig. 6) and low saturation (not shown), though the enhancement of axis growth is far lower
than it is for ledge nucleation.

The reasons for enhanced growth in the aspect-ratio based hypothesis can be understood
by examining the time evolution of the semi-axis lengths, «, and the axis-dependent vapor
fluxes at -7°C, where enhanced growth is the most excessive. The evolution of the ¢ and
a axes is clearly better represented by the facet-based hypothesis at all supersaturations
(Fig. 7a and b). In contrast, the aspect-ratio based hypothesis becomes progressively worse
at higher supersaturations, with time-dependent values of a and ¢ diverging substantially
from the hexagonal model solution. At high supersaturation (s; = 7%), runaway growth is
produced for the c-axis while the a-axis essentially ceases growth after about 200 seconds,
producing columns with extreme aspect ratios (¢ = 190).

Strong growth along the c-axis in the aspect-ratio based hypothesis indicates that «
is large (Fig. 8). While the facet-based hypothesis produces a values that follow a similar
functional form to those predicted by the hexagonal model, with « for each axis decreasing in
time, the aspect-ratio based hypothesis produces a rise in « for the c-axis that is accentuated
at higher supersaturations. Interestingly, a for the a-axis follows a similar functional form
to the hexagonal model solution. The increasing values of o with time indicate that sgy, s,
and hence the vapor flux onto the c-axis, must be rising unrealistically in time, which is
indeed the case (Fig. 9). This increase in the vapor flux onto the c-axis is driven by the

aspect ratio dependence of the growth hypothesis (Eq. 4). The equation originates from the
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ratio of the vapor fluxes along the ¢ and a-axes in the capacitance model (Chen and Lamb
1994, Eq. 25), and therefore the inclusion of ¢ essentially multiplies the vapor flux from the
facet-based hypothesis by the aspect ratio, causing an increase in the vapor flux by a factor
of . When « values are predicted, including this scaling by ¢ causes a positive feedback
where increasing aspect ratio amplifies the fluxes onto the major axis. This result does not
occur in the original model of Chen and Lamb (1994) because the ratio of the deposition
coefficients is constant at a given temperature. The artificial feedback with aspect ratio
evolution that occurs when « is predicted is a general feature of the aspect-ratio based
hypothesis, and it indicates a flaw in the hypothesis that becomes progressively worse at
higher supersaturations. Consequently, models that evolve crystal shapes based on this
hypothesis (Hashino and Tripoli 2007; Harrington et al. 2013a; Chen and Tsai 2016) would

have to be modified to use the facet-based hypothesis if « is predicted.

b. Comparison with Laboratory Measurements at Liquid Saturation

While the above comparisons, and the studies of Zhang and Harrington (2014), indicate
that DiSKICE provides a suitable approximation for single crystal growth as compared to
the hexagonal growth model of Wood et al. (2001), no comparisons to growth data have been
done. Few comprehensive data sets exist to which analytical growth models can be compared,
and this is especially true at low ice supersaturations. However, a few data sets exist from
wind tunnel measurements of crystals grown at liquid saturation. The comprehensive data
set of Fukuta and Takahashi (1999) is particularly useful because freely suspended crystals

were grown for long periods of time (up to 30 min) and data are reported for the axis
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lengths, crystal mass, and fall speed (reproduced in Figs. 10 and 11). Crystals grown in
these experiments had a range of initial sizes, but the model simulations below use spheres
with an initial radius of 10 pum based on the studies of Sulia and Harrington (2011). All of
the simulations below are integrated for up to 15 minutes at liquid saturation, and a constant
temperature and pressure (1000 hPa). Effective density, fall speed and ventilation effects
are computed following the axis-dependent approach described in Chen and Lamb (1994).
Ventilation effects are particularly important here, as they strongly impact the growth rates
for larger crystals. As discussed by Chen and Lamb (1994), ventilation effects tend to not
only increase the overall mass growth rate, but the major axis growth rate is also amplified
leading to thinner crystals.

Prior comparisons with the above data using the Chen and Lamb (1994) model showed
that the mass, axis lengths, and fall speed could be captured with relatively high accuracy
(Sulia and Harrington 2011; Harrington et al. 2013b). Typical results from those comparisons
are reproduced in Figs. 10 and 11. These results provide a benchmark for the DiSKICE model
at liquid saturation, and they also underscore an important point: Diffusion-limited growth
captures the mass evolution of the observed crystals, whereas the deposition coefficient ratio
(T") primarily controls aspect ratio evolution.

Simulations of crystal growth with DiSKICE used the facet-based hypothesis and ledge
nucleation growth with s... from the polynomial fits given in Table 1. The DiSKICE
simulations produce results that are similar to those of the Chen and Lamb (1994) model
and also compare well with the observed evolution of axis length (Fig. 10), mass and fall
speed (Fig. 11). Like the Chen and Lamb (1994) model, relative errors in the simulated

crystal properties can often be large (20 to 50% for individual data points), but the general
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qualitative features of habit evolution and crystal fall speed are reproduced by DiSKICE:
The model captures the strong increase in the a-axis length and the small c-axis length
where thin dendritic crystals are observed near -15°C. These crystals have a low effective
density (around 100 kg m™3) and a large area leading to low fall speeds. The model predicts
the greatest fall speeds, and lowest masses, near the habit transition temperatures of -10
and -22°C, where crystals are relatively isometric with low drag and high effective density.
Similar to the Chen and Lamb (1994) model, columns are predicted to be too thin with
a-axis lengths that are smaller than observed.

Simulations assuming dislocation growth on the basal and prism facets produce crystals
that are too thick in comparison to the measurements (Fig. 10). This result occurs because
dislocations, unlike ledge nucleation, produce relatively high a along both axes (Fig. 12a).
Consequently, both the a and the ¢ axes grow with high efficiency.

There are two other possible mechanisms that could produce thin crystals. It is certainly
possible that dislocation growth could occur on the primary growing axis whereas ledge
nucleation could occur on the weakly growing facet. However, simulations of this process
produce crystals that are far too thin in comparison to the measurements (not shown).
It is also possible that both dislocations and ledge nucleation occur on each facet, and
that the growth mechanism with the largest o controls the growth (Nelson and Knight
1998). DiSKICE simulations with a chosen based on the most efficient growth mechanism
produce thicker crystals reminiscent of dislocation growth. A key result of these simulations
is that only ledge nucleation for each axis can reproduce crystal growth at liquid saturation.
However it should be borne in mind that real crystals may indeed grow by the aforementioned

mechanisms, and that the inability of DISKICE to reproduce those growth mechanisms
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may indicate a limitation of the model. Nevertheless, from a practical parameterization
perspective, ledge nucleation can be used to reproduce the growth of thin crystals at liquid
saturation.

It is curious that the model of Chen and Lamb (1994) and DiSKICE produce results
that are similar to one another at liquid saturation even though the models are driven by
different data sets. The ratio, I, used in Chen and Lamb (1994) is derived from the «
measurements of Lamb and Scott (1974) whereas DiSKICE uses polynomial fits to Scpar
that are primarily due to the measurements of Nelson and Knight (1998) at these tempera-
tures. Since the models use different growth hypotheses, namely the facet-based hypothesis
for DISKICE and the aspect-ratio based hypothesis for Chen and Lamb (1994), the results
presented above suggest that a./a, for ledge nucleation growth should approach T'(T')c/a
in the limit of liquid saturation. While we have not discovered an analytical proof of this
assertion, it is consistent with the model results. For instance, Fig. 12b shows the ratio
a./a, and I'(T)e/a from the DiISKICE and Chen and Lamb (1994) simulations, respectively.
The ratios are nearly identical after 15 minutes of growth. The near equality of these ratios
provides circumstantial evidence for why the Chen and Lamb (1994) model is accurate at
liquid saturation: The ratio I'(T")c/a provides a parameterization of the change in the depo-
sition coeflicient ratio. Moreover, these results provide a tantalizing hint of an underlying

commonality in the measurements of Lamb and Scott (1974) and Nelson and Knight (1998).
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c. Aspect ratio dependence on pressure

In a series of experiments using a free-fall chamber Gonda (1980) measured the de-
pendence of aspect ratio on the vapor diffusion coefficient (D,) at liquid saturation and
temperatures of -7°C and -15°C. Crystals formed from frozen liquid droplets fell about 5 to
perhaps 15 ¢cm onto a window where the crystals could be imaged. Measurements showed
that the aspect ratios of the hexagonal crystals deviated further from unity for higher pres-
sure or lower values of D, (Fig. 13), a result that is consistent with theory: The rate of vapor
diffusion to a growing crystal depends on the background gas pressure. At relatively high
pressure (low D, ), the diffusive resistance to vapor transport is large, keeping sg,s below
the value needed for minor axis growth. The aspect ratio of the crystal therefore evolves
away from unity in time. Conversely, at very low pressures (high D,) the background gas
provides little resistance to the flow of vapor. In this case s, s is closer to the ambient value
(liquid saturation), which is above S.,, for each axis and, therefore, isometric crystals are
produced.

We simulated a scenario similar to the experiments of Gonda (1980) by allowing initially
spherical crystals (radius of 2 pm following Nelson 2001) to grow while falling 10 cm. The
model of Chen and Lamb (1994) cannot reproduce the dependence of crystal aspect ratio on
D, since I is constant (not shown). In contrast, the DiISKICE model produces an aspect ratio
dependence on D, that is similar to the measurements (Fig. 13). Moreover, either dislocation
growth or ledge nucleation can fit the data though different s, values are required for each
growth mechanism. At -7°C dislocation growth requires S.,, for the basal and prism facets

of 0.18 and 0.48%, respectively, values that are similar to those from prior measurements
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(0.2 and 0.44%, Fig. 1). Ledge nucleation requires nearly the same s, for each axis, which
is inconsistent with prior measurements. This result is consistent with Nelson (2001), who
concluded that dislocation growth likely controlled the growth at -7°C. At -15°C, however,
the Scpqr required for ledge nucleation to fit the growth data (0.59 and 1.5% for the prism and
basal facets, respectively) are consistent with prior measurements (0.54 and 2.1%, Fig. 1).
Dislocation growth requires s..- for the basal facet to be an order of magnitude smaller
than observed. This result is consistent with the findings of Nelson (2001) at low D,, which
indicated that ledge nucleation was occurring, but not at high D,, where it appeared that
dislocation growth occurred. The inconsistency may indicate a limitation of our model at
higher D,, but further laboratory studies are needed.

Because the experiments of Gonda (1980) produced only small crystals (less than 20 pm)
formed from frozen droplets, it is likely that dislocation growth dominated much of the early
growth of these crystals. However, explaining the thin crystals from the wind tunnel data of
Fukuta and Takahashi (1999) requires ledge nucleation. Taken together, these results suggest
that the early growth of small crystals may be dominated by dislocation growth while ledge
nucleation dominates the growth at latter stages when crystals are large. This conclusion is
broadly consistent with the discussions of Nelson (2001) and with the results of Gonda and
Yamazaki (1984) who showed that crystals formed from frozen drops initially grow efficiently

until facets become large enough that ledge nucleation dominates the growth.
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5. Summary and Concluding Remarks

In this paper we have provided a composite data set for the characteristic supersatu-
rations, Scnqr, that are needed as input for supersaturation-dependent a. We have shown
these Schqr values, when used in conjunction with the model of Zhang and Harrington (2014),
can reproduce the growth of ice crystals at liquid saturation as observed in a wind tunnel.
Only ledge nucleation for both axes is capable of reproducing the mass, lengths, and the fall
speed of the measured crystals. Axis evolution based on the aspect-ratio based hypothesis
of Chen and Lamb (1994) produces columnar growth with unrealistic aspect ratios when «
is predicted. This occurs because of a positive feedback with the aspect ratio in that param-
eterization method. Only the facet-based hypothesis of Nelson and Baker (1996) is capable
of reproducing aspect ratio evolution from a hexagonal model at both low and high super-
saturations. While the diffusion-limited model of Chen and Lamb (1994) will not produce
variations in aspect ratio with pressure, the model of Zhang and Harrington (2014) is capable
of reproducing pressure-dependent growth of small crystals in comparison to measurements.

The growth of ice at low temperatures (T < -30°C) has been infrequently measured,
though the experiments of Libbrecht (2003b) indicate that the growth of basal and prism
facets is driven primarily by ledge nucleation. However, no measurements of s.,, exist at
temperatures below -40°C. To help fill this gap, we reanalyzed prior measurements (Magee
et al. 2006) to extract average values of s.q, between -40 and -60°C. Comparisons to the
normalized capacitance values of Bailey and Hallett (2010) for hexagonal plates and columns
indicate that our values of s.., are generally consistent with their data.

It is critical to bear in mind the approximate nature of the analyses at T<-40°C. At

28



605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

present, only two data sets have been published with precise measurements of facet growth
down to -40°C, and both data sets indicate that s.,,, increases with decreasing temperature
(Libbrecht 2003b; Libbrecht and Rickerby 2013). While the $.q, values from our analysis
are consistent with these measurements, it is not known whether our values are truly repre-
sentative of the average growth of basal and prism facets. The morphology of crystals grown
in the studies of Magee et al. (2006) is unknown, and since those crystals were formed from
frozen droplets they likely were polycrystalline (Bacon et al. 2003), may have had mesoscopic
surface features (Magee et al. 2014), and likely underwent a transition as facets emerged.
These processes, and others, would be convolved together in the values of s.,, that we have
derived.

It is also difficult to relate these known growth mechanisms, and measured growth rates,
to the measures of crystal roughness reported in the literature (Neshyba et al. 2013; Magee
et al. 2014; Schnaiter et al. 2016). Magee et al. (2014) showed mesoscopic features on
crystal facets, yet growth was at times limited by attachment kinetics. Moreover, Pedersen
et al. (2011) found weak growth of crystal facets until a grain boundary is formed through
the contact of two dissimilar facets. More recently, Voigtlinder et al. (2018) indicated
that crystals cycled between growth and sublimation show reduced growth rates in later
cycles, and that surface roughening can increase during cycled growth. This latter result
is consistent with prior measurements that show faceting disappears and crystals roughen
during sublimation (Nelson 1998; Magee et al. 2014). Taken together, these results indicate
that our understanding of ice vapor growth is still in its infancy. Approximate models, such
as the one posed in this paper, must be used with caution and should be interpreted as a

place-holder for a more precise theory of ice growth.
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suming ledge nucleation, after 10 minutes of growth at (a) high (liquid) saturation, and (b)
low saturation (15% of the ice saturation ratio at liquid saturation). The a-axis length is
given by the solid lines and the c-axis by the dashed lines. Black lines with circles indicate
the hexagonal model solutions, red and blue lines indicate DiSKICE solutions with the
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Time-series of (a) c-axis and (b) a-axis lengths for the simulations shown in Fig. 5; three
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Time-series of the (a) c-axis and (b) a-axis deposition coefficients for the simulations shown
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Axis length after 15 minutes of growth at liquid saturation and 1000 hPa pressure as
derived from wind tunnel data of Fukuta and Takahashi (1999) (a-axis, solid circles; c-
axis, open circles) and from model simulations (a-axis, solid lines; c-axis, dashed lines).
Simulations using the parameterization of Chen and Lamb (1994) are given by the black
lines whereas simulations using predicted deposition coefficients (ledge nucleation, facet-
based hypothesis) are given by the red lines. The red shaded region indicates the range
of uncertainty in the characteristic supersaturation (Scpqr). Simulations with dislocation
growth are indicated by the green lines. . . . . . . . . . . ... ...
Ice mass (a) and fall speed (b) after 10 (black) and 15 (red) minutes of growth at liquid
saturation and 1000 hPa pressure. Wind tunnel data (Fukuta and Takahashi 1999) are
indicated by the symbols and model simulations by the lines. Simulations using the Chen
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predicted deposition coefficients (ledge nucleation, facet-based hypothesis) are shown by
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(a) Deposition coefficients (a-axis, solid lines; c-axis, dashed lines) after 15 minutes of
growth at liquid saturation and 1000 hPa pressure for the simulations shown in Fig. 10.
Simulations using ledge nucleation are given by the red lines and the red shaded region in-
dicates the range of uncertainty in the characteristic supersaturation (Scpqr). Simulations
with dislocation growth are indicated by the green lines. (b) Ratio of the deposition coef-
ficients (a./ay) for ledge nucleation growth (red line and shaded region) using the results
and uncertainty from (a). The combination of the inherent growth ratio and the aspect

ratio (I'(T)c/a) from the theory of Chen and Lamb (1994) is given by the black line. . . .
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Aspect ratio of crystals as a function of the vapor diffusivity, D,, at -7 and -15°C (red
and blue colors, respectively). Solid circles indicate the free-fall chamber measurements
of Gonda (1980) made after crystal vapor growth at liquid saturation. Simulated crystals
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10 cm. Dislocation growth (dashed line) used a and c-axis Scpqr, respectively, of 0.48% and
0.18% at -7°C, and 0.04% and 1.9% at -15°C. Ledge nucleation growth (solid line) used a

and c-axis Scpqr, respectively, of 0.48% and 0.35% at -7°C, and 0.59% and 1.5% at -15°C.
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F1a. 1. Characteristic supersaturations as a function of supercooling (AT = T, — T') from laboratory-
measured vapor growth rates (Sei and Gonda 1989; Gonda et al. 1994; Nelson and Knight 1998; Bacon et al.
2003; Libbrecht 2003b; Libbrecht and Rickerby 2013; Harrison et al. 2016). Prior values of Scpq, exist for
temperatures above -40°C only. The data set is extended to temperatures below -40°C using estimates
from the growth data of Magee et al. (2006) and Bailey and Hallett (2010). Values of Scpqr for the basal
and prism facets are denoted by diamond and square symbols, respectively. A circle is used to denote Scpqr
that is representative of the overall particle growth. Symbol color indicates the data source. Best fits to the
data using polynomials are indicated by the black line (solid, basal facet; dashed, prism facet). The black

dotted curve is an ad hoc modification of the basal s.pq,- to produce columnar growth at 7' < -20°C.
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the three initial radii given in (a). Also shown are the best estimate a (black dashed lines and number) and
the range (shaded region) from Magee (2006). Best-fit values of scpqr for sublimation (sub) and deposition

(dep) from each DiSKICE time-series is given on the figure and color-coded to match the simulations.
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F1G. 4. Normalized effective capacitance (C/a for plates, and C/(2c) for columns) as a function of aspect
ratio (¢) at temperatures between -40 and -70°C. The solid black lines are capacitance model results for
oblate and prolate spheroids. Black dashed lines indicate the approximate range of measured values given
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et al. (2006). Calculations used mid-range values of crystal maximum length (L;) of 200 pm, pressure (p) of
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respectively. Adjusted solutions using these mid-range values and the DiSKICE model for plates (columns)
are indicated by the thick red (blue) lines. Dark shaded regions indicate the variability due to the range of
L; (50 to 400 pum) and p (500 to 150 hPa). Light shaded regions indicate the variability due to the range of
s; (generally 5 to 25%). Variability ranges are similar for the green curves (not shown for clarity). Adjusted
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F1a. 5. Comparison of simulated semi-axis lengths from the DiSKICE and hexagonal models, assuming
ledge nucleation, after 10 minutes of growth at (a) high (liquid) saturation, and (b) low saturation (15% of
the ice saturation ratio at liquid saturation). The a-axis length is given by the solid lines and the c-axis by
the dashed lines. Black lines with circles indicate the hexagonal model solutions, red and blue lines indicate

DiSKICE solutions with the facet-based and aspect-ratio based hypotheses, respectively.
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F1G. 7. Time-series of (a) c-axis and (b) a-axis lengths for the simulations shown in Fig. 5; three different
ice supersaturations (colored commensurately with lines) are shown at T' = -7°C. Lines with circles indicate
hexagonal model solutions, solid and dashed lines indicate DiSKICE solutions with the facet-based and

aspect-ratio based hypotheses, respectively.
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F1G. 8. Time-series of the (a) c-axis and (b) a-axis deposition coefficients for the simulations shown in
Fig. 5 at T = -7°C. Lines with circles indicate hexagonal model solutions, solid and dashed lines indicate

DiSKICE solutions with the facet-based and aspect-ratio based hypotheses, respectively.
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F1G. 9. Time-series of the vapor flux onto the c-axis for the simulations shown in Fig. 5 at T = -7°C. Lines
with circles indicate hexagonal model solutions, solid and dashed lines indicate DiSKICE solutions with the

facet-based and aspect-ratio based hypotheses, respectively.
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from wind tunnel data of Fukuta and Takahashi (1999) (a-axis, solid circles; c-axis, open circles) and from
model simulations (a-axis, solid lines; c-axis, dashed lines). Simulations using the parameterization of Chen
and Lamb (1994) are given by the black lines whereas simulations using predicted deposition coefficients
(ledge nucleation, facet-based hypothesis) are given by the red lines. The red shaded region indicates the
range of uncertainty in the characteristic supersaturation (Scpqe,). Simulations with dislocation growth are

indicated by the green lines.
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F1a. 11. Ice mass (a) and fall speed (b) after 10 (black) and 15 (red) minutes of growth at liquid saturation
and 1000 hPa pressure. Wind tunnel data (Fukuta and Takahashi 1999) are indicated by the symbols and
model simulations by the lines. Simulations using the Chen and Lamb (1994) parameterization are given
by the solid lines whereas simulations using predicted deposition coefficients (ledge nucleation, facet-based
hypothesis) are shown by the dashed lines. The shaded regions indicate the range of uncertainty in the

characteristic supersaturation (Scpqr)-
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F1G. 12. (a) Deposition coefficients (a-axis, solid lines; c-axis, dashed lines) after 15 minutes of growth
at liquid saturation and 1000 hPa pressure for the simulations shown in Fig. 10. Simulations using ledge
nucleation are given by the red lines and the red shaded region indicates the range of uncertainty in the
characteristic supersaturation (Scpq,). Simulations with dislocation growth are indicated by the green lines.
(b) Ratio of the deposition coefficients («./a,) for ledge nucleation growth (red line and shaded region)
using the results and uncertainty from (a). The combination of the inherent growth ratio and the aspect

ratio (I'(T)e/a) from the theory of Chen and Lamb (1994) is given by the black line.
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F1a. 13. Aspect ratio of crystals as a function of the vapor diffusivity, D,, at -7 and -15°C (red and blue
colors, respectively). Solid circles indicate the free-fall chamber measurements of Gonda (1980) made after
crystal vapor growth at liquid saturation. Simulated crystals began as spheres with an initial radius of 2 pm
and grew during free-fall over a distance of 10 cm. Dislocation growth (dashed line) used a and c-axis Schar,
respectively, of 0.48% and 0.18% at -7°C, and 0.04% and 1.9% at -15°C. Ledge nucleation growth (solid line)

used a and c-axis Scpqr, respectively, of 0.48% and 0.35% at -7°C, and 0.59% and 1.5% at -15°C.
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TABLE 1. Polynomial fits to scper (used in Eq. 1) as a function of temperature where AT =T —1T,

and T, = 273.15 K for the c-axis (basal facet) and a-axis (prism facet).

. . 6
c-azis fit coefficients: Schar =Y, _o e AT"

temperature ag aq a9 as ay as ag
22 <T <-1°C | 1.1217 | 0.0381 | -0.08375 | -0.01573 | -0.001011 | -2.915x 1075 | -3.182x10~7
-30 < T <-22°C | 753.63 | 105.97 | 5.553 0.1281 0.0011 0 0
T < -30°C 3.7955 | 0.10614 | 0.00753 | O 0 0 0
a-axis fit coefficients: Shar = Zg:o a, AT™
temperature Qo a a9 as Qy as Qg
-15 < T <-1°C | 0.3457 | -0.0093 | 0.000308 | 0 0 0 0
-22 < T <-15°C | -5.2367 | -1.3184 | -0.1107 | -0.00323 | 0 0 0
-30 < T <-22°C | -0.7106 | -0.1478 | 0.00423 | 0O 0 0 0
T < -30°C 3.7955 | 0.10614 | 0.00753 | O 0 0 0
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