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ABSTRACT5

Models of ice crystal vapor growth require estimates of the deposition coef-6

ficient (α) when surface attachment kinetics limit growth and when ice crystal7

shape is predicted. Parametric models can be used to calculate α for faceted8

growth as long as characteristic supersaturation (schar) values are known. How-9

ever, previously published measurements of schar are limited to temperatures10

higher than -40◦C. Estimates of schar at temperatures between -40 and -70◦C are11

provided here through reanalysis of vapor growth data. The estimated schar follow12

the same functional temperature dependence as data taken at higher tempera-13

tures. Polynomial fits to schar are used as inputs to a parameterization of α14

suitable for use in cloud models. Comparisons of the parameterization with wind15

tunnel data show that growth at liquid saturation and constant temperatures be-16

tween -3 and -20◦C can be modeled by ledge nucleation for larger (100s of µm)17

crystals, however comparisons with free-fall chamber data at -7◦C suggest that18

dislocation growth may be required to model the vapor growth of small crystals19

(∼ 20 µm) at liquid saturation. The comparisons with free-fall chamber data also20

show that the parameterization can reproduce the measured pressure-dependence21

of aspect ratio evolution. Comparisons with a hexagonal growth model indicate22

that aspect ratio evolution based on the theory of Chen and Lamb (1994) pro-23

duces unrealistically fast column growth near -7◦C that is mitigated if a theory24

based on faceted growth is used. This result indicates that the growth hypothesis25

used in habit-evolving microphysical models needs to be revised when deposition26

coefficients are predicted.27
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1. Introduction28

Cold cloud systems are sensitive to the manner in which ice vapor growth is parameterized29

(Gierens et al. 2003; Avramov and Harrington 2010), and while our knowledge is sufficient to30

formulate approximate models the mechanisms controlling ice crystal growth remain poorly31

understood. Laboratory data for vapor grown ice crystals exist at temperatures above -40◦C,32

but the quantities measured in many laboratory studies (Nelson and Knight 1998; Libbrecht33

2003b) are often not amenable to direct inclusion in the capacitance analogy that is almost34

universally used in atmospheric applications. This has led to an unfortunate situation in35

which the methods used to represent ice growth in atmospheric models are almost entirely36

divorced from process-oriented measurements. While popular parameterization methods37

have difficulties reproducing laboratory measurements (Westbrook and Heymsfield 2011;38

Harrington et al. 2013b), a more fundamental issue is that these methods do not account39

for the growth of faceted ice. Popular parameterizations are rooted in capacitance theory,40

which assumes that the vapor density is constant over the crystal surface. The aspect41

ratio cannot evolve in this model (Nelson 1994, pgs. 83-85) unless it is supplemented with42

an auxiliary hypothesis (Chen and Lamb 1994). In contrast, faceting requires a uniform43

flux boundary condition. Moreover, faceting indicates that crystal evolution is controlled44

by surface attachment kinetics (hereafter “attachment kinetics”) that are supersaturation45

dependent, leading to growth rates that can be substantially lower than the those predicted46

by the capacitance model (Nelson and Baker 1996). Only a handful of cloud modeling studies47

include supersaturation-dependent attachment kinetics that are consistent with the theory48

of faceted growth (MacKenzie and Haynes 1992; Wood et al. 2001; Zhang and Harrington49
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2015). All other studies assume either perfectly efficient attachment kinetics (capacitance50

growth) or constant attachment efficiencies (deposition coefficients, α), approximations that51

are only valid for a narrow range of conditions (Nelson 2005). These simplifications are52

not limited to the world of model parameterizations, but also appear in interpretations of53

measurements (Fukuta and Takahashi 1999; Magee et al. 2006).54

The ubiquitous use of diffusion-only growth models is driven by the undeniable complexity55

of crystal growth. However, there has been a trend to develop approximate models that are56

consistent with the growth of faceted ice. These methods use laboratory-derived parameters57

to drive changes in particle shape (Chen and Lamb 1994) and to estimate the attachment58

efficiencies that control mass growth and shape evolution (Wood et al. 2001; Zhang and59

Harrington 2014). The models are simple enough that they are amenable to application60

within cloud models, providing a simplified theoretical approach for treating the influences61

of attachment kinetics on the overall mass growth rate and the evolution of the habits62

of single crystalline ice (cf. Zhang and Harrington 2015). Moreover, these methods can63

also be used to extract approximate estimates of attachment kinetic influences on vapor64

growth from laboratory measurements, thus directly linking laboratory measurements with65

model parameterizations. In this paper, we provide a composite data set of characteristic66

supersaturations (schar) that are needed for supersaturation-dependent models of α. Ledge67

nucleation has been proposed as the mechanism by which snow grows in atmospheric clouds68

(Nelson and Knight 1998; Libbrecht 2003b), but this hypothesis has never been explored with69

a crystal growth model. We show that the model of Zhang and Harrington (2014), referred70

to herein as the Diffusion Surface Kinetics Ice Crystal Evolution (DiSKICE) model, can71

reproduce the growth of single crystals at low pressures, and at high (liquid) supersaturations.72
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We also critique existing growth hypotheses that are used to evolve crystal shape (Chen and73

Lamb 1994; Nelson and Baker 1996). We first review attachment kinetics and vapor growth74

since these are integral to our analysis.75

2. Ice Crystal Vapor Growth and Simplified Models76

The rate of vapor uptake by growing crystals depends on the link between surface attach-77

ment processes and vapor diffusion. Vapor molecules that impinge upon the surface must78

find suitable attachment sites before they can incorporate into the bulk crystalline lattice.79

If suitable attachment sites are uncommon a surface supersaturation, ssurf , will develop im-80

mediately above the growing surface. Diffusion through the background gas supplies vapor81

to the growing particle and removes the thermal energy generated by bond formation. The82

rates of diffusion are driven by vapor and thermal gradients between the surface and the83

ambient environment, and are therefore inextricably linked to the surface attachment rates.84

The mass growth of crystals is therefore limited by both diffusion and attachment kinetic85

processes, and is referred to as diffusion-kinetics limited growth.86

a. Surface Processes and the Deposition Coefficients87

During growth, a number of physical processes occur on the crystal surface that ultimately88

determine the axis and mass growth rates. Vapor molecules must first adsorb to the crystal89

surface, though not all molecules will necessarily do so. The efficiency of adsorption is often90

referred to as a “sticking” probability, αs, and though it is thought that this quantity is near91
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unity (Lamb and Scott 1974; Lamb and Chen 1995; Nelson 2001) at least one experiment92

suggests it may be quite low (Asakawa et al. 2014). Adsorbed water molecules will migrate93

across the surface and will desorb unless they find a suitable attachment site such as a ledge94

or a surface vacancy. At relatively high temperatures (> -5◦C), the surface becomes rough95

on the growth (nanometer) scale and many attachment sites are available for impinging96

water molecules (Elbaum 1991). A quasi-liquid layer exists on ice surfaces (Bartels-Rauch97

et al. 2014) and measurements show occurrences of this layer to temperatures as low as -98

30◦C (Constantin et al. 2018). The existence of this layer has been used in theories of habit99

development (Kuroda and Lacmann 1982). Attachment kinetics can also change in time100

because of surface transitions: Frozen drops can undergo a faceting transition where small,101

pyramidal facets quickly grow themselves out of existence leaving only slower growing, larger102

facets (Gonda and Yamazaki 1984). The formation of grain boundaries in polycrystalline ice103

at low temperatures (< -20◦C) can be a source of dislocations that substantially alter crystal104

growth (Pedersen et al. 2011). Low temperature ice is often complex in shape, is affected105

by both cubic and hexagonal forms with stacking faults (Carignano 2007; Kuhs et al. 2012),106

and with varied surface processes that control the growth. For example, crossed plates grow107

with dislocations that propagate parallel to the grain boundary while the remaining facets108

have slow growth rates (Furukawa and Kobayashi 1978). Scrolls appear to grow by either the109

propagation of dislocations (Kobayashi et al. 1976) or by a protrusion mechanism (Nelson110

and Swanson 2018).111

Though the above surface processes control crystal growth rates, we lack the requisite112

measurements to formulate general quantitative models. Consequently, surface processes113

are typically treated in an aggregate sense, and with a single parameter for each facet called114
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a deposition coefficient, α. The deposition coefficient is the probability that a molecule115

impinging on the surface will contribute to bulk mass and axis growth, and it acts as a116

growth efficiency. The deposition coefficient has been measured in numerous studies, often117

with the approximation that α is constant. The measurements have been scattered from118

low (∼0.001, Choularton and Latham 1977; Magee et al. 2006) to high (>0.2, Skrotzki et al.119

2013; Kong et al. 2014) values. However, treating α as a constant is only valid for a small120

range of environmental conditions, crystal sizes, and specific, constant surface types.121

The only available models of α are valid for faceted growth and they are supersaturation122

dependent. A parametric model of α was proposed by Nelson and Baker (1996),123

α(ssurf , T ) = αs

(
ssurf
schar

)m
tanh

(
schar
ssurf

)m
(1)124

where αs is the sticking probability which is assumed to be unity herein (see above), m is an125

adjustable parameter, ssurf is the surface supersaturation, and schar is a laboratory-measured126

“characteristic” supersaturation. This latter quantity is, effectively, a scaling parameter that127

controls the supersaturation dependence of α1. The model treats growth by surface ledges128

in the sense that α rises commensurately with ssurf : As ssurf becomes larger the density of129

ledges rises leading to more efficient growth. The transition from inefficient (α near zero)130

to efficient growth (α near unity) is controlled by schar. The parameter, m, determines the131

growth mechanism with a value of m=1 corresponding to growth by permanent dislocations132

1It is worth noting that this scaling supersaturation is referred to as a ”critical” supersaturation in the

theory of ledge nucleation (e.g. Nelson 2001, Eq. 2) and as a ”transition” supersaturation when growth is

controlled by spiral dislocations (Lamb 2000; Magee et al. 2006). However, we avoid using these terms since

each of these two quantities has a specific theoretical definition, whereas the scaling supersaturation derived

from measurements is often a parametric value.
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as originally derived in the pioneering work of Burton et al. (1951), but given in the above133

form by Lamb and Scott (1974) (their Eq. 43). Values of m ≥ 10 were shown by Nelson134

and Baker (1996) to be representative of growth by ledge nucleation. Dislocations are a135

permanent source of ledges and produce relatively efficient growth even at low ssurf whereas136

ledge nucleation causes a rapid onset of growth when ssurf is near schar. Growth is not137

strongly dependent on m once the value is larger than 10 (see Zhang and Harrington 2015,138

their Fig. 1). In the studies below, we use m = 1 for dislocation growth and m = 10 for139

ledge nucleation as these are thought to be the primary growth mechanisms for faceted ice.140

b. Diffusion-Kinetics Limited Growth Model141

Including α (Eq. 1) in calculations of the mass and axis growth rates requires a model142

for the gas-phase diffusion of vapor and thermal energy. While methods exist for explicitly143

solving the diffusion-kinetic growth problem for faceted single crystals (Nelson and Baker144

1996; Wood et al. 2001), these methods are complex and simplified methods rooted in the145

capacitance model are an attractive alternative. Zhang and Harrington (2014) developed a146

modified version of the capacitance model that calculates α for the major and minor axes147

of spheroidal ice crystals, which are used to represent the general shape of atmospheric ice.148

The semi-dimensions are defined in relation to the hexagonal structure of single crystalline149

ice where a is half the basal plane maximum width, and c is half the prism plane height.150

The model deviates from the capacitance model in that axis-dependent vapor fluxes are used151

to determine ssurf and, therefore, the deposition coefficients for each axis (αa and αc) using152

Eq. 1. This mimics the boundary condition for faceted growth, allowing different vapor153
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densities over the a and c axes and leads to (see Zhang and Harrington 2014, for details),154

dmi

dt
= 4πC(c, a)ρeqsi

[
1

Deff

+
ρeqls
K ′TT

(
ls
RvT

− 1

)]−1

. (2)155

In the above equation mi is the crystal mass, C(c, a) is the capacitance (see Westbrook et al.156

2008, for comprehensive formulations), ρeq is the ice equilibrium vapor density, si is the157

ambient ice supersaturation (hereafter supersaturation), Rv is the water vapor gas constant,158

ls is the sublimation enthalpy, T is the temperature, and K ′T is the thermal conductivity.159

Equation 2 is identical to the capacitance model except that the diffusivity of vapor in air160

(Dv) is replaced with a modified form, Deff , that combines the influences of gas-phase vapor161

diffusion and attachment kinetics (Zhang and Harrington 2014, their Eq. 11),162

Deff =
2

3

Dv

4DvC
αavvac

+ C
C∆

+
1

3

Dv

4DvC
αcvva2 + C

C∆

(3)163

where vv is the vapor mean molecular speed and C∆ = C(a + ∆, c + ∆) is capacitance164

evaluated at a distance ∆ (approximately the mean free path) away from the crystal surface.165

The axis-dependent α values, therefore, enter directly into the mass growth rate through166

Deff and are calculated as in Zhang and Harrington (2014). Since the deposition coefficients167

are usually less than unity, Deff is less than Dv leading to mass growth rates that can be168

substantially lower than the capacitance model. At high supersaturation α can approach169

unity, and Deff then becomes very nearly Dv. Therefore, the capacitance model is recovered170

when α is near unity and growth becomes diffusion-limited. Since Eqs. 2 and 3 are applicable171

to the diffusion and attachment kinetics growth limits we refer to it as the Diffusion Surface172

Kinetics Ice Crystal Evolution (DiSKICE) model.173
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c. Aspect Ratio Evolution174

Aspect ratio evolution requires a theory for the distribution of mass along each axis,175

and the theories of Chen and Lamb (1994) and of Nelson and Baker (1996) are generally176

used. Chen and Lamb (1994) hypothesized that the ratio of the axis growth rates is directly177

proportional to the aspect ratio (φ = c/a) and the ratio of the deposition coefficients (Γ),178

dc

da
=
αc
αa

c

a
= Γφ (aspect-ratio based hypothesis). (4)179

This hypothesis has been used in the development of habit-evolving microphysical models180

(Chen and Lamb 1999; Hashino and Tripoli 2007; Chen and Tsai 2016; Jensen et al. 2017),181

and in the interpretation of laboratory measurements (Sulia and Harrington 2011; Connolly182

et al. 2012).183

Crystals growing by ledge nucleation likely have ledges that form near crystal edges where184

ssurf is greatest (Frank 1982, see Fig. 18). In this case, the ratio of the axis growth rates185

depends only on the deposition coefficients (Nelson and Baker 1996),186

dc

da
=
αc
αa

(facet-based hypothesis). (5)187

This hypothesis is less commonly used in cloud modeling (Wood et al. 2001), but it has188

been used to interpret laboratory growth data (Nelson and Knight 1998; Nelson 2001). It is189

worth noting that this hypothesis also breaks down in some situations. Ledge sources can be190

at locations besides crystal edges (Nelson 2001), crystal hollowing may require a transition191

from dislocation to ledge nucleation growth (Nelson and Knight 1998), crystals often have192

non-faceted “rough” regions that may affect habit development (Pfalzgraff et al. 2010), and193

molecules may migrate across crystal edges thus influencing ledge nucleation rates (Frank194
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1982). At this stage, however, there is no theoretical approach for including these more195

detailed processes in a simplified model of single crystal habit development.196

As the above discussion implies, our theoretical knowledge is insufficient to explicitly197

model the development of secondary habit features that appear at high supersaturations,198

such as dendritic branching and hollowing. These features are normally treated through199

an “effective” density (ρeff ) that is lower than the bulk density of ice and accounts for200

the branches and hollowed regions that are not represented in the modeled particle. This201

approach has a long history in modeling (Miller and Young 1979; Chen and Lamb 1994;202

Thompson et al. 2008) and in data analysis (Fukuta 1969; Fukuta and Takahashi 1999).203

Chen and Lamb (1994) approximate the density added during growth (the deposition density)204

with an empirical equation that depends on temperature and supersaturation (their Eq. 42).205

This form allows the effective density to decline during growth and is used in the simulations206

presented below.207

For the sake of completeness, we note that laboratory evidence suggests the aspect ratio208

should be treated as a constant during sublimation with a sublimation coefficient of unity209

(Nelson 1998), an approach we advocate here. This result has a physical basis: Measurements210

suggest that crystal roughening during sublimation (Nelson 1998; Magee et al. 2014) causes211

the sublimation coefficient to approach unity. As a consequence, the vapor density becomes212

constant along the surface leading to a constant aspect ratio (shape is preserved) during213

sublimation (Ham 1959).214
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3. Characteristic Supersaturations215

a. Synopsis of previously published data216

Characteristic supersaturations are required as input to the α-dependent growth model,217

however available measurements of schar (Fig. 1) are sparse and restricted to temperatures218

above -40◦C. Various laboratory devices along with different models of α have been used in219

prior measurements of schar. We therefore expect variations in schar that are due solely to220

differences in the measurement techniques and analytical models employed in a given study.221

It is beyond the scope of this work to assess and interpret these differences; instead we have222

collected prior published data and use them to provide a proxy data-set.223

The available data clearly indicate that schar increases commensurately with the super-224

cooling (T◦-T, T◦ = 273.15K, Fig. 1). Values of schar are relatively low (< 2%) at tempera-225

tures above -20◦C and their variation with temperature is consistent with the primary habits226

of ice for most of the data sets: At a given temperature, the major growth axis has lower227

values of schar than the minor axis, and this difference will produce a larger α in Eq. 1 and228

faster major axis growth. At temperatures above -20◦C the data of Libbrecht and Rickerby229

(2013) generally have the highest schar and these data show basal and prism values for schar230

that are the opposite of the other published measurements. Libbrecht and Rickerby (2013)231

point out that this result may be due to processes occurring on the crystal surface that are232

not captured by the standard models of α. Nevertheless, using these data directly in Eq. 1233

produces the wrong primary habits and they are not included in our studies above -20◦C.234

Values of schar become progressively larger as the temperature falls below -20◦C indicat-235

ing that growth becomes more strongly limited by attachment kinetics. The data sets are236
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relatively consistent with one another though substantial outliers occur near -30◦C. Only237

two published measurements of the basal and prism facet schar exist, and they are consis-238

tent with one another below -20◦C (Libbrecht 2003b; Libbrecht and Rickerby 2013). The239

measured schar are nearly the same on the basal and prism facets, with habit development240

controlled by the leading coefficient in the ledge nucleation rate equation (Libbrecht 2003b).241

These results contrast with those of (Nelson and Knight 1998) in which the primary habits242

are controlled by the difference in schar between the basal and prism facets at higher tem-243

peratures. Zhang and Harrington (2014) used the data of (Libbrecht 2003b) to derive values244

of schar consistent with the formulation of Nelson and Knight (1998), however these derived245

values produce thick columns and plates at high supersaturation, whereas thinner particles246

are often observed. Libbrecht (2003a) has hypothesized that the production of thinner plates247

may be due to structure-dependent α that is currently not accounted for in theories. Un-248

fortunately, there is no consensus on the modeling of the primary habits at temperatures249

below -20◦C, though the values of schar are relatively consistent among the data sets. At250

lower temperatures we therefore estimate the reduction in the mass growth rate by using a251

single, particle-averaged value of schar following Zhang and Harrington (2014).252

The use of a single schar to characterize attachment kinetic influences on growth has253

precedence. Our prior work (Zhang and Harrington 2014, their Fig. 10) showed that the254

mass uptake of non-spherical single crystals is very nearly reproduced if a particle-average255

value of schar and an equivalent volume sphere are used in the mass growth calculations.256

Figure 2 shows a similar result for the instantaneous mass growth rate (normalized to the257

capacitance rate) for a large range of aspect ratios, supersaturations, and for both ledge258

nucleation and dislocation growth. The relative errors between the solutions using separate259
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schar for each axis, and the solutions using an average schar, are generally less than 5%,260

however the relative error becomes substantial (20% or larger) when crystals are small (r <261

10 µm) and the supersaturation is near schar (not shown). Given that an average value262

of schar and an equivalent volume sphere provide an accurate estimate of the overall mass263

growth rate for highly anisotropic single-crystal growth, we hypothesize that it is reasonable264

to employ this method for the growth of crystals with more complex facet morphologies, as265

is observed near liquid saturation and in polycrystalline ice. This hypothesis underlies the266

estimates of schar provided in the following subsection.267

b. Estimating Characteristic Supersaturations at T < -40◦C268

To our knowledge, no data exist for schar and the growth rates of individual crystal facets269

at temperatures below -40◦C. However, mass growth rate data do exist at these temperatures270

for individually grown crystals (Magee et al. 2006). These growth data are particularly useful271

as they record the vapor growth and sublimation of individual crystals, formed from frozen272

small droplets (radius of 5 to 7 µm), at nearly constant temperatures of -59.8, -50, -44, and273

-42◦C. Estimates of α were low (' 0.006 ± 0.002) and different values of α were required274

to fit each growth and sublimation portion of the time-series (Magee et al. 2006). Crystal275

growth was likely inhibited by attachment kinetics indicating that it would be useful to276

estimate an particle-average value of schar from the data.277

An example of the growth data is shown in Fig. 3a for a crystal undergoing cycles of278

sublimation and growth at a temperature of -59.8◦C and a pressure of 972 hPa. The279

mass evolution of the crystal depends on its initial size, which can be determined to about280
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1 µm. This size uncertainty dominates the errors in determining α and therefore schar,281

whereas supersaturation errors have a smaller influence on α (Magee et al. 2006). We use282

the DiSKICE model to fit the measured mass ratio time-series by minimizing on a value283

of schar. We assume spherical particles because the grown crystals were small (5 to 20 µm284

in radius), and therefore had likely not developed pronounced habits. In the model we285

also assume that the crystals grow by ledge nucleation. Equally accurate fits are possible286

if dislocation growth is assumed, however a low sticking efficiency (αs ∼ 0.004) is then287

required. Though this result is conceivable, it seems unlikely as high values of α (above 0.1)288

that have been estimated at T < -40◦C (Skrotzki et al. 2013; Pokrifka 2018) would then289

not be possible even for dislocation growth at liquid saturation.290

The model fits to the measured mass ratios are shown in Fig. 3a for the most probable291

initial radius (r◦ = 7 µm), and the upper (r◦ = 8.4 µm) and lower (r◦ = 5.4 µm) uncertainty292

bounds. The fit has the same accuracy as that of Magee et al. (2006) except that α varies293

with time (Fig. 3b), rising and decreasing commensurately with the supersaturation. The294

rapid decline in α with decreasing supersaturation is the reason the model captures the295

relatively flat region in the mass growth time-series (such as 500 to 1000 seconds) that is296

not reproducible with a diffusion-limited growth model. More critically, the values of schar297

(on Fig. 3b) required to fit each growth and sublimation period are relatively similar to one298

another. These results suggest that a similar surface process is occurring on these crystals299

throughout the growth cycle. Finally, note that the predicted time-series of α falls within300

the range (grey shades) determined by Magee (2006) with α that are similar to his fitted301

values (dashed lines).302

The values of schar determined from the above growth time-series, and the other exper-303
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iments at -50, -44, and -42◦C (not shown), are given on Fig. 1. Note that values for the304

sublimation portions of the time-series are not shown since the present study focuses on305

depositional growth. The values of schar determined from the fitting procedure are some-306

what lower than prior measurements near -40◦C, but show a similar temperature trend for307

schar as the higher temperature data. The approximate consistency of our results with prior308

data is encouraging, but comparisons with independent data would be useful. In particular,309

experiments run over a range of supersaturation for fixed temperatures and single crystalline310

ice would be ideal.311

It is important to point out that one should exercise caution in the use of the estimates312

of schar provided herein since it is always possible that experimental artifacts affected the313

resulting growth curves. It is also not known whether the measured crystals developed facets314

quickly after the periods of sublimation, though the observations of Gonda and Yamazaki315

(1978) suggest that facets appear rapidly after droplet freezing and the electron microscope316

studies of Pfalzgraff et al. (2010) show that facets rapidly re-appear (within 90 seconds to a317

few minutes) during re-growth following sublimation. In addition, (Magee et al. 2006) found318

that low values of α were required for sublimation, a result which is inconsistent with other319

measurements (Nelson 1998; Magee et al. 2011).320

c. Comparisons with effective capacitance measurements321

Bailey and Hallett (2004) reported on thermal gradient diffusion chamber measurements322

of crystals grown on a substrate. From these growth measurements capacitance values nor-323

malized to the maximum dimension (Li) were extracted for hexagonal plates and columns324

15



(Bailey and Hallett 2010). These values were estimated by using the measured mass growth325

rate and then solving for the capacitance in the capacitance mass growth model.The nor-326

malized capacitance is a useful metric for vapor growth since it is independent of size, and327

depends only on the aspect ratio for diffusion-limited growth. Normalized capacitance values328

extracted from growth data would therefore fall approximately along the solid black lines329

in Fig. 4 if growth is diffusion-limited. However, Bailey and Hallett (2010) found that the330

measured normalized capacitance was substantially lower than capacitance theory (Bailey331

and Hallett 2010, their Fig. 12). Their data span a relatively large range of Li (50 to 400332

µm), pressure p (500 to 150 hPa), and supersaturation si (1 to 13% at -40◦C, and 5 to 25%333

at lower temperatures), and an apparent aspect ratio dependence reminiscent of capacitance334

theory appears in the data. The approximate ranges of their data are shown on Fig. 4.335

There are many possible reasons why the extracted values of the normalized capacitance336

are lower than capacitance theory (see Bailey and Hallett 2010), but one main reason is337

that attachment kinetics are not included in the capacitance model. Therefore the extracted338

values of C
Li

are convolved with the attachment kinetics, producing an effective normalized339

capacitance (ceff ) that can be computed with DiSKICE. Values of ceff are computed using340

DiSKICE assuming ledge nucleation growth and using values of si, Li, and p in the middle341

of the measured range. The spread of model solutions is calculated using the range of342

measured si (light shades), and Li and p (dark shades). The calculated ceff using the343

schar values derived in §2b (green lines, Fig. 4) are often consistent with the range of the344

measurements, though at -40 and -50◦C the calculated values are too high for planar crystals345

and at -60◦C the calculated values are at the lower end of the measured range. Including346

the variability in si, Li, and p produces a range of solutions that has a spread similar to the347
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red and blue shaded regions (discussed below) and often encompasses the measured range348

(omitted for clarity).349

Because some of the ceff calculations fall outside of the observed range, it is useful to350

calculate adjusted values of schar so that spread in the solutions is confined primarily within351

the measured range of ceff . This was done by adjusting schar until the accumulated error in352

the spread of the model solutions as compared to the observed range of ceff is a minimum.353

These are shown as the red and blue shaded regions on Fig. 4 along with model solutions354

using the mid-range values of si, Li, and p (solid red and blue lines). The spread in the355

solutions for ceff is weakly dependent on p and Li, but is dominated by si with a spread356

that is similar to that of the measured range; these are expected results since attachment357

kinetics are dominated by the supersaturation dependence through α. The adjusted values358

of schar, along with a large uncertainty based on the spread of si values, are given in Fig. 4359

and Fig. 1. These adjusted values are generally consistent with those from the data of Magee360

et al. (2006), and also provide a data point at -70◦C.361

Naturally, one should bear in mind that these adjusted values of schar are very rough362

estimates calculated from measured growth rates of crystals of various sizes over a range363

of pressures and supersaturations. Furthermore, since numerous crystals were grown from364

the substrate in these experiments, the vapor diffusion field in the chamber deviated from365

that of a classic flat-plate diffusion chamber. The simulations of Westbrook et al. (2008)366

show that crystal crowding could have reduced the measured growth rates by as much as367

a factor of three, though Bailey and Hallett (2010) point out that they only analyzed data368

from conditions that were not crowded (their Fig. 11). Though Bailey and Hallett (2010)369

evidently took great care to exclude crowded conditions, the influence of the population of370
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crystals on the three-dimensional vapor field, and the horizontal diffusion that must occur,371

is not known. Moreover, as a reviewer of the current paper pointed out, the crystals grown372

from the central strand are asymmetric since one end is attached to the substrate. The373

attached end of the crystal therefore cannot grow naturally and deplete the vapor supply,374

and it is unknown how important this effect would be to the measured growth rates.375

d. Polynomial Fits to Characteristic Supersaturation Data376

A subset of the data shown in Fig. 1 is used to produce polynomial fits (Table 1) to377

schar as a function of temperature (black curves). The data subsets used in the fits were378

selected as follows: At temperatures above -20◦C, the data from Nelson and Knight (1998)379

and Libbrecht (2003b) were used. The data from Libbrecht and Rickerby (2013) were not380

used for reasons discussed earlier, and Sei and Gonda (1989) was excluded because the381

growth was possibly influenced by thermal substrate effects (Nelson 1993). At temperatures382

below -20◦C the data of Libbrecht (2003b) are used along with schar estimated in §2b and383

c above. The basal facet schar for temperatures between -20 and -30◦C (black solid curve)384

is taken from the estimates made by Wood et al. (2001). We use a particle-average schar385

and an equivalent volume sphere at temperatures below -30◦C, since these values are rough386

approximations of attachment kinetic influences on crystal growth. The only exceptions are387

model tests of columnar growth for which an ad hoc reduction in the basal schar is applied388

(black dotted curve) based on the analysis of Zhang and Harrington (2014).389
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4. Single Crystal Evolution at Low and High Supersat-390

uration391

The evolution of the primary habits of single crystalline ice depends on the growth392

hypothesis (Eq. 4 or 5) that is employed. A number of studies have shown that the aspect-393

ratio based hypothesis of Chen and Lamb (1994) can reproduce the evolution of the primary394

habits of ice at liquid saturation, however those works were predicated on the assumption395

that the ratio of the deposition coefficients (Γ) is a constant at a given temperature. It is not396

immediately evident which hypothesis (Eq. 4 or 5) provides a more accurate representation397

of aspect ratio evolution when deposition coefficients are predicted. Moreover, it is not398

clear whether ledge nucleation or dislocation growth provides a better representation of axis399

evolution at high supersaturations. Below, we analyze the two growth hypotheses and extend400

the studies to secondary habits (branching and hollowing) through a reduced density.401

a. Assessment of Axis Growth Hypotheses402

The hexagonal ice growth model developed by Wood et al. (2001) was used in prior work403

to assess the axis-dependent growth of crystals using DiSKICE (Zhang and Harrington 2014).404

The hexagonal model solves the Laplace equation on a triangular grid covering the basal and405

prism facets of hexagonal ice using the constant-flux boundary condition for faceted growth.406

The model is limited in that simulations of branched and hollowed crystals are not possible.407

Nevertheless, the hexagonal model reproduces the general features of faceted growth and408

provides a convenient comparison basis for simplified theories. For the simulations below,409
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the hexagonal model is set-up as in Zhang and Harrington (2014) with ledge nucleation410

growth occurring where ssurf is a maximum and dislocation growth at the facet centers.411

Characteristic supersaturations used in DiSKICE and the hexagonal model were calculated412

from the polynomial fits in Fig. 1, though the short dashed curve is used for the basal facets413

at temperatures below -20◦C so that a columnar aspect ratio develops (discussed below).414

Results of the comparison between the hexagonal and DiSKICE model in the work of415

Zhang and Harrington (2014) were encouraging in the sense that the general dependence of416

growth on aspect ratio and α were captured by the DiSKICE model. However, those studies417

were limited in a number of ways: They only examined growth by dislocations at high si and418

ledge nucleation growth at low si, but did not examine the facet-based growth hypothesis419

(Eq. 5), nor growth where branching and hollowing are treated through a reduction in the420

particle density. While the aspect-ratio based hypothesis was found to compare well to421

the hexagonal model, there were indications that dislocations produced excessive columnar422

growth near -7◦C. This excessive growth is inherent in the aspect-ratio based hypothesis,423

which becomes markedly clear for ledge nucleation growth as is shown in Fig. 5a. After424

10 minutes of growth at liquid saturation with the aspect-ratio based hypothesis, columnar425

crystals at temperatures between -5 and -9◦C are nearly an order of magnitude longer,426

and significantly thinner, than the hexagonal model solutions. This result also occurs at427

temperatures below -20◦C, however the excessive growth is weaker here because of the larger428

values of schar. Aspect ratio evolution is also excessive for planar crystals, and so it appears429

that at high supersaturation the aspect-ratio based hypothesis produces crystals that are430

too large and with extreme aspect ratios. This excessive growth is substantially muted431

at low supersaturations, and only an indication is seen near -7◦C (Fig. 5b). In contrast,432
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the facet-based hypothesis produces a much better match to the hexagonal model at high433

supersaturations, though at low supersaturations there is less of a distinction between the434

two hypotheses. Growth by dislocations produces a similar result at high (liquid) saturation435

(Fig. 6) and low saturation (not shown), though the enhancement of axis growth is far lower436

than it is for ledge nucleation.437

The reasons for enhanced growth in the aspect-ratio based hypothesis can be understood438

by examining the time evolution of the semi-axis lengths, α, and the axis-dependent vapor439

fluxes at -7◦C, where enhanced growth is the most excessive. The evolution of the c and440

a axes is clearly better represented by the facet-based hypothesis at all supersaturations441

(Fig. 7a and b). In contrast, the aspect-ratio based hypothesis becomes progressively worse442

at higher supersaturations, with time-dependent values of a and c diverging substantially443

from the hexagonal model solution. At high supersaturation (si = 7%), runaway growth is444

produced for the c-axis while the a-axis essentially ceases growth after about 200 seconds,445

producing columns with extreme aspect ratios (φ = 190).446

Strong growth along the c-axis in the aspect-ratio based hypothesis indicates that α447

is large (Fig. 8). While the facet-based hypothesis produces α values that follow a similar448

functional form to those predicted by the hexagonal model, with α for each axis decreasing in449

time, the aspect-ratio based hypothesis produces a rise in α for the c-axis that is accentuated450

at higher supersaturations. Interestingly, α for the a-axis follows a similar functional form451

to the hexagonal model solution. The increasing values of α with time indicate that ssurf ,452

and hence the vapor flux onto the c-axis, must be rising unrealistically in time, which is453

indeed the case (Fig. 9). This increase in the vapor flux onto the c-axis is driven by the454

aspect ratio dependence of the growth hypothesis (Eq. 4). The equation originates from the455
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ratio of the vapor fluxes along the c and a-axes in the capacitance model (Chen and Lamb456

1994, Eq. 25), and therefore the inclusion of φ essentially multiplies the vapor flux from the457

facet-based hypothesis by the aspect ratio, causing an increase in the vapor flux by a factor458

of φ. When α values are predicted, including this scaling by φ causes a positive feedback459

where increasing aspect ratio amplifies the fluxes onto the major axis. This result does not460

occur in the original model of Chen and Lamb (1994) because the ratio of the deposition461

coefficients is constant at a given temperature. The artificial feedback with aspect ratio462

evolution that occurs when α is predicted is a general feature of the aspect-ratio based463

hypothesis, and it indicates a flaw in the hypothesis that becomes progressively worse at464

higher supersaturations. Consequently, models that evolve crystal shapes based on this465

hypothesis (Hashino and Tripoli 2007; Harrington et al. 2013a; Chen and Tsai 2016) would466

have to be modified to use the facet-based hypothesis if α is predicted.467

b. Comparison with Laboratory Measurements at Liquid Saturation468

While the above comparisons, and the studies of Zhang and Harrington (2014), indicate469

that DiSKICE provides a suitable approximation for single crystal growth as compared to470

the hexagonal growth model of Wood et al. (2001), no comparisons to growth data have been471

done. Few comprehensive data sets exist to which analytical growth models can be compared,472

and this is especially true at low ice supersaturations. However, a few data sets exist from473

wind tunnel measurements of crystals grown at liquid saturation. The comprehensive data474

set of Fukuta and Takahashi (1999) is particularly useful because freely suspended crystals475

were grown for long periods of time (up to 30 min) and data are reported for the axis476
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lengths, crystal mass, and fall speed (reproduced in Figs. 10 and 11). Crystals grown in477

these experiments had a range of initial sizes, but the model simulations below use spheres478

with an initial radius of 10 µm based on the studies of Sulia and Harrington (2011). All of479

the simulations below are integrated for up to 15 minutes at liquid saturation, and a constant480

temperature and pressure (1000 hPa). Effective density, fall speed and ventilation effects481

are computed following the axis-dependent approach described in Chen and Lamb (1994).482

Ventilation effects are particularly important here, as they strongly impact the growth rates483

for larger crystals. As discussed by Chen and Lamb (1994), ventilation effects tend to not484

only increase the overall mass growth rate, but the major axis growth rate is also amplified485

leading to thinner crystals.486

Prior comparisons with the above data using the Chen and Lamb (1994) model showed487

that the mass, axis lengths, and fall speed could be captured with relatively high accuracy488

(Sulia and Harrington 2011; Harrington et al. 2013b). Typical results from those comparisons489

are reproduced in Figs. 10 and 11. These results provide a benchmark for the DiSKICE model490

at liquid saturation, and they also underscore an important point: Diffusion-limited growth491

captures the mass evolution of the observed crystals, whereas the deposition coefficient ratio492

(Γ) primarily controls aspect ratio evolution.493

Simulations of crystal growth with DiSKICE used the facet-based hypothesis and ledge494

nucleation growth with schar from the polynomial fits given in Table 1. The DiSKICE495

simulations produce results that are similar to those of the Chen and Lamb (1994) model496

and also compare well with the observed evolution of axis length (Fig. 10), mass and fall497

speed (Fig. 11). Like the Chen and Lamb (1994) model, relative errors in the simulated498

crystal properties can often be large (20 to 50% for individual data points), but the general499
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qualitative features of habit evolution and crystal fall speed are reproduced by DiSKICE:500

The model captures the strong increase in the a-axis length and the small c-axis length501

where thin dendritic crystals are observed near -15◦C. These crystals have a low effective502

density (around 100 kg m−3) and a large area leading to low fall speeds. The model predicts503

the greatest fall speeds, and lowest masses, near the habit transition temperatures of -10504

and -22◦C, where crystals are relatively isometric with low drag and high effective density.505

Similar to the Chen and Lamb (1994) model, columns are predicted to be too thin with506

a-axis lengths that are smaller than observed.507

Simulations assuming dislocation growth on the basal and prism facets produce crystals508

that are too thick in comparison to the measurements (Fig. 10). This result occurs because509

dislocations, unlike ledge nucleation, produce relatively high α along both axes (Fig. 12a).510

Consequently, both the a and the c axes grow with high efficiency.511

There are two other possible mechanisms that could produce thin crystals. It is certainly512

possible that dislocation growth could occur on the primary growing axis whereas ledge513

nucleation could occur on the weakly growing facet. However, simulations of this process514

produce crystals that are far too thin in comparison to the measurements (not shown).515

It is also possible that both dislocations and ledge nucleation occur on each facet, and516

that the growth mechanism with the largest α controls the growth (Nelson and Knight517

1998). DiSKICE simulations with α chosen based on the most efficient growth mechanism518

produce thicker crystals reminiscent of dislocation growth. A key result of these simulations519

is that only ledge nucleation for each axis can reproduce crystal growth at liquid saturation.520

However it should be borne in mind that real crystals may indeed grow by the aforementioned521

mechanisms, and that the inability of DiSKICE to reproduce those growth mechanisms522
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may indicate a limitation of the model. Nevertheless, from a practical parameterization523

perspective, ledge nucleation can be used to reproduce the growth of thin crystals at liquid524

saturation.525

It is curious that the model of Chen and Lamb (1994) and DiSKICE produce results526

that are similar to one another at liquid saturation even though the models are driven by527

different data sets. The ratio, Γ, used in Chen and Lamb (1994) is derived from the α528

measurements of Lamb and Scott (1974) whereas DiSKICE uses polynomial fits to schar529

that are primarily due to the measurements of Nelson and Knight (1998) at these tempera-530

tures. Since the models use different growth hypotheses, namely the facet-based hypothesis531

for DiSKICE and the aspect-ratio based hypothesis for Chen and Lamb (1994), the results532

presented above suggest that αc/αa for ledge nucleation growth should approach Γ(T )c/a533

in the limit of liquid saturation. While we have not discovered an analytical proof of this534

assertion, it is consistent with the model results. For instance, Fig. 12b shows the ratio535

αc/αa and Γ(T )c/a from the DiSKICE and Chen and Lamb (1994) simulations, respectively.536

The ratios are nearly identical after 15 minutes of growth. The near equality of these ratios537

provides circumstantial evidence for why the Chen and Lamb (1994) model is accurate at538

liquid saturation: The ratio Γ(T )c/a provides a parameterization of the change in the depo-539

sition coefficient ratio. Moreover, these results provide a tantalizing hint of an underlying540

commonality in the measurements of Lamb and Scott (1974) and Nelson and Knight (1998).541
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c. Aspect ratio dependence on pressure542

In a series of experiments using a free-fall chamber Gonda (1980) measured the de-543

pendence of aspect ratio on the vapor diffusion coefficient (Dv) at liquid saturation and544

temperatures of -7◦C and -15◦C. Crystals formed from frozen liquid droplets fell about 5 to545

perhaps 15 cm onto a window where the crystals could be imaged. Measurements showed546

that the aspect ratios of the hexagonal crystals deviated further from unity for higher pres-547

sure or lower values of Dv (Fig. 13), a result that is consistent with theory: The rate of vapor548

diffusion to a growing crystal depends on the background gas pressure. At relatively high549

pressure (low Dv), the diffusive resistance to vapor transport is large, keeping ssurf below550

the value needed for minor axis growth. The aspect ratio of the crystal therefore evolves551

away from unity in time. Conversely, at very low pressures (high Dv) the background gas552

provides little resistance to the flow of vapor. In this case ssurf is closer to the ambient value553

(liquid saturation), which is above schar for each axis and, therefore, isometric crystals are554

produced.555

We simulated a scenario similar to the experiments of Gonda (1980) by allowing initially556

spherical crystals (radius of 2 µm following Nelson 2001) to grow while falling 10 cm. The557

model of Chen and Lamb (1994) cannot reproduce the dependence of crystal aspect ratio on558

Dv since Γ is constant (not shown). In contrast, the DiSKICE model produces an aspect ratio559

dependence on Dv that is similar to the measurements (Fig. 13). Moreover, either dislocation560

growth or ledge nucleation can fit the data though different schar values are required for each561

growth mechanism. At -7◦C dislocation growth requires schar for the basal and prism facets562

of 0.18 and 0.48%, respectively, values that are similar to those from prior measurements563
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(0.2 and 0.44%, Fig. 1). Ledge nucleation requires nearly the same schar for each axis, which564

is inconsistent with prior measurements. This result is consistent with Nelson (2001), who565

concluded that dislocation growth likely controlled the growth at -7◦C. At -15◦C, however,566

the schar required for ledge nucleation to fit the growth data (0.59 and 1.5% for the prism and567

basal facets, respectively) are consistent with prior measurements (0.54 and 2.1%, Fig. 1).568

Dislocation growth requires schar for the basal facet to be an order of magnitude smaller569

than observed. This result is consistent with the findings of Nelson (2001) at low Dv, which570

indicated that ledge nucleation was occurring, but not at high Dv, where it appeared that571

dislocation growth occurred. The inconsistency may indicate a limitation of our model at572

higher Dv, but further laboratory studies are needed.573

Because the experiments of Gonda (1980) produced only small crystals (less than 20 µm)574

formed from frozen droplets, it is likely that dislocation growth dominated much of the early575

growth of these crystals. However, explaining the thin crystals from the wind tunnel data of576

Fukuta and Takahashi (1999) requires ledge nucleation. Taken together, these results suggest577

that the early growth of small crystals may be dominated by dislocation growth while ledge578

nucleation dominates the growth at latter stages when crystals are large. This conclusion is579

broadly consistent with the discussions of Nelson (2001) and with the results of Gonda and580

Yamazaki (1984) who showed that crystals formed from frozen drops initially grow efficiently581

until facets become large enough that ledge nucleation dominates the growth.582
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5. Summary and Concluding Remarks583

In this paper we have provided a composite data set for the characteristic supersatu-584

rations, schar, that are needed as input for supersaturation-dependent α. We have shown585

these schar values, when used in conjunction with the model of Zhang and Harrington (2014),586

can reproduce the growth of ice crystals at liquid saturation as observed in a wind tunnel.587

Only ledge nucleation for both axes is capable of reproducing the mass, lengths, and the fall588

speed of the measured crystals. Axis evolution based on the aspect-ratio based hypothesis589

of Chen and Lamb (1994) produces columnar growth with unrealistic aspect ratios when α590

is predicted. This occurs because of a positive feedback with the aspect ratio in that param-591

eterization method. Only the facet-based hypothesis of Nelson and Baker (1996) is capable592

of reproducing aspect ratio evolution from a hexagonal model at both low and high super-593

saturations. While the diffusion-limited model of Chen and Lamb (1994) will not produce594

variations in aspect ratio with pressure, the model of Zhang and Harrington (2014) is capable595

of reproducing pressure-dependent growth of small crystals in comparison to measurements.596

The growth of ice at low temperatures (T < -30◦C) has been infrequently measured,597

though the experiments of Libbrecht (2003b) indicate that the growth of basal and prism598

facets is driven primarily by ledge nucleation. However, no measurements of schar exist at599

temperatures below -40◦C. To help fill this gap, we reanalyzed prior measurements (Magee600

et al. 2006) to extract average values of schar between -40 and -60◦C. Comparisons to the601

normalized capacitance values of Bailey and Hallett (2010) for hexagonal plates and columns602

indicate that our values of schar are generally consistent with their data.603

It is critical to bear in mind the approximate nature of the analyses at T<-40◦C. At604
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present, only two data sets have been published with precise measurements of facet growth605

down to -40◦C, and both data sets indicate that schar increases with decreasing temperature606

(Libbrecht 2003b; Libbrecht and Rickerby 2013). While the schar values from our analysis607

are consistent with these measurements, it is not known whether our values are truly repre-608

sentative of the average growth of basal and prism facets. The morphology of crystals grown609

in the studies of Magee et al. (2006) is unknown, and since those crystals were formed from610

frozen droplets they likely were polycrystalline (Bacon et al. 2003), may have had mesoscopic611

surface features (Magee et al. 2014), and likely underwent a transition as facets emerged.612

These processes, and others, would be convolved together in the values of schar that we have613

derived.614

It is also difficult to relate these known growth mechanisms, and measured growth rates,615

to the measures of crystal roughness reported in the literature (Neshyba et al. 2013; Magee616

et al. 2014; Schnaiter et al. 2016). Magee et al. (2014) showed mesoscopic features on617

crystal facets, yet growth was at times limited by attachment kinetics. Moreover, Pedersen618

et al. (2011) found weak growth of crystal facets until a grain boundary is formed through619

the contact of two dissimilar facets. More recently, Voigtländer et al. (2018) indicated620

that crystals cycled between growth and sublimation show reduced growth rates in later621

cycles, and that surface roughening can increase during cycled growth. This latter result622

is consistent with prior measurements that show faceting disappears and crystals roughen623

during sublimation (Nelson 1998; Magee et al. 2014). Taken together, these results indicate624

that our understanding of ice vapor growth is still in its infancy. Approximate models, such625

as the one posed in this paper, must be used with caution and should be interpreted as a626

place-holder for a more precise theory of ice growth.627
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Fig. 1. Characteristic supersaturations as a function of supercooling (∆T = T◦ − T ) from laboratory-

measured vapor growth rates (Sei and Gonda 1989; Gonda et al. 1994; Nelson and Knight 1998; Bacon et al.

2003; Libbrecht 2003b; Libbrecht and Rickerby 2013; Harrison et al. 2016). Prior values of schar exist for

temperatures above -40◦C only. The data set is extended to temperatures below -40◦C using estimates

from the growth data of Magee et al. (2006) and Bailey and Hallett (2010). Values of schar for the basal

and prism facets are denoted by diamond and square symbols, respectively. A circle is used to denote schar

that is representative of the overall particle growth. Symbol color indicates the data source. Best fits to the

data using polynomials are indicated by the black line (solid, basal facet; dashed, prism facet). The black

dotted curve is an ad hoc modification of the basal schar to produce columnar growth at T < -20◦C.
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using the DiSKICE model are shown by the solid lines. The fits used the most likely initial radius (black
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Fig. 4. Normalized effective capacitance (C/a for plates, and C/(2c) for columns) as a function of aspect

ratio (φ) at temperatures between -40 and -70◦C. The solid black lines are capacitance model results for

oblate and prolate spheroids. Black dashed lines indicate the approximate range of measured values given

in Bailey and Hallett (2010). Green lines used schar values (two at -40 and -50◦C) from the data of Magee

et al. (2006). Calculations used mid-range values of crystal maximum length (Li) of 200 µm, pressure (p) of

300 hPa, and ice supersaturations (si) of 7%, 10%, 15% and 15% for temperatures of -40, -50, -60, -70◦C,

respectively. Adjusted solutions using these mid-range values and the DiSKICE model for plates (columns)

are indicated by the thick red (blue) lines. Dark shaded regions indicate the variability due to the range of

Li (50 to 400 µm) and p (500 to 150 hPa). Light shaded regions indicate the variability due to the range of

si (generally 5 to 25%). Variability ranges are similar for the green curves (not shown for clarity). Adjusted

values of schar and the variability range (located in the upper right of each panel) are colored to match the

lines.

49



-40 -35 -30 -25 -20 -15 -10 -5 0

temperature [
o
C]

10

100

1000

se
m

i-
ax

is
 l

en
g
th

 [
μ

m
]

hexagonal

(a)

model

facet-based hypothesis

aspect-ratio based

 hypothesis

liquid saturation

-40 -35 -30 -25 -20 -15 -10 -5 0

temperature [
o
C]

5

10

15

20

25

30

35

40

45

50

se
m

i-
ax

is
 l

en
g
th

 [
μ

m
]

hexagonal
model

facet-based hypothesis

aspect-ratio based

 hypothesis

(b) 15% of liquid saturation

Fig. 5. Comparison of simulated semi-axis lengths from the DiSKICE and hexagonal models, assuming

ledge nucleation, after 10 minutes of growth at (a) high (liquid) saturation, and (b) low saturation (15% of

the ice saturation ratio at liquid saturation). The a-axis length is given by the solid lines and the c-axis by

the dashed lines. Black lines with circles indicate the hexagonal model solutions, red and blue lines indicate

DiSKICE solutions with the facet-based and aspect-ratio based hypotheses, respectively.
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indicate DiSKICE solutions with the facet-based and aspect-ratio based hypotheses, respectively.

51



0 100 200 300 400 500 600 700 800 900

time [s]

10

100

1000

c
-a

x
is

 [
μ

m
]

s
i
 = 1% (black)

si = 3% (red)

si = 7% (blue)

(a)

aspect-ra
tio based hypothesis

facet-based hypothesis

hexagonal

0 100 200 300 400 500 600 700 800 900

time [s]

10

15

20

25

30

35

40

45

50

a
-a

x
is

 [
μ

m
]

aspect-ratio based hypothesis

facet-based hypothesis
hexagonal

(b)

Fig. 7. Time-series of (a) c-axis and (b) a-axis lengths for the simulations shown in Fig. 5; three different

ice supersaturations (colored commensurately with lines) are shown at T = -7◦C. Lines with circles indicate

hexagonal model solutions, solid and dashed lines indicate DiSKICE solutions with the facet-based and

aspect-ratio based hypotheses, respectively.
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Fig. 11. Ice mass (a) and fall speed (b) after 10 (black) and 15 (red) minutes of growth at liquid saturation

and 1000 hPa pressure. Wind tunnel data (Fukuta and Takahashi 1999) are indicated by the symbols and

model simulations by the lines. Simulations using the Chen and Lamb (1994) parameterization are given

by the solid lines whereas simulations using predicted deposition coefficients (ledge nucleation, facet-based

hypothesis) are shown by the dashed lines. The shaded regions indicate the range of uncertainty in the

characteristic supersaturation (schar).
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Fig. 12. (a) Deposition coefficients (a-axis, solid lines; c-axis, dashed lines) after 15 minutes of growth

at liquid saturation and 1000 hPa pressure for the simulations shown in Fig. 10. Simulations using ledge

nucleation are given by the red lines and the red shaded region indicates the range of uncertainty in the

characteristic supersaturation (schar). Simulations with dislocation growth are indicated by the green lines.

(b) Ratio of the deposition coefficients (αc/αa) for ledge nucleation growth (red line and shaded region)

using the results and uncertainty from (a). The combination of the inherent growth ratio and the aspect

ratio (Γ(T )c/a) from the theory of Chen and Lamb (1994) is given by the black line.
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Fig. 13. Aspect ratio of crystals as a function of the vapor diffusivity, Dv, at -7 and -15◦C (red and blue

colors, respectively). Solid circles indicate the free-fall chamber measurements of Gonda (1980) made after

crystal vapor growth at liquid saturation. Simulated crystals began as spheres with an initial radius of 2 µm

and grew during free-fall over a distance of 10 cm. Dislocation growth (dashed line) used a and c-axis schar,

respectively, of 0.48% and 0.18% at -7◦C, and 0.04% and 1.9% at -15◦C. Ledge nucleation growth (solid line)

used a and c-axis schar, respectively, of 0.48% and 0.35% at -7◦C, and 0.59% and 1.5% at -15◦C.
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Table 1. Polynomial fits to schar (used in Eq. 1) as a function of temperature where ∆T = T −T◦

and T◦ = 273.15 K for the c-axis (basal facet) and a-axis (prism facet).

c-axis fit coefficients: schar =
∑6

n=0 an∆T n

temperature a0 a1 a2 a3 a4 a5 a6

-22 < T ≤ -1◦C 1.1217 0.0381 -0.08375 -0.01573 -0.001011 -2.915×10−5 -3.182×10−7

-30 ≤ T ≤ -22◦C 753.63 105.97 5.553 0.1281 0.0011 0 0

T < -30◦C 3.7955 0.10614 0.00753 0 0 0 0

a-axis fit coefficients: schar =
∑6

n=0 an∆T n

temperature a0 a1 a2 a3 a4 a5 a6

-15 < T ≤ -1◦C 0.3457 -0.0093 0.000308 0 0 0 0

-22 < T ≤ -15◦C -5.2367 -1.3184 -0.1107 -0.00323 0 0 0

-30 ≤ T ≤ -22◦C -0.7106 -0.1478 0.00423 0 0 0 0

T < -30◦C 3.7955 0.10614 0.00753 0 0 0 0
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