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Abstract: This study develops a numerical method to find optimal ergodic (long-run average) dividend strategies in a regime-
switching model. The surplus process is modelled by a regime-switching process subject to liability constraints. The regime-
switching process is modelled by a finite-time continuous-time Markov chain. Using the dynamic programming principle, the
optimal long-term average dividend payment is a solution to the coupled system of Hamilton–Jacobi–Bellman equations. Under
suitable conditions, the optimal value of the long-term average dividend payment can be determined by using an invariant
measure. However, due to the regime switching, getting the invariant measure is very difficult. The objective is to design a
numerical algorithm to approximate the optimal ergodic dividend payment strategy. By using the Markov chain approximation
techniques, the authors construct a discrete-time controlled Markov chain for the approximation, and prove the convergence of
the approximating sequences. A numerical example is presented to demonstrate the applicability of the algorithm.

1 Introduction
Surplus and dividend management has long been an important
issue in asset and liability management of public companies. Due
to the wave of demutualisation of insurance companies in the last
few decades, the dividend payment plan released in the financial
report for public insurance companies is an informative signal to
represent the potential risks and profitability opportunities. The
decision of the dividend payment is so important for a public
company's financial strength because the company's share price is
very sensitive to the information about dividend plans and dividend
payment strategies also influence the investment and capital raising
decisions of firms.

Insurance companies generally accumulate large amounts of
cash in the form of premiums to pay future claims and benefits of
policyholders. Hence, dividend payments, which are appealing
returns to shareholders, may reduce insurance companies' ability to
survive under disasters in the experience of underwriting and
investment. However, due to the undergone pressure of managing
balance sheets and distributing the surplus for public insurance
companies, one natural objective of insurers is to optimise the
management of surplus and sustained stream of dividend payments.
Practitioners in insurance firms manage the surplus and dividend
payment stream against various financial risks so that the firms can
avoid financial ruin in the long run.

Since the optimal dividend payment model was proposed in [1],
increasing efforts have been made to study the optimal dividend
policy by using stochastic control theory. The majority of research
is conducted aiming to maximise the present value of the
cumulative dividend payment (with or without costs) in targeted
time horizon, and find corresponding optimal strategies. Regular
controls, singular controls, and impulse controls are involved in
various scenarios. Guo et al. [2] studied the dividend and risk
control with a diffusion where the drift is quadratic in the risk
control variable. He and Liang [3] studied the mixed control of
dividend, proportional reinsurance and financing for the model.
Lokka and Zervos [4] solved the optimal dividend and issuance of
equity policies in the presence of bankruptcy risk. Wei et al. [5]
studied the combined control of dividend, financing and risk for the
Brownian motion model. The authors of [6, 7] studied the impulse
dividend control problem for a rather general linear diffusion

model in which some growth and smoothness conditions are
imposed on. Avram et al. [8] addressed the dividend and
reinvestment control in a spectrally negative Lévy process. Azcue
and Muler [9] analysed the strategies to maximise the accumulated
discounted dividend payments of an insurance company. Jin et al.
[10] considered the credit risk of an insurance company and
derived the company's optimal dividend payment strategies and
debt level.

Previous work is mainly based on the classical Cramér–
Lundberg risk model to maximise the accumulated discounted
dividend payments; the company will be insolvent almost surely
when optimal dividend strategies are adopted. In [10], the authors
propose an asset and liability model with liability constraint. The
insurance company manages the surplus and designs the dividend
payment strategies taking into account the liability capacity. Then,
the insurance company will be in the absence of insolvency. On the
other hand, since insurance companies generally have assets and
liabilities with long maturity, in particular, for life insurance
companies, it is very important for insurance companies to
consider long-term objectives and build the dividend payment
strategies with a long time horizon in mind. The long-term
objectives are widely studied in investment and risk management
in a variety of cases. Bielecki and Pliska [11] analysed the dynamic
asset management in an infinite time horizon. Fleming and Sheu
[12] studied the optimal investment strategies with a long-term
objective. Pham [13] proposed a large deviation approach for
finding optimal strategies of long-term investment. See also [14,
15] for related works. In this work, we extend the asset and liability
model in [10] and set a new objective functions to consider the
long-term impact of the dividend payment strategies, which is
applicable when financial ruin is completely avoided. Instead of
adopting the discounted present value, we aim to maximise the
average dividend payment in the long term.

Recently, stochastic hybrid surplus models have been widely
used to capture discrete movements (such as market cycles,
economic environment, business trends etc.). The hybrid system
investigates the coexistence of discrete events and continuous
dynamics in the stochastic systems. To reflect the hybrid feature,
one option is to use a finite-state Markov process to describe the
transitions among different regimes. The Markov-modulated
switching systems are therefore known as regime-switching
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systems. Thus, the formulation of regime-switching models is a
more versatile and general framework to describe the complex
financial and insurance markets and their inherent randomness and
uncertainty. In [16], optimal reinsurance and dividend payment
strategies are studied in a compound Poisson regime-switching
model. Sotomayor and Cadenillas [17] studied the optimal
dividend problem in the regime-switching model when dividend
rates are bounded, unbounded, and when there are fixed costs and
taxes corresponding to the dividend payments. Zhu [18] studied the
dividend optimisation for a regime-switching diffusion model with
restricted dividend rates. See also [19–21]. A comprehensive
introduction of regime-switching diffusions is presented in [22].

Using the dynamic programming principle to treat optimal
dividend payment strategies, one usually solves a Hamilton–
Jacobi–Bellman (HJB) equation. Due to the Markov regime-
switching diffusion process, the HJB equation is formed as a
coupled system of HJB equations. To represent the maximal
average dividend payment in the long term, the unique invariant
measure is constructed. Due to the complexity of the Markov
switches, obtaining the explicit formula of the long-term average is
virtually impossible. Employing numerical approximations is an
alternative. We adopt the Markov chain approximation
methodology developed in [23] to solve for the optimal
performance function and the corresponding dividend payment
strategies. A numerical method for finding optimal investment and
dividend payment policies with capital injections under regime-
switching diffusion models was developed in the work of [24]. In
this work, we carry out a convergence analysis using weak
convergence methods for the regime-switching models, in which
case one needs to deal with a system of HJB equations with
reflecting boundaries. Comparing with the work in [24], we choose
a different objective function, which performs in an infinite time
horizon and requires the ergodicity of the diffusion process. The
long-run average objective function adds many difficulties to
design the numerical schemes and to conduct the convergence
analysis of the algorithm.

The remainder of the paper is organised as follows. A general
formulation of the surplus process, performance functions, and
assumptions are presented in Section 2. The existence and
uniqueness of the invariant measure are presented. The dynamic
programming equation is derived in Section 4. Section 5 deals with
the Markov chain approximation method and designs the numerical
algorithm. Section 6 works on the convergence of the
approximation scheme. A numerical example is provided in
Section 7 to illustrate the performance of the approximation
method together with some further remarks.

2 Formulation
Following the framework of asset and liability management, the
surplus process X(t) equals the difference between the asset value
A(t) and liabilities L(t). Then

X(t) = A(t) − L(t) . (1)

To describe the abrupt changes of the insurance market, we use a
continuous-time irreducible Markov chain denoted by α(t) that
takes values in a finite space. The finite space of market states is
denoted by ℳ = {1, …, m}. Assume that the continuous-time
finite-state Markov chain α(t) is generated by Q = (qi j) ∈ ℝm × m

ℙ{α(t+Δ)=j|α(t)=i} ={ qijΔ+o(Δ), if j≠i, 1+qiiΔ+o(Δ), if j=i, where
qi j ≥ 0 for i, j = 1, 2, …, m with j ≠ i and qii = − ∑ j ≠ i qi j < 0 for
each i = 1, 2, …, m. Q is assumed to be irreducible.

When an insurance policy is sold at time t, the insurer takes the
liability of the amount insured L(t) and receives an on-going
premium for it. Let β(i) be the cost of protection for per dollar of
the insured amount, where for each i ∈ ℳ. Then β( ⋅ ) is the
premium rate, and the asset value increases during the time period
[t, t + dt] equals β(α(t))L(t) dt from the insurance liability L(t).

Reinsurance is a standard tool to eliminate the risks for
insurance companies. Primary insurers buy insurance products
from reinsurance companies to reduce the claim volatilities and pay

a certain part of the premiums collected from the original contracts
to reinsure. In return, the reinsurance companies are obliged to
share part of the risks. Proportional reinsurance and excess-of-loss
reinsurance are two major types of reinsurance schemes. In our
work, we adopt the proportional reinsurance, where a fixed
percentage of loss is retained for the primary insurer.

Denote λ as the retention level dictated in the reinsurance
contract, where λ ∈ [0, 1]. Then λ will be covered by the primary
insurance company per dollar of liability. Let h(λ) be the
reinsurance charge rate, which is the cost of protection for the
remaining 1 − λ part per dollar of liability. Hence, the reinsurance
charge for liability L(t) during the time period [t, t + dt] is
h(λ)L(t) dt, and the out of pocket claim expense is λL(t) dt

accordingly.
The primary insurer collects premium with a rate β and

transfers part of the risk to the reinsurer with a retention level λ.
The primary insurer collects premium with a rate β and

transfers part of the risk to the reinsurer with a retention level of λ.
Insurers take into account the demand of the insurance contracts
and decide how much liability to take. Let π(t) = L(t)/X(t) be the
liability ratio of the insurance company. The concept of liability
ratio is closely related to the leverage, which is written as the ratio
between the asset and surplus. That is, A(t)/X(t) = 1 + π(t). By
using the reinsurance tools, the insurance company decides the
optimal insured amount sold in insurance contracts and avoid
overtaking the liabilities.

We assume that the process of asset value A(t) follows a
geometric Brownian motion process

dA(t)
A(t)

= μ(α(t)) dt + σ(α(t)) dw(t), (2)

where μ(i) is the return rate of the asset, σ(i) is the corresponding
volatility for i ∈ ℳ and w(t) is a standard Brownian motion.
Hence, combining (1) and (2), the surplus process X(t) in the
absence of claims and dividend payments follows:

dX(t) = (β(α(t)) − h(λ))L(t) dt

+A(t)(μ(α(t)) dt + σ(α(t)) dw(t)) .
(3)

To proceed, we consider the claims. Denoted by R(t) the
accumulated claims up to time t. Let c(t) be a claim rate against
insured liabilities, which means that an amount of c(t) is claimed
per dollar of the liability up to time t. Hence, the accumulated
claims up to time T is denoted as

R(T) = ∫
0

T

c(t)L(t) dt, (4)

Practically, the claim rate c(t) is risky and is not predictable.
The claim rates of different types of insurance products are very
different and volatile in different market states. For example, the
CDS, which can be considered as an insurance contract to protect
against credit events, is affected by various factors such as credit
ratings of firms, the demand for CDOs in the market, and
government regulation etc. Furthermore, it is largely influenced by
the uncertainty and randomness of the economic environment. In
[10], the claim rate c(t) is formulated as a diffusion process to
describe its randomness. However, one of the main drawbacks of
the diffusion process in the work is that the claim rate can be
negative, which is very difficult to calibrate and explain with real
market data. To guarantee the positivity of the claim, we assume
that the claim rate follows a continuous-time Markov process,
taking values in a set of positive values. That is, the claim rate
depends on α(t), so c(α(t)) in lieu of c(t) is used. Hence, the
accumulated claims follow

R(T) = ∫
0

T

c(α(t))L(t) dt . (5)
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The cumulative dividend payments D( ⋅ ) is an ℱt-adapted
process {D(t): t ≥ 0}, which represents the accumulated dividend
payments paid up to time t. Hence, D(t) is a non-decreasing and
non-negative process, and is right continuous with left limits. In
our model, we assume that dividend payments are proportional to
the surplus. Hence, a restricted dividend payment rate u(t) ∈ [0, 1]
is introduced. Let U = [0, 1]. Then the accumulated dividend D(t)
follows:

dD(t) = u(t)X(t) dt, (6)

where u ∈ U is an ℱt-adapted process.
Thus, considering the impact of reinsurance, the claims and

dividend payments, the insurer's surplus process follows:

dX(t) = dX(t) − λ dR(t) − dD(t) . (7)

Together with the initial condition, (7) follows:

dX(t) = [(β(α(t)) − h(λ) − λc(α(t)))L(t) + μ(α(t))A(t)

−u(t)X(t)] dt + A(t)σ(α(t)) dw(t),

X(0) = x ≥ 0
(8)

for all t < τ, where τ = inf {t ≥ 0: X(t) < 0} represents the time of
financial ruin. We impose X(t) = 0 for all t > τ. No dividend will
be paid after the financial ruin. Incorporating the liability ratio into
(8), (8) can be rewritten as

dX(t)
X(t)

= [π(t)(β(α(t)) − h(λ) − λc(α(t)) + μ(α(t)))

+μ(α(t)) − u(t)] dt + (π(t) + 1)σ(α(t)) dw(t),

X(0) = x .

(9)

For a dividend payment rate, u(t) is non-negative and restricted
to a bounded region. An admissible strategy u( ⋅ ) is progressively
measurable with respect to {w(s), α(s):0 ≤ s ≤ t}. Denote the set of
all admissible strategies by U. Then the admissible strategy set U
can be defined as

U = {u ∈ ℝ:0 ≤ u ≤ 1} . (10)

A Borel measurable function u(x, α) is an admissible feedback
strategy if (9) has a unique solution.

The objective of the representative financial institute is to
maximise the average dividend payment in the long term. For an
arbitrary admissible feedback control u( ⋅ , ⋅ ), the performance
function is the average dividend payment in the long term given by

J(x, u, i) = lim sup
T → ∞

1
T

Ex, i ∫
0

T

u(X(t), α(t))X(t) dt , ∀i

∈ ℳ,
(11)

where Ex, i denote the expectation conditioned on X(0) = x and
α(0) = i, and let ℙx, i denote the conditional probability on X(0) = x

and α(0) = i.
Denote by γ(u) = J(x, u, i). Define the optimal value as

γ̄ := sup
u ∈ U

γ(u) . (12)

For i ∈ ℳ, an arbitrary strategy u ∈ U and V( ⋅ , i) ∈ C
2(ℝ), we

define an operator ℒu by

ℒu
V(x, i) = Vx(x, i)x(π(β(i) − h(λ) − λc(i) + μ(i)) + μ(i) − u)

+
1
2

(u + 1)2
σ

2(i)x2
Vxx(x, i) + QV(x, ⋅ )(i)

(13)

where Vx and Vxx present the first- and second-order derivatives
with respect to x, and

QV(x, ⋅ )(i) = ∑
j ≠ i

qi j(V(x, j) − V(x, i)) .

If γ̄ exists, by using the dynamic programming principle [25], there
exists a sufficiently smooth function V that normally satisfies the
following coupled system of HJB equations:

γ̄ = max
u ∈ U

{ℒu
V(x, i) + ux},  for each  i ∈ ℳ . (14)

In view of (9), the surplus is always non-negative in the infinite
time horizon. The insurance company will run the business with
probability one in the long run. It is worthwhile to consider the
ergodic control of dividend payment when the operation period
T → ∞. On the other hand, in reality, the surplus of an insurance
company cannot reach infinity. Once the surplus is substantially
high, the decision maker will undergo pressure from the
shareholders to pay dividend. Hence, we only need to choose B
large enough and set the surplus in the finite interval G = [0, B]. To
make J(x, u, i) computationally feasible, we truncate x at some
large value B.

3 Invariant measure
To obtain the expected average dividend payment in the infinite
time horizon, one approach is to replace the instantaneous
measures with invariant measures. Note that the state of the process
in our formulation has two components: one component is the
diffusion process X(t); the other component is the Markov regime
switching process α(t). We denote by Z(t) = (X(t), α(t)) the state of
the process.

To proceed, we need the following assumption.

(A) Z(t) is positive recurrent with respect to some bounded domain
E × {i}, where E ⊂ G ⊂ ℝ, i is fixed and i ∈ ℳ.

 
Lemma 1 (assume (A)): Z(t) is the positive recurrent with

respect to G × ℳ.
 
Proof: The result is immediately obtained by applying Theorem

3.12 in [22]. □
We proceed to define a sequence of stopping times

{ηk}, k = 0, 1, 2, … . Let η0 = 0, η2k + 1 be the first time after η2k

when Z(t) reaches the boundary ∂E × {i}, and η2k + 2 be the first
time after η2k + 1 when Z(t) reaches the boundary ∂G × {i}. Then,
the sample path of Z(t) can be divided into the cycles as

[η0, η2), [η2, η4), …, [η2k, η2k + 2), … (15)

By Lemma 1, Z(t) is the positive recurrent with respect to G × ℳ.
Hence the stopping times {ηk}, k = 0, 1, 2, … are finite almost
surely. Without loss of generality, we assume x = 0. It follows that
the sequence Zn = (Xn, i) = Z(η2n), n = 0, 1, …, is a Markov chain
on ∂G × {i}. Denote by ℬ(∂G) the collection of Borel measurable
sets on ∂G. Starting from (x, i), Z(t) may jump many times before it
reaches the set (H, i) where H ∈ ℬ(∂G). The one-step transition
probability of the Markov chain Zn is defined as

p
~(1)(x, H) = ℙ(Z1 ∈ (H × {i}) |Z0 = (x, i)) . (16)

Analogously, the n-step transition probability of the Markov chain
Zn is denoted by p

~(n)(x, H). Now we will construct the stationary
distribution of Z(t).

 
Theorem 1: The positive recurrent process Z(t) has a unique

stationary distribution ν( ⋅ , ⋅ ). Let θ( ⋅ , ⋅ ) be the stationary
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density associated with the stationary distribution. Then for any
(x, i) ∈ G × ℳ

ℙx, i lim
T → ∞

1
T ∫

0

T

u(X(t), α(t))X(t) dt = γ̄ = 1, (17)

where

γ̄ = ∑
i = 1

m

∫
ℝ

u(x, i)xθ(x, i) dx . (18)

 
Proof: In view of Lemma 4.1 in [22], Zn has a unique stationary

distribution ϕ( ⋅ ). For any H ∈ ℬ(ℝ), ϕ(H) = limn → ∞ p
~(n)(x, H).

Recall that the cycles are defined in (15). Denote by τH × {i} the time
spent by the path of Z(t) in the set (H × {i}) during the first cycle.
Set

ν
~(H, i) := ∫

∂G

ϕ(dx)Exτ
H × {i} . (19)

Using Theorem 4.3 in [22], we have

∑
i = 1

m

∫
ℝ

u(x, i)xν
~(dx, i)

= ∫
∂G

ϕ(dx)Ex∫
0

η2

u(X(t), α(t))X(t) dt

= ∑
i = 1

m

∫
ℝ

Ex, iu(X(t), α(t))X(t)ν~(dx, i) .

(20)

Hence, the desired stationary distribution is defined by the
normalised measure as

ν(H, i) =
ν
~(H, i)

∑ j = 1
m

ν
~(ℝ, j)

, ∀i ∈ ℳ . (21)

Now we will prove (17). Regarding the stationary distribution, we
know that starting from an arbitrary point (x, i) with arbitrary initial
distribution is asymptotically equivalent to starting with an initial
distribution that is the stationary distribution. Then we will only
need to verify the case when the initial distribution is the stationary
distribution of the Markov chain Zn. Hence, for any H ∈ ℬ(∂G)

ℙ{(X(0), α(0)) ∈ (H × {i})} = ϕ(H) .

Take a look at the sequence of random variables

ρn = ∫
η2n

η2n + 2

u(X(t), α(t))X(t) dt .

From (19) and (20), we have

Eρn = ∑
i = 1

m

∫
ℝ

u(x, i)xν
~(dx, i), (22)

for all n = 0, 1, 2, … . Let φ(T) denote the number of cycles
completed up to time T. Then

φ(T) := max n ∈ ℕ: ∑
k = 1

n

(η2k − η2k − 2) ≤ T .

Hence, ∫0

T
u(X(t), α(t))X(t) dt can be decomposed as

∫
0

T

u(X(t), α(t))X(t) dt

= ∑
n = 0

φ(T)

ρn + ∫
η2φ(T)

T

u(X(t), α(t))X(t) dt .

Note that both u( ⋅ ) and X( ⋅ ) are non-negative, we have

∑
n = 0

φ(T)

ρn ≤ ∫
0

T

u(X(t), α(t))X(t) dt ≤ ∑
n = 0

φ(T) + 1

ρn .

Then

1
φ(T) ∑

n = 0

φ(T)

ρn ≤
1

φ(T)∫0

T

u(X(t), α(t))X(t) dt

≤
1

φ(T) ∑
n = 0

ϕ(T) + 1

ρn .

As T → ∞, φ(T) → ∞. Combining with (22), we have

1
φ(T)∫0

T

u(X(t), α(t))X(t) dt → ∑
i = 1

m

∫
ℝ

u(x, i)xν
~(dx, i) . (23)

On the other hand, the law of large numbers implies

ℙ
1
n

∑
k = 0

n

ρk → ∑
i = 1

m

∫
ℝ

u(x, i)xν
~(dx, i), as n → ∞ = 1. (24)

Particularly, when u(x, i) = 1/x, (24) implies

ℙ
η2n + 2

n
→ ∑

i = 1

m

ν
~(dx, i), as n → ∞ = 1. (25)

Since η2n ≤ T ≤ η2n + 2 and η2n/η2n + 2 → 1 almost surely as T → ∞,
we have

ℙ
T

φ(T)
→ ∑

i = 1

m

ν
~(dx, i), as T → ∞ = 1. (26)

Now, using (23) and (26), we have as T → ∞

1
T ∫

0

T

u(X(t), α(t))X(t) dt

=
∫0

T
u(X(t), α(t))X(t) dt

φ(T)
φ(T)

T

→ ∑
i = 1

m

∫
ℝ

u(x, i)xν
~(dx, i) ×

1

∑i = 1
m

ν
~(dx, i)

= ∑
i = 1

m

∫
ℝ

u(x, i)xν(dx, i)  almost surely.

(27)

Hence

ℙ lim
T → ∞

1
T ∫

0

T

u(X(t), α(t))X(t) dt

= ∑
i = 1

m

∫
ℝ

u(x, i)xν(dx, i), as T → ∞ = 1.

(28)

Since (28) holds for any (x, i) ∈ G × ℳ, then
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ℙx, i lim
T → ∞

1
T ∫

0

T

u(X(t), α(t))X(t) dt

= ∑
i = 1

m

∫
ℝ

u(x, i)xν(dx, i), as T → ∞ = 1.

(29)

Note that θ( ⋅ , ⋅ ) is the stationary density associated with the
stationary distribution ν( ⋅ , ⋅ ), (29) can be written as

ℙx, i lim
T → ∞

1
T ∫

0

T

u(X(t), α(t))X(t) dt

= ∑
i = 1

m

∫
ℝ

u(x, i)xθ(x, i) dx = 1.

(30)

Thus, (17) and (18) hold. □

4 Dynamic programming equation
We have constructed the stationary distribution ν( ⋅ , ⋅ ). However,
it is generally not easy to approximate the invariant measure. To
obtain the optimal ergodic control of dividend payment, we will
refer to the dynamic programming equation in (14). To solve for
(14), we will design a two-component Markov chain to
approximate the state process. Then we will rewrite (14) by a
dynamic programming equation with a Markov chain with
transition probabilities.

Before we write the dynamic programming equations, let us
recall some results of Markov chains. By using the ergodic theorem
for Markov chains in [26, 27], we can find an auxiliary function
W(x, i, u) such that the pair (W(x, i, u), γ(u)) satisfies

W(x, i, u) = ∑
y

p((x, i), (y, j) |u)W(y, i, u) + u(x, i)x − γ(u), (31)

for each feedback control u( ⋅ ), where p((x, i), (y, j) |u) is the
transition probability from a state (x, i) to another state (y, j) under
the control u( ⋅ ).

Define γ̄ = maxu γ(u), where u( ⋅ ) ∈ U. Then there is an
auxiliary function V(x, i) such that the pair (V(x, i), γ̄) satisfies the
dynamic programming equation:

V(x, i) = max
u ∈ U

∑
y

p((x, i), (y, j) |u)V(y, i) + u(x, i)x − γ̄ . (32)

To keep V(x, i) from blowing up, (32) can be written in a centred
form as follows:

V(x, i) = max
u ∈ U

∑
y

p((x, i), (y, j) |u)V(y, i) + u(x, i)x , (33)

where

V(y, i) = V(y, i) − V(x0, i) .

x0 is determined such that γ̄ = V(x0, i).

4.1 Boundary conditions

For the purpose of numerical analysis, it is always necessary to
consider a compact state space. In our problem, the surplus could
potentially grow to an arbitrary high level. Our control variable is
the dividend payment strategies. When surplus is too high, it is
optimal to pay the dividend according to our objective function.
Furthermore, the domain of the surplus process is compactified for
the computation purpose where a large enough right boundary B
was imposed. To be consistent with the reality, it is natural to set a
reflecting boundary on the right side. For the left side, the surplus
follows a log-normal distribution and is always positive. We will
also choose a reflecting boundary on the left side for the
computation purpose. Hence, for the boundaries, V(x, i) follows:

Vx(x, i) = 0. (34)

5 Numerical algorithm
Our objective is to develop a numerical scheme to approximate γ̄ in
(12). In what follows, Section 5.1 will construct an approximating
Markov chain in the state space. The discretion of the dynamic
programming equation is presented in Section 5.2 and the
transition probability of the approximating Markov chain is
derived.

5.1 Approximating Markov chain

In this section, we will construct a locally consistent discrete-time
Markov chain to approximate the controlled regime-switching
diffusion system. The constructed Markov chain will be locally
consistent with (9). In (9), the process state has two components x
and α. Applying the methodology in [23], our approximating
Markov chain will include two components: one component is to
approximate the diffusive part; the other component delineates the
market regimes.

Let h > 0 be the step size. Define
Sh′ = {x: x = kh, k = 0, ± 1, ± 2, …} and Sh = Sh′ ∩ Gh, where
Gh = (0, B + h). B is a large value representing the upper bound for
computation purpose. Furthermore, without loss of generality,
assume that the upper bound B is an integer multiple of h. Let
{(ξn

h, αn
h), n < ∞} be a controlled discrete-time Markov chain on

Sh × ℳ. The transition probability from one state (x, i) to another
state (y, j) under the control uh is denoted as ph((x, i), (y, j) |uh). ph

should be well defined later so that the constructed Markov chain's
evolution is able to approximate the local behaviour of the
controlled regime-switching diffusion process (9).

We proceed as follows. At a discrete time n, we can either pay a
dividend payment as a regular control or have a reflection on the
boundary. Thus, if we let Δξn

h = ξn + 1
h − ξn

h, then

Δξn
h = Δξn

h
I dividend payment at n + Δξn

h
I reflection step on the left at n

+Δξn
h
I reflection step on the right at n .

(35)

The constructed Markov chain and control will be carefully chosen
so that only one term in (35) is non-zero. Let In

h:n = 0, 1, …  be a
sequence of control actions, where In

h = 0, 1, or 2, if we exercise a
dividend payment, or reflect on the left or right boundaries at time
n.

If In
h = 0, then we denote by un

h ⊂ U the random variable that is
the dividend payment action for the chain at time n. Let
Δ
~

th( ⋅ , ⋅ , ⋅ ) > 0 be the interpolation interval on Sh × ℳ × U.
Assume infx, i, u Δ

~
th(x, i, u) > 0 for each h > 0 and

limh → 0 supx, i, u Δ
~

th(x, i, u) → 0. If In
h = 1, or ξn

h = 0, reflection
step on the left boundary is exerted definitely. We assume that the
reflection step on the left side is from 0 to h. Hence, denote by Δzn

h

the left reflection size at time n, then we have Δξn
h = Δzn

h = h. If
In

h = 2, or ξn
h = B + h, reflection step on the right boundary is

exerted definitely. We assume that the reflection step on the right
side is from B + h to B. Hence, denote by Δgn

h the right reflection
size at time n, then we have Δξn

h = − Δgn
h = − h.

Let Ex, i, n
u, h, 0, Varx, i, n

u, h, 0 and ℙx, i, n
u, h, 0 denote the conditional expectation,

variance and marginal probability given
{ξk

h, αk
h, uk

h, Ik
h, k ≤ n, ξn

h = x, αn
h = i, In

h = 0, un
h = u}, respectively.

The sequence {(ξn
h, αn

h)} is said to be locally consistent, if it satisfies
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Ex, i, n
u, h, 0[Δξn

h] = x[π(β(i) − h(λ) − λc(i) + μ(i)) + μ(i)

−u]Δ
~

th(x, i, u) + o(Δ
~

th(x, i, u)),

Varx, i, n
u, h, 0(Δξn

h) = (π + 1)2
σ

2(i)x2Δ
~

th(x, i, u)

+o(Δ
~

th(x, i, u)),

ℙx, i, n
u, h, 0{αn + 1

h = j} = qi jΔ
~

th(x, i, u)

+o(Δ
~

th(x, i, u)),  for  j ≠ i,

ℙx, i, n
u, h, 0{αn + 1

h = i} = 1 + qiiΔ
~

th(x, i, u) + o(Δ
~

th(x, i, u)) .

sup
n, ω ∈ Ω

|Δξn
h | → 0  as  h → 0.

(36)

We require the reflections to be ‘impulsive’ or ‘instantaneous’
when In

h = 1 and In
h = 2. That is, the interpolation interval on

Sh × ℳ × U × 0, 1, 2  is

Δth(x, i, u, ī) = Δ
~

th(x, i, u)I ī = 0 ,

 for any (x, i, u, ī) ∈ Sh × ℳ × U × 0, 1, 2 .
(37)

The sequence uh is said to be admissible if un
h is

σ (ξ0
h, α0

h), …, (ξn
h, αn

h), u0
h, …, un − 1

h -adapted and for any
ℰ ∈ ℬ(Sh × ℳ), we have

ℙ (ξn + 1
h , αn + 1

h ) ∈ ℰ σ{(ξ0
h, α0

h), …, (ξn
h, αn

h), u0
h, …, un

h}

= ph((ξn
h, αn

h), ℰ |un
h),

ℙ (ξn + 1
h , αn + 1

h ) = (h, i) (ξn
h, αn

h) = (0, i),

σ{(ξ0
h, α0

h), …, (ξn
h, αn

h), u0
h, …, un

h} = 1,

and

ℙ (ξn + 1
h , αn + 1

h ) = (B, i) (ξn
h, αn

h) = (B + h, i),

σ{(ξ0
h, α0

h), …, (ξn
h, αn

h), u0
h, …, un

h} = 1.

Put

t0
h := 0, tn

h := ∑
k = 0

n − 1

Δth(ξk
h, αk

h, uk
h, Ik

h),

Δtk
h = Δth(ξk

h, αk
h, uk

h, Ik
h),  and nh(t) := max n: tn

h ≤ t .

Then the piecewise constant interpolations, denoted by
(ξh( ⋅ ), αh( ⋅ )), uh( ⋅ ), zh( ⋅ ), and gh( ⋅ ), are defined accordingly as

ξ
h(t) = ξn

h, αh(t) = αn
h, uh(t) = un

h = u(ξn
h),

zh(t) = ∑
k ≤ nh(t)

Δzk
hI Ik

h
= 1 , gh(t) = ∑

k ≤ nh(t)

Δgk
hI Ik

h
= 2

(38)

for t ∈ [tn
h, tn + 1

h ). Let (ξ0
h, α0

h) = (x, i) ∈ Sh × ℳ and uh be an
admissible strategy. Then the cost function for the controlled
Markov chain follows:

JB
h(x, i, u) = lim sup

n

Ex, i∑k = 1
n − 1

uk
hξk

hΔtk
h

Ex, i∑k = 1
n − 1 Δtk

h
, (39)

which is analogous to (11) regarding the definition of interpolation
intervals in (37). Since JB

h(x, i, u) does not depend on the initial
condition (x, i), we write it as γh(u). Likewise, we denote

γ̄h = sup
uh admissible

γh(u) . (40)

Note that we are considering feedback controls u( ⋅ ) here.
Similarly to ν in (21), let νh(u) = νh(x, u), x ∈ Sh denote the
associate invariant measure in the approximating space. Then γh(u)
can be rewritten as

γh(u) = lim sup
n

Ex, i∑k = 1
n − 1

uk
hξk

hΔtk
h

Ex, i∑k = 1
n − 1 Δtk

h

=
∑x, i u(x, i)xΔth(x, i, u(x, i), 0)νh(x, u)

∑x, i Δth(x, i, u(x, i), 0)νh(x, u)
.

(41)

Since, the time interval of the approximating Markov chain
Δth(x, i, u(x, i), 0) depends on x and u, the invariant measure for the
approximating Markov chain needs considering the time spent on
each state of the interpolated process. Then, we define a new
measure ωh(u) = ωh(x, i, u), x ∈ Sh such that

ωh(x, i, u) =
Δth(x, i, u(x, i), 0)νh(x, i)

∑x, i Δth(x, i, u(x, i), 0)νh(x, i)
. (42)

Hence, γh(u) can be written in a simple form as

γh(u) = ∑
x

u(x, i)xωh(x, i, u) . (43)

Let Eωh(u)
u  be the expectation for the stationary process under

control u( ⋅ ). In view of (41), (43) can also be written as

γh(u) = Eωh(u)
u ∫

0

1

u(ξh(s))ξh(s) ds . (44)

 
Remark 1: Practically, it is much more difficult to calculate the

invariant measure ωh(u) than to calculate the summation
∑x

u(x, i)xωh(x, i, u). By using the iteration method, the
convergence speed for computing the value of γh(u) is much faster
than that for computing the invariant measure ωh(u). Hence, we
focus on the converge of the state process and objective functions
instead of the invariant measure itself.

We will show that V
h(x, i) satisfies the dynamic programming

equation as follows:

V
h(x, i) =

ph((x, i), (y, j) |u)Vh(y, j)

+(ux − γh)Δth(x, i, u, 0),  for x ∈ Sh,

ph((x, i), (y, j) |u)Vh(y, j),  for x ∈ ∂Sh .

(45)

In actual computing, we will use value iteration or policy iteration
in an enlarged state space due to the presence of regime-switching
comparing the work in [23].

5.2 Discretisation

Define the approximation to the first and the second derivatives of
V( ⋅ , i) by the finite difference method in [24] using stepsize h > 0
as:

V(x, i) → V
h(x, i)

Vx(x, i) →
V

h(x + h, i) − V
h(x, i)

h

 for  x(π(β(i) − h(λ) − λc(i) + μ(i)) + μ(i) − u) > 0,

Vx(x, i) →
V

h(x, i) − V
h(x − h, i)

h

 for  x(π(β(i) − h(λ) − λc(i) + μ(i)) + μ(i) − u) < 0,

Vxx(x, i) →
V

h(x + h, i) − 2V
h(x, i) + V

h(x − h, i)
h

2 .

(46)
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It leads to, ∀x ∈ Sh, i ∈ ℳ,

max
u ∈ U

V
h(x + h, i) − V

h(x, i)
h

x(π(β(i) − h(λ) − λc(i)

+μ(i)) + μ(i) − u)
+

−
V

h(x, i) − V
h(x − h, i)

h
x(π(β(i)

−h(λ) − λc(i) + μ(i)) + μ(i) − u)
−

+
(π + 1)2

σ
2(i)x2

2
V

h(x + h, i) − 2V
h(x, i) + V

h(x − h, i)
h

2

+∑
j

V
h(x, ⋅ )qi j + ux − γ̄ = 0,

(47)

where [x(π(β(i) − h(λ) − λc(i) + μ(i)) + μ(i) − u)]+ and
[x(π(β(i) − h(λ) − λc(i) + μ(i)) + μ(i) − u)]− are the positive and

negative parts of [x(π(β(i) − h(λ) − λc(i) + μ(i)) + μ(i) − u)],
respectively.

For the reflecting boundaries, we choose

Vx(x, i) →
V

h(x, i) − V
h(x − h, i)

h
. (48)

That is, the process will be reflected left into the domain of the x.
For simplicity, let

b(x, i, u) = x(π(β(i) − h(λ) − λc(i) + μ(i)) + μ(i) − u),

σ(x, i, u) = (π + 1)σ(i)x .

Comparing (47) and (48) with (45), we achieve the transition
probabilities of V

h(x, i) in the interior of the domain as the
following:

ph((x, i), (x + h, i) |u) =
σ(x, i, u)2/2 + h[b(x, i, u)]+

D
,

ph((x, i), (x − h, i) |u) =
σ(x, i, u)2/2 + h[b(x, i, u)]−

D
,

ph((x, i), (x, j) |u) =
qi jh

2

D
, for i ≠ j,

ph( ⋅ ) = 0, otherwise,

Δth(x, i, u, 2) =
h

2

D
,

(49)

with

D = σ(x, i, u)2 + h |b(x, i, u) | − h
2
qii

being well defined. We also find the transition probability of
V

h(x, i) on the boundaries comparing with (45) as follows:

ph((x, i), (x + h, i) |u) = 1, for x = 0, (50)

and

ph((x, i), (x − h, i) |u) = 1, for x = B . (51)

6 Convergence of numerical approximation
This section deals with the asymptotic properties of the
approximating Markov chain by using the techniques of weak
convergence. Section 6.1 introduces the technique of time rescaling
and the interpolation of the approximation sequences. Relax
controls are defined in Section 6.2. Section 6.3 analyses the weak
convergence of the sequence of the rescaled processes
{ξ

^h
( ⋅ ), α^

h( ⋅ ), m^ h( ⋅ ), w^ h( ⋅ ), z^
h( ⋅ ), g^

h( ⋅ ), T
^ h

( ⋅ )}. Section 6.4
establishes the convergence of the optimal value.

6.1 Interpolation and rescaling

According to the approximating Markov chain defined in the last
section, we obtain the piecewise constant interpolation and choose
an appropriate interpolation interval level. In view of (38), the
continuous-time interpolations (ξh( ⋅ ), αh( ⋅ )), uh( ⋅ ), gh( ⋅ ), and
zh( ⋅ ) are defined. In addition, let Uh be the collection of strategies.
Uh is determined by a sequence of measurable functions Fn

h( ⋅ ).
For un

h ∈ Uh,

un
h = Fn

h(ξk
h, αk

h, k ≤ n; uk
h, k ≤ n) . (52)

Define Dt
h as the smallest σ-algebra generated by {ξ

h(s), αh(s),

uh(s), gh(s), zh(s), s ≤ t}. Uh defined by (52) is equivalent to the set
of all piecewise constant admissible strategies with respect to Dt

h .
Using the notations of the regular controls, interpolations and

reflection steps defined above, (35) yields

ξ
h(t) = x + ∑

k = 0

n − 1

[Ek
hΔξk

h + (Δξk
h − Ek

hΔξk
h)]

= x + ∑
k = 0

n − 1

b(ξk
h, αk

h, uk
h)Δth(ξk

h, αk
h, uk

h, 0)

+ ∑
k = 0

n − 1

(Δξk
h − Ek

hΔξk
h) + εh(t)

= x + B
h(t) + M

h(t) + εh(t),

(53)

where

B
h(t) = b(ξk

h, αk
h, uk

h)Δth(ξk
h, αk

h, uk
h, 0),

M
h(t) = ∑

k = 0

n − 1

(Δξk
h − Ek

hΔξk
h),

and εh(t) is a negligible error satisfying

lim
h → ∞

sup
0 ≤ t ≤ T

E |εh(t) |2 → 0  for any  0 < T < ∞ . (54)

Also, Mh(t) is a martingale with respect to Dt
h, and its discontinuity

goes to zero as h → 0. We attempt to represent Mh(t) similar to the
diffusion term in (9). Define wh( ⋅ ) as

wh(t) = ∑
k = 0

n − 1

(Δξk
h − Ek

hΔξk
h)/σ(ξk

h, αk
h, uk

h),

= ∫
0

t

σ
−1(ξh(s), αh(s), uh(s)) dM

h(s) .

(55)

We can now rewrite (53) as

ξ
h(t) = x + ∫

0

t

b(ξh(s), αh(s), uh(s)) ds

+∫
0

t

σ(ξh(s), αh(s), uh(s)) dwh(s) + εh(t) .

(56)

Now we introduce the procedures of rescaling. The technique of
time-rescaling is to ‘stretch out’ the control and state processes to
make them smoother. Then the tightness of gh( ⋅ ) and zh( ⋅ ) can be
proved. Define Δt

^
n
h by

Δt
^
n
h

=

Δth  for a diffusion on step n,

|Δzn
h | = h  for a left reflection on step n,

|Δgn
h | = h  for a right reflection on step n .

(57)
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Define T^ h
( ⋅ ) by

T
^ h

(t) = ∑
i = 0

n − 1

Δth = tn
h, for t ∈ [T

^

n

h
, t

^
n + 1
h

] .

Then T^ h
( ⋅ ) will increase with unit slop when a regular control is

exerted. Moreover, we define the rescaled and interpolated process
ξ
^h

(t) = ξ
h(T

^ h
(t)). α^

h(t), u^
h(t), g^

h(t) are defined similarly. The time
scale is stretched out by h at the left and right reflection steps. Then
the stretched process can be written as follows:

ξ
^h

(t) = x + ∫
0

t

b(ξ
^h

(s), α^
h(s), u^

h(s)) ds

+∫
0

t

σ(ξ
^h

(s), α^
h(s), u^

h(s))dwh(s) + εh(t) .

(58)

6.2 Relaxed controls

Let ℬ(U × [0, ∞)) be the σ-algebra of Borel subsets of U × [0, ∞).
An admissible relaxed control m( ⋅ ) is a measure on
ℬ(U × [0, ∞)) such that m(U × [0, t]) = t for each t ≥ 0. Given a
relaxed control m( ⋅ ), there is an mt( ⋅ ) such that
m(dϕ dt) = mt(dϕ) dt. Given a relaxed control m( ⋅ ) of uh( ⋅ ), we
define the derivative mt( ⋅ ) such that

mh(H) = ∫
U × [0, ∞)

I{(uh, t) ∈ H}mt(dϕ) dt (59)

for all H ∈ ℬ(U × [0, ∞)). For each t, mt( ⋅ ) is a measure on ℬ(U)
satisfying mt(U) = 1. Then mt( ⋅ ) can be defined as the left-hand
derivative for t > 0,

mt(O) = lim
δ → 0

m(O × [t − δ, t])
δ

, ∀O ∈ ℬ(U) . (60)

The relaxed control representation mh( ⋅ ) of uh( ⋅ ) can be defined
by

mt
h(O) = I{uh(t) ∈ O}, ∀O ∈ ℬ(U) . (61)

Denote by ℱt
h a filtration. ℱt

h is the minimal σ-algebra that
measures

{ξ
h(s), αh( ⋅ ), ms

h( ⋅ ), wh(s), zh(s), gh(s), s ≤ t} . (62)

Let Γh be the set of admissible relaxed controls mh( ⋅ ) with respect
to (αh( ⋅ ), wh( ⋅ )) such that mt

h( ⋅ ) is a fixed probability measure in
the interval [tn

h, tn + 1
h ) given ℱt

h. Then Γh is a larger control space
containing Uh. Referring to the stretched out time scale, we denote
the rescaled relax control as mT

^h
(t)(dψ). Define Mt(O) and Mt

h(dψ)
by

Mt(O) dt = dw(t)Iu(t) ∈ O, ∀O ∈ ℬ(U),

Mt
h(dψ) dt = dwh(t)Iuh(t) ∈ U .

Similarly, we let

M
^

T
^h
h

(t)(dψ) dT
^ h

(t) = dw^ h(T
^ h

(t))Iuh(T
^h

(t)) ∈ U .

Taking into account the relaxed controls, we rewrite (56), (58), and
(40) as

ξ
h(t) = x + ∫

0

t

∫
U

b(ξh(s), αh(s), ψ)ms
h(dψ) ds

+∫
0

t

∫
U

σ(ξh(s), αh(s), ψ)Ms
h(dψ) ds + εh(t),

(63)

ξ
^h

(t) = x + ∫
0

t

∫
U

b(ξ
^h

(s), α^
h(s), ψ)m^

T
^h

(s)

h
(dψ) dT

^ h
(s)

+∫
0

t

∫
U

σ(ξ
^h

(s), α^
h(s), ψ)M

^
T
^h

(s)(dψ) dT
^ h

(s) + εh(t),

(64)

and

γ̄h = inf
mh ∈ Γh

γh(mh) . (65)

Now we define the existence and uniqueness of the solution in the
weak sense.

 
Definition 1: By a weak solution of (63), we mean that there

exists a probability space (Ω, ℱ, {ℱt}, P), and the sequence of
processes (x( ⋅ ), α( ⋅ ), m( ⋅ ), w( ⋅ )) such that w( ⋅ ) is a standard
ℱt-Wiener process, α( ⋅ ) is a continuous-time Markov chain, m( ⋅ )
is admissible with respect to x( ⋅ ) is ℱt-adapted, and (63) is
satisfied. For an initial condition (x, i), we say that the probability
law of the admissible process (α( ⋅ ), m( ⋅ ), w( ⋅ )) determines the
probability law of solution (x( ⋅ ), α( ⋅ ), m( ⋅ ), w( ⋅ )) to (63) by the
weak sense uniqueness, irrespective of probability space.

In addition, we have one more assumption.

(A1) Let u( ⋅ ) be an admissible ordinary control with respect to
w( ⋅ ) and α( ⋅ ). Assume that u( ⋅ ) is a piecewise constant and takes
values in a finite set. For each initial condition, there exists a
solution, which is unique in the weak sense, to (63) where m( ⋅ ) is
the relaxed control representation of u( ⋅ ).

6.3 Convergence of a sequence of surplus processes

In this section, we deal with the convergence of the approximation
sequence to the regime-switching process and the surplus process.
We will derive one lemma and three theorems, whose proof is
provided in the Appendix.
 

Lemma 2: Using the transition probabilities {ph( ⋅ )} defined in
(49), the interpolated process of the constructed Markov chain
{α^

h( ⋅ )} converges weakly to α^( ⋅ ), the Markov chain with
generator Q = (qℓι).
 

Theorem 2: Let the approximating chain {ξn
h, αn

h, n < ∞}
constructed with transition probabilities defined in (49) be locally
consistent with (9), mh( ⋅ ) be the relaxed control representation of
{un

h, n < ∞}, (ξh( ⋅ ), αh( ⋅ )) be the continuous-time interpolation

defined in (38), and {ξ
^h

( ⋅ ), α^
h( ⋅ ), m^ h( ⋅ ), w^ h( ⋅ ), z^

h( ⋅ ), g^
h( ⋅ ),

T
^ h

( ⋅ )} be the corresponding rescaled processes. Then {ξ
^h

( ⋅ ),
α^

h( ⋅ ), m^ h( ⋅ ), w^ h( ⋅ ), z^
h( ⋅ ), g^

h( ⋅ ), T
^ h

( ⋅ )} is tight.
 

Theorem 3: Let {x^( ⋅ ), α^( ⋅ ), m^ ( ⋅ ), w^ ( ⋅ ), z^( ⋅ ), g^( ⋅ ), T
^
( ⋅ )} be

the limit of weakly convergent subsequence of
{ξ

^h
( ⋅ ), α^

h( ⋅ ), m^ h( ⋅ ), w^ h( ⋅ ), z^
h( ⋅ ), g^

h( ⋅ ), T
^ h

( ⋅ )}. w( ⋅ ) is a
standard ℱt-Wiener process and m( ⋅ ) is admissible. Let ℱ

^

t be the

σ-algebra generated by {ξ
^h

( ⋅ ), α^
h( ⋅ ), m^ h( ⋅ ), w^ h( ⋅ ),

z^
h( ⋅ ), g^

h( ⋅ ), T
^ h

( ⋅ )}. Then w^ (t) = w(T
^
(t)) is an ℱ

^

t-martingale with
quadratic variation T^

(t). The limit process follows:
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x^(t) = x + ∫
0

t

∫
U

b(x^(s), α^(s), ψ)m^
T
^

(s)

h
(dψ) dT

^
(s)

+∫
0

t

∫
U

σ(x^(s), α^(s), ψ)M
^

T
^

(s)(dψ) dT
^
(s) .

(66)

 
Theorem 4: For t < ∞, the inverse can be defined as

T(t) = inf {s:T
^
(s) > t} .

Then T(t) is right continuous. T(t) → ∞ as t → ∞ w. p. 1. Define
the rescaled process φ( ⋅ ) by φ(t) = φ^ (T(t)) for any process φ^ ( ⋅ ).
Then, w( ⋅ ) is a standard ℱt-Wiener process and (9) holds.

6.4 Convergence of the optimal value

To prove the convergence of the optimal value of the objective
function, we proceed to find a comparison ε-optimal control.
 

Lemma 3: For each ε > 0, there exists a continuous feedback
control uε( ⋅ ) that is ε-optimal to all admissible controls. The
solution to (9) is unique in a weak sense and has a unique invariant
measure under this ε-optimal control.
 

Proof: The existence of a smooth ε-optimal can be guaranteed
by modifying the method in [28] for our formulation. □
 

Theorem 5: Assume the conditions of Theorems 3 and 4 are
satisfied. Then as h → 0

γ̄h(x, i) → γ̄ . (67)
 

Proof: First, to prove

γ̄h(x, i) ≤ γ̄ . (68)

Let u~( ⋅ ) be the optimal control and m~h( ⋅ ) be the relaxed control
representation of u~h( ⋅ ). Then, γ̄h(x, i) = γh(u~h). Hence, in view of
(44)

γ̄h(x, i) = Eu
~h∫

0

1

u(ξh(s))ξh(s) ds

= Eu
~h∫

0

1

∫
U

ξ
h(s)ψm

~
s
h(dψ) ds

→ Em
~∫

0

1

∫
U

x(s)ψm
~

s(dψ) ds

= lim
T

1
T

Em
~∫

0

T

∫
U

ψm
~

s(dψ) ds

= γ(m~)

≤ γ̄,

(69)

where γ(m~) is the optimal value of the performance function for the
limit stationary process.

On the other hand, from Lemma 3, we have ε-optimal control uε

such that

γ̄h(x, i) ≥ γh(uε, i)

= Euε∫
0

1

uε(ξh(s))ξh(s) ds

→ Euε∫
0

1

uε(x(s))x(s) ds

= lim
T

1
T

Euε∫
0

T

uε(x(s))x(s) ds

= γ(uε, i)

≥ γ̄ − ε .

(70)

Combining (69) and (70) yields (67). □

7 Numerical examples and further remarks
7.1 Numerical examples

We present a numerical example in this section. The regime-
switching process is set to have two states for simplicity. By using
the value iteration method, we solve the optimal strategies
numerically.

According to the algorithm constructed in previous sections, we
conduct the computation by using the method of value iteration as
the following. For n ∈ Z

+ and i ∈ ℳ, define the vectors

Vn
h = {Vn

h(h, 1), Vn
h(2h, 1), …, Vn

h(B, 1), …Vn
h(h, n0),

Vn
h(2h, m), …, Vn

h(B, m)},

V
h = {Vn(h, 1), Vn(2h, 1), …, Vn(B, 1), …Vn(h, m),

Vn(2h, m), …, Vn(B, m)} .

We obtain Vn(x0, i) at last. The numerical experiments demonstrate
that Vn(x0, i) → γ̄ as n → ∞. The procedure is as follows.

1. Set n = 0. ∀x ∈ Sh and i ∈ ℳ, we set the initial value
V0

h(x, i) = V0
h
(x) = 0.

2. Choose a x0. Find improved values Vn + 1
h (x, i) by iteration and

record the corresponding optimal control

Vn + 1
h (x, i) = max

u ∈ U
∑
(y, j)

(ph((x, i), (y, j)) |u)Vn
h
(y, i)

+ ux ,

Vn
h
(x, i) = Vn

h(x, i) − Vn
h(x0, i) .

3. If |Vn + 1
h − Vn

h | > tolerance, then n → n + 1 and go to step 2;
else the iteration stops.

The continuous-time finite-state Markov chain α(t) has the
generator

Q =
−10 10

800 −800

and ℳ = {1, 2} . The claim severity distribution follows an
exponential distribution with density function f (y) = ae−ay where
a = 0.1. The premium rate depends on the regimes with
β(1) = 0.02 and β(2) = 0.06. The dividend rate u(t) taking values
in [0, 1] is the control. Based on different market states, the yield
rate of the asset is μ(1) = 0.1 and μ(2) = 0.02. The volatility of the
financial market σ(α(t)) is valued as σ(1) = 0.05 and σ(2) = 0.1.
The claim rates in different regimes are set as c(1) = 0.01 and
c(2) = 0.1. Hence, we are considering two insurance market modes
to represent the insurance cycle. Market mode 1 represents a ‘soft’
market, where the investment return is high and the premium rate
is low. While market mode 2 represents a ‘hard’ market, where the
investment return is low and the premium rate is high. Obviously, it
is much easier for insurance companies when the market is in mode
1. The insurance company is more likely to expand its business and
write more policies. Then the liability ratio is higher. Hence, we set
π(1)=0.8. For market mode 2, the insurance and financial market
are much harder. The insurance company will preserve sufficient
surplus and write less policies to pay for the future claims. Then
the liability ratio is lower. Then, we set π(1)=0.2. To compute the
optimal average dividend payment, we choose the value iteration
and impose the upper bound of the computation interval of surplus
as B = 50.

Furthermore, note that the x0 is arbitrarily chosen to initiate the
algorithm. Theoretically, different x0 is supposed to lead to the
same γ̄. In practical computation, there are inevitable
computational errors in calculating the optimal value of γ . The
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optimal values are the average of convergent values of Vn(x0) in all
available x0's. To show the stability of the convergence with
different x0's, we plot the values Vn(x0) with respect to x0 when the
iteration stops in Fig. 1. 

From Fig. 1, it is shown that Vn(x0) is fluctuating within the
range [0, 0.1]. After a small hike when x0 is small, the convergence
value of Vn(x0) is flat and stable when x0 is bigger. According to the
stationary of the process, the average of the convergence value of
Vn(x0) is a good approximation to the optimal long-term average
dividend payment. The average of the values of blue dots is 0.06,
and the average of the values of red dots is 0.03. The optimal
ergodic control of dividend payment can be approximated by the
mean as 0.045.

7.2 Further remarks

This work focused on finding the optimal ergodic dividend
payment strategies of an insurance company with a long-term goal.
The parameters in the model including premium rate, return rate of
the assets, and claim rate, depend on the state of the economy,
which is described by a finite-state continuous-time Markov chain.
Considering the impact of reinsurance strategies on the surpluses of
insurance companies, we aimed to maximise the long-run average
dividend payment in an infinite time horizon. A generalised
stationary diffusion process of surplus is presented. The invariant
measure is constructed and the optimal value is obtained
accordingly. By using the dynamic programming approach, we
derive the associated system of HJB equations. Due to the regime-
switching, approximating the invariant measure is very difficult.
Then, we develop a numerical method to approximate the optimal
ergodic dividend payment strategy directly. A two-component
discrete-time controlled Markov chain is constructed to
approximate the controlled regime-switching diffusion process.
Convergence of the approximation algorithm is presented, and the
optimal ergodic control is obtained in the numerical example under
given parameter settings.

In the future study, the techniques of constructing invariant
measures and approximating Markov chain can be extended to a
variety of optimisation problems of risk-sensitive controls for
ergodic processes, where the objective is to maximiee/minimise
various performance functions over long term. Although the
specific aim of this study is devoted to developing the optimal
long-term insurance policies, the methods can be readily adopted to
treat other optimal control problems with a long-run average aim
and regime-switching diffusion formulation. The future effort may
also be devoted to another variant of related game problems with
long-term goal objective functions.
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10 Appendix
 
10.1 Proof of Lemma 2

 
Proof: We see that αh( ⋅ ) is tight. The proof is similar to

Theorem 3.1 in [29]. Then so is α^ h( ⋅ ) due to the rescaled time. □

Fig. 1  Optimal γ versus initial status
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10.2 Proof of Theorem 2

 
Proof: In view of Lemma 2, {α^

h( ⋅ )} is tight. Since its range
space is compact, the sequence {m^ h( ⋅ )} is tight. Let T < ∞, and
let τh be an ℱt-stopping time which is not larger than T. Then for
δ > 0

Eτh

uh

(wh(τh + δ) − wh(τh))
2 = δ + εh, (71)

where εh → 0 uniformly in τh. Taking lim suph → 0 followed by
limδ → 0 yield the tightness of {wh( ⋅ )}. Similar to the argument of
αh( ⋅ ), the tightness of w^ h( ⋅ ) is obtained. Furthermore, following
the definition of ‘stretched out’ timescale

|z^h(τh + δ) − z^
h(τh) | ≤ |δ | + O(h),

|g^h(τh + δ) − g^
h(τh) | ≤ |δ | + O(h) .

Thus, {z^
h( ⋅ ), g^

h( ⋅ )} is tight. These results and the boundedness of
b( ⋅ ) imply the tightness of {ξ

h( ⋅ )}. Thus, {ξ
^h

( ⋅ ), α^
h( ⋅ ), u^

h( ⋅ ),

w^ h( ⋅ ), z^
h( ⋅ ), g^

h( ⋅ ), T
^ h

( ⋅ )} is tight.□
Since {x^

h( ⋅ ), α^
h( ⋅ ), m^ h( ⋅ ), w^ h( ⋅ ), z^

h( ⋅ ), g^
h( ⋅ ), T

^ h
( ⋅ )} is tight, A

weakly convergent subsequence can be extracted and denoted by
{ξ

^
( ⋅ ), α^( ⋅ ), m^ ( ⋅ ), w^ ( ⋅ ), z^( ⋅ ), g^( ⋅ ), T

^
( ⋅ )}. Also, the paths of

{x^( ⋅ ), α^( ⋅ ), m^ ( ⋅ ), w^ ( ⋅ ), z^( ⋅ ), g^( ⋅ ), T
^
( ⋅ )} are continuous w. p. 1.

□

10.3 Proof of Theorem 3

 
Proof: The proof is similar to Theorem 4.4 in [24], thus we omit

it here. The readers may refer to [24] or related references. □

10.4 Proof of Theorem 4

 
Proof: Since T

^
(t) → ∞ w.p. 1 as t → ∞, T(t) exists for all t

and T(t) → ∞ as t → ∞ w. p. 1

ES(ξh(tk), αh(tk), wh(tk), (ψ j, mh)tk, zh(tk), gh(tk), j ≤ q,

k ≤ p)[w(t + s) − w(t)] = 0.

ES(ξh(tk), αh(tk), wh(tk), (ψ j, mh)tk, zh(tk), gh(tk), j ≤ q,

k ≤ p)[w2(t + δ) − w
2(t) − (T(t + s) − T(t))] = 0.

Thus, we can verify w( ⋅ ) is an ℱt-Wiener process. A rescaling of
(66) yields

x(t) = x + ∫
0

t

∫
U

b(x(s), α(s), ψ)ms(dψ) ds

+∫
0

t

∫
U

σ(x(s), α(s), ψ)Ms(dψ) ds .

(72)

In other words, (9) holds. □
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