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Abstract

Acoustic communication is a fundamental component of mate and competitor recognition in a variety of taxa and requires
animals to detect and differentiate among acoustic stimuli (Bradbury and Vehrencamp in Principles of animal communication,
2nd edn., Sinauer Associates, Sunderland, 2011). The matched filter hypothesis predicts a correspondence between peripheral
auditory tuning of receivers and properties of species-specific acoustic signals, but few studies have assessed this relation-
ship in rodents. We recorded vocalizations and measured auditory brainstem responses (ABRs) in northern grasshopper
mice (Onychomys leucogaster), a species that produces long-distance calls to advertise their presence to rivals and potential
mates. ABR data indicate the highest sensitivity (28.33 +9.07 dB SPL re: 20 pPa) at 10 kHz, roughly corresponding to the
fundamental frequency (11.6 +0.63 kHz) of long-distance calls produced by conspecifics. However, the frequency range of
peripheral auditory sensitivity was broad (8—24 kHz), indicating the potential to detect both the harmonics of conspecific
calls and vocalizations of sympatric heterospecifics. Our findings provide support for the matched filter hypothesis extended
to include other ecologically relevant stimuli. Our study contributes important baseline information about the sensory ecol-
ogy of a unique rodent to the study of sound perception.
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Introduction

The perceptual world of animals emerges from the tuning
of nervous systems faced with an excess of external stimuli
(von Uexkiill 1934; Wehner 1987; von der Emde and War-
rant 2016). The matched filter hypothesis proposes that
sensory systems evolve to detect only the most ecologically
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relevant stimuli (Barlow 1961; Wehner 1987). Efficient
allocation of sensory resources enhances signal detection
by maximizing signal-to-noise ratios to facilitate behaviors
essential for survival and reproduction (Endler 1993; Lucas
et al. 2015). Matched filters for economical sensing (von
der Emde and Warrant 2016) exist in diverse modalities and
taxa, including insect vision and olfaction (Warrant 2016),
arachnid mechanoreception (Barth 2016), and fish electrore-
ception (von der Emde and Ruhl 2016).

In the acoustic domain, the matched filter hypothesis
specifically predicts a correspondence between peripheral
auditory tuning of receivers and properties of species-
specific acoustic signals (Capranica and Moffat 1983). In
crickets and anurans, matching of the peripheral auditory
system with the dominant frequency of male advertise-
ment signals facilitates discrimination of conspecifics
from heterospecifics (Gerhardt and Schwarz 2001; Ger-
hardt and Huber 2002). Similarly, many birds exhibit
heightened peripheral auditory tuning for species-specific
frequency and temporal parameters to facilitate social
communication (Dooling et al. 1979; Gall et al. 2012).
The relationship between peripheral auditory tuning and
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species-specific vocalizations is less well described in
mammals in part due to a focus on selective encoding of
acoustic stimuli in the central auditory pathway that inte-
grates inputs from the brainstem, the auditory cortex, and
associated cortical areas (Holmstrom et al. 2010; Portfors
and Roberts 2014; Portfors 2018). However, recent evi-
dence in rodents suggests that subcortical auditory nuclei
play an important role in mediating behavioral responses
to ecologically relevant sounds (Portfors 2018). For exam-
ple, pup rearing experience shortens maternal auditory
brainstem response latencies to promote recognition of
infant isolation vocalizations (Miranda et al. 2014). Such
findings have contributed to increased interest in the role
of the peripheral auditory system to rodent sound percep-
tion in ecologically relevant contexts (Kubke and Wild
2018; Portfors 2018).

Although many rodents produce both sonic and ultra-
sonic vocalizations (USV) to mediate social interactions
(Kalcounis-Rueppell et al. 2006; Portfors 2007; Briggs
and Kalcounis-Rueppell 2011; Hanson and Hurley 2012),
laboratory mice and rats account for most studies of hear-
ing physiology (Dent et al. 2018). In addition, such studies
often occur in the context of biomedical applications and
are largely divorced from ethologically relevant acoustic
signals that mediate social behavior (Bennur et al. 2013).
The comparatively few studies of auditory sensitivity in
exotic rodents are based on behavioral audiograms (e.g.,
Webster and Webster 1972; Heffner 1980; Heffner and
Heffner 1985, 1990, 1992) and/or did not relate auditory
sensitivity to the vocal repertoire of the species (Ralls
1967; Katbamna et al. 1996; Zhou et al. 2006). Broadly,
studies are lacking that relate hearing physiology to vocali-
zations in non-model rodents, thus limiting our ability to

identify whether the peripheral auditory filtering applies
more broadly across different taxa and contexts.
Northern grasshopper mice (Onychomys leucogaster)
are cricetid rodents of western North America that feed on
arthropods and small vertebrates (Bailey and Sperry 1929;
Flake 1973). As a consequence of their predatory lifestyle,
grasshopper mice have large home ranges (1.72 +0.68 ha;
Stapp 1999) for their body size (McNab 1963). Like other
muroid rodents, grasshopper mice produce USVs (~ 50 kHz)
in close-distance mating contexts (Miller and Engstrom
2012; Pasch et al. 2017). However, the genus is unique
among mice in their ability to produce audible long-distance
advertisement vocalizations to announce their presence to
potential mates and competitors (Ruffer 1966; Frank 1989).
As females enter receptivity during the summer mating sea-
son, both males and females call reciprocally to facilitate
localization (Frank 1989). Long-distance calls consist of a
fundamental frequency (F)) and a series of harmonic over-
tones at integer multiples of F, (Pasch et al. 2017; Fig. 1),
with populations varying in both call F|, (9.5-13.5 kHz) and
the degree of sexual dimorphism (Hafner and Hafner 1979;
Miller and Engstrom 2012; Pasch et al. 2016). In southwest-
ern New Mexico, the species is sympatric with two smaller
congeners (Chihuahuan grasshopper mice, O. arenicola, and
southern grasshopper mice, O. forridus) that produce higher
frequency species-specific calls (Pasch et al. 2016).
Despite their unique mode of acoustic communication,
only two studies have explored auditory sensitivity in grass-
hopper mice. Conditioned avoidance procedures indicate
that northern grasshopper mice (n=3) from western Kan-
sas are most sensitive to 8 kHz tones (Heffner and Heffner
1985) and have an enhanced ability to localize sound rela-
tive to other rodents (Heffner and Heffner 1988). However,
no studies have simultaneously quantified call characters
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Fig. 1 Long-distance vocalization of a northern grasshopper mice. a
An illustration of a mouse calling, b spectrogram and ¢ power spec-
trum of a long-distance vocalization from a male recorded at 33.3 cm.
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and auditory tuning to explore the degree to which vocali-
zations are matched to their peripheral auditory sensitiv-
ity. In this study, we quantified the F|, of long-distance
vocalizations and hearing thresholds of northern grasshop-
per mice from southwestern New Mexico using auditory
brainstem responses (ABR; Willott 2006). ABRs are a
relatively non-invasive method to record auditory-evoked
potentials of the cochlear ganglion neurons and nuclei of
the central auditory pathway from electrodes on the scalp
(Hall 2007). We focused on frequencies (4—32 kHz) sur-
rounding those reported for long-distance vocalizations of O.
leucogaster (Hafner and Hafner 1979; Miller and Engstrom
2012; Pasch et al. 2017) but below the frequencies of USVs
(48.3 +2.6 kHz; Pasch et al. 2017). We predicted a corre-
spondence between receiver auditory sensitivity and the F),
that comprise species-specific long-distance vocalizations.

Materials and methods
Animals

We trapped mice in the San Simon and Animas Valleys, New
Mexico, and transferred them to animal facilities at Northern
Arizona University, Flagstaff, AZ, USA. Mice were housed
individually due to occasional aggression and incompatibil-
ity that arises when paired (Pinter 1971; Ruffer 1968), or as
breeding pairs in a larger colony room housing conspecifics
and heterospecifics (O. arenicola and O. torridus) from the
same geographic area. Mice were maintained on a 14:10
light/dark cycle at 20+ 3 °C and provided rodent chow and
water ad libitum.

Acoustic recording

We recorded the mass and vocalizations of 36 wild-captured
mice (n=18/sex). Individual animals in their home cage
were placed in a semi-anechoic coolers lined with acous-
tic foam for overnight (10 h) acoustic recording for three
nights. We used 1/4" microphones (Type 40BE, G.R.A.S.)
connected to preamplifiers (Type 26 CB, G.R.A.S.) to obtain
acoustic pressure recordings 33.3 cm above the center of
the cage of a focal mouse. Microphone response was flat
within+ 1.5 dB from 10 Hz to 50 kHz, and pre-amplifier
response was flat within+0.2 dB from 2 Hz to 200 kHz.
Microphones were connected to a National Instruments
DAQ (USB 4431) sampling at 102.4 kHz to a laptop com-
puter running MATLAB (Version 2014a). We calculated F|,
and 2 F, in Avisoft SASLab Pro (version 4.2.27, Avisoft
Bioacoustics, Germany; 256-point Fast Fourier Transform
(FFT); Hann window with 50% overlap; frequency resolu-
tion 400 Hz, temporal resolution 0.16 ms). For each indi-
vidual, we calculated averages from the total number of

calls recorded (x=38.3, range = 1-250). Values are reported
as + standard deviation.

Auditory-evoked potentials

To estimate auditory-evoked potentials, we tested separate
captive bred offspring of wild-captured mice (n =18, 9/sex)
between the ages of 6—18 month in a shielded semi-ane-
choic chamber (ETS Lindgren SD-1; internal dimensions
91.4 cmx91.4 cmx91.4 cm) lined with acoustic foam.
Following measurement of mass, we administered sodium
pentobarbital (25 mg/kg; 0.1 mL/40 g) intraperitoneally to
anesthetize mice. Occasionally, we injected an additional
dose (<0.05 mL) 10 min after the initial dose to maintain
an anesthetic plane. We positioned mice on a gel heating
pad (32+5 °C) to maintain body temperature and placed
three needle electrodes (27 gauge, 12 mm; Rochester Elec-
tro-Medical Inc., Lutz, FL, USA) subdermally behind (1)
the left ipsilateral ear receiving the stimulus (reference), (2)
at the vertex of the skull (active channel), and (3) behind
the contralateral right ear (ground) to obtain monaural ABR
signals. Electrodes were connected to a head stage (RA4LI,
Tucker Davis Technologies (TDT), Alachua, FL, USA) and
preamplifier (RA4RA, TDT) attached to a processor (RZ6,
TDT) via a fiber optic cable. Auditory-evoked responses
were filtered (high-pass at 100 Hz, low-pass at 3 kHz, and
notch-filtered at 60 Hz) and digitized at a sampling rate of
24.4 kHz.

Acoustic stimuli presentation

We created and presented stimuli with SigGenRZ and BioSi-
gRZ (version 5.7.0, TDT), respectively. Stimuli were 2.5-
ms tone bursts with 0.4 ms gating with number of averages
set to 512. We presented stimuli through a speaker (MF1,
Tucker-Davis Technologies) positioned 10 cm away from
the left ear of the mouse. Frequency response of the speaker
(1.5 dB) was calibrated with a Briiel & Kjaer microphone
(Type 4939) and preamplifier (Type 2670) connected to a
microphone power supply (Type 5935L).

In each trial, we presented frequencies ranging from 4
to 32 kHz in 2—4 kHz steps at amplitudes ranging from 80
to 10 dB SPL in 10 dB steps. Trials lasted approximately
45 min. After each trial, animals were placed on a flat,
clean surface within their home cage over a heating pad.
We monitored subjects until fully recovered from anesthesia
as defined by upright walking.

Auditory brainstem response analyses
Rodent ABRs typically consist of five voltage peaks within

10 ms of stimulus onset (Willott 2006; Hall 2007), but dif-
ferences in species or strain identity (Zhou et al. 2006),
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methodology (Land et al. 2016), or anesthesia (Ruebhausen
et al. 2012) may contribute to variation in waveform shape.
To avoid bias, a trained researcher first coded and ran-
domized ABR waveforms so that datasets were analyzed
blind to subject identity, stimulus frequency, and stimulus
level (dB). We then used three methods to estimate auditory
responsiveness. First, we used the visual detection method
(Jacobson 1985; Gall et al. 2011; Chen et al. 2016) whereby
a researcher determined the lowest stimulus level (dB) per
frequency that evoked an ABR response (Fig. 2). Thresholds
were operationally defined as the dB level halfway (5 dB)
between the last detectable ABR response and next lowest
stimulus level. We then measured the amplitude of the ABR
response by quantifying the voltage difference between the
first detectable positive peak and first negative valley (cor-
responding to ABR wave II as inferred from robust ABR
responses to click stimuli; Supplementary Fig. S1; Blatchley
et al. 1987; Hall 2007) for each stimulus frequency at each
intensity level (Henry and Lucas 2008; Gall et al. 2011).
ABR amplitude reflects the number and synchrony of neu-
ral responses (Hall 2007). Finally, we measured the latency
from stimulus exposure to the first detectable peak of the
ABR, with shorter latencies indicating a faster response to
a stimulus (Hall 2007).

Statistical analyses

We used two-sample 7 tests to compare differences in body
mass and F, between sexes. We analyzed all ABR data using
repeated-measures mixed models with individual identity
specified as a random effect and sex, stimulus frequency, and
their interaction as explanatory variables. For ABR ampli-
tude and latency, stimulus level (dB) and its interaction with
stimulus frequency were also included. Because our data did
not meet the assumptions of normality (function: shapiro.
test, R Core Team 2017), we modeled separately the log
of the three continuous response variables (visual detection

Signal level (dB SPL)
a P
g 3

Time (ms)

Fig.2 Auditory brainstem response (ABR) of an individual northern
grasshopper mouse in response to a 10 kHz tone. The 4+ and—refer to
the peak and valley used to estimate ABR latency and amplitude. The
dotted line indicates the hearing threshold estimated from the visual
detection method
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method, amplitude, and latency) using R (version 3.3.3, GUI
1.69) and R Studio (version 3.3.3; package: nlme, function:
Ime and anova; Pinheiro et al. 2017; R Core Team 2017).
Significant effects (¢ =0.05) were assessed post hoc using
Tukey tests based on the log of the continuous response vari-
ables (function: TukeyHSD; R Core Team 2017) adjusted for
multiple comparisons.

Results
Body mass and long-distance vocalizations

We found no difference in body mass between female
(38.6+4.2 g) and male (41.8+3.6 g; t,,=1.71, p=0.11)
mice used in our ABR trials. Similarly, we found no dif-
ference in mass between females (33.4+5.1 g) and males
(35.8+6.1 g; t3,=1.31, p=0.2) used in our vocal record-
ing study. The F, and 2F|, of long-distance calls averaged
11.6 kHz and 23.2 kHz, respectively (range 10.4-12.6 kHz
and 20.8-25.2 kHz; Fig. 1) and did not differ between
females (11.66 +£0.67) and males (11.61 +0.59 kHz;
t3,=—0.23, p=0.813 for F).

Frequency sensitivity: auditory thresholds

Similar to body mass and call F,,, we found no effect of
sex (F 14=0.0001, p=0.99) nor the sex by stimulus fre-
quency interaction (F, ;60=0.5, p=0.9) on auditory thresh-
olds. However, stimulus frequency was a statistically sig-
nificant predictor of threshold differences (< 40=19.43,
p<0.001). Auditory thresholds indicated that the frequency
range of best sensitivity (operationally defined as the fre-
quency range at which thresholds were < 10 dB greater than
the frequency of greatest sensitivity) was wide and did not
differ statistically between 8 and 24 kHz (all Tukey HSD
post hoc pairwise comparisons adjusted p>0.1; Fig. 3).
Frequency sensitivity declined sharply below 8 kHz and
above 24 kHz, coincident with the range of F, and 2F pro-
duced by senders (8 kHz vs. 10 kHz, adjusted p=0.1; 4 kHz
vs. 8 kHz, adjusted p=0.001; 24 kHz vs. 28 kHz, adjusted
p <0.02; Fig. 3).

Frequency sensitivity: amplitude and latency

Similar to auditory thresholds, we found no sex differ-
ences in ABR amplitude (¥, ;4=0.4, p=0.5). ABR ampli-
tude was significantly influenced by stimulus frequency
(F10.160=19.43, p<0.001), stimulus level (F; 1355 =422.72,
p<0.001), and the stimulus frequency by stimulus level
interaction (Fg ;363 =3.34, p <0.001). Response amplitudes
mirrored auditory threshold measures, with similar ampli-
tudes between 8 and 28 kHz across all stimulus levels (4 kHz
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Fig.3 Audiogram of northern grasshopper mice (n=18) based on
the visual detection method relative to histograms depicting the range
of fundamental frequencies (F|,; shaded bars) and second harmonics
(2F,; open bars) of long-distance vocalizations (n=36). The horizon-
tal line indicates auditory thresholds are not significantly different at
p <0.05. Error bars represent+ 1 SE

vs. 8 kHz, adjusted p <0.001; 8 kHz vs. 10 kHz, adjusted
p=0.71; 18 kHz vs. 24 kHz, adjusted p=0.07; 18 kHz vs.
28 kHz, adjusted p=0.01; 24 kHz vs. 28 kHz, adjusted
p=0.99; Fig. 4). Response amplitudes generally increased
with increasing stimulus levels with the largest magnitudes
of response within the range of best sensitivity as defined by
auditory thresholds (Fig. 4).

We also found no sex differences in latency to the first
positive peak of the ABR (¥, ;4=0.0001, p =0.1). How-
ever, there were significant main effects of stimulus fre-
quency (Fyg60=10.81, p <0.001) and stimulus level
(F7.136s=1175.1, p <0.001). The interaction between stimu-
lus frequency and stimulus level was marginally statistically
significant (Fg 363 =1.82, p =0.05). Generally, latencies
decreased as stimulus levels increased. Similar to the ABR
amplitudes, latency was shortest at frequencies within the
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Fig.4 Heat map depicting auditory brainstem response (ABR) ampli-
tude as a function of stimulus frequency (kHz) and stimulus level (dB
SPL) in northern grasshopper mice (n=18)
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Fig.5 Heat map depicting auditory brainstem response (ABR)
latency as a function of stimulus frequency (kHz) and stimulus level
(dB SPL) in northern grasshopper mice (n=18)

range of best sensitivity as defined by auditory thresholds
(Fig. 5).

Discussion

Our findings indicate that northern grasshopper mice exhibit
selective tuning to frequencies that comprise their long-
distance advertisement calls at the level of the peripheral
auditory system. Frequency sensitivity is consistent with
behavioral audiograms described for the species (Heffner
and Heffner 1985), and the absence of sex differences in
ABRs correspond to sexually monomorphic size and call
frequencies in the population (Pasch et al. 2016; herein).
However, ABR thresholds spanned a broader frequency
range surrounding F then predicted from a precise defini-
tion of a matched filter. We discuss our findings in relation
to the unique biology of grasshopper mice.

The electrophysiological data presented herein are con-
sistent with the shape and frequency of northern grasshop-
per mouse behavioral audiograms. In particular, behavioral
audiograms indicate peak hearing at 8§ kHz with extended
sensitivity to 16 kHz (Heffner and Heffner 1985). Com-
pared to laboratory rats (Rattus), house mice (Mus; Ralls
1967; Dent et al. 2018), brush mice (Peromyscus boylii), and
white-footed mice (P. leucopus; Ralls 1967), grasshopper
mouse ABRs have a similar shape but exhibit sensitivity to
lower frequencies as predicted from the spectral properties
that comprise their long-distance calls. In rodents, such low-
frequency sensitivity is surpassed only by fossorial rodents
whose subterranean environments selectively attenuate
high frequencies (Heffner and Heffner 1992; Gerhardt et al.
2017). However, ABR levels found herein (20-30 dB) were
higher than values reported for behavioral audiograms in
grasshopper mice (9 dB; Heftner and Heffner 1985). In gen-
eral, behavioral methods and compound action potentials
provide lower thresholds than ABRs (Ohlemiller et al. 2010;
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Kobrina and Dent 2016). Such a discrepancy is commonly
attributed to a lack of temporal integration and anesthesia-
driven suppression of cortical processes that may enhance
acoustic sensitivity by 10-30 dB (Heftner and Heffner 2003;
Dent et al. 2018). Thus, while the shape of audiograms tend
to be similar across methods, absolute threshold levels differ,
and the ABR thresholds reported herein represent a con-
servative estimate of hearing ability in grasshopper mice.

Although mice produced advertisement calls with F
between 10.4-12.6 kHz, their peripheral auditory systems
were most sensitive to frequencies between 8 and 24 kHz. In
anurans, imprecise or complete mismatches between sender
signals and receiver sensitivity may be due to allometric
constraints (Ryan et al. 1992), phylogeny (Wilczynski et al.
2001), abiotic and biotic background noise (Moreno-Gémez
et al. 2013; Zhao et al. 2017), or selection to simultaneously
stimulate distinct auditory organs with different sensitivities
(Zhu et al. 2016). In birds, similar mismatches may reflect a
sensory mechanism that mediates preferences for certain sig-
nal properties (Vélez et al. 2015). In mice, such broad tuning
may be a general feature of the auditory periphery (e.g.,
the mammalian coiled cochlea permits a greater frequency
range; Manley 1971, 2000) relative to the more selective
tuning that emerges in the inferior colliculus (Portfors et al.
2011; Woolley and Portfors 2013). Electrophysiological
recordings of auditory midbrain neurons are thus needed to
better understand how peripheral filter output is processed
to decode social vocalizations.

If central auditory processing areas exhibit similar or
enhanced tuning compared to the ABR, then mice could
readily detect higher frequencies that include the harmonics
found in conspecific vocalizations (Fig. 3). Higher frequen-
cies have smaller wavelengths that attenuate more rapidly
in the environment compared to lower frequencies (Wiley
and Richards 1978; Peters et al. 2012). Thus, sensitivity to
the second harmonic (2F;)) may enable distance estimation,
or ranging, with detection of harmonics indicating a shorter
distance between sender and receiver (Nelson 2000). Indeed,
Carolina wrens estimate the distance to a sender based on the
amplitude of harmonics relative to F, (Naguib 1995, 1997).
Such distance estimation may facilitate avoidance of poten-
tially costly interactions or promote aggressive responses
when rivals are nearby (Naguib 1995). In grasshopper mice,
long-distance calls facilitate conspecific localization, with
male—female encounters leading to reproductive behaviors
and male-male encounters leading to antagonism (Frank
1989). Since males and females do not exhibit sex differ-
ences in call parameters (Pasch et al. 2016; herein), distance
estimation may provide a cue to switch to alternative modali-
ties (e.g., olfaction) as individuals approach one another.
Playback experiments are needed to assess how grasshopper
mice respond behaviorally to varying amplitudes of F, and
2F, (Lohr and Dooling 1998).
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Similarly, if the broad ABR tuning found herein is rep-
resented higher in the auditory processing system, animals
would likely be able to detect sympatric heterospecifics
(O. arenicola and O. torridus) that produce slightly higher
F, (15 kHz and 13 kHz, respectively; Hafner and Hafner
1979; Pasch et al. 2016). Animals used in our study were
captured and derived from a population that co-occurs with
both heterospecifics and raised in a colony room housing
all three species. Although mice and bats can distinguish
behaviorally among acoustic signals of ecologically simi-
lar species (Schuchmann and Siemers 2010; Pasch et al.
2013), auditory recognition mechanisms remain less clear.
In dendrobatid frogs, the recognition space—or range of
values that receivers treat as valid conspecifics (Ryan and
Rand 1993)—extends beyond conspecific frequencies
but is constrained by heterospecifics to reduce interfer-
ence (Amézquita et al. 2011, Simmons 2013). While the
peripheral auditory system exhibits plasticity in response
to auditory experience (Gall and Wilczynski 2015), disen-
tangling the relative contributions of learning and genetic
differences that shape recognition space will necessitate
sampling replicate allopatric and sympatric populations
with and without exposure to heterospecific vocalizations.
In closely related neotropical singing mice (Scotinomys),
expansion of sensory sensitivity in the central auditory
system appears to mediate competitor recognition and
interspecific aggression in sympatry (Pasch et al. 2016). In
either case, alternative physiological (e.g., critical ratios;
King et al. 2015) and behavioral measures (e.g., operant
conditioning; e.g., Neilans et al. 2014; Klink et al. 2006)
will be necessary to refine estimates of sensitivity and fre-
quency discrimination.

In summary, our data indicate that northern grasshop-
per mice exhibit broad tuning in the peripheral auditory
system that overlaps with both the F, and 2F, found in
conspecific and heterospecific vocalizations. Our study
contributes important baseline information about the sen-
sory ecology of a unique rodent to the study of sound
perception. Such findings will facilitate future comparative
experiments on hearing abilities of other non-model spe-
cies to broaden our understanding of the ecology, evolu-
tion, and mechanisms of sound production and perception
in the most diverse lineage of mammals.
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