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Abstract
Acoustic communication is a fundamental component of mate and competitor recognition in a variety of taxa and requires 
animals to detect and differentiate among acoustic stimuli (Bradbury and Vehrencamp in Principles of animal communication, 
2nd edn., Sinauer Associates, Sunderland, 2011). The matched filter hypothesis predicts a correspondence between peripheral 
auditory tuning of receivers and properties of species-specific acoustic signals, but few studies have assessed this relation-
ship in rodents. We recorded vocalizations and measured auditory brainstem responses (ABRs) in northern grasshopper 
mice (Onychomys leucogaster), a species that produces long-distance calls to advertise their presence to rivals and potential 
mates. ABR data indicate the highest sensitivity (28.33 ± 9.07 dB SPL re: 20 μPa) at 10 kHz, roughly corresponding to the 
fundamental frequency (11.6 ± 0.63 kHz) of long-distance calls produced by conspecifics. However, the frequency range of 
peripheral auditory sensitivity was broad (8–24 kHz), indicating the potential to detect both the harmonics of conspecific 
calls and vocalizations of sympatric heterospecifics. Our findings provide support for the matched filter hypothesis extended 
to include other ecologically relevant stimuli. Our study contributes important baseline information about the sensory ecol-
ogy of a unique rodent to the study of sound perception.

Keywords  Acoustic communication · Auditory brainstem response · Matched filter · Onychomys

Introduction

The perceptual world of animals emerges from the tuning 
of nervous systems faced with an excess of external stimuli 
(von Uexküll 1934; Wehner 1987; von der Emde and War-
rant 2016). The matched filter hypothesis proposes that 
sensory systems evolve to detect only the most ecologically 

relevant stimuli (Barlow 1961; Wehner 1987). Efficient 
allocation of sensory resources enhances signal detection 
by maximizing signal-to-noise ratios to facilitate behaviors 
essential for survival and reproduction (Endler 1993; Lucas 
et al. 2015). Matched filters for economical sensing (von 
der Emde and Warrant 2016) exist in diverse modalities and 
taxa, including insect vision and olfaction (Warrant 2016), 
arachnid mechanoreception (Barth 2016), and fish electrore-
ception (von der Emde and Ruhl 2016).

In the acoustic domain, the matched filter hypothesis 
specifically predicts a correspondence between peripheral 
auditory tuning of receivers and properties of species-
specific acoustic signals (Capranica and Moffat 1983). In 
crickets and anurans, matching of the peripheral auditory 
system with the dominant frequency of male advertise-
ment signals facilitates discrimination of conspecifics 
from heterospecifics (Gerhardt and Schwarz 2001; Ger-
hardt and Huber 2002). Similarly, many birds exhibit 
heightened peripheral auditory tuning for species-specific 
frequency and temporal parameters to facilitate social 
communication (Dooling et al. 1979; Gall et al. 2012). 
The relationship between peripheral auditory tuning and 
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species-specific vocalizations is less well described in 
mammals in part due to a focus on selective encoding of 
acoustic stimuli in the central auditory pathway that inte-
grates inputs from the brainstem, the auditory cortex, and 
associated cortical areas (Holmstrom et al. 2010; Portfors 
and Roberts 2014; Portfors 2018). However, recent evi-
dence in rodents suggests that subcortical auditory nuclei 
play an important role in mediating behavioral responses 
to ecologically relevant sounds (Portfors 2018). For exam-
ple, pup rearing experience shortens maternal auditory 
brainstem response latencies to promote recognition of 
infant isolation vocalizations (Miranda et al. 2014). Such 
findings have contributed to increased interest in the role 
of the peripheral auditory system to rodent sound percep-
tion in ecologically relevant contexts (Kubke and Wild 
2018; Portfors 2018).

Although many rodents produce both sonic and ultra-
sonic vocalizations (USV) to mediate social interactions 
(Kalcounis-Rueppell et al. 2006; Portfors 2007; Briggs 
and Kalcounis-Rueppell 2011; Hanson and Hurley 2012), 
laboratory mice and rats account for most studies of hear-
ing physiology (Dent et al. 2018). In addition, such studies 
often occur in the context of biomedical applications and 
are largely divorced from ethologically relevant acoustic 
signals that mediate social behavior (Bennur et al. 2013). 
The comparatively few studies of auditory sensitivity in 
exotic rodents are based on behavioral audiograms (e.g., 
Webster and Webster 1972; Heffner 1980; Heffner and 
Heffner 1985, 1990, 1992) and/or did not relate auditory 
sensitivity to the vocal repertoire of the species (Ralls 
1967; Katbamna et al. 1996; Zhou et al. 2006). Broadly, 
studies are lacking that relate hearing physiology to vocali-
zations in non-model rodents, thus limiting our ability to 

identify whether the peripheral auditory filtering applies 
more broadly across different taxa and contexts.

Northern grasshopper mice (Onychomys leucogaster) 
are cricetid rodents of western North America that feed on 
arthropods and small vertebrates (Bailey and Sperry 1929; 
Flake 1973). As a consequence of their predatory lifestyle, 
grasshopper mice have large home ranges (1.72 ± 0.68 ha; 
Stapp 1999) for their body size (McNab 1963). Like other 
muroid rodents, grasshopper mice produce USVs (~ 50 kHz) 
in close-distance mating contexts (Miller and Engstrom 
2012; Pasch et al. 2017). However, the genus is unique 
among mice in their ability to produce audible long-distance 
advertisement vocalizations to announce their presence to 
potential mates and competitors (Ruffer 1966; Frank 1989). 
As females enter receptivity during the summer mating sea-
son, both males and females call reciprocally to facilitate 
localization (Frank 1989). Long-distance calls consist of a 
fundamental frequency (F0) and a series of harmonic over-
tones at integer multiples of F0 (Pasch et al. 2017; Fig. 1), 
with populations varying in both call F0 (9.5–13.5 kHz) and 
the degree of sexual dimorphism (Hafner and Hafner 1979; 
Miller and Engstrom 2012; Pasch et al. 2016). In southwest-
ern New Mexico, the species is sympatric with two smaller 
congeners (Chihuahuan grasshopper mice, O. arenicola, and 
southern grasshopper mice, O. torridus) that produce higher 
frequency species-specific calls (Pasch et al. 2016).

Despite their unique mode of acoustic communication, 
only two studies have explored auditory sensitivity in grass-
hopper mice. Conditioned avoidance procedures indicate 
that northern grasshopper mice (n = 3) from western Kan-
sas are most sensitive to 8 kHz tones (Heffner and Heffner 
1985) and have an enhanced ability to localize sound rela-
tive to other rodents (Heffner and Heffner 1988). However, 
no studies have simultaneously quantified call characters 
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Fig. 1   Long-distance vocalization of a northern grasshopper mice. a 
An illustration of a mouse calling, b spectrogram and c power spec-
trum of a long-distance vocalization from a male recorded at 33.3 cm. 

F0 fundamental frequency, 2F0 2nd harmonic, 3F0 3rd harmonic, 
4F0 4th harmonic. Harmonics are integer multiples of F0
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and auditory tuning to explore the degree to which vocali-
zations are matched to their peripheral auditory sensitiv-
ity. In this study, we quantified the F0 of long-distance 
vocalizations and hearing thresholds of northern grasshop-
per mice from southwestern New Mexico using auditory 
brainstem responses (ABR; Willott 2006). ABRs are a 
relatively non-invasive method to record auditory-evoked 
potentials of the cochlear ganglion neurons and nuclei of 
the central auditory pathway from electrodes on the scalp 
(Hall 2007). We focused on frequencies (4–32 kHz) sur-
rounding those reported for long-distance vocalizations of O. 
leucogaster (Hafner and Hafner 1979; Miller and Engstrom 
2012; Pasch et al. 2017) but below the frequencies of USVs 
(48.3 ± 2.6 kHz; Pasch et al. 2017). We predicted a corre-
spondence between receiver auditory sensitivity and the F0 
that comprise species-specific long-distance vocalizations.

Materials and methods

Animals

We trapped mice in the San Simon and Animas Valleys, New 
Mexico, and transferred them to animal facilities at Northern 
Arizona University, Flagstaff, AZ, USA. Mice were housed 
individually due to occasional aggression and incompatibil-
ity that arises when paired (Pinter 1971; Ruffer 1968), or as 
breeding pairs in a larger colony room housing conspecifics 
and heterospecifics (O. arenicola and O. torridus) from the 
same geographic area. Mice were maintained on a 14:10 
light/dark cycle at 20 ± 3 °C and provided rodent chow and 
water ad libitum.

Acoustic recording

We recorded the mass and vocalizations of 36 wild-captured 
mice (n = 18/sex). Individual animals in their home cage 
were placed in a semi-anechoic coolers lined with acous-
tic foam for overnight (10 h) acoustic recording for three 
nights. We used 1/4′′ microphones (Type 40BE, G.R.A.S.) 
connected to preamplifiers (Type 26 CB, G.R.A.S.) to obtain 
acoustic pressure recordings 33.3 cm above the center of 
the cage of a focal mouse. Microphone response was flat 
within ± 1.5 dB from 10 Hz to 50 kHz, and pre-amplifier 
response was flat within ± 0.2 dB from 2 Hz to 200 kHz. 
Microphones were connected to a National Instruments 
DAQ (USB 4431) sampling at 102.4 kHz to a laptop com-
puter running MATLAB (Version 2014a). We calculated F0 
and 2 F0 in Avisoft SASLab Pro (version 4.2.27, Avisoft 
Bioacoustics, Germany; 256-point Fast Fourier Transform 
(FFT); Hann window with 50% overlap; frequency resolu-
tion 400 Hz, temporal resolution 0.16 ms). For each indi-
vidual, we calculated averages from the total number of 

calls recorded (x ̄= 38.3, range = 1–250). Values are reported 
as ± standard deviation.

Auditory‑evoked potentials

To estimate auditory-evoked potentials, we tested separate 
captive bred offspring of wild-captured mice (n = 18, 9/sex) 
between the ages of 6–18 month in a shielded semi-ane-
choic chamber (ETS Lindgren SD-1; internal dimensions 
91.4 cm × 91.4 cm × 91.4 cm) lined with acoustic foam. 
Following measurement of mass, we administered sodium 
pentobarbital (25 mg/kg; 0.1 mL/40 g) intraperitoneally to 
anesthetize mice. Occasionally, we injected an additional 
dose (< 0.05 mL) 10 min after the initial dose to maintain 
an anesthetic plane. We positioned mice on a gel heating 
pad (32 ± 5 °C) to maintain body temperature and placed 
three needle electrodes (27 gauge, 12 mm; Rochester Elec-
tro-Medical Inc., Lutz, FL, USA) subdermally behind (1) 
the left ipsilateral ear receiving the stimulus (reference), (2) 
at the vertex of the skull (active channel), and (3) behind 
the contralateral right ear (ground) to obtain monaural ABR 
signals. Electrodes were connected to a head stage (RA4LI, 
Tucker Davis Technologies (TDT), Alachua, FL, USA) and 
preamplifier (RA4RA, TDT) attached to a processor (RZ6, 
TDT) via a fiber optic cable. Auditory-evoked responses 
were filtered (high-pass at 100 Hz, low-pass at 3 kHz, and 
notch-filtered at 60 Hz) and digitized at a sampling rate of 
24.4 kHz.

Acoustic stimuli presentation

We created and presented stimuli with SigGenRZ and BioSi-
gRZ (version 5.7.0, TDT), respectively. Stimuli were 2.5-
ms tone bursts with 0.4 ms gating with number of averages 
set to 512. We presented stimuli through a speaker (MF1, 
Tucker-Davis Technologies) positioned 10 cm away from 
the left ear of the mouse. Frequency response of the speaker 
(± 1.5 dB) was calibrated with a Brüel & Kjaer microphone 
(Type 4939) and preamplifier (Type 2670) connected to a 
microphone power supply (Type 5935L).

In each trial, we presented frequencies ranging from 4 
to 32 kHz in 2–4 kHz steps at amplitudes ranging from 80 
to 10 dB SPL in 10 dB steps. Trials lasted approximately 
45 min. After each trial, animals were placed on a flat, 
clean surface within their home cage over a heating pad. 
We monitored subjects until fully recovered from anesthesia 
as defined by upright walking.

Auditory brainstem response analyses

Rodent ABRs typically consist of five voltage peaks within 
10 ms of stimulus onset (Willott 2006; Hall 2007), but dif-
ferences in species or strain identity (Zhou et al. 2006), 
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methodology (Land et al. 2016), or anesthesia (Ruebhausen 
et al. 2012) may contribute to variation in waveform shape. 
To avoid bias, a trained researcher first coded and ran-
domized ABR waveforms so that datasets were analyzed 
blind to subject identity, stimulus frequency, and stimulus 
level (dB). We then used three methods to estimate auditory 
responsiveness. First, we used the visual detection method 
(Jacobson 1985; Gall et al. 2011; Chen et al. 2016) whereby 
a researcher determined the lowest stimulus level (dB) per 
frequency that evoked an ABR response (Fig. 2). Thresholds 
were operationally defined as the dB level halfway (5 dB) 
between the last detectable ABR response and next lowest 
stimulus level. We then measured the amplitude of the ABR 
response by quantifying the voltage difference between the 
first detectable positive peak and first negative valley (cor-
responding to ABR wave II as inferred from robust ABR 
responses to click stimuli; Supplementary Fig. S1; Blatchley 
et al. 1987; Hall 2007) for each stimulus frequency at each 
intensity level (Henry and Lucas 2008; Gall et al. 2011). 
ABR amplitude reflects the number and synchrony of neu-
ral responses (Hall 2007). Finally, we measured the latency 
from stimulus exposure to the first detectable peak of the 
ABR, with shorter latencies indicating a faster response to 
a stimulus (Hall 2007).

Statistical analyses

We used two-sample t tests to compare differences in body 
mass and F0 between sexes. We analyzed all ABR data using 
repeated-measures mixed models with individual identity 
specified as a random effect and sex, stimulus frequency, and 
their interaction as explanatory variables. For ABR ampli-
tude and latency, stimulus level (dB) and its interaction with 
stimulus frequency were also included. Because our data did 
not meet the assumptions of normality (function: shapiro.
test, R Core Team 2017), we modeled separately the log 
of the three continuous response variables (visual detection 

method, amplitude, and latency) using R (version 3.3.3, GUI 
1.69) and R Studio (version 3.3.3; package: nlme, function: 
lme and anova; Pinheiro et al. 2017; R Core Team 2017). 
Significant effects (α = 0.05) were assessed post hoc using 
Tukey tests based on the log of the continuous response vari-
ables (function: TukeyHSD; R Core Team 2017) adjusted for 
multiple comparisons.

Results

Body mass and long‑distance vocalizations

We found no difference in body mass between female 
(38.6 ± 4.2 g) and male (41.8 ± 3.6 g; t16 = 1.71, p = 0.11) 
mice used in our ABR trials. Similarly, we found no dif-
ference in mass between females (33.4 ± 5.1 g) and males 
(35.8 ± 6.1 g; t34 = 1.31, p = 0.2) used in our vocal record-
ing study. The F0 and 2F0 of long-distance calls averaged 
11.6 kHz and 23.2 kHz, respectively (range 10.4–12.6 kHz 
and 20.8–25.2 kHz; Fig.  1) and did not differ between 
females (11.66 ± 0.67) and males (11.61 ± 0.59  kHz; 
t34 = − 0.23, p = 0.813 for F0).

Frequency sensitivity: auditory thresholds

Similar to body mass and call F0, we found no effect of 
sex (F1,16 = 0.0001, p = 0.99) nor the sex by stimulus fre-
quency interaction (F10,160 = 0.5, p = 0.9) on auditory thresh-
olds. However, stimulus frequency was a statistically sig-
nificant predictor of threshold differences (F10,160 = 19.43, 
p < 0.001). Auditory thresholds indicated that the frequency 
range of best sensitivity (operationally defined as the fre-
quency range at which thresholds were < 10 dB greater than 
the frequency of greatest sensitivity) was wide and did not 
differ statistically between 8 and 24 kHz (all Tukey HSD 
post hoc pairwise comparisons adjusted p > 0.1; Fig. 3). 
Frequency sensitivity declined sharply below 8 kHz and 
above 24 kHz, coincident with the range of F0 and 2F0 pro-
duced by senders (8 kHz vs. 10 kHz, adjusted p = 0.1; 4 kHz 
vs. 8 kHz, adjusted p = 0.001; 24 kHz vs. 28 kHz, adjusted 
p < 0.02; Fig. 3).

Frequency sensitivity: amplitude and latency

Similar to auditory thresholds, we found no sex differ-
ences in ABR amplitude (F1,16 = 0.4, p = 0.5). ABR ampli-
tude was significantly influenced by stimulus frequency 
(F10,160 = 19.43, p < 0.001), stimulus level (F7,1368 = 422.72, 
p < 0.001), and the stimulus frequency by stimulus level 
interaction (F18,1368 = 3.34, p < 0.001). Response amplitudes 
mirrored auditory threshold measures, with similar ampli-
tudes between 8 and 28 kHz across all stimulus levels (4 kHz 
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vs. 8 kHz, adjusted p < 0.001; 8 kHz vs. 10 kHz, adjusted 
p = 0.71; 18 kHz vs. 24 kHz, adjusted p = 0.07; 18 kHz vs. 
28 kHz, adjusted p = 0.01; 24 kHz vs. 28 kHz, adjusted 
p = 0.99; Fig. 4). Response amplitudes generally increased 
with increasing stimulus levels with the largest magnitudes 
of response within the range of best sensitivity as defined by 
auditory thresholds (Fig. 4).

We also found no sex differences in latency to the first 
positive peak of the ABR (F1,16 = 0.0001, p = 0.1). How-
ever, there were significant main effects of stimulus fre-
quency (F10,160 = 10.81, p < 0.001) and stimulus level 
(F7,1368 = 1175.1, p < 0.001). The interaction between stimu-
lus frequency and stimulus level was marginally statistically 
significant (F18,1368 = 1.82, p = 0.05). Generally, latencies 
decreased as stimulus levels increased. Similar to the ABR 
amplitudes, latency was shortest at frequencies within the 

range of best sensitivity as defined by auditory thresholds 
(Fig. 5).

Discussion

Our findings indicate that northern grasshopper mice exhibit 
selective tuning to frequencies that comprise their long-
distance advertisement calls at the level of the peripheral 
auditory system. Frequency sensitivity is consistent with 
behavioral audiograms described for the species (Heffner 
and Heffner 1985), and the absence of sex differences in 
ABRs correspond to sexually monomorphic size and call 
frequencies in the population (Pasch et al. 2016; herein). 
However, ABR thresholds spanned a broader frequency 
range surrounding F0 then predicted from a precise defini-
tion of a matched filter. We discuss our findings in relation 
to the unique biology of grasshopper mice.

The electrophysiological data presented herein are con-
sistent with the shape and frequency of northern grasshop-
per mouse behavioral audiograms. In particular, behavioral 
audiograms indicate peak hearing at 8 kHz with extended 
sensitivity to 16 kHz (Heffner and Heffner 1985). Com-
pared to laboratory rats (Rattus), house mice (Mus; Ralls 
1967; Dent et al. 2018), brush mice (Peromyscus boylii), and 
white-footed mice (P. leucopus; Ralls 1967), grasshopper 
mouse ABRs have a similar shape but exhibit sensitivity to 
lower frequencies as predicted from the spectral properties 
that comprise their long-distance calls. In rodents, such low-
frequency sensitivity is surpassed only by fossorial rodents 
whose subterranean environments selectively attenuate 
high frequencies (Heffner and Heffner 1992; Gerhardt et al. 
2017). However, ABR levels found herein (20–30 dB) were 
higher than values reported for behavioral audiograms in 
grasshopper mice (9 dB; Heffner and Heffner 1985). In gen-
eral, behavioral methods and compound action potentials 
provide lower thresholds than ABRs (Ohlemiller et al. 2010; 
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Kobrina and Dent 2016). Such a discrepancy is commonly 
attributed to a lack of temporal integration and anesthesia-
driven suppression of cortical processes that may enhance 
acoustic sensitivity by 10–30 dB (Heffner and Heffner 2003; 
Dent et al. 2018). Thus, while the shape of audiograms tend 
to be similar across methods, absolute threshold levels differ, 
and the ABR thresholds reported herein represent a con-
servative estimate of hearing ability in grasshopper mice.

Although mice produced advertisement calls with F0 
between 10.4–12.6 kHz, their peripheral auditory systems 
were most sensitive to frequencies between 8 and 24 kHz. In 
anurans, imprecise or complete mismatches between sender 
signals and receiver sensitivity may be due to allometric 
constraints (Ryan et al. 1992), phylogeny (Wilczynski et al. 
2001), abiotic and biotic background noise (Moreno-Gómez 
et al. 2013; Zhao et al. 2017), or selection to simultaneously 
stimulate distinct auditory organs with different sensitivities 
(Zhu et al. 2016). In birds, similar mismatches may reflect a 
sensory mechanism that mediates preferences for certain sig-
nal properties (Vélez et al. 2015). In mice, such broad tuning 
may be a general feature of the auditory periphery (e.g., 
the mammalian coiled cochlea permits a greater frequency 
range; Manley 1971, 2000) relative to the more selective 
tuning that emerges in the inferior colliculus (Portfors et al. 
2011; Woolley and Portfors 2013). Electrophysiological 
recordings of auditory midbrain neurons are thus needed to 
better understand how peripheral filter output is processed 
to decode social vocalizations.

If central auditory processing areas exhibit similar or 
enhanced tuning compared to the ABR, then mice could 
readily detect higher frequencies that include the harmonics 
found in conspecific vocalizations (Fig. 3). Higher frequen-
cies have smaller wavelengths that attenuate more rapidly 
in the environment compared to lower frequencies (Wiley 
and Richards 1978; Peters et al. 2012). Thus, sensitivity to 
the second harmonic (2F0) may enable distance estimation, 
or ranging, with detection of harmonics indicating a shorter 
distance between sender and receiver (Nelson 2000). Indeed, 
Carolina wrens estimate the distance to a sender based on the 
amplitude of harmonics relative to F0 (Naguib 1995, 1997). 
Such distance estimation may facilitate avoidance of poten-
tially costly interactions or promote aggressive responses 
when rivals are nearby (Naguib 1995). In grasshopper mice, 
long-distance calls facilitate conspecific localization, with 
male–female encounters leading to reproductive behaviors 
and male–male encounters leading to antagonism (Frank 
1989). Since males and females do not exhibit sex differ-
ences in call parameters (Pasch et al. 2016; herein), distance 
estimation may provide a cue to switch to alternative modali-
ties (e.g., olfaction) as individuals approach one another. 
Playback experiments are needed to assess how grasshopper 
mice respond behaviorally to varying amplitudes of F0 and 
2F0 (Lohr and Dooling 1998).

Similarly, if the broad ABR tuning found herein is rep-
resented higher in the auditory processing system, animals 
would likely be able to detect sympatric heterospecifics 
(O. arenicola and O. torridus) that produce slightly higher 
F0 (15 kHz and 13 kHz, respectively; Hafner and Hafner 
1979; Pasch et al. 2016). Animals used in our study were 
captured and derived from a population that co-occurs with 
both heterospecifics and raised in a colony room housing 
all three species. Although mice and bats can distinguish 
behaviorally among acoustic signals of ecologically simi-
lar species (Schuchmann and Siemers 2010; Pasch et al. 
2013), auditory recognition mechanisms remain less clear. 
In dendrobatid frogs, the recognition space—or range of 
values that receivers treat as valid conspecifics (Ryan and 
Rand 1993)—extends beyond conspecific frequencies 
but is constrained by heterospecifics to reduce interfer-
ence (Amézquita et al. 2011, Simmons 2013). While the 
peripheral auditory system exhibits plasticity in response 
to auditory experience (Gall and Wilczynski 2015), disen-
tangling the relative contributions of learning and genetic 
differences that shape recognition space will necessitate 
sampling replicate allopatric and sympatric populations 
with and without exposure to heterospecific vocalizations. 
In closely related neotropical singing mice (Scotinomys), 
expansion of sensory sensitivity in the central auditory 
system appears to mediate competitor recognition and 
interspecific aggression in sympatry (Pasch et al. 2016). In 
either case, alternative physiological (e.g., critical ratios; 
King et al. 2015) and behavioral measures (e.g., operant 
conditioning; e.g., Neilans et al. 2014; Klink et al. 2006) 
will be necessary to refine estimates of sensitivity and fre-
quency discrimination.

In summary, our data indicate that northern grasshop-
per mice exhibit broad tuning in the peripheral auditory 
system that overlaps with both the F0 and 2F0 found in 
conspecific and heterospecific vocalizations. Our study 
contributes important baseline information about the sen-
sory ecology of a unique rodent to the study of sound 
perception. Such findings will facilitate future comparative 
experiments on hearing abilities of other non-model spe-
cies to broaden our understanding of the ecology, evolu-
tion, and mechanisms of sound production and perception 
in the most diverse lineage of mammals.
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