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ABSTRACT

With the increasing demand for large amount of labeled data, crowd-
sourcing has been used in many large-scale data mining applica-
tions. However, most existing works in crowdsourcing mainly focus
on label inference and incentive design. In this paper, we address a
different problem of adaptive crowd teaching, which is a sub-area
of machine teaching in the context of crowdsourcing. Compared
with machines, human beings are extremely good at learning a
specific target concept (e.g., classifying the images into given cate-
gories) and they can also easily transfer the learned concepts into
similar learning tasks. Therefore, a more effective way of utilizing
crowdsourcing is by supervising the crowd to label in the form of
teaching. In order to perform the teaching and expertise estima-
tion simultaneously, we propose an adaptive teaching framework
named JEDI to construct the personalized optimal teaching set
for the crowdsourcing workers. In JEDI teaching, the teacher as-
sumes that each learner has an exponentially decayed memory.
Furthermore, it ensures comprehensiveness in the learning process
by carefully balancing teaching diversity and learner’s accurate
learning in terms of teaching usefulness. Finally, we validate the
effectiveness and efficacy of JEDI teaching in comparison with the
state-of-the-art techniques on multiple data sets with both synthetic
learners and real crowdsourcing workers.
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1 INTRODUCTION

In many real-world applications, the performance of the learning
models usually depends on the quality and the amount of labeled
training examples. With the increasing attention on the large-scale
data mining problems, the demand for large amount of labeled data
also grows at an unprecedented scale. One of the most popular
means of collecting the labeled data is through crowdsourcing plat-
forms, such as Amazon Mechanical Turk, Crowdflower, etc. With
the help of these crowdsourcing services, where the data is out-
sourced and labeled by a group of mostly unskilled online workers,
the researchers and organizations are able to obtain large amount of
label information within a short period of time at a low cost. How-
ever, the labels provided by these workers are often of low-quality
due to the lack of expertise and lack of incentives, etc. In recent
years, several works [12, 23-26] have been proposed to model and to
estimate the expertise of the workers, and these approaches tend to
improve the collective labeling quality by downweighting the votes
from the weak annotators and trusting the experts. Another branch
of crowdsourcing research [17, 18] focuses on the design of incen-
tives that could motivate the workers to convey their knowledge
more accurately by coupling it with a well-designed compensation
mechanism. Despite the success of these works, they all omitted
one important fact: human beings are extremely good at learning
a specific target concept (e.g., classifying the images into given
categories) and they can easily transfer the learned concepts into
similar learning tasks especially when they have grasped certain
prior knowledge regarding the original learning concept. Based on
the above insightful observations, it is commonly assumed that a
more effective way of utilizing crowdsourcing is by supervising the
crowd to label in the form of teaching [8, 19].

The crowdsourcing workers usually have a variety of expertise.
Therefore, teaching them a certain concept and estimating their la-
beling abilities at the same time is a challenging problem in general.
From the context of teaching, there is an emerging research direc-
tion named machine teaching [29] which is the inverse problem of
machine learning. Given the learners, the learning algorithm, and
the target concept, machine teaching is concerned with a teacher
who wants the learner to learn this target concept as fast as possible.
Usually, the main principle of machine teaching is to improve the
efficacy of the teachers either by minimizing the teaching effort (i.e.,
the teaching dimension [11, 27], which is defined as the cardinal-
ity of the optimal teaching set), or by maximizing the converging
speed [13] (i.e., the number of the teaching iterations to reach teach-
ing optimum). In this work, we focus on the problem of adaptive
crowd teaching, which is a sub-area of machine teaching in the
context of crowdsourcing. In crowd teaching, the learners are the
crowdsourcing workers and the teacher is the machine that guides
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the teaching procedure. This is similar to the computer tutoring
system, where the teacher teaches by demonstrating the typical
examples with answers to the students, and the teacher’s goal is
to help the students have good performance in similar tasks after
tutoring. Very few works [8, 19] have been conducted to solve this
problem, however, none of them have considered the human mem-
ory decay during learning, which has been shown to strongly affect
real human learner’s categorization decisions [4, 14, 16].

We propose an adaptive teaching paradigm based on the assump-
tion that the learners have exponentially decayed memories [14].
Within our proposed paradigm, the teacher can gradually construct
a personalized optimal teaching sequence for each learner by rec-
ommending a teaching example and querying the response from
the learner interactively with multiple teaching iterations. More-
over, our teaching strategy ensures the teaching sequence diversity
to help the learner develop more comprehensive knowledge on the
learning task, and guarantees the teaching sequence usefulness to
increase the learner’s learning accuracy. To be specific, the main
contributions of our work are summarized as follows:

¢ Formulation: We formulate the crowd teaching as a pool-
based searching problem which performs teaching and exper-
tise estimation simultaneously. The key idea of this teaching
framework is to impose the trade-off between the principles
of maximizing teaching usefulness and teaching diversity.

e Models: Each learner is assumed to be a gradient descent
based model with exponentially decayed memory, and the
teacher is formulated to minimize the discrepancy between
the learner’s current concept and the target concept. We
also provide theoretical analyses to study the quality of the
teaching examples.

o Experiments: We have provided a visualization of our teach-
ing framework on a two-dimensional toy data set, and an
exhaustive comparison on one synthetic data set and two
real-world data sets using simulated learners. Furthermore,
we have conducted a teaching experiment on real human
learners and compared our results with state-of-the-art tech-
niques with promising results.

e Demonstration: We have built a web-based teaching in-
terface! for real human learners. This interface includes all
three modules of teaching: memory length estimation, inter-
active teaching, and performance evaluation.

The rest of this paper is organized as follows. Section 2 briefly
reviews some related work. In Section 3, we formally introduce
the model of the learner and the model of the teacher, followed by
the discussions of the algorithm and the analysis of the teaching
performance. The adaptive teaching using harmonic function is
proposed in Section 4. The experimental results are presented in
Section 5 and we conclude this paper in Section 6.

2 RELATED WORK

In this section, we start by reviewing the research in machine
teaching followed with its recent advances. Next, we will review
the crowdsourcing works that have some overlap with machine

1A demo of this teaching interface is available at: JEDI-Web-Demo. The latest source
code is available at: JEDI-Crowd-Teaching.

teaching. In the end, we also introduce several other works closely
related to human learning and teaching.

2.1 Machine Teaching

The inverse problem of machine learning is named as machine
teaching, which typically assumes that there is a teacher who knows
both the target concept and the learning algorithm used by a learner.
Then, the teacher wants to teach the target concept to the learner
by constructing an optimal teaching set of examples. One classic
definition of this "optimal” is teaching dimension [5] which is re-
ferred to as the cardinality of the teaching set. Finding the optimal
teaching set which strictly minimizes the teaching dimension is a
difficult problem to solve in general. Thus, a relaxed formulation
[29] of machine teaching has been proposed as an optimization
problem that minimizes both the teaching risk and the teaching
cost. In recent years, there has been a wide range of applications
related to machine teaching, e.g., crowdsourcing [8, 19], educational
tutoring, and data poisoning [15, 20], etc. In the meantime, several
theoretical works have studied various aspects of machine teaching
such as iterative machine teaching [13], recursive teaching dimen-
sion [2], and teaching dimension of linear learners [11], etc. Our
work extends the study of machine teaching into the domain of
crowdsourcing, and we studied the crowd teaching problem both
theoretically and empirically.

2.2 Crowdsourcing

Crowdsourcing is a special sourcing model in which pieces of micro-
tasks are distributed to a pool of online workers. It has become a
popular research topic in the recent decades because of its widely
commercial and academic adoptions in related areas. One of the
fundamental problems of interest is how to properly guide the on-
line workers and teach them the correct labeling concept given the
fact that those hired workers are usually non-experts. Based on
the learning and teaching styles [3] that students progress towards
concept understanding, human learners can be categorized as ei-
ther the sequential learners (who learn things in continual steps)
or global learners (who learn things in large jumps, holistically).
Inspired by this pioneer work, recently, several teaching models
have been proposed: the gradient descent model proposed in [13]
studied the teaching paradigm for sequential learners and their
study conducted on human toddlers has demonstrated the effective-
ness of iterative machine teaching; the non-stationary hypothesis
transition model proposed in [19] assumes crowdsourcing work-
ers are global learners and their learned concepts are randomly
switched based on observed workers’ feedback; the expected er-
ror reduction model proposed in [8] learns to present the most
informative teaching images to the students by using an online
estimation of their current knowledge. Compared with the former
approaches, our work explicitly models the human learner with an
exponentially decayed memory which is suitable for the human
short-term memory concept learning [6]. Meanwhile, our teaching
paradigm is an adaptive crowd teaching framework that ensures
both the usefulness and the diversity of the teaching examples.


http://198.11.228.162:9000/memory/index/
https://github.com/collwe/JEDI-Crowd-Teaching/

2.3 Other Related Work

Besides the existing works on machine teaching and crowdsourc-
ing, the proposed work in this paper is also closely related to many
other research subjects such as active learning [21] and curriculum
learning [1]. The learner in active learning can query the label
of an example from the oracle; however, the teaching example
in machine teaching is recommended by the teacher. Curriculum
learning, which is inspired by the learning process of humans and
animals, suggests an easy-to-complex teaching strategy. The empir-
ical results conducted on human subjects in [9] have indicated that
human teachers tend to follow the curriculum learning principle. In
curriculum learning, samples in the teaching sequence are selected
merely based on the example difficulty. However, as a comparison,
self-paced learning with diversity [7] which also favors example
diversity has shown its superior performance on various learning
tasks such as detection and classification.

3 THE CROWD TEACHING FRAMEWORK

In this paper, we denote X C R as the m-dimensional feature
representations of all examples (e.g., images or documents) and Y
as the collection of labels. The teacher has access to a labeled subset
® ¢ XxY, which is named as the teaching set? of the teaching task.
For binary concept learning, x € X is the feature representation
of one example, and y € {—1, +1} is its corresponding binary class
label. We assume the teacher knows the target concept w, € R
and the learning model (e.g., logistic regression) of each learner.
The teacher wants to teach the target concept to the learner using a
personalized teaching set which is constructed by interacting with
the learner for multiple teaching iterations. To be specific, each
teaching iteration (e.g., the t-th iteration) includes the following
three major steps:

o First, the teacher estimates the current concept w;_1 grasped
by the learner and recommends a new teaching example
(xt,yr) to the learner.

o Next, the teacher will show the recommended teaching exam-
ple (without revealing its true label y;), and ask the learner
to provide its label estimation 7;.

o At last, the teacher reveals the true label y; to the learner,
and the learner will perform the learning use (x;, y;).

3.1 Model of the Learner

To begin with, we assume that the learners to be taught are active
learners who are seeking for improvement and aim to become the
experts of the given task. Therefore, we do not take the spammers
or adversaries into consideration under this teaching setting.
Now, we formally introduce the model of the learner, whose
assets include its initial concept wy, learning loss L(-, ), learning
procedure, and learning rate ;. After the t-th teaching iteration, the
learner applies a linear model, i.e., thx, to predict using its learned
concept w;. Similar to the learning model proposed in [13], we also
assume that the learner uses a gradient descent learning procedure.
However, based on the fact that the real human learner’s catego-
rization decisions are guided by a small set of examples retrieved

2The definition of teaching set in this paper is the same as in [8, 19]. However, in the
concept of teaching dimension [11], the definition of teaching set is different from
ours.
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Figure 1: Illustration of JEDI (one teaching iteration)

from memory at the time of decision [4, 16], and the retrievability
of memory is usually approximated with an exponential curve [14],
we further assume that each learner has an exponentially decayed
retrievability for the learned concept in terms of the order of the
teaching examples, i.e.,:
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where € (0, 1) is the personalized memory decay rate. Various
learners can have different memory lengths, and this personalized
memory length is parameterized by f. The learners with large
can actually retrieve more information from their memory. The
concept momentum v; is defined as the linear combination of its
previous concept momentum v;_; and the gradient of the learner’s

aﬁ(thilx,, Yt)
loss —owo
practice. With the properly chosen learning rate 14, the learner uses

the gradient descent learning procedure to improve their concept
in an iterative way:

. The initial momentum vy is usually set to 0 in

Wi ¢ Wi — 1V (2

Similar to stochastic gradient descent (SGD) with momentum, the
learner will update his/her concept w; towards the target concept
w,. along the direction of the negative concept momentum —vy,
which is the linear combination of the negative gradients of the
learning losses with exponentially decayed weights. Intuitively,
the concept learned by a human learner depends on a sequence of
teaching examples. The latest example will contribute more (has
larger weights) towards learning than the earlier ones.

3.2 Model of the Teacher

Initially, we assume that the teacher has access to the learner’s
current concept wy, learning loss, learning procedure, etc., and the
teacher intends to guide the learner towards the target concept wi.



Notice that in real-world teaching, the teacher generally does not
have direct access to a learner’s current concept. The alternative
of estimating a learner’s concept will be introduced in Section 4.
Thus, the objective of teaching is proposed as follows:

min |lw; - w.|[3 ®)

This objective is designed to minimize the discrepancy between
the target concept w,. and the learner’s current concept w; after
t rounds of teaching. The objective can be decomposed into three
parts by substituting Eq. (2) into it:
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T;: Usefulness of the teaching sequence
4
The first part is the discrepancy between w, and learner’s previous
concept w;—1, and the second part T; essentially measures the
diversity of the teaching sequence. The third part T, measures the
usefulness of the teaching sequence and the intuitive explanations
of Ty and T, will be clear later.

Meanwhile, we assume that the teacher has an infinite memory
of the teaching sequence of examples D; = {(x1,41), - .., Xz, Yr)},
as well as the corresponding estimate of the concept sequence from
the learner W) = {wo, w1, ..., w;}.

Diversity of the teaching sequence.

In order to simplify T;, we further decompose it into two interme-
diate terms:

t 2
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The selection of the learning loss can be flexible. For the task
of teaching a classification concept, we utilize the logistic loss,
which is convex and smooth, to illustrate the key idea, i.e., log(l +
exp(—wax)), although the proposed framework can be extended
to other loss functions. Easily, we can have the gradient norm

2
m) |[x[|2, which has the
interpretation of example difficulty when all the example feature x
lies on a hypersphere (e.g., L2-normalized bag-of-words features in
document classification). In that case, ||x||, = 1 and the first term
of T; becomes the sum of squares of the probability of incorrect
predictions.

Our goal of teaching is to recommend the next teaching ex-
ample (x¢,yy), therefore, these observed gradients (with indices
s=1,...,t — 1) are not relevant in this teaching optimization sub-
problem of minimizing T;. If we substitute the gradient of logistic

of each teaching example as (

Figure 2: Trade-off between diversity and usefulness

loss into the objective, it is straightforward to get the following
equivalent optimization sub-problem:

min Ty
(x2,Ye)
Yt ?
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Usefulness of the teaching sequence.

T part in the objective serves as the measurement of the usefulness
of the whole teaching sequence. Specifically, it is the weighted
sum of all inner products between w;_; — w, and the gradients of
the teaching sequence examples. It means that the entire teaching
sequence D; will contribute to maximizing the convergence of the
teaching. The larger value the inner product has, the more useful
this teaching sequence is. However, similar to the T minimization
sub-problem, only (x;, y;) relevant terms matter for the purpose of

maximizing Tp:
max Tp

(x2,Y¢)
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Trade-off between diversity and usefulness.
1 and f; = 1

1+eXp(thZ;1Xt)
where s = 1,...,t — 1. Then, the overall teaching problem becomes:

For simplicity, we denote f; :=

T+exp(ysw!_ x;)’
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Prob. (8) aims to maximize the teaching diversity (T; part) and
the teaching usefulness (T part) at the same time. As illustrated in
Figure 2, the teacher prefers the negative gradient y; f;x; of next
teaching example is similar to the concept momentum v;_; and
has large correlation with the target learning direction w,. — w;_1.
The learning rate n; is usually set to a small value (5; < 1) in
optimization. Therefore, the teaching usefulness (T, part) dominates
the teaching process. It is straightforward to see that when the
B =0, our objective is directly reduced to the no memory teaching
framework proposed in [13].

In order to solve this teaching problem, we denote a; := y; fyx;.
Then, the teaching objective can be further simplified as:

Wi — W1
Otxe.y0) =1 ol = 2. ve-y + W20
t
w Wi—1 2
e
N I VEREERS o)
Nt 2
2
2 Wi — Wrq
Ny |[Vt-1+ ————
Nt 2

The concept momentum v;_ is the weighted sum of gradients of
the teaching sequence D;_; using exponentially decayed weights.

Based on this new objective, we propose the teaching algorithm
JEDI (AdJustable Exponential Decay Memory Interactive Crowd
Teaching). The JEDI teaching algorithm with omniscient teacher
(having access to learner’s concept sequence ‘W;) is shown in Algo-
rithm 1. It is given the learner’s memory decay rate, initial concept,
target concept, learning rate, teaching set as input, and will output
the personalized teaching sequence. JEDI works as follows. We first
initialize the teaching iterator ¢ = 1 and initial momentum vy = 0.
Then, in each iteration, the teacher searches through the teaching
set ® and finds the example (x;, y;) that minimizes the objective

function in Eqn. (10), where f = m is the probability of
t-1

incorrect prediction of example (x, y) in the teaching set ®. Next,
the learner performs the labeling on x; using its current concept
w;—1. Then, the label y; is revealed by the teacher and the learner
performs learning using Eqn. (2). This interactive teaching will
continue until the stopping criteria is satisfied.

In exponential weighted average, the number of examples being
used is usually approximated [10] as ﬁ Therefore, we can assume

that there exists a memory window size (i.e,. how many examples
or corresponding concept gradients the learner can memorize) for

each learner, and it can be approximated as —. In the following,

1-p
we use the two-example teaching scenario (e.g., memory decay rate
is as low as f# ~ 0.5, or it is the second iteration of teaching ¢ = 2)
as a running example, where the learner can memorize a teaching

sequence of size 2. Notice that the analysis and conclusions can be

Algorithm 1 JEDI with omniscient teacher

1: Input: Learner’s memory decay rate f3, initial concept wy, tar-
get concept wy, initial learning rate o, teaching set ®, Maxlter.
2: Initialization:
vgp— 0

te—1

3: Repeat:

4 (i). Among all examples (x,y) in teaching set ® and their
probabilities of incorrect prediction f, the teacher recommends
example (X, y;) to the learner by solving:

2

(x¢,yr) = argmin (10)

(xy)ed

Wi — Wt—l)

ne

yfx— (vt_l +
2

(ii). Learner performs the labeling.

(iii). Learner performs learning after teacher reveals y;.

(iv).te—t+1

: Until converged or ¢t > MaxIter

: Output: The teaching sequence D;

Y ® 3 G

extended to other values of f as well. In the two-example teaching
scenario, the trade-off between diversity and usefulness will lead
to further insights with the help of the following definitions and
theorem.

Definition 3.1. Given the previous teaching example (x;—1, yz—1),
if the teacher recommends a new teaching example (x;, y;) which
has different label y; # y;—1, this teaching action is named Explo-
ration. If the new teaching example has the same label y; = y;—1,
this teaching action is named Exploitation.

Definition 3.2. Given the previous teaching example (x;—1, yz-1),
its negative gradient y;—1 f;—1X;—1 and its optimal teaching direc-
tion wy. —w;_1 has an angle 8 € [0, 7]. Then, this teaching example
is not useful towards teaching optimal w. if the angle satisfies
0> 7.

THEOREM 3.3. (Exploration vs. Exploitation) For two-example
teaching, if the previous teaching example (x;—1,y;—1) is not useful
towards teaching optimal, the teacher will recommend large diversity
teaching example (x;,y; ) for exploitation, i.e., y; = y;—1, or recom-
mend highly similar teaching example (x;,y;) for exploration, i.e.,
Yt # Yr-1.

Proor. Let a;—1 := Bys—1 ft—1X¢-1, then the teaching objective
becomes:

2
Wi — W1
O(xt,y) = ’7% a; + (at—l - —)
Nt 2
2
2 Wi — W1
R S—
Nt 2

The minimum of the objective is guaranteed to be reached when
the next teaching example x; is selected as follows:

Yt-1 ﬁ—l 1 wy— Wi—1
X =—p———FXp 1+t —
yefe M

yr  fr

Using a;—1 as the reference, the optimal teaching direction vector
can be decomposed as W, — w1 = (W, — Wt—1)|| +(We —Weo1)1



in a;_1’s parallel direction and perpendicular direction. If the pre-
vious teaching example is not useful (i.e., § > %), without loss of
generality, we can assume (w, — w;_l)” = aa;_1, where o < 0is
obviously satisfied. Then, we have:

Xt = —Y+ f;;1 xX¢-1+ &t (& Exploitation)
t
fr-1 )
Xt =Y+ T Xi-1+ & (< Exploration)
t

where y+ = (1— %)ﬁ is a positive scalar and &; = # (W_U#
is the teaching perturbation. If the previous teaching example x;_1
is not useful, then the teacher will prefer the next teaching example
x; to be very different from the previous one for exploitation (intra-
class teaching) or to be similar with the previous one for exploration

(inter-class teaching). O

The teaching action choice between exploration and exploita-
tion is very clear especially when the previous teaching example is
most useless (i.e., @ = ), under which scenario the recommended
teaching example has zero teaching perturbation (w, —w;_1); = 0.
The magnitude of the teaching perturbation is positively corre-
lated with the usefulness of the previous teaching example since
(Wi —wy_1)1 o sin(f) and & > 7. Therefore, if the previous
teaching example is less useful (0 becomes larger), the perturba-
tion will become smaller, and the teacher has less uncertainty to
decide whether the next teaching recommendation should be an
exploitation action or an exploration action.

PROPOSITION 3.4. For the examples that live on a hypersphere, if
the previous teaching example (x;—-1,ys—1) is most useless (0 = )

towards teaching optimal and the learning rate satisfies n; > g—ﬂ,
then the teacher recommended example (x;,y; ) is guaranteed to have
better labeling quality than (x;-1,y;-1), i.e., the learner can correctly

label example x; with higher probability than labeling example x;_1.

ProoF. We have f; = (5% - l)ﬂ% LR fy from The-

. <X;_1,X;>
orem 3.3. For hyperspherical feature space, ‘# < 1and
no matter if the teaching action is exploration or exploitation, the
coefficient of f;_; is always smaller than 1. Therefore, f; (probabil-
ity of incorrectly labeling x;) is smaller than f;_; (probability of

incorrectly labeling x;_1). O

For the teaching scenarios with multiple teaching examples (e.g.,
B is large), the above theoretical analyses are also applicable by
treating the previous teaching sequence D;_; as one pseudo teach-
ing example with its decayed negative gradient as v;_.

4 ADAPTIVELY TEACHING THE HUMAN
LEARNERS

In this section, we first discuss the challenges for teaching the
real human learners. Then, we present the methodology which
can estimate the human learner’s current concept using the har-
monic function. In the end, we formally present the algorithm JEDI
teaching with harmonic function estimation.

4.1 Teaching in the Real World

All examples help teaching. After the teacher reveals the true
label of the recommended teaching example, the human learner can
improve the concept learning either by verify the correctness of
his/her labels or by gaining information from the mistakes he/she
made.

Repeated teaching examples. Memories are so volatile that hu-
man learners have to be provided with repeated examples to strengthen
the learned concept. Due to this reason, the teaching sequence D;
selected from the teaching set ® should have repeated examples es-
pecially when these examples are incorrectly labeled or the learner’s
memory window size is small.

Pool-based teaching. Similar to the pool-based active learning,
in many real-world teaching tasks, the synthetically generated
teaching examples that meet the global optimum of JEDI objective
are not valid real-world examples (e.g., images, documents). Thus,
a pool-based search is a more realistic alternative. In other words,
the JEDI teacher will search for the best teaching examples in the
teaching set @ instead of the whole feature and label space.

Teacher has no access to learner’s concept. To address this chal-
lenge, notice that by utilizing the first-order convexity of the learn-
ing loss, we can have:

BL(WtT_lxt, yt)

Wi > > Lowl %, yr) — Lw!xe,y0)

(11)
Then, minimizing T, can be relaxed to the problem of optimizing
its lower bound. This relaxation enables the teacher to query the
learner’s prediction sign(w” x) instead of requiring access to his/her
concept w directly (which is impossible for real human learners).
The effectiveness of this relaxation depends on the tightness of the
lower bound. Therefore, the smaller |[w;—1 — w.|| is, the tighter
the bound is. In other words, this relaxed problem is gradually
becoming a reliable approximation of the original problem with
more and more teaching iterations.

<Wt—1 - Wi,

4.2 Concept Estimation using Harmonic
Function

In the teaching phase, for every observed teaching example (with
indices s = 1,...,t — 1), the teacher has access to the features xg

and the learner provided label ijs. However, the teacher still needs
1

on every example (x,y) in ® to start teaching. One naive way of
estimating f is by using learner provided labels to train a super-
vised classification model, and predict the unlabeled ones with this
classifier to get f. However, due to the limited number of labeled ex-
amples, a semi-supervised model [22, 28] should be more effective
than supervised models. One alternative to estimating f is by using
graph-based semi-supervised learning method proposed in [28].
Given the teaching sequence D;_1, for every unlabeled example,
we can estimate its probability of labels using semi-supervised
Gaussian random fields and harmonic functions:

the learner’s probability of incorrect prediction f =

Fu = (Duu — Auw) YA F (12)



In the above formulation, A is the affinity matrix of all examples
and D is a diagonal matrix (with D;; = }};—; A;j). Matrix A can
A A ]
Ayl Auy
and similar block split operation is applied on D as well. F; €
{0,1} 1D:-11X2 i the label matrix associated with learner provided
labels, where each element is set to 1 if the corresponding label
has been provided by the learner and 0 otherwise. Following this
convention, the affinity matrix can be constructed as follow:

be reordered and split into four blocks as: A = [

m . )2
Ajj :exp(—z M) (13)
d=1 %d

It should be noticed that the teaching examples could be repeatedly
recommended by the JEDI teacher, and this is different from the
crowd teaching model of [8], which also uses the harmonic function
but only allows each example to be recommended once. Therefore,
before applying the harmonic solution, we only keep the unique
examples that have the latest labels provided by the learner in the
teaching sequence. Meanwhile, in order to guarantee all examples
in the teaching set ® could be recommended for next round of
teaching, affinity matrix A are padded using extra nodes and edges
constructed from the existing teaching sequence D;_;. After ap-
plying the harmonic solution, the labeling probability estimation
of every example x in ® corresponds to a row (whose entries are p
and 1 — p) of matrix F:

1

1+ exp(—vlvTx) (14)

1+ exp(wlx)

Ply=1x,Dr1)=p=

Ply=-1xD;-1)=1-p=

To calculate concept momentum v;_q in Ty, which utilizes the
probability of incorrect prediction fs of teaching example (x5, ys)
where s = 1,...,t — 1, the estimated labeling probabilities are used
together with the teacher revealed ground truth label ys. They are
calculated as:

fs:

1 ys+l 1-Us

=(1=ps) 7 ps? (15)

1+ exp(yswsTilxs)

where p; is the harmonic probability estimate of teaching example
X;. Similarly, in order to calculate T, term, the estimated labeling
probabilities are jointly used with ground truth label y; as:

yp+l
1\5—

=1+ exp(—thtT_1xt) = (P_t) z (1 —1pt)

1-yr
2

1
J-t
(16)
where p; is the harmonic probability estimate of teaching example
Xt.

4.3 Teaching Algorithm

The details of the JEDI algorithm using harmonic function estima-
tion are provided in Algorithm 2. It is given the learner’s memory
decay rate, target concept, learning rate, teaching set as input, and
will output the personalized teaching sequence. It works as follows.
We first initialize the iterator t = 1 and initial momentum v = 0.
Then, in each teaching iteration, the JEDI teacher estimates the
probability of incorrect labeling using harmonic function Eqn. (12).
Next, the JEDI teacher searches through the teaching set ® and finds

Algorithm 2 JEDI with harmonic function estimation

1: Input: Learner’s memory decay rate 3, target concept w, ini-
tial learning rate no, teaching set @, affinity matrix A, diagonal
matrix D, MaxIter.

2: Initialization:

Vo — 0

te—1

3: Repeat:
4. (i). Teacher estimates F,, using Eq. (12) and calculates fs and
]% using Eq. (15) and Eq. (16).
5. (ii). Teacher recommends example (x;, y;) to the learner:
) 1+ exp(—ywt x)
(x¢,yr) = argmin p} [[yfx - v-1ll3 - 2n/log—————

(x,y)ed 1+ exp(—yw*Tx)

(17)
6. (iii). Learner performs the labeling and then teacher updates
A,D, and F;.
7. (iv). Learner performs learning after teacher reveals y;.
8 (V).te—t+1
9: Until t > MaxIter
10: Output: The teaching sequence D;

the example (x;, y;) that minimizes the objective function in Eqn.
(17) which uses the f; (wheres=1,...,t - 1), and ]% Next, the
learner performs the labeling on x; and the JEDI teacher updates
affinity matrix A, diagonal matrix D, and label matrix F; using the
methods described in Section 4.2. At last, the teacher reveals the
true label y; and the learner performs learning. The JEDI teaching
with harmonic function estimation will stop when the maximum
number of iterations has been reached.

Data set ‘# Examples (Teach)‘# Examples (Evaluate)‘# Features

10D-Guassian 400 1600 10
Comp. vs. Sci 375 1500 150
Rec. vs. Talk 369 1475 150

Table 1: Statistics of the three data sets with synthetic learn-
ers.

5 EXPERIMENTS

In this section, we first conduct the experiments on a toy data set
to illustrate the trade-off between diversity and usefulness using
JEDI with omniscient teacher. Then, we evaluate the convergence
and the performance of JEDI with harmonic function estimation on
three data sets using synthetically generated learners. At last, we
evaluate the effectiveness of JEDI teaching on two real-world data
sets by hiring and teaching a group of crowdsourcing workers.

5.1 Toy Data Set Visualization

In order to visualize the selected examples of the teaching sequence,
we apply three different teaching methods: SGD, Iterative Machine
Teaching (IMT) [13], and JEDI (omniscient teacher) on a 2D Gauss-
ian mixture data set. This data set is draw from two Gaussian
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mixture distributions (one positive class and one negative class):

2 1
p+(x) = gN(XLUlsEl) + gN(XI,uz,Zz)
(18)
2 1
p-(x) = gN(X|/13,21) + gN(XIM,Ez)

where the parameters are p1 = (0,8), y2 = (8,0), u3 = (-8,0),
ps = (0,-8), 21 = [12 6;6 12] and 3 = [10 5;5 10]. The number
of examples in each class is 150. To guarantee a fair comparison,
the target concepts w, are the same for IMT and JEDI (SGD has
no target concept), and the initial concept wy, the first teaching
example (x1,y1), the step size n = 0.03 are set to be identical for all
three methods.

The numbers of unique teaching examples of SGD, IMT, and JEDI
are 182, 16, and 27 respectively. As we expected, SGD almost selects
half of all examples for teaching. Thus, we visualize the selected
examples of SGD with a stride size of 5. From the visualization
results, there are several interesting observations. First, the conver-
gence rate of IMT and JEDI are comparable and both have better
convergence than SGD. Second, the selected teaching examples
of JEDI are much diverse than those of IMT, yet the convergence
speed of JEDI is guaranteed. As we can see, in the first 100 iterations
(when teaching converges very fast), the unique teaching examples
of IMT mainly focus on the upper left two data distributions, but
the teaching examples of JEDI are more diversely distributed in
all data distributions. The advantages of JEDI is significant espe-
cially when the examples are drawn from a mixture distribution
because JEDI objective considers both the usefulness and the diver-
sity of the teaching examples. Third, the JEDI selected examples are
symmetrically scattered over the optimal classification hyperplane
and have more appearances on the data distribution boundaries
which reflects our theoretical analysis regarding the exploration
and exploitation actions.

5.2 Adaptive Teaching with Synthetic Learners

The teacher in this group of experiments doesn’t have access to the
learners’ concepts. Thus, teachers of Random Teaching (RT), IMT,
and JEDI can only estimate a learner’s concept using harmonic
function. We evaluates these methods on three data sets, as shown
in Table 1, which include a 10-dimensional Gaussian data set and

two text data sets from 20 Newsgroups. The learners are randomly
generated as a vector that has the same length as the example
features. After performing the learning, a random Gaussian noise
will be added to the learner’s concept vector to simulate the learning
uncertainty. Below are the settings of the data sets:

e 10D-Gaussian: The means are y1 = (—0.6,...,—0.6), yp =
(0.6, . ..,0.6) and the diagonal of its covariance matrix has
random values between 1 to 10. Initial step size is set to
no = 0.03 and it is gradually decreased as n; = %r]o
where ¢ is the teaching iterations.

e Comp.vs.Sci and Rec.vs.Talk: We use their largest classi-
fication tasks for each of them. The extracted features are
TF-IDF. Initial step size is set to 7o = 0.03 and it is gradually
decreased as n; = %’70

All three data sets are randomly split into 20% as the teaching
set (has true labels for the teacher) and 80% as the evaluation set.
For the JEDI teacher, we have five different synthetic learners with
B € {0.368,0.5,0.75,0.875,0.999} and these values represent for
learner with memory window size of {1, 2, 4, 8, Inf}. To guarantee
a fair comparison, all learners have the same initial concept wy,
first teaching example (x1, y1), and target concept w,. (except RT,
which doesn’t have target concept). As we can see from the ex-
periment results in Figure 4 and Table 2, the IMT and JEDI have
consistently better convergence speed than RT. We also observe
that the JEDI learners with exponential decay memories usually
outperforms the no memory learners of IMT in terms of either
the convergence speed or the evaluation accuracy. Meanwhile, as
we expected, the JEDI learners with larger § has slower conver-
gence speed, increasing number of unique teaching examples, and
possibly better performance in the evaluation.

5.3 Adaptive Teaching with Real Human
Learners

The teaching experiments with real human learners are designed for
crowdsourcing workers to learn the concept of labeling different
animals images [26] based on the animal breed. We utilize two
categories of images (Cat and Canidae) and the label of each image
is either domestic or wild. Following the same convention of [26],
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10D-Guassian Comp. vs. Sci Rec. vs. Talk

# Unique Teaching | Evaluation | # Unique Teaching | Evaluation | # Unique Teaching | Evaluation

Examples Accuracy Examples Accuracy Examples Accuracy
RT 283 0.7625 210 0.7247 208 0.6041
IMT 13 0.7075 9 0.6887 5 0.5607
JEDI: f = 0.368 16 0.7575 14 0.6827 12 0.5736
JEDI: = 0.500 18 0.7575 16 0.6927 17 0.6102
JEDI: § = 0.750 30 0.7613 27 0.7207 23 0.6292
JEDI: § = 0.875 53 0.7775 45 0.7007 34 0.6617
JEDI: § = 0.999 197 0.7825 64 0.7307 50 0.6915

Table 2: Results of three data sets with synthetic learners

each image is represented by the top 110 TF-IDF features using
bag-of-visual-words extracted from a three-level image pyramid.
The experiment is designed to have three modules: memory length
estimation, interactive teaching, and performance evaluation.

Memory length estimation: For each crowdsourcing learner,
his/her memory decay rate f is not available to the JEDI teacher
beforehand. Thus, we propose to use the images sorting task to es-
timate each learner’s . This sorting task shows increasing number
(from 2 to 9) of randomly ordered images to the learner for a few
seconds (from 3s to 10s), and then ask the learner to recover the
correct order of these images after random shuffling. Each learner’s
memory decay rate is ad-hocly estimated as f = 1 — & where 1
is the mean of the maximum number of ordered images that this
learner can recover. There are three memory length estimation
trials, we drop the one with smallest memory length and take the
mean of the remaining two.

Interactive teaching: In total, we hired 58 crowdsourcing workers
(30 for cat data set, 28 for canidae data set). All human workers are
graduate students who are hired from Arizona State University and
have machine learning background. Besides RT, IMT, and JEDI, we
also add the Expected Error Reduction (EER [8]) as a comparison
teaching method which is specially designed for teaching real hu-
man learners. To guarantee a fair comparison, each learner will be
assigned with one of these four teachers using round-robin sched-
uling. The numbers of teaching images of JEDI are 20, 30, or 40 if
n falls into these ranges [2,4.5], (4.5, 6.5], (6.5, 9] respectively. The

numbers of teaching images of RT, IMT, and EER are fixed as 30.
It should be noticed that the ideal number of teaching examples
for different teaching tasks could have a large variation due to the
various learning abilities of the learners, different scales of the data
set, etc. We have left the exploration of this specific setting to the fu-
ture work. To deal with the "cold start" issue, the first five teaching
examples are randomly selected from the teaching set. All workers
know that they will be taught, and the incentive for workers to
learn is by giving double payment if they have the top 20 percent
labeling accuracies among all workers.

Performance evaluation: For each crowdsourcing worker, they
are asked to label 100 images (50 domestic/50 wild) in the evaluation
stage. The purpose of teaching is to let the human learner grasp the
idea of this domestic/wild classification concept. Thus, we propose
to use teaching gain as the evaluation metric which is defined as the
labeling accuracy during evaluation minus the labeling accuracy (of
these first seen teaching examples) during teaching. From the plots
shown in Figure 5, we observe that the teachers with an explicit
learner’s model (e.g. IMT and JEDI) performs better than model-
agnostic teachers and the JEDI teacher consistently performs the
best over all teaching strategies. Interestingly, we also see that
JEDI is the only teacher that has positive teaching gain on the cat
data set. One possible explanation is that cat breed classification
is a very difficult task and these crowdsourcing workers without
given a properly selected teaching sequence could hardly grasp
this labeling concept. On the other hand, the human learners have
difficulties to visually differentiate the wild and domestic cats is
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Figure 5: Teaching Gain of Cat (left) and Canidae (right)

because of that the subtle difference of their discriminative features
could be easily forgotten by human learners. However, JEDI is the
only model that could capture this memory loss by assuming that
each learner’s memory has an exponentially decayed rate.

6 CONCLUSION

In this paper, we study the problem of crowd teaching which applies
the machine teaching paradigm into the crowdsourcing applications.
The proposed JEDI teaching framework advances the state-of-the-
art techniques in multiple dimensions in terms of human memory
decay modeling, converging speed, teaching comprehensiveness
and teaching accuracy, etc. The experimental results on several data
sets with synthetic learners and crowdsourcing workers show the
superiority of JEDI teaching. Future work could focus on multiple
directions. Adapting to the multi-class teaching or finding an al-
ternative method to perform concept estimation are two possible
straightforward extensions. Furthermore, other promising explo-
rations could be teaching the gray-box learners (using different loss
functions or different learning procedures), teaching the black-box
learners (model agnostic) and teaching with human interpretable
explanations (e.g., area of interest on images or key phrases of
documents).
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