
Unlearn What You Have Learned: Adaptive Crowd Teaching
with Exponentially Decayed Memory Learners
Yao Zhou

Arizona State University

Tempe, Arizona

yzhou174@asu.edu

Arun Reddy Nelakurthi

Arizona State University

Tempe, Arizona

arunreddy@asu.edu

Jingrui He

Arizona State University

Tempe, Arizona

jingrui.he@asu.edu

ABSTRACT
With the increasing demand for large amount of labeled data, crowd-

sourcing has been used in many large-scale data mining applica-

tions. However, most existing works in crowdsourcing mainly focus

on label inference and incentive design. In this paper, we address a

different problem of adaptive crowd teaching, which is a sub-area

of machine teaching in the context of crowdsourcing. Compared

with machines, human beings are extremely good at learning a

specific target concept (e.g., classifying the images into given cate-

gories) and they can also easily transfer the learned concepts into

similar learning tasks. Therefore, a more effective way of utilizing

crowdsourcing is by supervising the crowd to label in the form of

teaching. In order to perform the teaching and expertise estima-

tion simultaneously, we propose an adaptive teaching framework

named JEDI to construct the personalized optimal teaching set

for the crowdsourcing workers. In JEDI teaching, the teacher as-

sumes that each learner has an exponentially decayed memory.

Furthermore, it ensures comprehensiveness in the learning process

by carefully balancing teaching diversity and learner’s accurate

learning in terms of teaching usefulness. Finally, we validate the

effectiveness and efficacy of JEDI teaching in comparison with the

state-of-the-art techniques onmultiple data sets with both synthetic

learners and real crowdsourcing workers.
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1 INTRODUCTION
In many real-world applications, the performance of the learning

models usually depends on the quality and the amount of labeled

training examples. With the increasing attention on the large-scale

data mining problems, the demand for large amount of labeled data

also grows at an unprecedented scale. One of the most popular

means of collecting the labeled data is through crowdsourcing plat-

forms, such as Amazon Mechanical Turk, Crowdflower, etc. With

the help of these crowdsourcing services, where the data is out-

sourced and labeled by a group of mostly unskilled online workers,

the researchers and organizations are able to obtain large amount of

label information within a short period of time at a low cost. How-

ever, the labels provided by these workers are often of low-quality

due to the lack of expertise and lack of incentives, etc. In recent

years, several works [12, 23–26] have been proposed tomodel and to

estimate the expertise of the workers, and these approaches tend to

improve the collective labeling quality by downweighting the votes

from the weak annotators and trusting the experts. Another branch

of crowdsourcing research [17, 18] focuses on the design of incen-

tives that could motivate the workers to convey their knowledge

more accurately by coupling it with a well-designed compensation

mechanism. Despite the success of these works, they all omitted

one important fact: human beings are extremely good at learning

a specific target concept (e.g., classifying the images into given

categories) and they can easily transfer the learned concepts into

similar learning tasks especially when they have grasped certain

prior knowledge regarding the original learning concept. Based on

the above insightful observations, it is commonly assumed that a

more effective way of utilizing crowdsourcing is by supervising the

crowd to label in the form of teaching [8, 19].

The crowdsourcing workers usually have a variety of expertise.

Therefore, teaching them a certain concept and estimating their la-

beling abilities at the same time is a challenging problem in general.

From the context of teaching, there is an emerging research direc-

tion named machine teaching [29] which is the inverse problem of

machine learning. Given the learners, the learning algorithm, and

the target concept, machine teaching is concerned with a teacher

who wants the learner to learn this target concept as fast as possible.

Usually, the main principle of machine teaching is to improve the

efficacy of the teachers either by minimizing the teaching effort (i.e.,

the teaching dimension [11, 27], which is defined as the cardinal-

ity of the optimal teaching set), or by maximizing the converging

speed [13] (i.e., the number of the teaching iterations to reach teach-

ing optimum). In this work, we focus on the problem of adaptive

crowd teaching, which is a sub-area of machine teaching in the

context of crowdsourcing. In crowd teaching, the learners are the

crowdsourcing workers and the teacher is the machine that guides
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the teaching procedure. This is similar to the computer tutoring

system, where the teacher teaches by demonstrating the typical

examples with answers to the students, and the teacher’s goal is

to help the students have good performance in similar tasks after

tutoring. Very few works [8, 19] have been conducted to solve this

problem, however, none of them have considered the human mem-

ory decay during learning, which has been shown to strongly affect

real human learner’s categorization decisions [4, 14, 16].

We propose an adaptive teaching paradigm based on the assump-

tion that the learners have exponentially decayed memories [14].

Within our proposed paradigm, the teacher can gradually construct

a personalized optimal teaching sequence for each learner by rec-

ommending a teaching example and querying the response from

the learner interactively with multiple teaching iterations. More-

over, our teaching strategy ensures the teaching sequence diversity

to help the learner develop more comprehensive knowledge on the

learning task, and guarantees the teaching sequence usefulness to

increase the learner’s learning accuracy. To be specific, the main

contributions of our work are summarized as follows:

• Formulation: We formulate the crowd teaching as a pool-

based searching problemwhich performs teaching and exper-

tise estimation simultaneously. The key idea of this teaching

framework is to impose the trade-off between the principles

of maximizing teaching usefulness and teaching diversity.

• Models: Each learner is assumed to be a gradient descent

based model with exponentially decayed memory, and the

teacher is formulated to minimize the discrepancy between

the learner’s current concept and the target concept. We

also provide theoretical analyses to study the quality of the

teaching examples.

• Experiments:We have provided a visualization of our teach-

ing framework on a two-dimensional toy data set, and an

exhaustive comparison on one synthetic data set and two

real-world data sets using simulated learners. Furthermore,

we have conducted a teaching experiment on real human

learners and compared our results with state-of-the-art tech-

niques with promising results.

• Demonstration: We have built a web-based teaching in-

terface
1
for real human learners. This interface includes all

three modules of teaching: memory length estimation, inter-

active teaching, and performance evaluation.

The rest of this paper is organized as follows. Section 2 briefly

reviews some related work. In Section 3, we formally introduce

the model of the learner and the model of the teacher, followed by

the discussions of the algorithm and the analysis of the teaching

performance. The adaptive teaching using harmonic function is

proposed in Section 4. The experimental results are presented in

Section 5 and we conclude this paper in Section 6.

2 RELATED WORK
In this section, we start by reviewing the research in machine

teaching followed with its recent advances. Next, we will review

the crowdsourcing works that have some overlap with machine

1
A demo of this teaching interface is available at: JEDI-Web-Demo. The latest source

code is available at: JEDI-Crowd-Teaching.

teaching. In the end, we also introduce several other works closely

related to human learning and teaching.

2.1 Machine Teaching
The inverse problem of machine learning is named as machine

teaching, which typically assumes that there is a teacher who knows

both the target concept and the learning algorithm used by a learner.

Then, the teacher wants to teach the target concept to the learner

by constructing an optimal teaching set of examples. One classic

definition of this "optimal" is teaching dimension [5] which is re-

ferred to as the cardinality of the teaching set. Finding the optimal

teaching set which strictly minimizes the teaching dimension is a

difficult problem to solve in general. Thus, a relaxed formulation

[29] of machine teaching has been proposed as an optimization

problem that minimizes both the teaching risk and the teaching

cost. In recent years, there has been a wide range of applications

related to machine teaching, e.g., crowdsourcing [8, 19], educational

tutoring, and data poisoning [15, 20], etc. In the meantime, several

theoretical works have studied various aspects of machine teaching

such as iterative machine teaching [13], recursive teaching dimen-

sion [2], and teaching dimension of linear learners [11], etc. Our

work extends the study of machine teaching into the domain of

crowdsourcing, and we studied the crowd teaching problem both

theoretically and empirically.

2.2 Crowdsourcing
Crowdsourcing is a special sourcing model in which pieces of micro-

tasks are distributed to a pool of online workers. It has become a

popular research topic in the recent decades because of its widely

commercial and academic adoptions in related areas. One of the

fundamental problems of interest is how to properly guide the on-

line workers and teach them the correct labeling concept given the

fact that those hired workers are usually non-experts. Based on

the learning and teaching styles [3] that students progress towards

concept understanding, human learners can be categorized as ei-

ther the sequential learners (who learn things in continual steps)

or global learners (who learn things in large jumps, holistically).

Inspired by this pioneer work, recently, several teaching models

have been proposed: the gradient descent model proposed in [13]

studied the teaching paradigm for sequential learners and their

study conducted on human toddlers has demonstrated the effective-

ness of iterative machine teaching; the non-stationary hypothesis

transition model proposed in [19] assumes crowdsourcing work-

ers are global learners and their learned concepts are randomly

switched based on observed workers’ feedback; the expected er-

ror reduction model proposed in [8] learns to present the most

informative teaching images to the students by using an online

estimation of their current knowledge. Compared with the former

approaches, our work explicitly models the human learner with an

exponentially decayed memory which is suitable for the human

short-term memory concept learning [6]. Meanwhile, our teaching

paradigm is an adaptive crowd teaching framework that ensures

both the usefulness and the diversity of the teaching examples.

http://198.11.228.162:9000/memory/index/
https://github.com/collwe/JEDI-Crowd-Teaching/


2.3 Other Related Work
Besides the existing works on machine teaching and crowdsourc-

ing, the proposed work in this paper is also closely related to many

other research subjects such as active learning [21] and curriculum

learning [1]. The learner in active learning can query the label

of an example from the oracle; however, the teaching example

in machine teaching is recommended by the teacher. Curriculum

learning, which is inspired by the learning process of humans and

animals, suggests an easy-to-complex teaching strategy. The empir-

ical results conducted on human subjects in [9] have indicated that

human teachers tend to follow the curriculum learning principle. In

curriculum learning, samples in the teaching sequence are selected

merely based on the example difficulty. However, as a comparison,

self-paced learning with diversity [7] which also favors example

diversity has shown its superior performance on various learning

tasks such as detection and classification.

3 THE CROWD TEACHING FRAMEWORK
In this paper, we denote X ⊂ Rm as the m-dimensional feature

representations of all examples (e.g., images or documents) and Y

as the collection of labels. The teacher has access to a labeled subset

Φ ⊂ X×Y, which is named as the teaching set
2
of the teaching task.

For binary concept learning, x ∈ X is the feature representation

of one example, and y ∈ {−1,+1} is its corresponding binary class

label. We assume the teacher knows the target concept w∗ ∈ Rm

and the learning model (e.g., logistic regression) of each learner.

The teacher wants to teach the target concept to the learner using a

personalized teaching set which is constructed by interacting with

the learner for multiple teaching iterations. To be specific, each

teaching iteration (e.g., the t-th iteration) includes the following

three major steps:

• First, the teacher estimates the current conceptwt−1 grasped

by the learner and recommends a new teaching example

(xt ,yt ) to the learner.

• Next, the teacher will show the recommended teaching exam-

ple (without revealing its true label yt ), and ask the learner

to provide its label estimation ỹt .
• At last, the teacher reveals the true label yt to the learner,

and the learner will perform the learning use (xt ,yt ).

3.1 Model of the Learner
To begin with, we assume that the learners to be taught are active

learners who are seeking for improvement and aim to become the

experts of the given task. Therefore, we do not take the spammers

or adversaries into consideration under this teaching setting.

Now, we formally introduce the model of the learner, whose

assets include its initial concept w0, learning loss L(·, ·), learning
procedure, and learning rate ηt . After the t-th teaching iteration, the

learner applies a linear model, i.e.,wT
t x, to predict using its learned

conceptwt . Similar to the learning model proposed in [13], we also

assume that the learner uses a gradient descent learning procedure.

However, based on the fact that the real human learner’s catego-

rization decisions are guided by a small set of examples retrieved

2
The definition of teaching set in this paper is the same as in [8, 19]. However, in the

concept of teaching dimension [11], the definition of teaching set is different from

ours.

Figure 1: Illustration of JEDI (one teaching iteration)

from memory at the time of decision [4, 16], and the retrievability

of memory is usually approximated with an exponential curve [14],

we further assume that each learner has an exponentially decayed

retrievability for the learned concept in terms of the order of the

teaching examples, i.e.,:

v1 = βv0 +
∂L(wT

0
x1,y1)

∂w0

v2 = βv1 +
∂L(wT

1
x2,y2)

∂w1

= β2v0 +
[
β
∂L(wT

0
x1,y1)

∂w0

+
∂L(wT

1
x2,y2)

∂w1

]
. . .

vt = βtv0 +
t∑

s=1
βt−s

∂L(wT
s−1xs ,ys )
∂ws−1

(1)

where β ∈ (0, 1) is the personalized memory decay rate. Various

learners can have different memory lengths, and this personalized

memory length is parameterized by β . The learners with large β
can actually retrieve more information from their memory. The

concept momentum vt is defined as the linear combination of its

previous concept momentum vt−1 and the gradient of the learner’s

loss

∂L(wT
t−1xt ,yt )

∂wt−1
. The initial momentum v0 is usually set to 0 in

practice. With the properly chosen learning rate ηt , the learner uses
the gradient descent learning procedure to improve their concept

in an iterative way:

wt ← wt−1 − ηtvt (2)

Similar to stochastic gradient descent (SGD) with momentum, the

learner will update his/her concept wt towards the target concept

w∗ along the direction of the negative concept momentum −vt ,
which is the linear combination of the negative gradients of the

learning losses with exponentially decayed weights. Intuitively,

the concept learned by a human learner depends on a sequence of

teaching examples. The latest example will contribute more (has

larger weights) towards learning than the earlier ones.

3.2 Model of the Teacher
Initially, we assume that the teacher has access to the learner’s

current concept wt , learning loss, learning procedure, etc., and the

teacher intends to guide the learner towards the target concept w∗.



Notice that in real-world teaching, the teacher generally does not

have direct access to a learner’s current concept. The alternative

of estimating a learner’s concept will be introduced in Section 4.

Thus, the objective of teaching is proposed as follows:

min | |wt −w∗ | |22 (3)

This objective is designed to minimize the discrepancy between

the target concept w∗ and the learner’s current concept wt after

t rounds of teaching. The objective can be decomposed into three

parts by substituting Eq. (2) into it:

O(xt ,yt ) = ∥wt −w∗∥22

= ∥wt−1 −w∗∥22 + η
2

t






 t∑
s=1

βt−s
∂L(wT

s−1xs ,ys )
∂ws−1






2
2︸                               ︷︷                               ︸

T1: Diversity of the teaching sequence

−2ηt

〈
wt−1 −w∗,

t∑
s=1

βt−s
∂L(wT

s−1xs ,ys )
∂ws−1

〉
︸                                               ︷︷                                               ︸

T2: Usefulness of the teaching sequence

(4)

The first part is the discrepancy between w∗ and learner’s previous
concept wt−1, and the second part T1 essentially measures the

diversity of the teaching sequence. The third part T2 measures the

usefulness of the teaching sequence and the intuitive explanations

of T1 and T2 will be clear later.
Meanwhile, we assume that the teacher has an infinite memory

of the teaching sequence of examplesDt = {(x1,y1), . . . , (xt ,yt )},
as well as the corresponding estimate of the concept sequence from

the learnerWt = {w0,w1, . . . ,wt }.

Diversity of the teaching sequence.

In order to simplify T1, we further decompose it into two interme-

diate terms:

T1 =
t∑

s=1
β2(t−s)






 ∂L(wT
s−1xs ,ys )
∂ws−1






2
2

+

t∑
s=1

t∑
r,s

β2t−s−r
〈
∂L(wT

s−1xs ,ys )
∂ws−1

,
∂L(wT

r−1xr ,yr )
∂wr−1

〉 (5)

The selection of the learning loss can be flexible. For the task

of teaching a classification concept, we utilize the logistic loss,

which is convex and smooth, to illustrate the key idea, i.e., log

(
1 +

exp(−ywT x)
)
, although the proposed framework can be extended

to other loss functions. Easily, we can have the gradient norm

of each teaching example as

(
−y

1+exp(ywT x)

)
2

∥x∥2
2
, which has the

interpretation of example difficulty when all the example feature x
lies on a hypersphere (e.g., L2-normalized bag-of-words features in

document classification). In that case, ∥x∥
2
= 1 and the first term

of T1 becomes the sum of squares of the probability of incorrect

predictions.

Our goal of teaching is to recommend the next teaching ex-

ample (xt ,yt ), therefore, these observed gradients (with indices

s = 1, . . . , t − 1) are not relevant in this teaching optimization sub-

problem of minimizing T1. If we substitute the gradient of logistic

Figure 2: Trade-off between diversity and usefulness

loss into the objective, it is straightforward to get the following

equivalent optimization sub-problem:

min

(xt ,yt )
T1

⇔ min

(xt ,yt )

(
yt

1 + exp(ytwT
t−1xt )

)
2

∥xt ∥22

+

t−1∑
s=1

2βt−s
[

ysyt(
1 + exp(yswT

s−1xs )
) (
1 + exp(ytwT

t−1xt )
) ]xTs xt

(6)

Usefulness of the teaching sequence.

T2 part in the objective serves as the measurement of the usefulness

of the whole teaching sequence. Specifically, it is the weighted

sum of all inner products between wt−1 −w∗ and the gradients of

the teaching sequence examples. It means that the entire teaching

sequence Dt will contribute to maximizing the convergence of the

teaching. The larger value the inner product has, the more useful

this teaching sequence is. However, similar to the T1 minimization

sub-problem, only (xt ,yt ) relevant terms matter for the purpose of

maximizing T2:

max

(xt ,yt )
T2

⇔ max

(xt ,yt )

t−1∑
s=1

βt−s
〈
wt−1 −w∗,

∂L(wT
s−1xs ,ys )
∂ws−1

〉
+

〈
wt−1 −w∗,

∂L(wT
t−1xt ,yt )
∂wt−1

〉
⇔ max

(xt ,yt )

〈
wt−1 −w∗,

−ytxt
1 + exp(ytwT

t−1xt )

〉
(7)

Trade-off between diversity and usefulness.

For simplicity, we denote ft :=
1

1+exp(ytwT
t−1xt )

and fs := 1

1+exp(yswT
s−1xs )

,

where s = 1, . . . , t − 1. Then, the overall teaching problem becomes:



min

(xt ,yt )
O(xt ,yt )

⇔ min

(xt ,yt )
η2t

[〈
yt ftxt ,yt ftxt

〉
+ 2

t−1∑
s=1

βt−s
〈
ys fsxs ,yt ftxt

〉]
− 2ηt

〈
wt−1 −w∗,−yt ftxt

〉
⇔ min

(xt ,yt )
η2t ∥yt ftxt − vt−1∥

2

2
− 2ηt

〈
w∗ −wt−1,yt ftxt

〉
(8)

Prob. (8) aims to maximize the teaching diversity (T1 part) and
the teaching usefulness (T2 part) at the same time. As illustrated in

Figure 2, the teacher prefers the negative gradient yt ftxt of next
teaching example is similar to the concept momentum vt−1 and
has large correlation with the target learning direction w∗ −wt−1.

The learning rate ηt is usually set to a small value (ηt < 1) in

optimization. Therefore, the teaching usefulness (T2 part) dominates

the teaching process. It is straightforward to see that when the

β = 0, our objective is directly reduced to the no memory teaching

framework proposed in [13].

In order to solve this teaching problem, we denote at := yt ftxt .
Then, the teaching objective can be further simplified as:

O(xt ,yt ) = η2t

[
∥at ∥22 − 2

〈
at , vt−1 +

w∗ −wt−1
ηt

〉]
= η2t





at − (
vt−1 +

w∗ −wt−1
ηt

)



2
2

− η2t





vt−1 + w∗ −wt−1
ηt





2
2

(9)

The concept momentum vt−1 is the weighted sum of gradients of

the teaching sequence Dt−1 using exponentially decayed weights.

Based on this new objective, we propose the teaching algorithm

JEDI (AdJustable Exponential Decay Memory Interactive Crowd
Teaching). The JEDI teaching algorithm with omniscient teacher

(having access to learner’s concept sequenceWt ) is shown inAlgo-
rithm 1. It is given the learner’s memory decay rate, initial concept,

target concept, learning rate, teaching set as input, and will output

the personalized teaching sequence. JEDI works as follows. We first

initialize the teaching iterator t = 1 and initial momentum v0 = 0.
Then, in each iteration, the teacher searches through the teaching

set Φ and finds the example (xt ,yt ) that minimizes the objective

function in Eqn. (10), where f = 1

1+exp(ywT
t−1x)

is the probability of

incorrect prediction of example (x,y) in the teaching set Φ. Next,
the learner performs the labeling on xt using its current concept
wt−1. Then, the label yt is revealed by the teacher and the learner

performs learning using Eqn. (2). This interactive teaching will

continue until the stopping criteria is satisfied.

In exponential weighted average, the number of examples being

used is usually approximated [10] as
1

1−β . Therefore, we can assume

that there exists a memory window size (i.e,. how many examples

or corresponding concept gradients the learner can memorize) for

each learner, and it can be approximated as
1

1−β . In the following,

we use the two-example teaching scenario (e.g., memory decay rate

is as low as β ≈ 0.5, or it is the second iteration of teaching t = 2)

as a running example, where the learner can memorize a teaching

sequence of size 2. Notice that the analysis and conclusions can be

Algorithm 1 JEDI with omniscient teacher

1: Input: Learner’s memory decay rate β , initial concept w0, tar-

get concept w∗, initial learning rate η0, teaching set Φ, MaxIter.

2: Initialization:
v0 ← 0
t ← 1

3: Repeat:
4: (i). Among all examples (x,y) in teaching set Φ and their

probabilities of incorrect prediction f , the teacher recommends

example (xt ,yt ) to the learner by solving:

(xt ,yt ) = argmin

(x,y)∈Φ





y f x − (
vt−1 +

w∗ −wt−1
ηt

)



2
2

(10)

5: (ii). Learner performs the labeling.

6: (iii). Learner performs learning after teacher reveals yt .
7: (iv). t← t + 1

8: Until converged or t > MaxIter

9: Output: The teaching sequence Dt

extended to other values of β as well. In the two-example teaching

scenario, the trade-off between diversity and usefulness will lead

to further insights with the help of the following definitions and

theorem.

Definition 3.1. Given the previous teaching example (xt−1,yt−1),
if the teacher recommends a new teaching example (xt ,yt ) which
has different label yt , yt−1, this teaching action is named Explo-
ration. If the new teaching example has the same label yt = yt−1,
this teaching action is named Exploitation.

Definition 3.2. Given the previous teaching example (xt−1,yt−1),
its negative gradient yt−1 ft−1xt−1 and its optimal teaching direc-

tionw∗−wt−1 has an angle θ ∈ [0,π ]. Then, this teaching example

is not useful towards teaching optimal w∗ if the angle satisfies
θ ≥ π

2
.

Theorem 3.3. (Exploration vs. Exploitation) For two-example
teaching, if the previous teaching example (xt−1,yt−1) is not useful
towards teaching optimal, the teacher will recommend large diversity
teaching example (xt ,yt ) for exploitation, i.e., yt = yt−1, or recom-
mend highly similar teaching example (xt ,yt ) for exploration, i.e.,
yt , yt−1.

Proof. Let at−1 := βyt−1 ft−1xt−1, then the teaching objective

becomes:

O(xt ,yt ) = η2t





at + (
at−1 −

w∗ −wt−1
ηt

)



2
2

− η2t





at−1 − w∗ −wt−1
ηt





2
2

The minimum of the objective is guaranteed to be reached when

the next teaching example xt is selected as follows:

xt = −β
yt−1
yt

ft−1
ft

xt−1 +
1

yt ft

w∗ −wt−1
ηt

Using at−1 as the reference, the optimal teaching direction vector

can be decomposed as w∗ −wt−1 = (w∗ −wt−1)∥ + (w∗ −wt−1)⊥



in at−1’s parallel direction and perpendicular direction. If the pre-

vious teaching example is not useful (i.e., θ ≥ π
2
), without loss of

generality, we can assume (w∗ −wt−1)∥ = αat−1, where α ≤ 0 is

obviously satisfied. Then, we have:

xt = −γ+
ft−1
ft

xt−1 + ξt (⇐ Exploitation)

xt = γ+
ft−1
ft

xt−1 + ξt (⇐ Exploration)

where γ+ = (1 −
α
ηt )β is a positive scalar and ξt =

1

yt ft
(w∗−wt−1)⊥

ηt
is the teaching perturbation. If the previous teaching example xt−1
is not useful, then the teacher will prefer the next teaching example

xt to be very different from the previous one for exploitation (intra-

class teaching) or to be similar with the previous one for exploration

(inter-class teaching). □

The teaching action choice between exploration and exploita-

tion is very clear especially when the previous teaching example is

most useless (i.e., θ = π ), under which scenario the recommended

teaching example has zero teaching perturbation (w∗−wt−1)⊥ = 0.

The magnitude of the teaching perturbation is positively corre-

lated with the usefulness of the previous teaching example since

(w∗ − wt−1)⊥ ∝ sin(θ ) and θ ≥ π
2
. Therefore, if the previous

teaching example is less useful (θ becomes larger), the perturba-

tion will become smaller, and the teacher has less uncertainty to

decide whether the next teaching recommendation should be an

exploitation action or an exploration action.

Proposition 3.4. For the examples that live on a hypersphere, if
the previous teaching example (xt−1,yt−1) is most useless (θ = π )
towards teaching optimal and the learning rate satisfies ηt ≥

α β
β−1 ,

then the teacher recommended example (xt ,yt ) is guaranteed to have
better labeling quality than (xt−1,yt−1), i.e., the learner can correctly
label example xt with higher probability than labeling example xt−1.

Proof. We have ft = (
α
ηt − 1)β

yt−1
yt

<xt−1,xt >
<xt ,xt > ft−1 from The-

orem 3.3. For hyperspherical feature space,

�� <xt−1,xt >
<xt ,xt >

�� ≤ 1 and

no matter if the teaching action is exploration or exploitation, the

coefficient of ft−1 is always smaller than 1. Therefore, ft (probabil-
ity of incorrectly labeling xt ) is smaller than ft−1 (probability of

incorrectly labeling xt−1). □

For the teaching scenarios with multiple teaching examples (e.g.,

β is large), the above theoretical analyses are also applicable by

treating the previous teaching sequence Dt−1 as one pseudo teach-

ing example with its decayed negative gradient as vt−1.

4 ADAPTIVELY TEACHING THE HUMAN
LEARNERS

In this section, we first discuss the challenges for teaching the

real human learners. Then, we present the methodology which

can estimate the human learner’s current concept using the har-

monic function. In the end, we formally present the algorithm JEDI

teaching with harmonic function estimation.

4.1 Teaching in the Real World

All examples help teaching. After the teacher reveals the true
label of the recommended teaching example, the human learner can

improve the concept learning either by verify the correctness of

his/her labels or by gaining information from the mistakes he/she

made.

Repeated teaching examples. Memories are so volatile that hu-

man learners have to be providedwith repeated examples to strengthen

the learned concept. Due to this reason, the teaching sequence Dt
selected from the teaching set Φ should have repeated examples es-

pecially when these examples are incorrectly labeled or the learner’s

memory window size is small.

Pool-based teaching. Similar to the pool-based active learning,

in many real-world teaching tasks, the synthetically generated

teaching examples that meet the global optimum of JEDI objective

are not valid real-world examples (e.g., images, documents). Thus,

a pool-based search is a more realistic alternative. In other words,

the JEDI teacher will search for the best teaching examples in the

teaching set Φ instead of the whole feature and label space.

Teacher has no access to learner’s concept. To address this chal-
lenge, notice that by utilizing the first-order convexity of the learn-

ing loss, we can have:〈
wt−1 −w∗,

∂L(wT
t−1xt ,yt )
∂wt−1

〉
≥ L(wT

t−1xt ,yt ) − L(w
T
∗ xt ,yt )

(11)

Then, minimizing T2 can be relaxed to the problem of optimizing

its lower bound. This relaxation enables the teacher to query the

learner’s prediction sign(wT x) instead of requiring access to his/her
concept w directly (which is impossible for real human learners).

The effectiveness of this relaxation depends on the tightness of the

lower bound. Therefore, the smaller ∥wt−1 −w∗∥ is, the tighter
the bound is. In other words, this relaxed problem is gradually

becoming a reliable approximation of the original problem with

more and more teaching iterations.

4.2 Concept Estimation using Harmonic
Function

In the teaching phase, for every observed teaching example (with

indices s = 1, . . . , t − 1), the teacher has access to the features xs
and the learner provided label ỹs . However, the teacher still needs
the learner’s probability of incorrect prediction f = 1

1+exp(ywT
t−1x)

on every example (x,y) in Φ to start teaching. One naive way of

estimating f is by using learner provided labels to train a super-

vised classification model, and predict the unlabeled ones with this

classifier to get f . However, due to the limited number of labeled ex-

amples, a semi-supervised model [22, 28] should be more effective

than supervised models. One alternative to estimating f is by using

graph-based semi-supervised learning method proposed in [28].

Given the teaching sequence Dt−1, for every unlabeled example,

we can estimate its probability of labels using semi-supervised

Gaussian random fields and harmonic functions:

Fu = (Duu −Auu )
−1Aul Fl (12)



In the above formulation, A is the affinity matrix of all examples

and D is a diagonal matrix (with Dii =
∑
j=1Ai j ). Matrix A can

be reordered and split into four blocks as: A =

[
Al l Alu
Aul Auu

]
and similar block split operation is applied on D as well. Fl ∈

{0, 1} |Dt−1 |×2
is the label matrix associated with learner provided

labels, where each element is set to 1 if the corresponding label

has been provided by the learner and 0 otherwise. Following this

convention, the affinity matrix can be constructed as follow:

Ai j = exp

(
−

m∑
d=1

(xid − xjd )2

σ 2

d

)
(13)

It should be noticed that the teaching examples could be repeatedly

recommended by the JEDI teacher, and this is different from the

crowd teaching model of [8], which also uses the harmonic function

but only allows each example to be recommended once. Therefore,

before applying the harmonic solution, we only keep the unique

examples that have the latest labels provided by the learner in the

teaching sequence. Meanwhile, in order to guarantee all examples

in the teaching set Φ could be recommended for next round of

teaching, affinity matrix A are padded using extra nodes and edges

constructed from the existing teaching sequence Dt−1. After ap-

plying the harmonic solution, the labeling probability estimation

of every example x in Φ corresponds to a row (whose entries are p
and 1 − p) of matrix Fu :

P(y = 1|x,Dt−1) = p =
1

1 + exp(−wT x)

P(y = −1|x,Dt−1) = 1 − p =
1

1 + exp(wT x)

(14)

To calculate concept momentum vt−1 in T1, which utilizes the

probability of incorrect prediction fs of teaching example (xs ,ys )
where s = 1, . . . , t − 1, the estimated labeling probabilities are used

together with the teacher revealed ground truth label ys . They are

calculated as:

fs :=
1

1 + exp(yswT
s−1xs )

=
(
1 − ps

) ys +1
2 p

1−ys
2

s (15)

where ps is the harmonic probability estimate of teaching example

xs . Similarly, in order to calculate T2 term, the estimated labeling

probabilities are jointly used with ground truth label yt as:

1

f−t
:= 1 + exp(−ytwT

t−1xt ) =
(
1

pt

) yt +1
2

(
1

1 − pt

) 1−yt
2

(16)

where pt is the harmonic probability estimate of teaching example

xt .

4.3 Teaching Algorithm
The details of the JEDI algorithm using harmonic function estima-

tion are provided in Algorithm 2. It is given the learner’s memory

decay rate, target concept, learning rate, teaching set as input, and

will output the personalized teaching sequence. It works as follows.

We first initialize the iterator t = 1 and initial momentum v0 = 0.
Then, in each teaching iteration, the JEDI teacher estimates the

probability of incorrect labeling using harmonic function Eqn. (12).

Next, the JEDI teacher searches through the teaching setΦ and finds

Algorithm 2 JEDI with harmonic function estimation

1: Input: Learner’s memory decay rate β , target concept w∗, ini-
tial learning rate η0, teaching set Φ, affinity matrix A, diagonal

matrix D, MaxIter.

2: Initialization:
v0 ← 0
t ← 1

3: Repeat:
4: (i). Teacher estimates Fu using Eq. (12) and calculates fs and

1

f−t
using Eq. (15) and Eq. (16).

5: (ii). Teacher recommends example (xt ,yt ) to the learner:

(xt ,yt ) = argmin

(x,y)∈Φ
η2t ∥y f x − vt−1∥

2

2
− 2ηt log

1 + exp(−ywT
t−1x)

1 + exp(−ywT
∗ x)
(17)

6: (iii). Learner performs the labeling and then teacher updates

A,D, and Fl .
7: (iv). Learner performs learning after teacher reveals yt .
8: (v). t← t + 1

9: Until t > MaxIter

10: Output: The teaching sequence Dt

the example (xt ,yt ) that minimizes the objective function in Eqn.

(17) which uses the fs (where s = 1, . . . , t − 1), and 1

f−t
. Next, the

learner performs the labeling on xt and the JEDI teacher updates

affinity matrix A, diagonal matrix D, and label matrix Fl using the

methods described in Section 4.2. At last, the teacher reveals the

true label yt and the learner performs learning. The JEDI teaching

with harmonic function estimation will stop when the maximum

number of iterations has been reached.

Data set # Examples (Teach) # Examples (Evaluate) # Features
10D-Guassian 400 1600 10

Comp. vs. Sci 375 1500 150

Rec. vs. Talk 369 1475 150

Table 1: Statistics of the three data sets with synthetic learn-
ers.

5 EXPERIMENTS
In this section, we first conduct the experiments on a toy data set

to illustrate the trade-off between diversity and usefulness using

JEDI with omniscient teacher. Then, we evaluate the convergence

and the performance of JEDI with harmonic function estimation on

three data sets using synthetically generated learners. At last, we

evaluate the effectiveness of JEDI teaching on two real-world data

sets by hiring and teaching a group of crowdsourcing workers.

5.1 Toy Data Set Visualization
In order to visualize the selected examples of the teaching sequence,

we apply three different teaching methods: SGD, Iterative Machine

Teaching (IMT) [13], and JEDI (omniscient teacher) on a 2D Gauss-

ian mixture data set. This data set is draw from two Gaussian
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Figure 3: Left: Comparison of convergence. Right: The unique examples in the teaching sequences of SGD, IMT, and JEDI. Se-
lected examples: Green (iter. 1-100), Blue (iter. 101-200), Red (iter. 201-300), and Black (iter. 301-500). Cyan dashed line: optimal
classification hyperplane.

mixture distributions (one positive class and one negative class):

p+(x) =
2

3

N(x|µ1, Σ1) +
1

3

N(x|µ2, Σ2)

p−(x) =
2

3

N(x|µ3, Σ1) +
1

3

N(x|µ4, Σ2)
(18)

where the parameters are µ1 = (0, 8), µ2 = (8, 0), µ3 = (−8, 0),
µ4 = (0,−8), Σ1 = [12 6; 6 12] and Σ2 = [10 5; 5 10]. The number

of examples in each class is 150. To guarantee a fair comparison,

the target concepts w∗ are the same for IMT and JEDI (SGD has

no target concept), and the initial concept w0, the first teaching

example (x1,y1), the step size η = 0.03 are set to be identical for all

three methods.

The numbers of unique teaching examples of SGD, IMT, and JEDI

are 182, 16, and 27 respectively. As we expected, SGD almost selects

half of all examples for teaching. Thus, we visualize the selected

examples of SGD with a stride size of 5. From the visualization

results, there are several interesting observations. First, the conver-

gence rate of IMT and JEDI are comparable and both have better

convergence than SGD. Second, the selected teaching examples

of JEDI are much diverse than those of IMT, yet the convergence

speed of JEDI is guaranteed. As we can see, in the first 100 iterations

(when teaching converges very fast), the unique teaching examples

of IMT mainly focus on the upper left two data distributions, but

the teaching examples of JEDI are more diversely distributed in

all data distributions. The advantages of JEDI is significant espe-

cially when the examples are drawn from a mixture distribution

because JEDI objective considers both the usefulness and the diver-

sity of the teaching examples. Third, the JEDI selected examples are

symmetrically scattered over the optimal classification hyperplane

and have more appearances on the data distribution boundaries

which reflects our theoretical analysis regarding the exploration

and exploitation actions.

5.2 Adaptive Teaching with Synthetic Learners
The teacher in this group of experiments doesn’t have access to the

learners’ concepts. Thus, teachers of Random Teaching (RT), IMT,

and JEDI can only estimate a learner’s concept using harmonic

function. We evaluates these methods on three data sets, as shown

in Table 1, which include a 10-dimensional Gaussian data set and

two text data sets from 20 Newsgroups. The learners are randomly

generated as a vector that has the same length as the example

features. After performing the learning, a random Gaussian noise

will be added to the learner’s concept vector to simulate the learning

uncertainty. Below are the settings of the data sets:

• 10D-Gaussian: The means are µ1 = (−0.6, . . . ,−0.6), µ2 =
(0.6, . . . , 0.6) and the diagonal of its covariance matrix has

random values between 1 to 10. Initial step size is set to

η0 = 0.03 and it is gradually decreased as ηt =
20

20+t η0
where t is the teaching iterations.
• Comp.vs.Sci and Rec.vs.Talk: We use their largest classi-

fication tasks for each of them. The extracted features are

TF-IDF. Initial step size is set to η0 = 0.03 and it is gradually

decreased as ηt =
200

200+t η0.

All three data sets are randomly split into 20% as the teaching

set (has true labels for the teacher) and 80% as the evaluation set.

For the JEDI teacher, we have five different synthetic learners with

β ∈ {0.368, 0.5, 0.75, 0.875, 0.999} and these values represent for

learner with memory window size of {1, 2, 4, 8, Inf}. To guarantee

a fair comparison, all learners have the same initial concept w0,

first teaching example (x1,y1), and target concept w∗ (except RT,
which doesn’t have target concept). As we can see from the ex-

periment results in Figure 4 and Table 2, the IMT and JEDI have

consistently better convergence speed than RT. We also observe

that the JEDI learners with exponential decay memories usually

outperforms the no memory learners of IMT in terms of either

the convergence speed or the evaluation accuracy. Meanwhile, as

we expected, the JEDI learners with larger β has slower conver-

gence speed, increasing number of unique teaching examples, and

possibly better performance in the evaluation.

5.3 Adaptive Teaching with Real Human
Learners

The teaching experiments with real human learners are designed for

crowdsourcing workers to learn the concept of labeling different

animals images [26] based on the animal breed. We utilize two

categories of images (Cat and Canidae) and the label of each image

is either domestic or wild. Following the same convention of [26],
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Figure 4: Convergence plots of data sets: 10D-Gaussian (left), Comp.vs.Sci (middle), Rec.vs.Talk (right)

10D-Guassian Comp. vs. Sci Rec. vs. Talk
# Unique Teaching

Examples
Evaluation
Accuracy

# Unique Teaching
Examples

Evaluation
Accuracy

# Unique Teaching
Examples

Evaluation
Accuracy

RT 283 0.7625 210 0.7247 208 0.6041

IMT 13 0.7075 9 0.6887 5 0.5607

JEDI: β = 0.368 16 0.7575 14 0.6827 12 0.5736

JEDI: β = 0.500 18 0.7575 16 0.6927 17 0.6102

JEDI: β = 0.750 30 0.7613 27 0.7207 23 0.6292

JEDI: β = 0.875 53 0.7775 45 0.7007 34 0.6617

JEDI: β = 0.999 197 0.7825 64 0.7307 50 0.6915

Table 2: Results of three data sets with synthetic learners

each image is represented by the top 110 TF-IDF features using

bag-of-visual-words extracted from a three-level image pyramid.

The experiment is designed to have three modules: memory length
estimation, interactive teaching, and performance evaluation.

Memory length estimation: For each crowdsourcing learner,

his/her memory decay rate β is not available to the JEDI teacher

beforehand. Thus, we propose to use the images sorting task to es-

timate each learner’s β . This sorting task shows increasing number

(from 2 to 9) of randomly ordered images to the learner for a few

seconds (from 3s to 10s), and then ask the learner to recover the

correct order of these images after random shuffling. Each learner’s

memory decay rate is ad-hocly estimated as β = 1 − 1

n where n
is the mean of the maximum number of ordered images that this

learner can recover. There are three memory length estimation

trials, we drop the one with smallest memory length and take the

mean of the remaining two.

Interactive teaching: In total, we hired 58 crowdsourcing workers
(30 for cat data set, 28 for canidae data set). All human workers are

graduate students who are hired from Arizona State University and

have machine learning background. Besides RT, IMT, and JEDI, we

also add the Expected Error Reduction (EER [8]) as a comparison

teaching method which is specially designed for teaching real hu-

man learners. To guarantee a fair comparison, each learner will be

assigned with one of these four teachers using round-robin sched-

uling. The numbers of teaching images of JEDI are 20, 30, or 40 if

n falls into these ranges [2, 4.5], (4.5, 6.5], (6.5, 9] respectively. The

numbers of teaching images of RT, IMT, and EER are fixed as 30.

It should be noticed that the ideal number of teaching examples

for different teaching tasks could have a large variation due to the

various learning abilities of the learners, different scales of the data

set, etc. We have left the exploration of this specific setting to the fu-

ture work. To deal with the "cold start" issue, the first five teaching

examples are randomly selected from the teaching set. All workers

know that they will be taught, and the incentive for workers to

learn is by giving double payment if they have the top 20 percent

labeling accuracies among all workers.

Performance evaluation: For each crowdsourcing worker, they

are asked to label 100 images (50 domestic/50 wild) in the evaluation

stage. The purpose of teaching is to let the human learner grasp the

idea of this domestic/wild classification concept. Thus, we propose

to use teaching gain as the evaluation metric which is defined as the

labeling accuracy during evaluation minus the labeling accuracy (of

these first seen teaching examples) during teaching. From the plots

shown in Figure 5, we observe that the teachers with an explicit

learner’s model (e.g. IMT and JEDI) performs better than model-

agnostic teachers and the JEDI teacher consistently performs the

best over all teaching strategies. Interestingly, we also see that

JEDI is the only teacher that has positive teaching gain on the cat

data set. One possible explanation is that cat breed classification

is a very difficult task and these crowdsourcing workers without

given a properly selected teaching sequence could hardly grasp

this labeling concept. On the other hand, the human learners have

difficulties to visually differentiate the wild and domestic cats is
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Figure 5: Teaching Gain of Cat (left) and Canidae (right)

because of that the subtle difference of their discriminative features

could be easily forgotten by human learners. However, JEDI is the

only model that could capture this memory loss by assuming that

each learner’s memory has an exponentially decayed rate.

6 CONCLUSION
In this paper, we study the problem of crowd teaching which applies

themachine teaching paradigm into the crowdsourcing applications.

The proposed JEDI teaching framework advances the state-of-the-

art techniques in multiple dimensions in terms of human memory

decay modeling, converging speed, teaching comprehensiveness

and teaching accuracy, etc. The experimental results on several data

sets with synthetic learners and crowdsourcing workers show the

superiority of JEDI teaching. Future work could focus on multiple

directions. Adapting to the multi-class teaching or finding an al-

ternative method to perform concept estimation are two possible

straightforward extensions. Furthermore, other promising explo-

rations could be teaching the gray-box learners (using different loss

functions or different learning procedures), teaching the black-box

learners (model agnostic) and teaching with human interpretable

explanations (e.g., area of interest on images or key phrases of

documents).
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