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ABSTRACT

In the era of big data, it is often the rare categories that are of great
interest in many high-impact applications, ranging from financial
fraud detection in online transaction networks to emerging trend
detection in social networks, from network intrusion detection
in computer networks to fault detection in manufacturing. As a
result, rare category characterization becomes a fundamental learn-
ing task, which aims to accurately characterize the rare categories
given limited label information. The unique challenge of rare cate-
gory characterization, i.e., the non-separability nature of the rare
categories from the majority classes, together with the availability
of the multi-modal representation of the examples, poses a new re-
search question: how can we learn a salient rare category oriented
embedding representation such that the rare examples are well
separated from the majority class examples in the embedding space,
which facilitates the follow-up rare category characterization?

To address this question, inspired by the family of curriculum
learning that simulates the cognitive mechanism of human beings,
we propose a self-paced framework named SPARC that gradually
learns the rare category oriented network representation and the
characterization model in a mutually beneficial way by shifting
from the ‘easy’ concept to the target ‘difficult’ one, in order to
facilitate more reliable label propagation to the large number of
unlabeled examples. The experimental results on various real data
demonstrate that our proposed SPARC algorithm: (1) shows a signif-
icant improvement over state-of-the-art graph embedding methods
on representing the rare categories that are non-separable from
the majority classes; (2) outperforms the existing methods on rare
category characterization tasks.
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Figure 1: Rare category oriented network representation:
the majority and minority classes are not separable in the

original feature space, but become well separated in the em-
bedding space induced by SPARC.

(a) Original Feature Space

1 INTRODUCTION

In many real-world applications, it is usually the case that the rare
categories play an essential role despite their extreme scarcity. For
example, in transaction networks, the vast majority of online trans-
actions are legitimate, and only a small number may be fraudulent;
in social networks, the majority users could be loss of sight to the
underlying emerging trends, which could potentially turn into a
burst in the near future; in computer networks, the percentage of
network intrusion among the huge volumes of routine network
traffic is small, but the loss might be significant.

One key challenge for analyzing the rare categories is the non-
separable nature, i.e., the support regions of majority and minority
in networks are usually non-separable. For example, in the financial
fraud detection, the fraudulent people often try to camouflage their
synthetic identities within the normal ones in order to bypass the
fraud detection systems [9]; in the spam detection, the junk mails
are deliberately made like the normal ones [18]. In addition, due to
the highly skewness and non-separable nature of rare categories,
labeling rare category examples is extremely expensive. In the ex-
treme case, we may need to train the rare category analysis model
from very few or only one labeled example. That said, it is therefore
a very important and challenging task to identify such minority
classes given that they are (1) highly skewed, (2) non-separable and
(3) sparsely labeled. To be more specific, in this paper, we want to
answer the following two open questions: First (T1. Embedding),
how to learn a salient rare category oriented embedding repre-
sentation in order to better characterize them when the minority
classes are non-separable from the majority classes? Second (T2.
Characterization) how to accurately characterize the rare examples
in the scarcity of label information?
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Recently developed network embedding techniques [10, 30, 36],
that encode graph structural information into a low dimensional
representation, have received much success in boosting the per-
formance of various network interface capabilities such as entity
classification [43], author identification [7] and community detec-
tion [38]. However, these network embedding models are usually
trained by uniformly drawing graph context without considering
the scenario that the networks may exhibit imbalanced class distri-
bution. Thus, the context information of rare categories may not be
well preserved in the extracted training context pairs by existing
context sampling methods [10, 30, 36, 43], which could be a key
issue in the follow-up rare category characterization.

To counter the negative effects from learning in an imbalanced
data set, extensive deep models [31, 33] have been proposed based
on the re-sampling strategy [6], the cost sensitive learning [44]
or adapting learning [12]. However, in the rare category charac-
terization setting, training the aforementioned deep models in the
scarcity of labeled rare category examples often suffers from the
inevitable errors during label propagation. Thus, how to maintain
a ‘safe and secure’ label propagation is of the key importance in
learning the underlying distribution of rare categories.

To address the above challenges, in this paper, we propose a
generic rare category analysis framework named SPARC, that jointly
predict the rare category examples and the neighborhood context in
the graph. Our proposed SPARC is designed to jointly address two
tasks, namely T1. Embedding and T2. Characterization, in a mutu-
ally beneficial way. In order to alleviate the influence of ambiguous
data during model training, we integrate the self-paced learning
paradigm into our framework to jointly select the rare category
oriented graph contexts and maintain a reliable label propagation
for training our proposed SPARC model.

The main contributions of this paper are summarized below.

(1) Problem. We formalize the problems of rare category oriented
network representation and characterization learning in attrib-
uted networks, and identify their unique challenges from the
nature of rare categories.

(2) Algorithms. We propose a generic rare category analysis frame-
work named SPARC, which is able to jointly predict the rare
category examples and the neighborhood context in the attrib-
uted network.

(3) Evaluations. Extensive experimental results on real networks
demonstrate the performance of the proposed SPARC algorithm.

The rest of our paper is organized as follows. Related works are
reviewed in Section 2, followed by the notation and problem defini-
tion in Section 3. In Section 4, we present our proposed framework
SPARC. Experimental results are reported in Section 5 before we
conclude the paper in Section 6.

2 RELATED WORK

In this section, we briefly review the related works regarding rare
category analysis, network representation and curriculum learning.

2.1 Rare Category Analysis

Different from outlier detection [15, 24, 25] that targets to find
abnormal patterns that do not conform to the expectation, and

imbalanced classification [6] that aims to increase the overall ac-
curacy, rare category analysis explores the compactness of the
minorities and characterizes them from the highly skewed data
sets. Rare category analysis (RCA) is first introduced by Pelleg
and Moore [29], where the rare categories are defined as the mi-
nority clusters that exhibit a compact property in an imbalanced
data distribution. The unique challenges of RCA come from the
highly skewed data distribution, together with the non-separability
nature of the rare categories from the majority classes. Up un-
til now, researchers have proposed various methods for the RCA
problem, such as sampling-based methods [6, 13, 46], ensemble-
based methods [35], algorithm-adaptation-based methods [39], and
maximum-margin-based methods [14]. Recently, [16] presented a
deep representation model for the imbalanced data by enforcing
the deep model to explore and maintain the inter-cluster and inter-
class margins. [50] proposed a local graph clustering algorithm that
identifies the structure-rich clusters by exploring the high-order
structures in the neighborhood of the initial vertex in the given
graph. However, very little work (if any) is devoted to learning a
rare category oriented graph representation in the class-imbalanced
networks. In this paper, we propose a rare category oriented net-
work embedding approach, which jointly leverages the neighbored
context information and the label information of rare examples, in
order to better characterize the rare categories in the embedding
space.

2.2 Network Representation

The pioneer works of graph representation can be traced back to
the early 2000s, when many methods [1, 20, 32, 37] were developed
for learning a low-dimensional graph representation with a mini-
mized reconstruction error. While the network interface abilities
of these methods may suffer from overfitting or poor scalability in
real applications [7, 38]. Recently, a surge of research interests on
network embedding by employing Skipgram model [28] has been
observed in the network science. Among them, DeepWalk [30]
firstly generalizes the Skipgram model to embed the graph context
in a low-dimensional representation, where the graph context is
extracted based on a truncated random walk; LINE [36] further
extends the model by introducing an optimized objective function
that incorporates the first-order and the second-order proximi-
ties to learn network representation; node2vec [10] preserves both
homophily and structural equivalence relationships by generat-
ing the graph context with a biased random walk. In spite of the
general-purposed network embedding approaches, a diversity of re-
searches have been conducted to learn network representations for
solving specific tasks with training examples or prior knowledge,
such as multi-network inferences [25], author identification [7],
entity classification [23, 43] and community detection [38]. Despite
the success of these methods, embedding representation of class-
imbalanced networks has heretofore received little attention. In this
paper, we aim to learn a salient rare category oriented embedding
representation, such that the minority classes are well separated
from the majority classes, which facilitates the follow-up rare cate-
gory analysis tasks such as detection [8, 13, 48, 49], prediction [11],
clustering [45, 50] and classification [14, 40, 47].



2.3 Curriculum Learning

Inspired by the cognitive process of humans, Bengio’s group pro-
poses the curriculum learning (CL) paradigm, in which the under-
lying model is gradually trained from easy aspects of a task to
the complex ones based on the predetermined ‘curriculum’ [2, 3].
This theory has been successfully applied to various applications,
such as geometrical shape classification [3], teaching a robot of the
concept of ‘graspability’ [19], grammar induction [34], etc. How-
ever, the heuristical curriculum design in CL turns out onerous or
conceptually difficult in many real problems [21]. To eliminate this
issue, Kumar et al. [21] propose a new learning paradigm named
self-paced learning (SPL), which automatically learns a ‘curriculum’
by minimizing the loss function with a self-paced regularizer. In
particular, SPL jointly updates the model parameters w and the
‘curriculum’ indicator variable » by optimizing the following ob-
jective:

H}igsziL(yi,f(xi,w))—AZUI-, stoelo,1]” (1)

where L(y;, f(x;, w)) denotes the loss function, and A is the self-
paced parameter for controlling the learning pace. BCU [42] (Block-
Coordinate Update) is usually adopted to solve the above bi-convex
optimization problem by dividing the variables into disjoint blocks
and alternatively optimizing one block while keeping the rest fixed.
More recently, in [17], the authors develop a unified framework that
improves CL and SPL by considering both the prior knowledge and
the learning progress during training; in [26], the authors propose a
self-paced co-training algorithm, which is proved to guarantee the
theoretical effectiveness under the e-expansion assumption. In this
paper, we advance the SPL scheme to the scenario of rare category
analysis in the scarcity of labeled example, in order to gradually
learn the rare category oriented network representation and the
characterization model in a mutually beneficial way.

3 PROBLEM DEFINITION

Throughout the paper, we use lowercase letters to denote scalars
(e.g., @), boldface lowercase letters to denote vectors (e.g., v), and
boldface uppercase letters to denote matrices (e.g., A). Following the
convention in Matlab, we represent the i’ h row of matrix A as A(, ),
the j'# column of matrix A as A(s j), the entry of the ith row and the
j*" column in matrix A as A(, j), and the transpose of matrix A as
AT Given an attributed network G = (V, E, X), where V consists of
n vertices, E consists of m edges, and X = {x1,x2,...,x,} € R™
denotes the set of nodes’ attributes, we use A to represent the
adjacency matrix of G. Let x1,...,xy € R” denote the L labeled
examples, where we assume there is at least one from each minority
class; let xj41,...,x 4y € R, where n = L + U, denote the U
unlabeled examples, which either come from the majority class, i.e.,
y; € {0}, or the ¢ > 1 minority classes, i.e., y; € {1,...,c}. With
the above notation, our problem can be formally defined as follows:

PROBLEM 1. Rare Category Embedding Representation (RCE)

Input: (i) an attributed network G = (V, E, X), (ii) one-shot or few-
shot labeled examples x1, . . ., x1,, and (iii) the desired embed-
ding dimension d.

Output: a d-dimensional embedding representation E € R™4 that
preserves the underlying structure and context information,
especially for the rare categories.

The output of Problem 1 is a low-dimensional matrix E, where the
ith row (i.e., a d-dimensional vector e;) encodes the discriminative
attributes and topology context information of node i that are
beneficial for characterizing rare categories. The premise of network
embedding models is to preserve different types of proximities
between vertices and their neighborhood in a semi-supervised,
e.g., [43], or unsupervised manner, e.g., [10, 30, 36]. However, the
existing methods are not best suited for characterizing the rare
categories, which are (1) under-represented in the given network,
(2) non-separable from the majority classes, and (3) provided with
scarce labeled examples in a massive attributed network. Here, we
aim to learn a rare category oriented embedding representation
that can incorporate the label and context information to better
characterize the minority classes.

PROBLEM 2. Rare Category Characterization (RCC)

Input: (i) an attributed network G = (V, E, X), and (ii) one-shot or
few-shot labeled examples x1, .. ., x[.
Output: a list of predicted rare category examples.

The main challenges of Problem 2 come from the highly skewed
class membership and the scarce training data. Due to these is-
sues, the existing imbalanced classification algorithms and semi-
supervised learning techniques may suffer from overfitting and
inevitable errors in label propagation. Notice that Problem 1 and
Problem 2 are related with one another, and may be mutually bene-
ficial if jointly solved in the sense that (1) incorporating the rare
category oriented graph context information that is preserved in
RCE is crucial for characterizing the rare examples in Problem 2,
and (2) the trained RCC model could serve as a ‘supervisor’ to
determine the rare category oriented graph context for learning
the network representation in Problem 1. Due to these reasons, we
present a generic rare category analysis framework in the following
section, which is capable to learn from a handful or even one-shot
training example and maintain a ‘safe and secure’ label propagation
process in order to jointly address Problem 1 and Problem 2.

4 PROPOSED MODEL

In this section, we present our rare category analysis framework
SPARC, which simultaneously learns the graph embedding and
predicts the rare category examples in a mutually beneficial way.
We first formulate it as a generic optimization problem, and then
present the details on how to jointly learn a rare category oriented
embedding and characterize rare category examples within a self-
paced learning paradigm.

4.1 A Generic Joint Learning Framework

To address the proposed RCE and RCC problems, our joint learn-
ing framework should take into consideration the following key
aspects. First (skewed distribution), in order to detect and character-
ize the rare categories, our joint learning framework should have
the capability to model the imbalanced class memberships in the
given networks. Second (non-separability), the minority classes
and majority classes are often non-separable in both the network
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Figure 2: Illustration of the proposed SPARC framework. The minority class examples and the majority class examples are
represented by the red and blue icons, respectively. In the given networks, only one minority class example (i.e., User 0) is
labeled, while the remaining nodes are iteratively assigned with pseudo labels § by the rare category characterization model,
in order to learn the underlying distribution of the rare category.

topology space (i.e., A) and the feature space (i.e., X) . Therefore,
rare category oriented representation should result in the minority
examples being largely separated from the majority classes in the
embedding space. Third (label scarcity), due to the hardness and
expensive cost of labeling rare category examples, our proposed
framework should be capable to learn from few shot or even only
one labeled rare category example.

We start by illustrating our framework in the binary case with
only one majority class and one minority class in the given network.
The extension to multi-class RCC problem will be discussed later in
Subsection 4.2. With these design objectives in mind, we propose
a generic rare category analysis framework as an optimization
problem with the following objective function:

Ly=Ls+Lrc+Lic+ Lsp+ Lo
L

= Z Cyr s L0g Pr(gi = 1 - yilxi. ;)
i=1

Ls: cost sensitive learning
L+U - L+U ©
1 ~ 0
- Z v; log Pr(yi = 1|x;, ;) — Z 0, E(i,c,y) log o(y0/ ;)
i=1 i=1

L : predict rare category examples

L+U L+U
- Z A(l)vl(l) +/1(0)v§0) —a Z vgl)vgo) (2)
i=1

i=1

L;¢: predict graph context

Lsp: self-paced regularizer L.,: consensus regularizer

where the objective function consists of five terms. The first term
L is the cost sensitive loss over the labeled data, in which Cys g de-
notes the misclassification cost of labeling node i belonging to class
y; into a different class §j; # y;. In particular, we let c1,0 > co,1 > 1
in order to further penalize the errors of classifying the minority
class examples into the majority class. The second term £, corre-
sponds to the characterization step, which learns the underlying
distribution of the target rare category from both labeled and unla-
beled data. The third term L. corresponds to the embedding step,
which minimizes the prediction loss regarding the sampled graph
context pairs. The fourth term is the self-paced regularizer L,
which globally maintains the learning pace of the embedding step
(L¢¢) and the characterization step (L) by utilizing self-paced
vectors, i.e., 0(, oM ¢ [0,1]", respectively. The last term is the
consensus regularizer Lo, where « is a positive constant to balance
the impact of this term on the overall objective function.

Based on Eq. 2, we propose the overall SPARC framework as
shown in Fig. 2, where the RCE and RCC models are gradually
trained in a mutually beneficial way via multiple self-paced cycles
to maintain a ‘safe and secure’ label propagation. In particular,
within each training cycle, our proposed framework SPARC can
be decomposed into three stages. In the first stage, SPARC assigns
the pseudo labels to the potential rare category examples based on
the current prediction model. The second stage is the key step of
our proposed SPARC model, which jointly selects the rare category
oriented graph contexts and reliable predictions for training RCE
and RCC models. The third stage involves the construction of two
deep neural networks (DNN), including the RCE DNN (upper level)
and the RCC DNN (lower level). By using the sampled graph context



in Stage 2, the RCE DNN is trained to learn a salient embedding
space for the RCC problem. Given the input feature vector x; and
the learned embedding vector e;, the RCC DNN is updated by
learning from both the labeled and unlabeled data. In particular,
the posterior probability Pr(y;|x;, e;) in Eq. 2 is written as:

exp[h® (x;)T b (e:)T 16y
Xy exp[hk (x;)T, hl(e)T 10y

where h¥ denotes the kP hidden layer, and [, -] denotes the con-
catenation operator of two vectors. In the next cycle, the learned
RCC DNN will be used for label propagation in Stage 1, and the
learned RCE will be fed into the RCC DNN in Stage 3. To further
show how SPARC works, we focus on the following three aspects.
Impact of the Self-Paced Learning: In the case of non-separable
rare categories with scarce training data, deep discriminative mod-
els often suffer from the errors during label propagation. To address
this issue, our framework exploits the SPL scheme to gradually
learn from the labeled and unlabeled data, which has demonstrated
its robustness in the semi-supervised setting [19, 41]. For jointly
modeling the RCE and RCC problems, we design our SPARC frame-
work via dual-level SPL, by leveraging the idea of co-training [4, 26].
In particular, the overall objective of SPARC in Eq. 2 can be inter-
preted as the sum of a self-paced RCE model LgcE, a self-paced
RCC model Lrcc and a consensus regularizer L, as follows:

Pr(yilx;, e;) =

Ly = Lree + Lree + Leo
where

L+U L+U
-ERCC = -Es - Z Ugl) IOgPr(y\i = 1|x,~,e,-) — Z A(l)vgl) (3)

i=1 i=1

L+U L+U
Lrer=- ) 0 Ejcplogoylen - > A% ()
i=1 i=1

In other words, Lgcc is mainly used in RCC DNN to address
Problem 2, whereas LrcE is mainly used in RCE DNN to address
Problem 1. In addition, the consensus regularizer L, is imposed on
both Lrcc and Lrck to ensure the ‘learning curriculum’ gener-
ated by SPARC emphasizes on learning the underlying distribution
of rare categories.

We adopt BCU [42] to update the dual-level SPL in an alterna-
tive way. When we update the self-paced vector o), the partial
derivative of Eq. 2 with respect to vgl) (the ith® element of v(l)),
i=1,...,n, can be derived as:

0L .
(1[’) = —log Pr(gi = 1|x;, ¢;) - AV - ao”) )
dv;

Thus, the closed-form solution to update 051) is

MONPE ~log Pr(y = 1|x;. e;) < A + avgo) ©
! 0 Otherwise

By updating self-paced vector »(1), we can identify the reliable
predictions in order to learn the underlying distribution of rare cat-
egory in RCC DNN. To be specific, given the self-paced parameter
A, examples with a higher confidence to belong to the minority

class, ie., log Pr(y; = 1|x;,e;) > -0 _ owgo)

o) 0 g,

i

, are assigned with
= 1; otherwise, v

When we update the v(o), the similar closed-form solution can
be derived as follows.

1

v(_O) _ 1 —log o(ywzei) <20 4 O(’UEI) o
0 Otherwise

The goal of this step is to formally define which graph context
pairs (i,c,y) will be fed into the training pool for learning the
network embedding E. In each iteration, the graph context pairs
(i, ¢, y) whose prediction losses are smaller than a certain threshold,
ie., —log O'(ywze,-) <20 4 avgl), are selected (UEO) = 1) to be fed
into the following RCE DNN.

Furthermore, the consensus regularizer L., is imposed on the
self-paced vectors 2(® and v to ensure the selected graph context
pairs (i, ¢, y) are rare category oriented and within the user-defined
level of learning difficulty. The constant « is used to balance the two
learning principals, i.e., learning from rare category related graph

(

context (v;
"
to () such that more rare category related graph context will be
selected to train RCE DNN; when « is smaller, (9 will select more
vertices with ‘easy’ graph context.

RCE in the Scarcity of Labeled Minority Classes Exam-
ples: To learn the graph embedding that preserves the similarities
among rare category examples while maximally separating these
examples from the majority class examples, we follow the negative-
sampling-based graph embedding models [10, 36], which minimize
the cross entropy loss of predicting graph context pairs (i, c) to
positive labels (y = 1) or negative labels (y = —1) as follows:

. 1) or learning graph context with less difficulty

= 1). To be more specific, when « is larger, 2 will be closer

min —E; . )log o(y6re;)

where o(x) is the sigmoid function, i.e., o(x) = 1/(1 + e™¥). Re-
cently, [43] further developed a label informed graph embedding
method that injects the label information into the sampled posi-
tive graph context pairs and demonstrated its effectiveness in the
semi-supervised learning setting. However, in our problem setting,
the above methods may fail due to the following reasons: (1) the
learned embeddings (e.g., [10, 36, 43]) are not sensitive to the mi-
nority class examples since the sampled graph context pairs using
the above methods may mostly come from the majority classes; (2)
the scarcity of the labeled minority class examples imposes severe
limitation on sampling rare category oriented graph context pairs.
In the extreme case, when there is only one labeled minority exam-
ple, the existing method [43] cannot generate the label informed
positive context pairs (i, ¢, +1) as there is no way to find a pair of
nodes (i, ¢) from the same minority class within the labeled set.
To address the above deficiencies, we develop a rare category
oriented context sampling strategy in Algorithm 1. The given input
of Algorithm 1 is the graph G, an indicator vector I, and some
constant parameters including the length of the performed random
walks 1, the probability r and the number of negative samples syg.
In particular, the indicator vector I can be generated by any offline
RCC models, while our proposed SPARC model utilizes the self-
paced vector o) to serve as the indicator vector I that determines



Algorithm 1 Rare Category Oriented Context Sampling

Input:
Graph G, indicator vector I and parameters y, r and speg.
Output:
Rare category oriented graph context pairs;
1: Draw a number random ~ Unif(0, 1).
2: if random < r then
3. Uniformly sample a random walk W of length y and generate
one positive graph context pair (i, ¢, +1) and spe4 negative
graph context pairs (i, ¢, —1) by existing methods [30, 36].
4: else
5. Shuffle an initial vertex v; from the nonzero elements in I
and conduct a random walk W of length p.
6:  Uniformly sample a positive graph context pair (i, ¢, +1) with
I(i) = I(c) and speq negative graph context pairs (i, c, —1)
with I(i) # I(c).
7. end if

the potential rare category examples based on the current RCC
DNN. Algorithm 1 samples two types of graph contexts, i.e., the
general graph context and the rare category related graph context,
where the first one preserves the general graph structure, while the
second one focuses on learning the local context of the rare category
examples. An example of sampling graph context is shown in Fig. 3.
With probability r, the general graph contexts are extracted by the
existing methods [30, 36]. With probability (1 — r), we sample rare
category related context pairs (i, c, y). In particular, when y = +1,
node i and node ¢ are believed to belong to the same minority class,
ie., I(i) = I(c); when y = —1, node i and node c are believed to
belong to the different classes, i.e., I(i) # I(c).

Remarks: We would like to emphasize that Algorithm 1 is designed
for the class-imbalanced networks. More specifically, (1) to counter
the skewed distribution when sampling graph pairs, Algorithm 1
uses a probability r to balance the proportion of general graph con-
text pairs and the rare category graph context pairs; (2) in scarcity
of labeled rare category examples, our method generates rare cat-
egory oriented graph context pairs (i, ¢, y) based on the pseudo
labels (i.e., indicator vector I) instead of using real labels to alleviate
the limitation of insufficient labeled examples.

RCC with Respect to Labeled Majority and Minority Class
Examples: Here, we show the underlying training process of
the RCC DNN regarding the labeled majority class examples and
the labeled minority class examples. For each labeled minority
class example i, the hidden layers of RCC DNN are updated by
minimizing the following objective.

Lmin = c1,0log Pr(gi = 0lx;, e;) — 0" log Pr(gi; = 1]x;, e;)
= c0log(1 = Pr(g; = 1lx;, €:)) — 0" log Pr(g; = 1]x;, e;)

To further simplify the above objective, we let a = 1 — Pr(y; =
1|x;,e;) and b = Pr(y; = 1|x;, e;). Since (a + b)? > 4ab, we have
2log(a+b) > log4 +loga + log b, which could be written in terms
of Pr(y; = 1|x;, e;) as follows:

log(1 = Pr(y; = 1|x;, €;)) < —log Pr(4i = 1|x;,e;) —log4 (9)
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Figure 3: An example of sampling dual graph context by Al-
gorithm 1, when the window size d = 2, i = 3 and s;¢4 = 2. In
particular, if random > r, we sample the rare category related
context pairs based on the random walk (e.g., red path) start-
ing from the labeled rare category example (e.g., User0); oth-
erwise, we extract the graph context by uniformly sampling
arandom walk (e.g., blue path) from the given network.

By substituting Eq. 9 back into Eq. 8, we have:
Lmin < —(c1,0 + vgl))logPr(y} = 1|x;,e;) — c1,0 log4

Similar as above, for each labeled majority class example j, the
RCC DNN aims to minimize the following objective:

Limaj = (co1 — v\") log Pr(3; = 1]x;, ;) (10)

Remarks: Based on the above derived objectives regarding la-
beled majority class examples and labeled minority class examples,
we have the following observations: (1) £i, is monotonically de-
creasing over Pr(f; = 1|x;, e;)) as ¢1,0 > 1 and vgl) € {0,1}. That
is, the probability of the labeled minority class examples (y = 1)
belonging to the minority class Pr(g; = 1|x;,e;) is maximized
along with minimizing Lmin. (2) Lmaj is monotonically nonde-
creasing over Pr(jj; = 1|xj,ej)) as co,1 — ’Ugl) > 0. That is, the
probability of the labeled majority class examples (y = 0) belong-
ing to the minority class Pr(j; = 1|xj, e;) is minimized along with
optimizing L in. (3) The overall objective of SPARC emphasizes
on learning the underlying distribution of the minority class as
c1,0 + vgl) > co,1— vj(.l). For a special case, when ¢g 1 — v(.l) =0,ie,

co,1 = vﬁ.l) = 1, the labeled majority class examples with vj(.l) =1

are not taken into consideration. The intuition is that our proposed
framework SPARC is designed to be tolerant of the majority class ex-
ample j that may not be separable from the minority class examples,

ie,log Pr(j; = 1lxj,ej) > (O avgo).

4.2 Optimization Algorithm

To optimize the overall objective function in Eq. 2, we adopt
stochastic gradient descent (SGD) [5] to train our model in an
alternative way. The optimization algorithm is summarized in Al-
gorithm 2. The given input is the attributed network G, labels of
training data Y = {y1,...,yr} and some parameters including
batch iterations T; and Ty, batch size N1 and N, self-paced param-
eters A and A!) and «. Within each iteration, we first sample



Algorithm 2 SPARC: Joint Learning Framework for RCC and RCE
Input:
Graph G = (V,E, X), labels Y = {y, ..
T1, To, N1, No, PIUION
Output:
(1) Rare category oriented embedding E € RIVIxd,
(2) A list of predicted rare category examples.
1: while Stopping criterion is not satisfied do
22 fort=1:T do
3 Sample Nj labeled instances and update hidden layers’
parameters 6 by taking a gradient step for Ls + L.
4. end for
5: fort=1:T,do
6: Sample N graph context pairs by Algorithm 1 with indi-

.,yL}, and parameters

cator vector (%),

7: Update the rare category oriented embedding E by taking
a gradient step for L;

8:  end for

9:  Update 2 and o1 separately based on Eq. 7 and Eq. 6,

and make sure all the labeled rare examples are selected.
10 Augment A0 (D),
11: end while

Ni labeled examples and update RCC DNN by taking a gradient
step of L + L. Note that, in the first iteration, £, = 0 as 2
and v(!) are initialized to all-zero vectors. We then optimize the
RCE DNN over N, sampled graph context pairs (i, ¢, y). The above
procedures are repeated with T; and T, times respectively. Step 9
updates the self-paced vectors 2 and ™), and Step 10 augments
the self-paced parameters A(0), A1 in order to learn the more ‘diffi-
cult’ concept in the next iterations. The algorithm stops when the
user-defined stopping criterions are satisfied.

Algorithm 2 can be extended to solve the multi-class RCE and
RCC problems by optimizing the following objective function.

C
> ey,.i, log Prii = clxi,ex)

M=

-Lm =
i=1c=1
L+U C
- Z Z”i
i=1 c=1
L+U C L+U C
S0 00 o S S0
i=1 c=1 i=1 c=1

where ©(¢) € [0,1]" denotes the self-paced vector of class ¢, and
A9 is the self-paced parameter that controls the learning pace.
Compared with the objective function in Eq. 2 for the binary
case, the only difference is that each term in Eq. 11 is defined by
cumulating the prediction loss over multiple classes instead of only
two. Following Algorithm 2, our proposed framework SPARC is iter-
atively trained based on the extracted graph context pairs and label
propagated examples that come from different classes. In the end,
SPARC returns the rare category oriented network representation
and the predication labels of each vertex in the given network.

5 EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our proposed
SPARC algorithm in the sense of the saliency of the RCE repre-
sentation and the accuracy of the RCC classifier for rare category
analysis. Moreover, we also present a case study to illustrate the
impacts and the underlying procedures of the self-paced learning
in our proposed SPARC framework.

5.1 Experiment Setup

Category Network | Classes | Smallest | Nodes | Edges
Class
Collaboration DBLP 20 1.91% 2,309 7,913
SO 2 1.29% 3,262 19,926
NLP Citeseer 6 3.42% 3,327 4,732
Cora 7 1.14% 2,708 5,429
Pubmed 3 4.05% 19,717 | 44,318
Social Epinion 19 1.38% 75,879 | 508,837

Table 1: Statistics of the network data sets.

Data sets: The statistics of all real data sets used in our experiments
are summarized in Table 1.

« Collaboration Networks: DBLP* data set provides the bibli-
ographic information of the publications in IEEE Visualization
Conference during 1990 ~ 2015. Each vertex represents a paper,
and an edge exists if and only if when one paper cites another
paper. The class membership is defined based on 20 research top-
ics in the data visualization area. SOT data set is collected from
Stack Overflow, where each node represents a Stack Overflow user
and each edge indicates one comment from one user to another.
The class memberships are defined based on the users’ reputation
score, i.e., the majority of the users have regular scores (< 3000)
while only a few users have considerably high scores (> 3000).

« NLP Networks: Citeseer, Cora and Pubmed are three text classi-
fication data setsi, where each node represents a document and
each edge indicates the citation link between the documents. The
bag-of-words representation is adopted as the node attributes in
these three data sets. NELL [43] is an entity classification data set,

. o e . -
(c) log Pr(yi = clx;i, e;) + UE ) log EGicp) log cr()/@cTei) where the entities and the relations between entities are extracted

from the NELL knowledge database, and the attributes of each
entity are obtained by the bag-of-words representation of the
associated description text.

« Social Network: Epinion [22] data set is a who-trust-whom
social network, where each node represents a user, and an edge
exits if and only if two users both give positive reviews (rating >
2.5 out of 5) to the same item. The class membership of each user
is defined based on the most frequently reviewed item category.

Comparison Methods: We compare SPARC with the recent net-

work embedding and rare category analysis models. DeepWalk [30]

and LINE [36] are unsupervised network embedding algorithms,

which learn embedding based on word2vec model and use logistic

“http://www.vispubdata.org/site/vispubdata/
Thttps://archive.org/details/stackexchange
*http://lings.umiacs.umd.edu/projects//projects/Ibc/
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Figure 4: 2-D t-SNE visualization of network embedding.

regression as the classifier. PLANETOID [43] is a semi-supervised
framework for attributed networks, which learns an embedding
based on both topology context and label context to better infer the
class memberships of unlabeled examples. GRADE [13] is a graph
based rare category detection algorithm that takes the input of adja-
cency matrix A, while RACH [14] is a rare category characterization
algorithm that takes the feature vectors X as input.
Repeatability: All the data sets are publicly available. We will
release the code of our algorithms through the authors’ website
after the paper is published. The experiments are performed on a
Windows machine with four 3.5GHz Intel Cores and 256GB RAM.

5.2 Network Layout

A simple but useful way to evaluate the network representation ap-
proaches is to visualize the network layout in the embedding space,
and we take the NLP network that extracted from the Pubmed data
set for an example. We separate the network into binary classes
by letting the smallest class be the minority class and the residual
be the majority class. Laying out this NLP network is very chal-
lenging as the data is noisy and the classes, i.e., categories of docu-
ments, always overlap with one another. We compare our proposed
SPARC algorithm with three state-of-the-art network embedding
algorithms including two unsupervised methods, i.e., DeepWalk
and LINE, and one semi-supervised method, i.e., PLANETOID. Note
that, the unsupervised embedding methods only take as input the
graph G, while the semi-supervised methods, i.e., PLANETOID and
our proposed SPARC, are further provided with the training data
consisting of labeled examples from both the majority and the mi-
nority classes. In particular, we first map the given network into
a 129-dimensional space with different embedding methods, and
then we employ the nonlinear dimensionality reduction method,
i.e., t-SNE [27], to a 2-D space for the better visualization, which is
shown in Fig. 4. We can clearly observe that (1) the semi-supervised
embedding methods perform better than the unsupervised methods
as the classes are better separated; (2) with the same amount of

training data, the rare examples are better clustered by using SPARC
than PLANETOID. One explanation is that PLANETOID samples
the graph context without considering that the class membership
is imbalanced, which results in the neighborhood context of rare
examples not well preserved in the embedding space.

5.3 Effectiveness Analysis

The comparison results in terms of effectiveness across a diverse
set of networks by using 1, 5% and 10% labeled rare category exam-
ples are shown from Fig. 5 to Fig. 7, where the height of the bars
indicates the average value of evaluation metrics, and the error bars
represent the standard deviation of evaluation metrics in multiple
runs by randomly shuffling the initial training examples. Note that
PLANETOID can not be trained with only one labeled rare category
example, thus the corresponding results are not reported in Fig. 5.
By considering the smallest class in each data set as the rare cate-
gory, we adopt the following three commonly used metrics for the
rare category analysis [14]: (1) accuracy, which measures the rate
of the correctly classified majority and minority class examples;
(2) recall, which measures the percentage of the discovered rare
category examples; (3) recall@K, which shows the ratio of true rare
examples being retrieved in the returned top K examples, where K
equals the number of rare category examples in the given network.
In general, we observe that: (1) Our proposed SPARC algorithm
outperforms the comparison methods across all the data sets and
evaluation metrics in most cases. For example, on DBLP network
with only one labeled minority class example, compared with the
best competitor RACH, SPARC is 39% higher on Accuracy, 32%
higher on Recall and 17% higher on Recall@K. (2) Our proposed
SPARC algorithm is more robust (i.e., smaller error bar) than the
comparison methods with different initial training examples. One
intuitive explanation might be that the training ‘curriculum’ gener-
ated by SPARC guides the learning process towards a better local
optimum in the parameter space.

5.4 Case Study: Impact of Self-Paced Learning

Dual Graph Context Selection: To illustrate the impact of SPL
on RCE, we conduct a case study on Pubmed to show how the
rare category oriented graph contexts are extracted over paces.
In particular, we show the vertices that were selected by the self-
paced vectors 29 and (V) on the final embedding space of SPARC.
Remember the self-paced vectors are updated over iterations (i.e.,
paces) by shifting from the ‘easy’ concept to the target ‘difficult’
one. In Fig. 8, we observe that: (1) In the initial iteration (i.e., Pace 0),
no vertices are selected by 2 and o). (2) After that, o(!) mainly
selects the examples in the region of the minority class, while o)
selects examples across the whole network. (3) From Pace 1 to Pace
9, the overlap between the selected examples in 2 and o is
increasing, which indicates that the RCE emphasizes on learning
the context information of the minority class.

Parameter Sensitivity: We study the sensitivity of self-paced pa-
rameters A(®) and A1) on Pubmed. Recall that A(©) and A(!) control
the paces of learning from graph context and the underlying distri-
bution of rare examples. In Fig. 9, we report the recall rates of SPARC
by iteratively augmenting the values of A()) and A We have the
following observations: (1) Recall is generally increasing with the
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Figure 5: Effectiveness analysis with one labeled minority class example.
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Figure 6: Effectiveness analysis with 5% labeled minority class examples.
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Figure 7: Effectiveness analysis with 10% labeled minority class examples.

values of A and AV over paces. An intuitive explanation is that
when 1© and A are augmented, the richer context information
of rare examples is extracted for training SPARC according to Eq. 6
and Eq. 7, which leads to a better prediction model. (2) In the early
stage (i.e., A0 = @) = 0.16), recall increases faster (slower) with
respect to A1 (A0, In other words, learning from rare examples
with propagated labels is more important than learning from the
graph context for the RCC task in the initial iterations.

6 CONCLUSION

In this paper, we focus on analyzing the rare categories in class-
imbalanced networks. We start by formally defining the RCE and
RCC problems related to the rare categories, and then identify their
unique challenges due to the nature of rare categories in the at-
tributed networks, i.e., highly skewness, non-separability and label
scarcity. To address these challenges, we propose a generic rare cat-
egory analysis framework named SPARC, which jointly learns the
network representation and rare category characterization model in

a mutually beneficial way by shifting from the ‘easy’ concept to the
target ‘difficult’ one, in order to facilitate more reliable label propa-
gation to the large number of unlabeled examples. The empirical
evaluations on real-world data sets demonstrate the effectiveness
of our proposed framework SPARC from multiple perspectives.
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