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ABSTRACT
Recent decades have witnessed the rapid growth of E-commerce.
In particular, E-tail has provided customers with great convenience
by allowing them to purchase retail products anywhere without
visiting the actual stores. A recent trend in E-tail is to allow free
shipping and hassle-free returns to further attract online customers.
However, a downside of such a customer-friendly policy is the
rapidly increasing return rate as well as the associated costs of han-
dling returned online orders. Therefore, it has become imperative
to take proactive measures for reducing the return rate and the
associated cost. Despite the large amount of data available from
historical purchase and return records, up until now, the problem
of E-tail product return prediction has not attracted much attention
from the data mining community.

To address this problem, in this paper, we propose a generic
framework for E-tail product return prediction named HyperGo. It
aims to predict the customer’s intention to return after s/he has
put together the shopping basket. For the baskets with a high re-
turn intention, the E-tailers can then take appropriate measures
to incentivize the customer not to issue a return and/or prepare
for reverse logistics. The proposed HyperGo is based on a novel hy-
pergraph representation of historical purchase and return records,
effectively leveraging the rich information of basket composition.
For a given basket, we propose a local graph cut algorithm using
truncated random walk on the hypergraph to identify similar his-
torical baskets. Based on these baskets, HyperGo is able to estimate
the return intention on two levels: basket-level vs. product-level,
which provides the E-tailers with detailed information regarding
the reason for a potential return (e.g., duplicate products with dif-
ferent colors). One major benefit of the proposed local algorithm
lies in its time complexity, which is linearly dependent on the size
of the output cluster and polylogarithmically dependent on the vol-
ume of the hypergraph. This makes HyperGo particularly suitable
for processing large-scale data sets. The experimental results on
multiple real-world E-tail data sets demonstrate the effectiveness
and efficiency of HyperGo.
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1 INTRODUCTION
Generally speaking, E-commerce includes 4 segments of business,
Business-to-Consumer (B2C), Business-to-Business (B2B), Consumer-
to-Consumer (C2C), and Consumer-to-Business (C2B). E-tail be-
longs to the B2C segment, and it has been rapidly growing over
the years, expected to reach $4 trillion dollars in 20201. To further
attract online customers, many E-tailers start to offer free ship-
ping and hassle-free returns, such as Kohl’s and Macy’s. Such a
policy adds to the convenience of online shopping by providing
the customers with peace of mind regarding potential discrepancy
between expectation and reality. However, the downside of this
generous policy is the rocketing return rate and the associated costs
of handling returned online orders, including both direct costs such
as shipping, re-stocking and re-furbishing, and indirect costs, such
as call center demand and customer satisfaction. Therefore, it has
become a major challenge for E-tail to accurately predict product
returns, especially in the early stage when the order has not been
placed yet. In this way, for the customers with a high predicted
return intention, the E-tailers can take proactive measures to de-
crease the return intention, such as popping up a chatbot to provide
guidance regarding size and fit, offering discount coupons on the
products that contribute to the high predicted return intention,
and/or prepare for reverse logistics.

Up until now, this challenging problem has not attracted much
attention from the data mining community. The limited existing
techniques on E-tail product return prediction suffer from two ma-
jor issues: (1) they are designed to work after the customers have
made the purchase, and (2) they are not able to make customer-
product level predictions, leaving the E-tailers with less options
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when taking proactive measures to counter the return intention
and/or prepare for reverse logistics. To address these issues, in this
paper, we propose a generic framework for E-tail product return
prediction named HyperGo. It is based on a novel hypergraph rep-
resentation of historical purchase and return records, where each
node corresponds to a shopping basket, and each hyperedge cor-
responds to a unique product, connecting all the nodes associated
with the baskets containing this product. Compared with regular
graphs, the proposed hypergraph representation is able to leverage
the rich information of basket composition in a more effective way.
For a given basket, we further propose a local graph cut algorithm
to identify similar historical baskets. It is based on truncated ran-
dom walk starting from a given basket, and gradually explores the
neighborhood of this seed node on the hypergraph. Different from
most existing graph cut algorithms, the time complexity of the
proposed local algorithm depends linearly on the size of the output
cluster and polylogarithmically on the volume of the hypergraph,
making it particularly suitable to be applied on the large amount
of data consisting of historical purchase and return records, easily
reaching hundreds of thousands of products and millions of baskets.
Notice that the proposed HyperGo framework is designed to work
before the customers have made the purchase, potentially leading
to a changed basket composition with a decreased return intention.
Finally, based on the output cluster from the hypergraph, we pro-
pose to estimate the return intention on two levels: basket-level vs.
product-level, providing more insights into a potential return, such
as the basket containing duplicate products with different colors or
sizes.

The main contributions of the paper can be summarized below.
(1) Problem Setting. Different from the limited existing work

on E-tail product return prediction, in this paper, we aim
to predict the return intention before the customers have
made the purchase, allowing the E-tailers to take a variety
of counter measures with respect to potential returns;

(2) Generic Framework. We propose a generic framework
named HyperGo for predicting product returns, which con-
sists of a novel hypergraph representation, a local graph cut
algorithm that works in an effective and efficient way, and
dual-level return prediction based on the output cluster from
the algorithm;

(3) Experiments onRealData Sets.We evaluate the proposed
HyperGo on multiple real-world E-tail data sets with promis-
ing results.

The rest of the paper is organized as follows. After a brief re-
view of the related work in Section 2, we introduce the proposed
HyperGo framework in Section 3, including the novel hypergraph
representation of historical records, the local graph cut algorithm
for identifying similar historical baskets, as well as the dual-level
return intention prediction. Section 4 provides some experimental
results demonstrating the effectiveness and efficiency of HyperGo
on real-world E-tail data sets from leading omni-chanel (both online
and in-store) E-tailers. Finally, we conclude the paper in Section 5.

2 RELATED WORK
In this section, we briefly review the existing work on predicting
product returns, hypergraph models and graph partitioning.

2.1 Product Returns in E-commercce
Numerous studies have shown that at least 30% of all products or-
dered online are returned every year2. Returned products directly
cost U.S. e-tailers on shipping and re-stocking well over $200 bil-
lions annually [5]. In today’s competitive environment, as e-tailers
strive to improve customer engagement by offering generous return
policies, effective measures to reduce product return rate has sig-
nificant impact on the sustainability of e-commerce industry [15].

However, today the limited work on product return prediction in
literature narrowly focuses on end-of-life returns. [14] estimates the
total return quantity within a time period for electronic products
that have the potential of generating addition revenue through
remanfaucturing or reducing environment hazard. [7] reports sim-
ple and naive approaches using the proportion of returns to total
sales with a known life cycle length and autoregressive-type statis-
tical models to forecast return quantity and time. [14] introduces
Bayesian inference model and expectation maximization algorithm
to compute the return delay distribution. These methods are not de-
signed for customer-product level return predictions. [15] compares
Mahalanobis feature extraction to a total of six dimension reduc-
tion techniques for processing sparse feature matrices when return
orders are characterized with respect to consumption patterns. The
large set of features are originated from categorical variables such
as customer’s return history, payment method, device and operating
system from which a returned basket is ordered. Some information
usually is available only when customers have finished their online
shopping journey. This could limit the opportunity for e-tailers to
take proactive actions. The challenges for predicting customer re-
turn intention before they make purchases lie in the large problem
scale that usually involves hundreds of thousands of products and
millions of historical purchase and return records.

2.2 Hypergraph Modeling and Partitioning
Graphs are widely used in data mining to capture the relationships
between entities, where the entities are considered as nodes and
the relationships as edges. Such graphs serve as the undelrying data
model in many tasks as ranking, clustering, and recommendation.
Simple graph, however, can only capture pair-wise relationships
between nodes preventing us from modeling complex relationships.

Recently hypergraph based models have become an active re-
search area [11]. A hypergraph is a generalization of simple graphs
that can accurately model high-order relations. Early work [1, 10,
19] transforms hypergraphs into simple graphs by mapping the
high-order affinities to pairwise relationships. Such transforma-
tion could lead to information loss. [17] extends spectral clustering
methods for graphs to hypergaphs and further develops a semi-
supervised transductive inference setup for embedding. This work
has inspired many researchers to apply random walk on hyper-
graphs [4]. [13] transforms a hypergraph to a normal graph by
treating each hyperedge as a star in ranking video hyperlinks, and
uses a random walk in a start-shaped graph. [6] applies ranking
on a hypergraph that includes users, news articles, and topics for
personalized news recommendation. [4] applies random walk in
hypergraphs for sentence ranking in document summarization.
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However, all these methods work in a global manner in the sense
that they need to explore the entire hypergraph, which can be
computationally prohibitive, especially in E-tail product return pre-
diction with hundreds of thousands of products and millions of
baskets.

More recently, truncated random walk based local algorithms for
graph partitioning have achieved polylogarithmic time complexity
in the number of edges. The first of such methods is NIBBLE [12]
that attempts to minimize the clustering quality metric cut con-
ductance for undirected binary graphs. Given a starting vertex, it
provably finds a cluster near that vertex in time that is propor-
tional to the size of the output cluster. Finding a cluster in time
proportional to its size is an extremely valuable routine for practical
problems. Later [2] extends NIBBLE using PageRank vectors and
develops an algorithm for local unweighted binary graph partition-
ing. [3] further generalizes their work to directed binary graphs by
defining conductance in terms of the stationary distribution of a
random walk. More recently [16] adapts NIBBLE to undirected and
weighted bipartite graphs by introducing a constraint on the num-
ber of user nodes in the output clusters for advertisement campaign
recommendation. As far as we know, there is no truncated random
walk based local graph cut algorithms for hypergraphs as needed
in the scale of our problem. Our proposed framework HyperGo fills
in this gap and provides an effective and efficient solution for E-tail
product return prediction.

3 THE PROPOSED HYPERGO FRAMEWORK
In this section, we will present our proposed framework HyperGo
for E-tail product return prediction. More specifically, we start by
introducing the major notation used throughout the paper, followed
by the hypergraph-based representation of historical purchase and
return records. Then we will introduce the local graph cut algo-
rithm to identify similar historical baskets for any given basket,
and analyze its performance from various perspectives. Finally, we
will discuss the estimation of dual-level return intention based on
the output cluster from the proposed algorithm.

3.1 Notation
Let G = (V ,E,w) denote the hypergraph that we construct to
represent historical purchase and return records, where V is the
node set consisting of n nodes, and E is the hyperedge set consisting
ofm hyperedges. For any hyperedge e ∈ E, it can be considered
as a subset of V , i.e., e ⊂ V , indicating that it connects 2 or more
nodes together, andw(e) ≥ 0 is the non-negative weight associated
with this hyperedge. Let H denote the n ×m incidence matrix of
G. Its entries H (v, e) > 0 if any only if v ∈ e , and H (v, e) = 0
otherwise. Notice that H (v, e) can vary from product to product
even within the same basket, reflecting the quantity of the product
in this basket. Based on H , we define the degree of a node v ∈ V
as d(v) =

∑
e ∈E w(e)H (v, e), the degree of a hyperedge e ∈ E as

δ (e) =
∑
v H (v, e), and the volume of a node subset S ⊂ V as

vol S =
∑
v ∈S d(v). In particular, the volume of the hypergraph

volV is
∑
v ∈V d(v). Furthermore, following the definition in [18],

we consider a cut on the graph as a partition that separates the
node set V into set S and S̄ , where S̄ is the compliment of S . The
boundary of S is defined as the set of hyperedges that connect S

and S̄ , i.e. ∂S =
{
e ∈ E |e ∩ S , ∅, e ∩ S̄ , ∅

}
. The volume of S is

the sum of degrees of all the nodes in S , i.e. vol S =
∑
v ∈S d(v) and

the volume of the boundary is

vol ∂S =
∑
e ∈∂S

w(e)
|e ∩ S | |e ∩ S̄ |

δ (e)
. (1)

Throughout this paper, we use boldface upper case letters to
denote matrices, and boldface lower case letters to denote vectors.

3.2 Hypergraph-based Representation
Given the large number of historical purchase and return records,
we propose to build a hypergraphG in order to effectively leverage
the rich information from these records. In the hypergraph, each
node corresponds to a shopping basket, with or without returned
products, and each hyperedge corresponds to a unique product
connecting all the basket nodes containing this product. Figure 1
provides a simple example of the proposed hypergraph. Compared
with regular graphs where each edge always connects two nodes,
the hypergraph constructed this way is able to capture the co-
existence of multiple products within the same basket, i.e., multiple
hyperedges incident with the same node, which often shed light
on potential product returns. For example, if a shopping basket
contains multiple similar products such as white T-shirts, more
often than not, the customer would like to try them out and only
keep one that fits the best while returning the rest. On the other
hand, regular graphs are limited to pairs of products and thus lose
the big picture of the entire basket.

Intuitively, based on the proposed hypergraph, given a basket, if
it contains many shared or similar products with historical baskets
with returns, then it is likely to be (partially) returned as well.
Given the large number of historical baskets, the challenge is how
to identify similar historical baskets effectively (accurately) and
efficiently. Our proposed local graph cut algorithm is designed to
address this challenge.

(a) (b)

Figure 1: An example of the proposed hypergraph built
with 3 products E = {e1, e2, e2} and 7 shopping baskets V =
{v1,v2,v3,v4,v5,v6,v7}. (a) The numbers in the table reflect
the quantity of each product in a basket. (b) The hypergraph
is able to capture the complex relationship among products
and shopping baskets.

3.3 Local Graph Cut on Hypergraphs
Let v ∈ V denote the given basket, for which we would like to
predict the return intention. To this end, we first define a random
walk on the hypergraph via the following two steps: we first choose



a hyperedge e over all the hyperedges incident with v with prob-
ability proportional to w(e), and then choose a node u ∈ e with
probability proportional to H (u, e). The transition probability from
node v to node u can be written as follows.

P(v,u) =
∑
e ∈E

w(e)
H (v, e)

d(v)

H (u, e)

δ (e)
. (2)

where P(v,u) is the element of the n × n transition matrix P in the
vth row and the uth column. Based on this random walk, we further
define the lazy random walk with transition matrix M define as
follows.

M = (P + I )/2 (3)
where I is ann×n identity matrix. For the lazy randomwalk defined
this way, we obtain the stationary distribution according to [18] as
follows:

π (v) =
d(v)

volV
. (4)

Based on this random walk, we seek to find a local cluster S near
the given basket node v that minimizes the cut conductance on the
hypergraph defined below:

Φc (S) =
vol ∂S

min
{
vol S, vol S̄

} (5)

where the numerator is the volume of the boundary with respect
to S , and the denominator is the volume of the smaller side of the
partition induced by S .

Let p(u) (u ∈ V ) denote the probability distribution of a random
walk starting from node v . Following [12], we define

I (p,x) = max
ω ∈[0,1]n

ω(u) π (u)∑
π =x

∑
u ∈V

ω(u)p(u). (6)

One can easily check that I (p, 0) = 0 and I (p, 1) = 1. As the
distribution p approaches the stationary distribution, the curve
I (p, ·) approaches the straight line. Let Sj (p) denote the set of
j nodes maximizing p(u)/π (u), and let λj (qt ) denote its volume,
i.e., λj (p) = vol Sj (p). Furthermore, denote Ix (p,x) as the partial
derivate of I (p,x) with respect to x , we have

Ix (p,x) = lim
δ→0

Ix (p,x − δ ) =
p(σ (j))

π (σ (j))
, (7)

where σ (j) = Sj (p) − Sj−1(p) is the permutation function, such that
p(σ (j))

π (σ (j))
≥

p(σ (j + 1))
π (σ (j + 1))

. (8)

for all j. As p(σ (j))/π (σ (j)) is non-increasing, Ix (p,x) is a non-
increasing function in x and I (p,x) is a concave function in x . I (p,x)
is used as one convergence measure and Ix (p,x) characterizes the
normalized probability mass.

Before introducing our proposed algorithm, let us first look at
a few definitions. With slight abuse of notation, let p denote the
n × 1 vector whose elements are set to p(u). First of all, let [p]ϵ
be the truncation operator applied on p, such that its uth element
[p]ϵ (u) = p(u) if and only if p(u) ≥ π (u)ϵ , where π (u) is the station-
ary distribution at node u, and 0 otherwise. Second, following [12],
we define

tlast = (l + 1)t1

ϵ = 1/(c3(l + 2)tlast 2b ) (9)

where t1 =
⌈
2
ϕ2 ln(c1(l + 2)

√
(volV /2))

⌉
, l =

⌈
log2(volV /2)

⌉
, b is a

positively integer governing the size of the output cluster, and c1
and c3 are constants with suggested values in [12].

Now we are ready to introduce our proposed HyperGo in Al-
gorithm 1. Different from the NIBBLE algorithm proposed in [12],
which works on regular graphs, HyperGo is designed to work on
hypergraphs. It takes as input the hypergraph G, the seed basket
v ∈ V , the upper bound ϕ on the conductance of the local cluster,
and the positive integer b. The output is a set of basket nodes within
the identified local cluster. In Steps 1, we compute tlast and ϵ using
Equation 9. Next, in Step 2, we initialize r0 to be an n × 1 indicator
vector where only the element corresponding to the seed node is
set to one. Steps 4 and 5 generate a sequence of vectors starting
from r0 based on the following rule

qt =

{
r0, if t = 0,
Mr t−1, otherwise,

where r t = [qt ]ϵ , t > 0. That is, at each time step, we let the
random walk proceed by one step from the current distribution and
then round every qt (u) that is less than π (u)ϵ to 0. Notice that qt
and r t are not necessarily probability vectors, as their components
may sum up to less than 1. Then Step 7 finds the set Sj (qt ) consisting
of j nodes whose corresponding values qt (u)

π (u) are the largest. Step 8
determines whether this set satisfies three conditions: C.1 in Step 9
guarantees that the output set has cut conductance at most ϕ; C.2
in Step 10 ensures that it contains a good amount of volume (e.g.,
not too much and not too little); C.3 in Step 11 guarantees that the
output basket nodes have a large probability mass, where c4 is a
constant with suggested value in [12].

Algorithm 1 HyperGo Algorithm
Input: Hypergraph G, seed node v , conductance upper bound ϕ,

positive integer b
Output: A local cluster Sv near the seed node v .
1: Compute tlast and ϵ using Equation (9).
2: Initialize r0 to be an n× 1 all zero vector except for the element

that corresponds to v , which is set to 1.
3: for t = 1:tlast do
4: Set qt = Mr t−1
5: Set r t = [qt ]ϵ .
6: for j = 1 : n do
7: Let Sj (qt ) denote the set of j nodes whose corresponding

elements in qt /π are the largest.
8: Return Sj (qt ) as Sv if the following conditions are satisfied.

9: – C.1: Φ(Sj (qt )) ≤ ϕ.
10: – C.2: 2b ≤ λj (qt ) <

5
6volV .

11: – C.3 Ix (qt , 2b ) ≥ 1
c4 (l + 2)2

b .
12: end for
13: end for
14: Return an empty set.

The following lemma shows the time complexity of the proposed
HyperGo, which is largely controled by the size of the output cluster
2b . It also depends on volV in a polylogarithmic way.



Lemma 1. [Time Complexity of HyperGo] HyperGo runs in time
O(2b log6(volV )/ϕ4).

Proof. Similar as the NIBBLE algorithm [12], it is easy to prove
the monotonicity of multiplication byM defined in Equation 3, as
well as the upper bound on the escaping mass of a t-step random
walk with the volume of a node subset defined in Subsection 3.1.
Therefore, following the same line of reasoning, we can prove that
the time complexity of HyperGo is O(2b log6(volV )/ϕ4).■

ComparingHyperGowithNIBBLE, first of all,NIBBLE only works
on regular graphs, whereas HyperGo is designed for hypergraphs.
Therefore, NIBBLE cannot be applied to our proposed hypergraph
representation of historical purchase and return records. Second,
the running time of NIBBLE depends on the number of (pair-wise)
edges in the graph, whereas HyperGo depends on the volume of
the hypergraph volV . Notice that in hypergraphs, the volume of
the hypergraph is not in proportion to the number of hyperedges,
as different hyperedges may be incident with different number of
nodes.

From Lemma 1, it can be seen that due to the linear dependence
of the time complexity on the size of the output cluster, as well as
the polylogarithmic dependence on the volume of the hypergraph,
HyperGo is particularly suitable for large graphs, which is usually
the case in E-tail product return prediction.

3.4 Dual-Level Return Prediction
Based on the output of Algorithm 1, next we propose a dual-level
return prediction procedure, in order to provide the E-tailers with
detailed information regarding the reason for a potential return.
To be specific, we first predict if a basket contains products that
are likely to be returned (basket-level prediction); then given such
a basket, we predict which product(s) could be returned (product-
level prediction).

3.4.1 Basket-level prediction. Let BSK-dupe denote the type of
baskets that contain multiple similar products such as multiple
sweaters in the same style, color or size; and BSK-uniq denote the
type of baskets that only contain distinct products based on product
hierarchies. Let R(v) denote the return status of a basket v ∈ V ,
such that R(v) = 1 if basket v contains products that are to be
returned, and R(v) = 0 otherwise. Suppose the ratio of the return
probability between basket type BSK-dupe and type BSK-uniq is κ,
i.e.,

κ =
Pr {R(v) = 1|v ∈ BSK-dupe}
Pr {R(v) = 1|v ∈ BSK-uniq}

, (10)

where Pr{·|·} denotes the return probability corresponding to a
specific basket type and can be estimated from historical data.

Given a basket v ∈ V , the algorithm proposed in Subsection 3.3
returns a cluster of baskets Sv ⊂ V that are similar to the given
basket v . Among all the baskets in the cluster, we assume that the
return probability ratio of baskets in BSK-dupe and BSK-uniq is
preserved , i.e.,

Pr {R(u) = 1|u ∈ Sv ,u ∈ BSK-dupe}
Pr {R(u) = 1|u ∈ Sv ,u ∈ BSK-uniq}

= κ . (11)

Assume the return status of baskets in BSK-dupe and BSK-uniq
follows two Bernoulli processes B(ρ1) and B(ρ2), where ρ1 and
ρ2 are the success probabilities of the two processes respectively.

Suppose that there are N baskets in the returned cluster Sv , i.e.,
|Sv | = N ; N1 and N2 baskets without returns from BSK-dupe and
BSK-uniq, respectively. The following lemma shows how to estimate
the two parameters ρ1 and ρ2 via maximum likelihood estimation.

Lemma 2. Given two Bernoulli processes B(ρ1) and B(ρ2), assume
that the ratio of the success probabilities is a constant, i.e., ρ1/ρ2 = κ.
Among a total of N trials from the two Bernoulli processes, N1 failures
are observed from B(ρ1) and N2 failures are observed from B(ρ2). The
maximum likelihood estimate of the two parameters are

ρ̂1 =
1
2

[
f1 + f2κ −

√
f 21 + f 22 κ

2 + 2κ (2 − 2f1 − 2f2 + f1 f2)

]
,

(12)
and

ρ̂2 = ρ̂1/κ . (13)

where f1 = 1 − N1
N and f2 = 1 − N2

N .

Proof. Let N0 denote the number of Bernoulli trials from B(ρ1).
Given a total of N trails from the two Bernoulli processes, there
are N − N0 trials from the Bernoulli process B(ρ2). The likelihood
function is given by

L = (1 − ρ1)
N1ρN0−N1

1 (1 − ρ2)
N2ρN−N0−N2

2 .

As ρ1 = ρ2κ, we have

L = (1 − κρ2)
N1 (κρ2)

N0−N1 (1 − ρ2)
N2ρN−N0−N2

2 .

Taking the logarithm of above likelihood function, we obtain

l = N1 log(1 − κρ2) + (N0 − N1) log(κρ2)
+ N2 log(1 − ρ2) + (N − N0 − N2) log ρ2

Let ∂l/∂ρ2 = 0, we obtain the maximum likelihood estimate of ρ1
in Equation (12) and ρ2 in Equation (13).■

According to Lemma 2, the estimated return probability of the
given basket v is

P̂r{R(v) = 1} =
{
ρ̂1 if v ∈ BSK-dupe;
ρ̂2 if v ∈ BSK-uniq. (14)

3.4.2 Product-level prediction. For baskets that are predicted to
be returned, we further propose a method to predict which specific
products are likely to be returned. Let Rд(д) denote the return
status of a given product д, i.e., Rд(д) = 1 if returned, and Rд(д) = 0
otherwise. For a given product д ∈ v and v ∈ V , let Sv ⊂ V be the
local cluster obtained based on the given basketv using Algorithm 1.
The return probability of the product д is estimated by the fraction
of baskets with product д returned out of all the baskets that are
returned and contain the product д (for these baskets, the returned
product may not be д), i.e.,

P̂r
{
Rд(д) = 1

��R(v) = 1
}
=

∑
u ∈Sv IRд (д)=1,д∈u∑
u ∈Sv IR(u)=1,д∈u

, (15)

where IX is an indicator function, which is equal to 1 if condition
X is true, and 0 otherwise.

Based on the steps defined in the above two subsections, the
marginal return probability of a product in a given basket д ∈ v
can be calculated as follows.

P̂r
{
Rд(д) = 1

}
= P̂r

{
Rд(д) = 1

��R(v) = 1
}
P̂r {R(v) = 1} . (16)



Notice that in the above equation, we omitted R(v) = 1 from the
left hand side, as Rд(д) = 1 indicates R(v) = 1, i.e., the return status
of a basket is 1 if one of its products has been returned.

By first predicting returns at the basket-level and then at the
product-level, the dual-level procedure can leverage the basket-level
information, including but not limited to product interactions, into
the prediction of each product in the baskets. As a result, despite
that no detailed information of product attributes are included in
the model, we are still able to predict the return intention at the
product-level well, as will be shown in the Subection 4.3.3.

4 EXPERIMENTAL RESULTS
For this study, we collaborate with two leading omni-channel fash-
ion retailers, one in North American and the other in Europe, to
collect data and evaluate HyperGo. For e-tails in the fashion indus-
try, product returns are a major challenge, where the return rate
is often higher than 50% among all purchases3. There is a great
potential to reduce return rate by taking proactive actions based on
predicted product/basket return risk and thus improve the revenue
margin.

4.1 Data Sets and Experiment Setup
We obtain about three months historical online purchase and return
records from each retailer. The basic data information is summa-
rized in Table 1. For confidential agreement, we name the two data
sets as A and B. Data set A involves about 557 thousand products
and 3.6 million baskets with return rate of 52% and 65%, respectively.
Each product is a unique combination of style, color and size, i.e.,
the lowest level in the product hierarchies. Each basket is associated
with one customer’s online transaction and payment at a specific
time. The average return rate of BSK-dupe that consists of dupli-
cated products in same style, color or size is significantly higher
than that of BSK-uniq wherein each product is distinct. Data set B
shows lower average return rates at both basket and product levels
than data set A. Similarly the average return rate of BSK-dupe is
much higher than that of BSK-uniq.

The two E-tailers have a 45-day and 30-day return policy, respec-
tively. In our experiments, we use all the online orders in the first
seven days for training and model tuning. To be specific, among
these orders we randomly sample 5% to select input parameters for
all the methods. We use purchase orders in the subsequent two days
as test cases and split them into 10 subsets to estimate variation of
prediction performance. All the return orders within 45 (30) days
of these purchases either by mail or in-store are included as true
returns. This mimics online experiments on e-commerce platforms
that process orders sequentially.

To comprehensively investigate the performance of HyperGo ,
we evaluate it using six measures. We use running time to charac-
terize its efficiency. We compare its effectiveness based on precision,
recall, F0.5, receiver operating characteristic (ROC) curve, and the
area under ROC curve (AUC) [8]. ROC curve illustrates the diag-
nostic ability of a binary classifier as its discrimination threshold
is varied. AUC quantifies the overall quality of the ranking algo-
rithm based on the predicted probabilities. F0.5 weights precision
higher than recall. In our application, precision reflects the correct
3http://www.retourenforschung.de/

rate of each target basket/product for proactive actions. In practice,
every action for reducing return rate incurs cost and impacts cus-
tomers’ shopping experience, so precision is relatively more crucial.
Given this consideration, we use F0.5 for parameter tuning in all
the experiments.

Table 1: Summary of e-tail data sets

Retailer Metrics Retrun Rate Ave. Return Rate

A

Product 52%
Basket 65%
BSK-dupe 81%
BSK-uniq 48%

B

Product 36%
Basket 38%
BSK-dupe 60%
BSK-uniq 24%

4.2 Benchmark Methods
As far as we know,HyperGo is the first generic framework on return
prediction for e-commerce. It leverages the return and purchase
history of similar baskets and basket composition in a principled
way. We benchmark its performance over three similarity-based
approaches.

(1) k-NN: Given a basket, k-NN finds its k nearest neighbor bas-
kets in the training set4 and estimates its return probability
by the fraction of total returned baskets out of k .

(2) JacWght: Given a basket, JacWght calculates its pairwise
similarity with every training basket using Jaccard index5
based on product sets in these baskets. Let j be a t × 1 vector
that denotes the simiarity coefficients, where t is the number
of the training basket. Let i be a t × 1 vector indicating the
return status of each training baskets, where 1 is return, and
0 otherwise. JacWght estimates a basket’s return probability
by the average return status of the training baskets wighted
by the corresponding pairwise similarity scores, i.e., iT j

|j | ,
where | · | denotes L1-norm.

(3) JacNorm: JacNorm estimates a basket’s return probability
in a similar way as JacWght, but it emphasizes the different
return rates of BSK-dupe and BSK-uniq. To be specific, the
return probability of BSK-uniq is estimated by iTK j

|j | , and

BSK-dupe by κiTK j
|j | , where κ is defined in Equation (10),

and K is a t × t diagonal matrix with diagonal values 1 or
1/κ when the corresponding basket belongs to BSK-uniq and
BSK-dupe, respectively.

Note that all the benchmark methods are based on pairwise
similarities. For return prediction at the product-level, we first apply
the above methods to find similar baskets and calculate basket-
level return probabilities. Then we follow the same steps proposed
in Subsection 3.4.2 to calculate product-level conditional return
4http://scikit-learn.org/stable/modules/neighbors.html
5https://en.wikipedia.org/wiki/Jaccard_index



probabilities for all the benchmark methods. Finally we obtain the
marginal product-level return probabilities for each benchmark
method by multiply the conditional return probabilities and the
corresponding basket-level return probabilities as in Equation 16.

4.3 Comparison Results
In this section, we present the comparison results at the basket-
level as well as the product-level. At the product-level, we present
the results based on the conditional probability given basket with
return and the marginal probability of a returned product.

4.3.1 Basket-level Return Prediction. Table 2 summarizes the
mean and standard deviation of multiple performance metrics for
HyperGo and all the benchmark methods. The bold numbers high-
light the best performers. For both data sets, HyperGo outperforms
all other methods in terms of mean AUC, F0.5, and precision scores.
In general, the standard deviation of the performance scores of
different methods is small and comparable. These results show that
HyperGo can improve the prediction performance by more effec-
tively modeling the rich information of historical purchase and
return records at the basket-level than pair-wise based methods. In
addition, JacNorm is the second best method as both HyperGo and
JacNorm leverage the prior knowledge that the return rate of bas-
kets containing duplicated products is much higher than that of
baskets with only distinct products. This validates the benefit of
differentiating return rates of different types of baskets in the dual-
level prediction, as discussed in Subsection 3.4.1.

Fgiure 2 compares the ROC curves across all the methods and
again shows the significantly better performance of HyperGo than
the others on both data sets. In addition, the ROC curves of k-NN
approximately overlap with the diagonal lines. This implies that
the prediction power of k-NN is very low and the high recall value
of k-NN is achieved when it predicts all the baskets as return. In
this case, precision values are converging to the average return rate
of baskets in the test data. Furthermore, all the methods perform
relatively better on data set A than data set B. As the average return
rate of data set A at the basket-level is higher than that of data set
B.

Table 2: Comparison results at the basket-level:HyperGo out-
performs all the competitors.

Retailer Method AUC Precision Recall F0.5

A

HyperGo .70 (.02) .81 (.04) .57 (.07) .74 (.02)
k-NN .55 (.02) .61 (.00) 1.00 (.00) .66 (.00)
JacWght .52 (.01) .64 (.00) .89 (.02) .68 (.00)
JacNorm .65 (.01) .72 (.01) .64 (.01) .70 (.01)

B

HyperGo .70 (.03) .68 (.03) .37 (.05) .58 (.04)
k-NN .52 (.00) .32 (.01) 1.00 (.00) .37 (.01)
JacWght .54 (.01) .36 (.01) .72 (.05) .40 (.01)
JacNorm .64 (.00) .49 (.02) .43 (.04) .48 (.01)

4.3.2 Product-level Return Prediction Given Basket with Returns.
In this experiment, we evaluate the prediction performance of the
proposed HyperGo framework at the product-level only on baskets

(a) Data set A (b) Data set B

Figure 2: ROC at the basket-level: HyperGo achieves greater
performance improvement over other methods on data set
B, which has a lower return rate than data set A.

with returns in the test sets. The average product return rate for
such baskets is about 0.7 for both data sets. Given a basket, we
obtain the basket-level clusters or similarity scores in the same way
as the previous experiments for all the methods. Next we follow
Equation (15) in Subsection 3.4.2 to calculate the conditional return
probability for products within the basket. We report mean and
standard deviation of all the performance metrics in Table 3. It
shows that HyperGo obtains the largest AUC, precision and F0.5
scores. All the benchmark methods report mean recall values 1 with
standard deviation 0. Given the high product-level return rate for
baskets with return, the high recall values imply that benchmark
methods obtain their best performance by predicting every product
to be returned. Based on the high precision, recall and F0.5 scores,
the overall performance of all the methods in this experiment set-
ting is reasonable. This provides the foundation to directly predict
return at the product-level without knowing the return status of
the associated basket, as will be presented in the next subsection.

Table 3: Comparison results at the product-level given bas-
kets with returns: HyperGo is the best performer.

Retailer Method AUC Precision Recall F0.5

A

HyperGo .61 (.02) .77 (.02) .98 (.02) .81 (.01)
k-NN .55 (.01) .75 (.01) 1.00 (.00) .79 (.01)
JacWght .56 (.01) .75 (.01) 1.00 (.00) .79 (.01)
JacNorm .61 (.01) .75 (.01) 1.00 (.00) .79 (.01)

B

HyperGo .63 (.02) .76 (.01) .98 (.01) .79 (.01)
k-NN .54 (.01) .73 (.01) 1.00 (.00) .77 (.01)
JacWght .54 (.01) .73 (.01) 1.00 (.00) .77 (.01)
JacNorm .58 (.01) .73 (.01) 1.00 (.00) .77 (.01)

4.3.3 Product-level Return Prediction Among All Baskets. In this
experiment, we compare the performance of the HyperGo frame-
work with other methods at the product-level based on the mar-
ginal return probability given by Equation (16) in Subection 3.4.2.
Table 4 and Figure 3 present the results. From Table 4, we have
following observations. First, HyperGo obtains significant higher
mean AUC, precision and F0.5 scores than all the three benchmark
methods. Second, the standard deviation of the scores of all the



methods are small and approximately the same. Third, JacNorm is
the second best performer. Moreover, ROC curves in Figure 3 show
that HyperGo achieves the best overall performance in discriminat-
ing returns at the product-level, and the ROC curves of k-NN and
JacWght almost overlap with the diagonal lines, i.e., the random
guess classifiers. These results are consistent with what we observe
at the basket-level. Hence, this experiment again validates the effec-
tiveness of the HyperGo framework for improving the prediction
performance by leveraging the return and purchase history of simi-
lar baskets and basket composition. Furthermore, based on Table 4
and Table 2, the prediction performance of all the methods at the
product-level is slightly worse than that at the basket-level. This
is because identifying specific products to be returned within a
basket is more challenging than classifying a basket with at least
one product.

Table 4: Comparison result at the product-level: HyperGo
outperforms all the benchmark methods.

Retailer Method AUC Precision Recall F0.5

A

HyperGo .67 (.02) .69 (.03) .55 (.05) .65 (.02)
k-NN .55 (.01) .55 (.01) .78 (.06) .58 (.01)
JacWght .56 (.00) .56 (.01) .77 (.02) .59 (.01)
JacNorm .64 (.00) .64 (.02) .53 (.05) .61 (.01)

B

HyperGo .72 (.02) .65 (.06) .35 (.07) .53 (.04)
k-NN .55 (.01) .36 (.02) .57 (.07) .38 (.01)
JacWght .55 (.01) .36 (.01) .57 (.03) .39 (.01)
JacNorm .62 (.01) .52 (.01) .36 (.03) .48 (.01)

(a) Data set A (b) Data set B

Figure 3: ROC at the product-level based onmarginal return
probability: HyperGo performs better than other methods.

4.4 Parameter Sensitivity Analysis
In this section, we evaluate the impact of input parameters on the
performance ofHyperGo at the product-level. We sample 5% baskets
from data set A as the evaluation set and the rest for building the
hyper graph. We change the input parameters (b,ϕ) in a range of
values and calculate the corresponding precision, recall and F0.5
scores. We repeat the sampling process 10 times and report the
mean and standard deviation of above scores as error-bar plots in
Figure 4.

Figure 4(a) shows that as b increases, precision first increases,
then decreases gradually. Recall displays an opposite trend. The
F0.5 first increases and obtains the maximum around b = 6, and
then starts to decrease. This is because b controls the size of the
output cluster, and a larger b leads to larger output clusters. When
the output cluster size is small, the amount of baskets used for
dual-level prediction is not sufficient for an accurate prediction.
As the cluster size increases, more noisy baskets are included for
the prediction. This leads to slightly worse performance scores.
However, F0.5 changes very little. From Figure 4(b) we observe that
as ϕ increases, precision increases and then approaches a constant,
recall decreases and becomes a constant, and F0.5 decreases slightly.
As ϕ is the upper bound of the cut conductance on the hypergraph,
it controls the quality of the output cluster. When ϕ is too large,
it loses the impact on the algorithm. On the contrary, when ϕ is
below a threshold and further decreases, the quality of the output
clusters increases. However, this usually leads to output clusters in
larger size, which offsets the impact of increased cluster quality. In
summary, Figure 4 shows that the HyperGo framework is robust to
small perturbation of the input parameters b and ϕ.

(a) b (b) ϕ

Figure 4: Parameter sensitivity analysis: HyperGo is robust
to small perturbation of the input parameters.

4.5 Time Complexity
To empirically evaluate the computational complexity of HyperGo
we record the CPU time (seconds) and the number of nodes in
the output clusters in the experiments to evaluate the basket-level
prediction performance based on data set A. The experiments have
been performed on a distributed computing environment with 12
Intel Xeon(R) CPU processors (2.30GHz, 8 cores each processor)
and a total of 512 GB of RAM, equipped with Red Hat Enterprise
Linux 7 operating system. The code has been executed using 64-bit
Python 3.6. As shown in Figure 5, the CPU time scales linearly
with respect to the number of nodes in the returned cluster. This
demonstrates that HyperGo is efficient for large scale applications,
which is consistent with our theoretical analysis based on Lemma 1
in Subsection 3.3.

5 CONCLUSION AND FUTURE DIRECTIONS
Motivated by e-tail applications where a high return rate directly
causes increased costs, we propose a generic framework named
HyperGo for predicting product returns, which consists of a novel
hypergarph representaiton, a local graph cut algorithm, and a dual-
level return prediction model based on the output cluster from the



Figure 5: Time complexity: CPU time scales linearly with
respect to the size of the output clusters.

local algorithm. Compared with the limited existing work, the pro-
posed hypergraph representation is able to leverage the rich infor-
mation of basket composition in a more effective way. Based on this
representation, the truncated random-walk-based local graph cut
algorithm identifies similar historical baskets. Given these baskets,
HyperGo estimates the return intention on two levels: basket-level
vs. product-level, which provides detailed information regarding
the reason for a potential return. The main benefit of the proposed
algorithm lies in the time complexity, which depends linearly on the
size of the output cluster and polylogarithmically on the volumn
of the hypergraph, making it particularly suitable to be applied to
large amount of historical purchase and return records. Experimen-
tal results on multiple real-world e-tail data sets demonstrate the
effectiveness and efficiency of HyperGo. To further improve the
prediction performance, in particular, at the product-level, detailed
product attributes, customer information, as well as contextual char-
acteristics such as location, weather and events can be incorporated
into the prediction framework, which is our on-going work.

Many online retailers report that if they could achieve a 10%
reduction in the rate of product returns, their profitability would
increase by more than 20% [9]. The HyperGo framework is designed
to work before the customers have made the purchase. It enables
e-tailers to take proactive measures to decrease the return intention,
potentially leading to a changed basket composition. A demo for
fashion e-tails has been built based on the HyperGo framework
and several possible intervention measures, such as popping up a
chatbot to provide guidance regarding size and fit, offering discount
coupons and showing backorder on the products that contribute to
the high predicted return intention. Other measures can be designed
and implemented based on specific business scenarios (e.g., fashion
vs. grocery). In practice, whether and to what extent to intervene
customer’s online shopping journey based on prediction should be
implemented is essentially a business strategy. The success of such
a strategy depends not only on the accuracy of the prediction, but
also the effectiveness of the intervention measures and customer
acceptance. We believe that online A/B testing on the combination
of the HyperGo framework with different preventive measures can
collect more insights and evaluate customer acceptance. In addition,
to embed theHyperGo framework to e-tailing, it needs be connected
to the retailer’s order processing system, which could incur a third
party’s service.
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