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Abstract—With the advancements in many data mining and
machine learning tasks, together with the availability of large-
scale annotated data sets, there have been an increasing number
of off-the-shelf tools for addressing these tasks, like Stanford NLP
Toolkit and Caffe Model Zoo. However, many of these tasks are
time-evolving in nature due to, e.g., the emergence of new features
and the change of class conditional distribution of features. As
a result, the off-the-shelf tools are not able to adapt to such
changes and will suffer from sub-optimal performance in the
target application. In this paper, we propose a generic framework
named AOT for adapting the outputs from an off-the-shelf tool
to accommodate the changes in the learning task. It considers
two major types of changes, i.e., label deficiency and distribution
shift, and aims to maximally boost the performance of the off-the-
shelf tool in the target domain, with the help of a limited number
of target domain labeled examples. Furthermore, we propose an
iterative algorithm to solve the resulting optimization problem,
and we demonstrate the superior performance of the proposed
AOT framework on text and image data sets.

Index Terms—off-the-shelf classifiers, label deficiency, distri-
bution shift

I. INTRODUCTION

In the past decades, the advancements in the field of ma-
chine learning have led to their wide adoption to solve different
real world applications. In general, training a new machine
learning model needs large amount of labeled data. In some
applications, such large-scale annotated data sets are readily
available, giving rise to an increasing number of off-the-shelf
tools For example, the Caffe Model Zoo [1] hosts different
models that can be readily used for various classification tasks;
language processing tools such as Stanford NLP Toolkit [2]
come with various models for natural language processing
tasks. However, many of these machine learning tasks are
time-evolving in nature due to, e.g., the emergence of new
features and the shift in class conditional distribution. As a
result, the off-the-shelf tools may not be able to adapt to such
changes in a timely fashion, and will suffer from sub-optimal
performance in the learning task.

On the other hand, existing work on transfer learning,
cannot be readily applied to improve the performance of
the off-the-shelf tools due to the lack of the training data
for obtaining these tools, i.e., the lack of source domain
data. More specifically, due to licensing or other copyright
restrictions, the labeled data sets sometimes are not released
but the underlying models are made available to use as a
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black-box classifier [3]. Therefore, given these black box
classifiers, is it possible to leverage these classifiers to improve
the classification performance on the evolved source domain,
i.e., the target domain, given limited amount of training data
from the target domain? To this end, we are facing two major
challenges: (1) Label deficiency happens when new features
appear, or the relationship between individual features and the
class labels changes in the target domain; (2) Distribution shift
happens when the class conditional distribution in the target
domain is different from the training data used by off-the-shelf
classifiers, potentially changing the optimal predicted label.

In this paper we address the above mentioned challenges of
label deficiency and distribution shift through the proposed
Adaptive Off-The-shelf classification (AOT) framework. In
our case, we consider that there exists a black-box classifier
that gives out the classification labels for the target domain
examples, and no other information about the black-box is
known. In particular, we assume that the training data used
to obtain the off-the-shelf classifiers are not available, and
we aim to leverage the noisy class labels predicted by the
black-box classifier and very few labeled examples from the
target domain to improve the classification performance of the
unlabeled data in the target domain. Given an unlabeled doc-
ument from the target domain, these tools are able to predict
the polarity of the text without taking into consideration the
unique characteristics of this domain. The proposed framework
is able to effectively integrate the information from these tools
as well as the few labeled examples from the target domain
to construct a classification model for the target domain with
significantly improved performance.

The following are the main contributions of our paper; (1) A
novel problem setting of source free domain adaptation, where
the goal is to leverage the output of an off-the-shelf classifier
and a few labeled examples from the target domain, in order
to obtain a significantly better classification model for the
target domain, as compared to the off-the-shelf classifier; (2) A
generic optimization framework named AOT to adapt an off-
the-shelf classifier to the target domain by explicitly addressing
the two major types of changes from the source domain
to the target domain, i.e., label deficiency and distribution
shift; (3) Analysis on the performance of the proposed AOT
framework in terms of convergence to the global optimum,
and the complexity of the proposed algorithm.



II. RELATED WORK

Transfer learning is a widely studied problem. Different
supervised, unsupervised and semi-supervised methods have
been proposed for a wide variety of applications such as
machine translation [4], image classification [5] and web
document classification [6]. Source free transfer learning is
a special case of transfer learning, with limited access to
source domain data. Often, it is considered that either the
class distribution of the source domain data is known or
there is limited access to the source domain data in the form
of representative examples. In [7], [8], authors proposed an
Adaptive-SVM framework called DAM where the goal is to
learn the target classification function by adapting the pre-
trained classifiers to the labeled examples in the target domain.
Our work is significantly different from DAM, as we consider
only one off-the-shelf classifier compared to multiple SVM
classifiers used in DAM and also provide a drift correction
framework to adapt the off-the-shelf classifier to labeled ex-
amples. Also, unlike DAM, our generic framework works with
any off-the-shelf classifier, not restricted to kernelized SVM.
The authors of [9] proposed a source domain free approach by
leveraging the information from existing knowledge sources
such as WWW or Wikipedia to compute the target labels
from unlabeled examples. The problem of ‘source free transfer
learning’ in [9] is different from the problem setting studied
in this paper; instead of building a knowledge base we simply
make use of an existing off-the-shelf black-box classifier to
improve prediction accuracy on the set of unlabeled examples
in the target domain. In [10], the authors consider three
different scenarios: (1) the parameters of the source classifiers
are known; (2) source classifiers as a black box; (3) class
distribution of the source classifier is known. Scenario 2 is
very relevant to our work where they employed marginalized
denoising autoencoders to denoise the source classifier labels
using unlabeled data in the target domain. Notice that this
work assumes that the difference between source and target
domain classifiers is linear with respect to the features of target
domain examples, whereas we allow this difference to take
more complex forms, accommodating various degree of task
relatedness. In addition, compared with all the existing work
in this direction, we explicitly address the two major types of
changes f rom the source domain to the target domain, namely
label deficiency and distribution shift, whereas existing work
only considers one of them.

III. PROBLEM DEFINITION

In this section, we introduce the notation used in the paper
and formally define the problem of source free domain adap-
tation with an off-the-shelf classifier. Let Dy, = {(x;, )},
be the set of m labeled examples from the target domain;
Dy = {(x;)}[~ ", | be the set of n unlabeled examples from
the target domain, where x; € R? is a real valued vector
of size d; and y; € {—1,1},Vi € 1,...,m is the binary
class label. We consider the number of labeled examples to
be much smaller than the number of unlabeled examples, i.e.,

m < n. Let £ =[y9, ... 4% . 17 be a (m +n)-dimensional

vector consisting of the pseudo-labels generated by the off-
the-shelf classifier, where 30 € {—1,1},i € 1,...,m+mn, and
¢ €10,1),72=1,...,m+n, be the confidence score for each
of the m 4+ n examples (D U Dy).

First of all, we represent all m +n examples from the target
domain as a graph G = (V, E), where V is the set of nodes,
and E is the set of edges. In this graph, each node corresponds
to an example, labeled or unlabeled, i.e., |[V| = m + n, and
the weight associated with each edge measures the similarity
between a pair of nodes. Let W be the affinity matrix of
this graph, whose non-negative element W;; in the i™ row
and jM column is the weight of the edge connecting the
examples x; and x;. Let D be the (m +n) x (m+n) degree
matrix whose diagonal elements are set to be » . W;;. The
normalized Laplacian of the affinity matrix W is given by
S=D :WDz.

The problem of source free domain adaptation is to adapt the
noisy pseudo-labels ¥ from the off-the-shelf classifier to the
examples in the target domain by leveraging the information
of a small number of labeled examples D; from the target
domain, without having access to the source domain data
based on which the off-the-shelf classifier was trained. More
specifically, given a set of m labeled examples Dr; the n
unlabeled examples Dy; the normalized affinity matrix for
the m + n examples S; and the noisy pseudo-labels f* from
the off-the-shelf classifier; the goal of source free domain
adaptation is to learn a classification vector f € R™T" to
correctly classify all the m + n examples. Notice that unlike
fO, the elements of f may not be binary. Therefore, the
predicted class label ¥, of the unlabeled examples Dy is set
asy;, =+1,if f; >0,iem+1,...,m+mn,and §; = —1
otherwise, where f; is the ih element of f.

IV. THE PROPOSED AOT FRAMEWORK

In this section, we propose our AOT framework. The goal
of the AOT framework is to learn the classification vector f
for all the m + n examples based on f°. Usually the pseudo-
labels from the black-box classifier £ are noisy due to label
deficiency and distribution shift. As shown in eq. (1), we
decompose the classification vector f into the sum of noisy
pseudo-labels from off-the-shelf classifier f© and two residual
vectors:

£ =10+ Aif + Aof ¢))

where Af € R™T" and Aof € R™T™ are the residual vectors
that address label deficiency and distribution shift respectively.
More specifically, the residual vector Ajf accounts for the
change in the relationship between features and class labels
in the target domain. For example, in sentiment classification,
with the emergence of new words in the target domain, A;f
will provide correcting information regarding the relationship
between the new words and the class labels. On the other
hand, the residual vector Asf addresses the changes in class
conditional distribution in the target domain compared to the
source domain data used to train the off-the-shelf classifier.
For example, in sentiment classification, Axf will provide



Algorithm 1: AOT : Adaptive Off-the-shelf Classifier

Input: (1) The normalized affinity matrix S for the m 4 n examples in the
target domain; (2) The noisy class labels £0 generated by the
off-the-shelf classifier; (3) The max number of iterations 1"

Output: f: The classification vector for all the examples in the target domain.

1 Initialize Afy = 0™ "

2 fort =1t T do

3 Fix A1f, compute A>f using ADDRESSLABDEF

4 Fix Axf, compute A;f using ADDRESSDISSHIFT

5

6

end
return £ = O + A f + Aof

insights regarding the potentially different sentiment polarity
for certain combination of keywords that are specific to the
target domain.

In our framework, we propose to solve for both residual
vectors via the following generic optimization problem.

Q(Af, Aof) = Q1(Arf, Aof) + Q2(A1f) + Q3(A2f) (2)

where (7 takes into consideration both residual vectors, and
it aims to enforce label consistency on all the examples
along the data manifold; Q5 is a sparsity constraint on the
label deficiency residual vector A;f; and @3 is the objective
function of A,f for addressing the distribution shift. The
optimal residual vectors (A1f*, Aof*) is computed as follows:

(Af", Aof™) = argmin

A1f€R7n+" 7A2f€R7n+n

Q(Af, Aof)  (3)

To solve this optimization problem, we propose to use the
alternating minimization strategy. More specifically:

Alft-i-l = argmin Ql(Alf, Agft) + QQ(Alf) (4)
A{fERMAN

Azft+1 = argmin Ql(Alft7 Agf) + QB(AQf) (5)
AzfeRm+n,

where t = 0,...,T — 1, T is the total number of iterations,

and Af; (Aofy) is the vector Aif (Aof) in the ¢t jteration.
The proposed AOT algorithm (Algo. 1) runs till convergence
or the max number of iterations is reached. It takes the
normalized affinity matrix S and the set of noisy class labels
generated by the off-the-shelf classifier f° as input, and outputs
the classification vector f for the examples in the target
domain. After the initialization step (Step 1), the algorithm
iteratively updates A;f and Asf in Steps 3 and 4. After
T iterations or convergence, the AOT algorithm outputs the
vector f for all the examples in the target domain. As discussed
earlier, the predicted class label §; of the unlabeled examples
Dy issetasy; =+1, if f; >0,iem+1,...,m+n, and
y; = —1 otherwise, where f; is the i element of f.

Next, we introduce the proposed techniques for computing
the residual vectors A;f and A,f in Subsections IV-A and
IV-B respectively, the convergence analysis of the proposed
AOT framework in Subsection IV-C.

A. Label Deficiency

In this subsection, we introduce our proposed techniques
to solve for residual vector A;f, which addresses label de-
ficiency. Based on eq. (4), this involves the minimization of
both Q1 and Q.

To instantiate ()1, notice that the key to semi-supervised
learning is the consistency assumption [11]. When we have
access to small amount of labeled data and lots of unla-
beled data, the classification function can be enforced to
be sufficiently smooth on the intrinsic structure of the data
manifold. According to the consistency assumption, if two
examples are similar to each other, they should belong to the
same class. So in a scenario where the examples are similar
and the corresponding pseudo labels are different, the overall
classification vector f should address the discrepancy in the
class labels. More specifically, we have,

m+n

_ 1 in—FAlfi—FAgfi f]Q+A1fj+A2fj 2
Q=g X W (e /D, )

ij=1

+ Z Ml(fio + Af; + Aof; — Yi,)z
i=1

1
= S+ AL+ Aof)T (1= S)(F + Arf + Aof)

+ | £ + A fr + Aofr —yi|]?
(6)

where 7 > 0 is the regularization parameter. The objective
function in eq. (6) has two terms. The first term is the
smoothness constraint which ensures the class labels of the
similar examples are similar to each other. The second term
is the regularizer constraint which ensures that the optimal
classification function should not change too much from the
class labels of the labeled examples.

On the other hand, to instantiate (), we enforce the residual
vector A;f to be sparse. The sparsity constraint ensures that
this residual vector is non-zero only when the corresponding
example contains changed relationship between features and
class labels, or the example has new features. To be specific,
we add the elastic-net regularizer to enforce sparsity in the
residual vector A;f as follows:

Q2(A1F) = pof |ALF]]1 + (1 — p2)[|ALF[3 7

where po is the elastic-net coefficient. As the L; norm
term in the sparse regularizer Q2(A+f) is not continuously
differentiable and discontinuous at A;f; = 0, we employ the
proximal gradient descent [12] to estimate the residual vector
A+f. As shown in eq. (4), the combined cost function to
address the label deficiency is the sum of regularization term
and the sparsity constraint given as follows:

Quasper(A1F, Aof) = Qi(ALF, Aof) + Qa2(ALF)  (8)

where Agf‘ is the fixed distribution shift residual vector.

It can be seen that, the component (), is a differentiable
convex function, detailed proof is omitted due to space con-
straints. Also, the elastic-net sparsity constraint term Qo is
closed, convex and non-differentiable over A;f. The proximal
gradient method can be applied to minimize the cost function
in eq. (8). The proximal gradient step to compute A;f is
Aqfy = prox,, ), (Alfk,_l — thQg(Alf)) where t; is the

th

step size. For the ¢'" example in the target domain, with



Algorithm 2: ADDRESSLABDEF - Addressing label
deficiency

Input: (1) The normalized affinity matrix S for the m + n examples; (2) The
noisy pseudo-labels £O from the off-the-shelf classifier; (3) The
residual vector for distribution shift, Ao f; (4) The max iteration

number K

Output: A;f: The residual vector to address label deficiency.
1 lp=1, n=2
2 Aify 0,71 =Aifgand t; =1
3 for k < 1to K do
4 I=n'ly_y
5 while Quasper(A1f, Aof) > G (prozxi(ve—1), vk—1) do
6 141+ 1
7 I=n'lk_
8 end
9 le = I Afy = proxa (ve); thyr = %
10 Vi1 = Aify 4 %(Alfk —Axfi 1)
11 end

12 return Aqfg

elastic-net coefficient po, the proximal mapping for the elastic-
net regularizer Q2 is prox,, ;, (£) = m (£;—t)+—
(—f; — t)_. The residual vector A;f is iteratively computed
through proximal gradient descent using a variant of fast
iterative shrinkage thresholding algorithm [13].

The algorithm to address label deficiency is illustrated in
Algo. 2. The algorithm takes as input the normalized affinity
matrix S for the m + n examples from the target domain,
the noisy pseudo-labels f° from the off-the-shelf classifier,
the residual vector for distribution shift, A,f and the max
iteration number K. It outputs the residual vector A;f for
addressing label deficiency. In the algorithm, we first initialize
the parameters, and set the initial label deficiency residual
vector to Ai;fy = 0, a zero vector. The Lipschitz constant
for the iteration is computed through line search using the
proximal gradient mapping. For any [ > 0, consider the
proximal gradient mapping at any given point «y is given by
Gi(Af,7) = Q1(7) + VQi(7)T(Af — 7) + S|ALF —
v||* + Q2 where [ is the Lipschitz constant. Considering
L =1-8, the term G;(A1f,7) can be computed from
Q1(A1f) and VQ1 (A1 f) terms. In each iteration the Lipschitz
constant for the iteration is computed and the residual vector
Aqf is updated through proximal gradient descent steps. As
shown in [13], the proposed variant of fast iterative shrinkage
thresholding algorithm (Algo. 2) ensures the cost function
QLapper 18 monotonically decreasing and converges to the
global optimal A;f*.

B. Distribution Shift

In traditional machine learning, often the data distribution
of training and test data is considered to be the same. When
the distributions are different, the trained classification model
may not perform well on the test data. In source free domain
adaptation, the off-the-shelf classifier is trained on a data set
with a different distribution from the given data set Dy, UDy; in
the target domain. This leads to a distribution shift as the class
conditional distribution in the target domain is different from
the training data used by off-the-shelf classifiers, potentially
changing the optimal predicted labels. The inconsistency in
the class labels can be modeled as a residual vector Asf.

Similar as in the last subsection, the cost function to address
the distribution shift is the sum of the regularization term (),
and (Q3, which measures the prediction loss on the labeled
examples from the target domain:

QDISSHIFT(Alfa A2f) = Ql(Alﬁ AQf) + QS(A2f)

m

= Qi(AF, Axf) + %Z (Yi — 2= A - A2fi)2
)

7
where A;f is the fixed label deficiency residual vector. Notice
that the cost function Qpissyer 1S smooth and VQpissuirr
exists for Aof € R™T", And the term VQpssurr can be
computed as follows:

VQbissuirr = 2(1—S)A2f+2MII(fO+A1f+A2f_Y) (10)

We employ the gradient boosting approach to compute the
residual vector Asf that minimizes this cost function. Like
other boosting methods, gradient boosting combines a set
of weak learners into a single strong learner in an iterative
fashion. The algorithm for the gradient boosting is shown in
Algo. 3. Using the labeled examples, we train a set of gradient
boosted regressors and update the residual function Aof for all
the examples Ay f; = F(x;),7 € 1...(m+n) and where As f;
is the i*" element of A,f. The gradient boosted regressor is
an ensemble of SVM tree regressors trained on the m labeled
examples.

Algorithm 3: ADDRESSDISSHIFT - Addressing dis-

tribution shift
Input: (1) Example feature matrices X1, and X¢; (2) Noisy pseudo-labels
£9 from the off-the-shelf classifier; (3) Residual vector for label
deficiency, A1f; (4) Max iterations K
Output: Axf: The residual vector to address distribution shift.
Initialize F
for k < 1to K do
rp = _VQDISSHIFT(Afa A2fk)
Learn a base learner hj, on labeled examples
Yk = argmin Z:ﬂ VQpissurr (A1 fi, Fr—1 + vhy (1))

5
Fr =Fr_1 +vrhg
end
for i < 1to m + n do
| Asfi = Fr(x;)
10 end
11 return Aof

[ SR S

e ® 9 o

Algorithm ADDRESSDISSHIFT (Algo. 3) shows the details
for computing the residual vector Asf to address the distribu-
tion shift. The input to the algorithm are the example feature
matrices for the labeled examples X, and the unlabeled
examples Xy, the noisy pseudo-labels Y from the off-the-
shelf classifier, the residual vector for label deficiency, A;f.
The gradient boosting is performed by fitting all the labeled
examples Dy, to an SVM regressor and the residual value
is computed for all the unlabeled examples Dy;. Finally, the
algorithm outputs the residual vector Aof.

C. Convergence of AOT

In this subsection we formally discuss the convergence of
the proposed AOT algorithm. As discussed earlier in AOT



algorithm (Algo. 1), we employ an alternative minimization
strategy to compute the residual vectors A;f and A,f. We
follow the existing work [14] to prove the convergence of the
proposed alternative minimization framework in Theorem. 1.

Theorem 1. Let Aqfy, Aoty be the sequence generated by
the proposed alternating minimization based AOT framework.
Then for any k > 0, L1 > 0, Ly > 0 and for finite values of
L1 and Lo, the rate of convergence is given by

United States and Mexico. The binary classification task for
this data set is to identify whether the content of the news
article is related to illegal immigration or cartel wars. The
news articles in Spanish are translated to English using Google
translation service, and used to train the black-box off-the-
shelf classifier. For textual features, tf-idf feature vector as a
bag of words on n-grams n = {1,2, 3,4} were extracted for
each review. For the images, SIFT features [19] represented as
a tf-idf feature vector on Bag of Visual Words (BoVW). The
BoVW are computed through K-Means on SIFT descriptors

Q(A1fy1, Aofy)—Q(A L, Axf*) < ||GlL1\|.||A1fk+1_A1f*||for each image. The number of clusters for cats and dogs data

(1)

is set to 600. The cluster size is chosen based on the 10-fold

Q(A1fr, Aofios1)=Q(Aif", Aof*) < [|GE, I|.|| Axfy+1—Apf[[cross validation.

(12)
where G}Jl and GlL1 is the proximal gradient mapping, A, f*
and Aof* are the local optimal residual functions. With
the above rate of convergence, the residual functions A.fy
and Aofy, computed iteratively converge to Af* and Aof*
respectively.

Proof. The cost function for the manifold regularization term
Q1(A+f, Asf) is a continuously differentiable convex function
over domain of Q, R™"" and over domain of Q3, R™1",
The gradient of () is (uniformly) Lipschitz continuous with
respect to A;f over the domain of Q2 with constant I; €
(0, 00). Also, the gradient of @; is (uniformly) Lipschitz con-
tinuous with respect to Axf over domain of Q3 with constant
Ly € (0, OO) Therefore, ||V1Q1(A1f+d1)—VlQl(Alf)H <
Ly[|d1]| and [[V2Q1(Axf + d2) — VaQ1(Axf)|| < Lof|dy||
where the Lipschitz constants L; = Lo = 2tr((1+p,)I-S) >
0,d; € Rm+n’ ds € Rm+n’ Alf + d;y and Agf +ds is in
domain of ()2 and Q)3 respectively. The proposed alternating
minimization framework AOT adheres to the framework pro-
posed in the paper Beck(2015) [14]. From Lemma 3.4 in the
alternating minimization framework proposed in Beck(2015)
[14], the sequence A;fy, Aofy generated by the proposed AOT
framework converges to A;f*, Aof*. Due to space constrains,
the detailed proof is omitted. O

V. EXPERIMENTAL RESULTS
A. Experiment Setup

Data sets: The performance of the proposed AOT framework
is evaluated on seven real world data sets. The statistics of
all the data sets are shown in Table I. The Stanford senti-
ment classification tool is used to compute the off-the-shelf
classification ratings for all the text data sets. The details of
the data sets are as follows: (1) IMDB movie reviews [15]: A
binary sentiment classification data set; (2) Amazon fine food
reviews [16]: A binary sentiment classification data set, where
all the reviews with 4-5 star ratings are considered as positive
and reviews with 1-2 star ratings are considered negative; (3)
Cats and dogs images [17]: A binary image classification data
set. The data from Imagenet [18] with synsets cats and dogs
are used to train the off-the-shelf classifier; (4) News articles:
News articles related to illegal immigration and cartel wars in
Mexico have been crawled from various news websites from

[ Data set [ Type [ # of examples |
[ Binary data sefs ]
IMDB movie reviews Text 10000
Amazon fine food reviews Text 10000
Cats and dogs images Image 3000
News articles Text 1395

TABLE I: Statistics of the six data sets

(a) Text dataset - Amazon Fine Food Reviews (b) Text dataset - IMDB Movie Reviews
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Fig. 1: Figures (a)-(d): Classification accuracy on all the binary
data sets with 10-140 labeled examples

Comparison methods: The effectiveness of the proposed
framework is demonstrated by comparing with the baseline
off-the-shelf classifier and the strong baseline of SVM. The
various methods compared in the experiments and their setup
is as follows: (1) FastDAM: Fast Domain Adaptation Ma-
chine [20]. To compare with the proposed AOT framework,
only one set of classification labels from the off-the-shelf
classifier were considered for FastDAM; (2) SVM: Strong
baseline SVM trained on the known labeled examples from
the target domain; (3) OTSC: Off-the-shelf classifier. The
Stanford sentiment classification toolkit is used as the off-the-
shelf classifier for the binary sentiment classification data sets.
For the image data sets, a logistic regression model trained on
the similar images as the target domain is used as the off-the-
shelf classifier.



Classification accuracy

B. Effectiveness of AOT

In this subsection, the effectiveness of the proposed AOT
framework is evaluated by comparing with other methods. For
all the experiments, the regularization parameters in the label
deficiency ADDRESSLABDEF are set to 1 = 0.7 and po =
0.5. For all the experiments, the results are reported after 30
different runs on randomly sampled data from the training set.
The effectiveness of the proposed AOT approach is evaluated
from a sample of 10-140 labeled examples for the binary data
sets, 20-280 examples for the multi-class data sets.

From the results in the Fig. 1, the proposed AOT framework
performs better than all the competitors on both the text
and image data sets. Its performance is very close to that
of FastDAM on both image data sets. This is because the
labels generated by the baseline off-the-shelf classifier are very
noisy on the image data sets, and the gain achieved by the
proposed AOT framework is limited by the quality of the
labels generated by the off-the-shelf classifier.

C. Two Stage Analysis

We analyze the benefit of addressing label deficiency and
distribution shift individually. The number of labeled examples
is set to m = 140. We evaluate the performance of algorithms
ADDRESSLABDEF, ADDRESSDISSHIFT and AOT on Ama-
zon fine food reviews and Cats and dogs data sets. From Fig. 2,
it can be observed that addressing label deficiency through
manifold regularization alone is more helpful than addressing
distribution shift. Also combining both algorithms performs
better than the performance of the individual algorithms. This
demonstrates the power of combining both algorithms together
for better adaptation results.

Text dataset - Amazon Fine Food Reviews Image dataset - Cats and Dogs
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Fig. 2: Two stage analysis for the Amazon fine foods and Cats
and dogs binary data sets.

D. Sensitivity Analysis

In this subsection, we analyze the influence of hyper-
parameters on the proposed AOT framework. We analyze
the influence of hyper-parameters through grid search. Both
parameters £ and uo in the objective function taking values in
the interval [0, 1] are analyzed. In general, the performance of
the proposed framework is robust to small perturbations in the
parameters. Furthermore, it was observed that the parameter pi;
which controls the influence of the regularizer on the labeled
examples gives good results with higher values p; > 0.6 and
performs poorly with smaller values. Also, the parameter po
which controls the sparsity has a better accuracy for a balance
elastic net regularizer around o = 0.5.

VI. CONCLUSION

In this paper we propose AOT , a generic framework
for source free domain adaptation, which aims to adapt an
off-the-shelf classifier to the target domain without having
access to the source domain training data. In AOT , we
explicitly address the two main challenges, label deficiency
and distribution shift by introducing two residual vectors
in the optimization framework. Furthermore, we propose a
variant of iterative shrinkage approach to estimate the residual
vectors that converges quickly. Also, the drift in the class
distribution is corrected through gradient boosting. Empirical
study demonstrates the effectiveness and efficiency of our
AOT framework on real world data sets for text and image
classification.
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