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�e unprecedented amounts of data have catalyzed the trend of combining human insights with machine

learning techniques, which facilitate the use of crowdsourcing to enlist label information both e�ectively

and e�ciently. One crucial challenge in crowdsourcing is the diverse worker quality, which determines the

accuracy of the label information provided by such workers. Motivated by the observations that same set

of tasks are typically labeled by the same set of workers, we studied their behaviors across multiple related

tasks and proposed an optimization framework for learning from task and worker dual heterogeneity. �e

proposed method uses a weight tensor to represent the workers’ behaviors across multiple tasks, and seeks to

�nd the optimal solution of the tensor by exploiting its structured information. �en, we propose an iterative

algorithm to solve the optimization problem and analyze its computational complexity. To infer the true

label of an example, we construct a worker ensemble based on the estimated tensor, whose decisions will be

weighted using a set of entropy weight. We also prove that the gradient of the most time-consuming updating

block is separable with respect to the workers, which leads to a randomized algorithm with faster speed.

Moreover, we extend the learning framework to accommodate to the multi-class se�ing. Finally, we test the

performance of our framework on several data sets, and demonstrate its superiority over state-of-the-art

techniques.
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1 INTRODUCTION
Many real world applications, ranging from natural language processing, speech recognition,

computer vision, and spam �ltering, etc., exhibit two types of data heterogeneities. From one

hand, a learning problem, such as classi�cation or regression, can o�en be viewed as a group
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of intrinsically correlated tasks that share a common representation. By exploiting the intrinsic

relationships between tasks, it can improve the generalization performance by learning these

related tasks jointly. �is is frequently being referred as the task heterogeneity. From another

hand, in the era of big data, unstructured data is ge�ing piled up at an increasing speed, various

approaches and platforms are emerging in order to help the researchers and businesses to make

greater analytical use of data. Among the latest approaches, crowdsourcing becomes the resort that

can leverage the wisdom of online workers to perform the customized micro-tasks, e.g. labeling the

images for the training of a classi�cation model, etc. However, the label qualities of these workers

usually have large variation due to the various expertise of workers, which brings up the worker

heterogeneity of the data.

Compared with the traditional machine learning techniques, addressing the learning problem

with this type of data dual heterogeneity is challenging because how to jointly model the relations

between multiple types of heterogeneities still remains an open research question. Multi-task

learning (MTL) [2, 18, 19, 44, 52] has been proposed to solve the �rst type data heterogeneity and it

can be characterized as the problem of learning multiple tasks jointly, as opposed to learning each

task in isolation. Most multi-task learning methods focus on learning models under the supervised

se�ing which usually requires large amounts of labeled examples for training, but the labor for the

data labeling can be costly and time-consuming especially for the learning of a deep model. With

the emergence of crowdsourcing services, researchers are able to collect large amounts of low-cost

labels in a very short time. However, as a result of the tradeo� between quality and cost, these

collected labels can be noisy and missing in most cases because they are normally annotated by

imperfect online workers. In order to infer the ground truth labels from the large amounts of noisy

and possible missing labels, many solutions have been proposed: Majority voting, Dawid and Skene

EM method [12], Minimax conditional entropy method [49], Variational inference using mean �eld

[28], Tensor augmentation and completion [53], etc. �ese crowdsourcing models can generally be

categorized as generative models [12, 28, 49] and discriminative models [53]. Under some proper

assumptions, many generative models perform well on real-world applications. However, no ma�er

how complicated the generative model is designed, the true model that generated the crowd labels

remains unknown. �erefore, the label inference problem can never achieve an accuracy as good

as the ground truth.

To address the above challenges, we propose a novel structured framework extended from the

multi-task classi�cation approach using crowdsourcing labels (MultiC
2
) [57]. Compared with

the traditional multi-task learning, which requires ground truth labels, MultiC
2

aims to leverage

the structural information between the learned classi�ers of multiple tasks, various workers, and

extracted features. Moreover, in this manuscript, we extend the original binary-class learning frame-

work in multiple dimensions which includes proposing a randomized speedup algorithm, adapting

to the multi-class se�ing, and adding the corresponding experiments. �e main contributions of

this manuscript are summarized as follows:

• Formulation: Instead of using the standard two-step procedure (label inference and model

learning), we propose to learn the classi�ers using the noisy and missing labels directly.

We formulate the multi-task classi�cation using crowdsourcing labels as a regularized

optimization problem. �e key idea is to jointly learn the task commonality, worker

correlations, and feature similarity through a low-rank tensor regularization.

• Algorithm: We propose a blockwise iterative algorithm which jointly updates the weight

tensors of all workers across all tasks. Next, the entropy-based ensemble coe�cient is

learned for the set of weak classi�ers and the �nal prediction of a new data point is a

weighted vote of their predictions.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Multi-task Crowdsourcing via an Optimization Framework 1:3

• Extensions: �e separability of the objective gradient is proved and it leads to a speedup

randomized algorithm which converges faster and can be computed in parallel. We also

design and extend the learning framework to accommodate the multi-class se�ing.

• Data sets and evaluations: We propose a crowd label generating model which includes four

types of workers: Expert, layman, spammer and smart adversary. �en we evaluate the

e�ectiveness, robustness, and e�ciency of our framework on both semi-synthetic and real

data set.

�e rest of this paper is organized as follows. Section 2 is the brief review of the related work. In

Sections 3 and 4, we formally present the proposed learning model, followed by the optimization

algorithm and ensemble method. �e crowd label generating model is introduced in Section 5. In

Sections 6 and 7, we present the fast algorithm using randomized block coordinate descent and the

multi-class extension of the proposed framework. Section 8 illustrates the experimental results on

both semi-synthetic data set and real data sets. Finally, we conclude the paper in Section 9.

2 RELATED WORK
Multi-task learning. In many real world applications, the researchers are working on solving

multiple related classi�cation or regression problems. One successful example is the spam �ltering,

where all customers have di�erent but similar distributions over the spam and normal emails,

yet there is a commonality among all the customers that can be used for the design of spam

�lter. Another example is the house pricing prediction, where predicting the price using several

combinations of house related factors are coherent learning tasks. �e most naive approach is

applying the conventional machine learning models to solve these tasks independently, one for

each. However, this approach ignores the task relatedness and could not bene�t from utilizing the

shared information across tasks.

Start from the work proposed by [5], multi-task learning, which aims to exploiting the commonal-

ities and di�erences across tasks and solving multiple learning tasks at the same time, has emerged

as one important subdomain of machine learning. By simultaneously learning all tasks, multi-task

learning has shown great performance improvement in several related applications. Many existing

multi-task learning methods [2, 8, 9, 15, 17, 20, 26, 46, 51, 52] are formulated as the regularized

optimization problems with an empirical loss term of the training data plus a regularization term.

�eir contributions usually focus on designing meaningful regularization terms in order to capture

the underlying commonality among tasks. Di�erent assumptions on task relatedness lead to various

regularization formulations. Mean regularized multi-task learning, proposed by [15], assumes that

the models of all tasks are generated as the variants of their mean model. �e regularization term

is designed to be the square loss of this mean model variances of all tasks. Multi-task learning

with joint feature sparsity learning, proposed by [1, 26], assumes that the relatedness between

multiple tasks can be addressed by constraining all models to have a shared set of features. �e

robust low-rank multi-task learning [8] has the assumption that the model can be decomposed

into two components: a low-rank component that leverage the task commonality, and a group

sparse structure that detect outliers. Clustered multi-task learning [51] assumes that the models of

tasks have group structure so that tasks of the same group are closer than these of di�erent groups,

and they propose to formulate this intrinsic relationship with a spectral relaxed k-mean clustering

regularization term. Instead of having the group truth labels like most MTL approaches do, our

framework only require the noisy and possibly missing labels from crowdsourcing as the input,

which is more suitable for real-world applications.

Crowdsourcing. Crowdsourcing is a special sourcing model in which pieces of micro-tasks
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are distributed to a pool of online workers. It has become a popular research topic in the recent

decades because of its widely commercial and academic adoption in areas such as machine learning

[22, 29, 47, 49, 56], computer vision [14, 55], medical healthcare [25, 30, 45], and graph mining

[6, 7, 42, 48, 50], etc. Modern machine learning tools such as deep models require massive amount

of labeled data. �erefore, crowdsourcing is a desired resort for the researchers and scientist

to collect large amounts of inexpensive and fast labels. �e fundamental problem of interest is

how to maximize the accuracy on the usage of crowdsourcing labels given the fact that the hired

workers are non-experts. Despite that the use of crowdsourcing is becoming popular only in the

recent decade, the idea of dividing workload among workers has successful examples for a long

history. One of such earliest work is the Dawid-Skene EM model [12], which models the labeling

ability of each worker as a latent confusion matrix and it is o�en referred as the two-coin worker

model. Later on, inspired by this pioneering work, several extensions have been proposed. For

example, the minimax conditional entropy (MMCE) model [49] is able to further infer the true

labels, item di�culty, and worker ability jointly; Liu et al.[28] proposed a graphical model that

performs variational inference method using belief propagation and mean �eld algorithms. �e EM

algorithm, proposed by Raykar et al.[36], imposes a beta prior over the worker confusion matrix and

learns the classi�er and true labels together. �e tensor augmentation and completion method [53]

proposed to use a tensor representation to capture the structural information in the crowd labeled

data and augment it with a ground truth layer for label inference. �e multi-task classi�cation

model using crowdsourcing labels (MultiC
2
) proposed by Zhou et al. [57] uses a tensor rank mini-

mization to capture the structural commonality between learning tasks and correlation between

crowdsourcing workers and their �nal prediction model is an ensemble of each worker’s weak

classi�er using entropy weights. In this paper, we extend the MultiC
2

model in multiple aspects:

(i). In the theoretical perspective, we have provided a detailed and logical smooth support for the

convergence of the algorithm. We also give a full justi�cation for the computational complexity

analysis which considers the complexity of all optimization blocks; (ii). In the e�ciency perspective,

We have proved the separability property of the gradient calculation w.r.t. the crowdsourcing

workers and proposed a faster randomized algorithm which has lower computational complexity

and can well adjust to the availability of the workers; (iii). In the perspective of generalization,

we have analyzed the possibility of extending the model to the multi-class learning se�ing and

proposed a generalized framework with its e�ectiveness being veri�ed; (iv). In the perspective of

the experiments, we have pointed out the pitfalls of the numerical implementation, increased one

extra metric for evaluation, added a multi-class dataset for comparison, and veri�ed the e�ciency

and scalability of the proposed randomized algorithm.

3 MULTI-TASK CLASSIFICATION USING CROWDSOURCING LABELS
In this section, we �rst summarize the notations and then we formally present the se�ing of the

multi-task multi-worker learning problem.

3.1 Notation.
We use calligraphic le�ers (e.g. X), to denote tensors and upper case le�ers (e.g. M), to denote

matrices. Vectors and scalars are denoted by the bold lower case le�ers and lower case le�ers (e.g.

x and x ) respectively. Without speci�c mention, all vectors are assumed to be column vectors. For

matrix indexing, we use M(i, j) to denote the entry at the i-th row and j-th column of matrix M
and use M(i, :) and M(:, j) to denote the i-th row and j-th column of matrix M . �e matrix with

subscript Mt denotes the t-th task of the learning problem and matrix transpose is denoted as MT
.

�e trace norm of a matrix M is de�ned as: | |M | |∗ =
∑

i σi (M) and σi (M) denotes the i-th singular
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Symbol De�nition
Xt
Yt

the data matrix of t-th task

the crowd label matrix of t-th task

Nt
Nw
P
uk

# of examples in the t-th task

# of workers in the crowd label matrix

# of features

an unit vector with value of 1 on k-th element

A(l ) := unfoldl (A)
A := foldl (A(l ))

I(·)
M1 ◦M2

matricization of a tensor A along l-th dimension

transform a unfolded matrix A(l ) into a tensor

element-wise indicator function, return 0 or 1

hadamard product of two matrices

Table 1. Summary of symbols

value in descending order. An n-way tensor is denoted as X ∈ IR
N1×N2×...×Nn

. For tensor indexing,

the (i, j,k)-th entry of a three-way tensor X is represented by Xi jk . A slice of a three-way tensor

X is denoted as Xi ::,X:j : or X::k . A �ber of a three-way tensor is denoted as X:jk ,Xi :k or Xi j :. One

important operation of a tensor X is called matricization or unfold, which reorders a n-way tensor

into a matrix. We denote X(k ) as the output of unfold operation along the k-th dimension of a

tensor X, i.e., X(k ) = unfoldk (X). Similarly, the foldk (X(k )) is the inverse operation of unfold and

it returns the tensor X. �e Frobenius norm of a three-way tensor A ∈ IR
N1×N2×N3

is de�ned as

| |A||F =
√∑N1

i=1

∑N2

j=1

∑N3

k=1
|Ai jk |2.

3.2 Learning framework.
In this article, we consider the following multi-task learning se�ing. We haveT learning (classi�ca-

tion) tasks and t-th task is associated with a set of training data:{(
Xt (1, :),Yt (1, :)

)
, ...,

(
Xt (Nt , :),Yt (Nt , :)

)}
⊂ IR

P × IR
Nw

(1)

where the data matrix Xt ∈ IR
Nt×P

of t-th task has Nt examples and P-dimensional features. Crowd

labels matrix Yt ∈ {−1, 0, 1}Nt×Nw
also has Nt examples but with Nw workers providing the labels.

In crowdsourcing, the workers do not have to label all items. �erefore, if j-th worker is willing

to provide label for i-th item, Yt (i, j) is assigned with −1 (negative class) or +1 (positive class).

Otherwise, Yt (i, j) is assigned with 0 to represent missing label.

Given the data matrices and crowd label matrices of all tasks, our target is to learn a prediction

function f : x → y. To achieve that purpose, we propose to learn three-way weight tensor

W ∈ IR
T×Nw×P

as the �rst step. Each �ber w ∈ IR
P

of this weight tensor is a weak classi�er. If an

new example x is given, the probabilistic label prediction made by this weak classi�er is given as:

f (y = 1|w) = 1

1 + e−wT x
(2)

where the feature vector x and weight vector w are both augmented with a bias term.

In multi-task learning, the goal is to improve the performance of the classi�ers by jointly learning

from all the tasks [34]. In that case, it o�en leads to a be�er model for the general task because

domain knowledge has been utilized to allow the learner to share the commonality among all

tasks. In crowdsourcing, all workers are assigned to the same group of labeling tasks and naturally

the labels gathered from these workers are intrinsically correlated. In order to capture this dual

heterogeneous structural information, we propose to use the tensor rank minimization as the main
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principle. �en, the following is the general minimization problem that we propose to solve:

min

W

T∑
t=1

Nt∑
i=1

Nw∑
j=1

L

(
Yt (i, j),WT

t j :Xt (i, :)
)
+ Rank(W) + R(W) (3)

where L

(
Yt (i, j),WT

t j :Xt (i, :)
)

is the loss term, Rank(W) is the tensor rank, and R(W) is the

tensor regularizer to prevent over-��ing or introduce feature sparsity. In crowdsourcing, most

workers are not experts on the given tasks. As a result, if a worker a�empt to �nish a task that

she/he is not sure of, the provided answer could be very unreliable [24, 38]. �erefore, a more

e�ective mechanism design is to encourage the workers to select the unsure (missing) options

if they don’t have high con�dence to label the item correctly. Following the same reward incen-

tives of [38], we also assume that a qualifying loss term should satisfy following the property:

Loss of correct prediction ≤ Loss of missing label prediction ≤ Loss of incorrect prediction. �e se-

lection of the loss term L

(
Yt (i, j),WT

t j :Xt (i, :)
)

is �exible and we use the logistic loss function

L(y, f (x)) = log

(
1 + e−y ·f (x)

)
in our model, although it can be naturally generalized to other loss

functions. Logistic loss is a convex and monotonically decreasing function which is commonly

used in practice for many real-world applications. Under the binary classi�cation se�ing, when the

a crowd label from a worker is missing, the logistic loss is loд 2. When the a crowd label from a

worker is incorrect, the associated loss is greater than loд 2. Otherwise the loss is smaller than loд 2

if the label is correct.

In crowdsourcing, each item will be redundantly labeled by multiple workers such that the trained

weak classi�ers using the crowdsourcing labels provided by these workers should have correlations.

From another perspective, in multi-task learning, the tasks are similar but di�erent such that they

share the commonalities in the learning process. �ese two types of intrinsic correlations can be

captured using the low-rank structure [8, 23, 39, 53, 54], therefore, we also introduce the tensor rank

term Rank(W) in the minimization objective. However, the rank minimization problem is NP-hard

and non-convex [4] in general, one common alternative is to use trace norm to approximate the

rank, which has been proved to be the closest convex envelope of the rank. Furthermore, there

exist multiple ways to de�ne the tensor trace norm. In this framework, we adopt the de�nition

proposed by Liu et al. [27]. Following their convention, the trace norm of an n-way tensor is

de�ned as the non-negative linear combination of the trace norms of tensor unfolded matrices

along all dimensions:

| |X||∗ =
3∑
l=1

αl | |X(l ) | |∗

s .t . :
3∑
l=1

αl = 1, αl ≥ 0, l = 1, ..., 3

(4)

By introducing some intermediate matrices Ml , (l = 1, 2, 3) to relax tensor trace norm, the original

problem is simpli�ed and the unfolded matrices can be optimized independently. �en we add the

Frobenius norm of weight tensorW as the regularization term to prevent over��ing, the �nal

formulation of multi-task crowdsourcing problem becomes:

min

W, {Ml }
γ

T∑
t=1

Nt∑
i=1

Nw∑
j=1

log

(
1 + e−Yt (i, j)·W

T
t j :Xt (i, :)

)
+

3∑
l=1

αl | |Ml | |∗ +
βl
2

| |W(l ) −Ml | |2F +
λ

2

| |W||2F (5)
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3.3 MultiC2 Algorithm
All terms in the objective are convex and the non-di�erentiable term is separable. �erefore we can

apply the Block Coordinate Descent (BCD) algorithm, which guarantees to �nd the global optimal

solution of this type of problem [40]. BCD is an iterative method which only optimizes one group

of variables at a time while other variables are �xed. In our case, we have four groups of variables:

W, {Ml }, where l = 1, 2, 3, because the weight tensors have the dimension of three. �ere are two

major sub-problems need to be solved in each BCD iteration: First sub-problem is to update the

weight tensorW while �xing the other intermediate matrices M1,M2,M3; Second sub-problem is

to update one intermediate matrix Ml whileW and other intermediate matrices are �xed.

3.3.1 UpdatingMl : With some simpli�cation, the optimization sub-problem of �rst BCD itera-

tion becomes:

min

Ml
:

αl
βl
| |Ml | |∗ +

1

2

| |W(l ) −Ml | |2F (6)

�is problem is extensively studied in many recent work [3, 21, 32]. One of the earliest solutions of

this problem, named singular value thresholding (SVT), is given by �eorem 3.1 [3].

Theorem 3.1. For each τ ≥ 0, the singular value shrinkage operator ofW(l ) that has the SVD
decomposation asW(l ) = U ΣVT , obeys:

Dτ (W(l )) = argmin

Ml

:

αl
βl
| |Ml | |∗ +

1

2

| |W(l ) −Ml | |2F (7)

where Dτ (W(l )) = U ΣτV
T

. It needs to compute the SVD of matrixW(l ) = U ΣVT
, then replaces

Σ with its shrinkage version: Στ = diaд({σi −τ }+). Here a+ = max(a, 0) and τ = α
β is the threshold

of the shrinkage SVD. �e above discussion shows that the �rst sub-problem of updating Ml could

be readily solved by utilizing SVD. Furthermore, this sub-problem exists an unique minimizer

because the objective is strictly convex [3].

3.3.2 UpdatingW: Similarly, with some simpli�cation, the sub-problem of updatingW be-

comes:

min

W
γ

T∑
t=1

Nt∑
i=1

Nw∑
j=1

log

(
1 + e−Yt (i, j)W

T
t j :Xt (i, :)

)
︸                                             ︷︷                                             ︸

logistic loss L(W)

+

3∑
l=1

βl
2

| |W(l ) −Ml | |2F︸                     ︷︷                     ︸
relaxation penalty RP (W)

+
λ

2

| |W||2F︸    ︷︷    ︸
regularization R(W)

(8)

In order to solve this convex optimization sub-problem, we apply gradient descent with back

tracking line search to choose the step size. By taking the element-wise derivative with respect to

one single entry of the weight tensorWt jp , the partial gradient of the logistic loss term is:

∂L(W)
∂Wt jp

= −γ
Nt∑
i=1

e−Yt (i, j)Xt (i, :)·Wt j :

1 + e−Yt (i, j)Xt (i, :)·Wt j :
Yt (i, j)Xt (i,p)

= −γ
[

e−Yt (:, j)◦(Xt ·Wt j :)

1 + e−Yt (:, j)◦(Xt ·Wt j :)
◦ Yt (:, j)

]T
· Xt (:,p)

(9)

In a similar way, we can calculate the slice-wise (with respect toWt :: ∈ IR
Nw×P

) derivative of

logistic loss as follows:

∂L(W)
∂Wt ::

= −γ
[

e−Yt ◦(Xt ·W T
t ::
)

1 + e−Yt ◦(Xt ·W T
t ::
)
◦ Yt

]T
· Xt (10)
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ALGORITHM 1: MultiC
2

Algorithm

1: Input: training data Dtrain , α, β , γ , λ, ϵ , MaxIter

2: Output:W, T groups of ensemble coe�cient {c1, ..., cNw }
3: Initialization:

W0 = {0}T×Nw×P

m = 1

On training data Dtrain :

4: repeat

{Mm
l } = argmin

Ml

:

α l
βl
| |Ml | |∗ +

1

2

| |W(l ) −Ml | |2F

Wm = argmin

W
: γ

T∑
t=1

Nt∑
i=1

Nw∑
j=1

log

(
1 + e−Yt (i, j)·W

T
t j :Xt (i, :)

)
+

βl
2

| |W(l ) −Ml | |2F +
λ

2

| |W||2F

m =m + 1

5: until converged or m ≥ MaxIter

Ensemble coe�cient learning for each task:

6: for j = 1, 2, …, Nw do

c j =
1 − κeHj∑Nw

j=1
(1 − κeHj )

7: end for

In multi-task learning, each task may have completely di�erent number of examples, therefore we

can only use the slice-wise gradient descent to update f (W) as shown in Equation (10). As for the

updating rules of relaxation penalty term RP(W) and regularization term R(W), the gradients of

them are calculated as below:

∂RP(W)
∂W =

3∑
l=1

βl
[
W − foldl (Ml )

]
(11)

∂R(W)
∂W = λW (12)

3.3.3 Worker ensemble with entropy weights: A�er the weight tensorW for all workers is jointly

learned, there are multiple ways to apply these learned weights on a new testing example. One

simple baseline is to apply these weights separately on testing data and then use majority voting

to combine the predictions. Another baseline is taking the average of the weights of all workers

and then apply the average weights on testing data. However, all of the above combining methods

assume that the learned the classi�ers of all workers are equally important, which is conceptually

wrong because abilities of di�erent workers are totally di�erent.

In our framework, we propose an unsupervised weight ensemble method for the predictions

of testing data. We assume the collection of item ground truth labels is generated according to

an unknown model д(y), and we endeavor to �nd a ��ed parametric model which provides a

suitable approximation to д(y). As we de�ned in Section 2, f (y |wj ) is the probabilistic classi�cation

function for j-th worker. A�er the optimization algorithm converges, we have a collection of

learned models F =
{
f (y |w1), f (y |w2), ..., f (y |wNw )

}
. �en, similar to the average label entropy

criterion proposed in [58] as a heuristic prediction con�dence estimate, we proposed an entropy

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Multi-task Crowdsourcing via an Optimization Framework 1:9

based ensemble method to combine this set of classi�ers as follows: for each learned classi�er, we

treat the probability predictions Pj (xi ) = f (y |xi ,wj ) of all examples as a sequence of Bernoulli

trials. Here Nt is the number of training examples in t-th task, then the average entropy of j-th
classi�er is de�ned as:

Hj = −
1

Nt

Nt∑
i=1

Pj (xi )log(Pj (xi )) + (1 − Pj (xi ))log(1 − Pj (xi )) (13)

�e labeling abilities of di�erent workers can have a wide di�erence, therefore the jointly learned

classi�ers will have various qualities. �e motivation of the ensemble is to assign larger weights on

these informative classi�ers and smaller or zero weights on the others. Based on the information

theory, the probability distribution with the largest entropy should be the least informative default.

�us, we de�ne the ensemble coe�cient as:

c j =
1 − κeHj∑Nw

j=1
(1 − κeHj )

(14)

where κ = e−Hmax
and Hmax is the largest average entropy among all the workers. At last, when a

new testing example xtest is given, the predicted label ỹ of it is:

ỹ = sign(
Nw∑
j=1

c jwT
j xtest ) (15)

�e proposed algorithm is summarized in Algorithm 1 . It works as follows. We initialize the

weight tensorW with all zeros. In each BCD iteration, we �rst optimize over the set of intermediate

matrices {Ml } in Problem (6) using the close-form solution and next optimize overW in Problem

(8) using gradient descend. �en, upon convergence, entropy weights are learned separately for

each task.

3.4 Convergence
Regarding the convergence property of the proposed Algorithm 1, our main interest is the block

coordinate descent (BCD) method which cyclically optimize overW and Ml , l = 1, 2, 3. �e overall

objective of our approach is a regularized block multi-convex optimization problem, we will utilize

the following de�nitions and theorem to analysis its convergence.

De�nition 3.2. A function f (x) is called block multi-convex, if the variable x can be decomposed

into s blocks x = (x1, . . . ,xs ), and for each block of variable xi , f is a convex function with respect

to xi while all the other block variables are �xed.

De�nition 3.3. A set is called block multi-convex if its projection to each block of variables is

convex.

Theorem 3.4. For the optimization problem with the following format:

min

x
F (x) := f (x1, . . . , xs ) +

s∑
i=1

ri (xi ) (16)

where the variable x (of a closed and multi-conex feasible set) can be decomposed into blocks x1, . . . , xs ,
f is di�erentiable and multi-convex, and ri , i = 1, . . . , s are extended-value convex functions. �e
block coordinate descent (BCD) method which cyclically optimizes over x1, . . . , xs can reach its global
convergence [43].
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1:10 Yao Zhou, Lei Ying, Jingrui He

�e variable blocks of Algorithm 1 areW,M1,M2,M3. From �eorem 3.1, we know that the sub-

problems of updating Ml , l = 1, 2, 3 are strictly convex. �e second sub-problem of updatingW is

also convex because it includes the logistic loss term and two Frobenius norms as the regularization

terms which are both convex. Overall, the logistic loss term L(W) with the relaxation penalty

term RP(W) are block multi-convex, and the regularization terms R(W) and

∑
3

l=1
αl | |Ml | |∗ are

the extend-value convex functions for each block respectively. �erefore, our proposed approach is

one of the practical instantiations of �eorem 3.4 and it is guaranteed to converge to the optimum.

�e same converging property also holds for many general applications, e.g. non-negative matrix

and tensor factorization, matrix and tensor completion, which utilize the alternative least square

[33] and block coordinate descent to optimize.

3.5 Computational complexity.
�e �rst part of the algorithm is the Ml updating step in Problem (6), which involves the SVD

computation of the unfolded matrixWl . In general, the computation cost of SVD is O(nr 2) for

matrix Wl of size
1 n × r . Using the accelerated SVT of [32], the complexity is further reduced to

O(rq2), where q � r denotes the approximation of rank-q. If the BCD algorithm hasm iterations

before its convergence, then the complexity of the �rst sub-problem is O(mNwq
2).

�e second part of the algorithm is theW updating step in Problem (8), which involves the repeated

calculations of gradients. For each iteration, the number of �oating points operation per second

that the gradient calculations needed are:

O
( ∂L(W)
∂W

)
= O(TNtNwP)

O
( ∂RP(W)
∂W

)
= O(TNwP)

O
( ∂R(W)
∂W

)
= O(1)

(17)

Overall, the computation complexity of each iteration in the proposed Algorithm 1 is: O
(
mNw (m̃TNtP+

q2)
)
, where m̃ is the number of iterations needed for sub-problem (8) to converge. �is analysis

shows that the computational complexity is linear with respect to the number of workers.

4 CROWD LABELING MODEL
In this section, we introduce the crowd labels generating model. In practice, many models have

been proposed, such as Dawid-Skene model [12] and Rasch Model [35] etc. In real world cases, a

worker is not guaranteed to correctly label the given items because the labeling abilities of di�erent

workers can be signi�cantly di�erent.

In our labeling model, each worker is assumed to have an intrinsic probabilistic ability matrix to

represent her labeling ability. If the number of classes K is given, then each worker will have a

worker ability matrix of size K × K and the value of each entry in this matrix falls in the range

of [0, 1]. �e (i, j)-th entry of the ability matrix represents the probability that this worker will

label one item belong to class i as class j. Obviously, the diagonal entries of this matrix denote the

ability that a worker can correctly label one class of items. �e o�-diagonal elements represent the

mislabeling probabilities. Besides considering the worker ability, the di�culty of labeling an item

1
Without loss of generality, we assume n > r in the unfolded matrix. In many real-world cases, number of workers Nw is

a smaller number than the multiplication of number of tasks T and number of feature P . Here, we assume r = Nw and

n = T P .
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should also be di�erent from labeling another item no ma�er whether these two items belong to

the same class or not. �erefore, we also assume there is a labeling di�culty associated with each

item. �e item di�culty is de�ned as the probability of this item being mislabeled as the incorrect

classes and the value of it falls in the range of [0, 1].
Based on the above assumptions, there are several types of workers: Experts are the type of

workers who can provide correct labels with high probability no ma�er how di�cult the item is. It

is rare but possible that there are experts (with low payment) among the workers; Spammers,
who are also rare in crowdsourcing, are the type of workers who randomly assign labels regardless

the item di�culty. �eir labeling results are analogous to random behavior. Laymen are the type

of workers who are lacking the prior knowledge about the tasks and the qualities of their labels are

reliable only when the item di�culty is relatively low. Otherwise, the labeling results of laymen
are similar to these of the spammers. Sometimes leymen are also referred as the non-experts.

Intuitively, the labeling accuracy of a worker on an item should be a function of item di�culty and

worker ability. One of such functions for binary classi�cation has already been proposed by Dai et

al. [11] as:

p(d,a, 2) = 1

2

(1 + (1 − d)1−a) (18)

p(d,a, 2) = 1

2

(1 + (1 − d) 1

a ) (19)

We refer to the Equation (18) as the Experts preferred model and Equation (19) as the Laymen

preferred model. d represents the item di�culty and a represents the worker ability of a given item.

�ese two models are for binary se�ing, but the de�nitions of worker ability and item di�culty can

be generalized in multi-class se�ings. Given a worker ability matrix A ∈ [0, 1]K×K , if the ground

truth label of an item yдt = k,k ∈ {1, ...,K} is also given, the worker ability of a given item is

de�ned as: a = Akk−1/K
1−1/K .

Names Model formulation

Laymen and

smart adversaries
p(d,a, 2) =

{
1

2
(1 + (1 − d) 1

a ), a ≥ 0

1

2
(1 − d− 1

a ), a < 0

Table 2. Modified crowd labeling model.

Many existing crowdsourcing models have a basic assumption: the workers are be�er than

random behavior (i.e. the labeling accuracy of the worker is 50% if the tasks are binary). But

this assumption doesn’t hold in general and there is one more type of workers named smart
adversaries, whose prior knowledge about the tasks are biased and their labeling abilities are

always worse than the random guess. �e accuracies of their labels are ge�ing close to zero when

the di�culties of items are large and ge�ing close to random guess when the di�culties of items are

relatively small. �e conventional adversaries are the type of malicious workers who intentionally

sabotage labeling process and they can be eliminated by the �ltering process in crowdsourcing

platforms, e.g. randomly adding several testing questions on each working page as the evaluation

mechanism. Di�erent from conventional adversaries, smart adversaries still can exist even a�er

the �ltering procedure, thus a robust crowdsourcing framework should be able to tolerate a certain

amount of this type of workers or even utilize the information contained in their labels. Under this

new se�ing, we propose that the worker ability is in the range [−1,+1] and the modi�ed crowd

labeling models are shown in Table 2.
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ALGORITHM 2: Batch-RBCD Algorithm

1: Input: training data Dtrain , intermediate matrices {Ml }l=1,2,3, batch size Nb ,W, β , λ, MaxIter

2: Output:W
3: Initialization: m̃ ← 0

4: repeat:
5: Choose batch of workers Φ ⊂ {1, · · ·,Nw } of size Nb with uniform probability

1

Nw
;

6: UpdateW by Equation (21);

7: m̃ ← m̃ + 1

8: until converged or m̃ > MaxIter

5 FAST GRADIENT USING RBCD
Solving the gradient descent of Problem (8) is time-consuming due to the high cost of large matrix

multiplication and repeated line search steps got involved. In order to the optimization, we �rst

prove that the gradient is separable with respect to each worker. �en, we propose a fast randomized

block coordinate descent algorithm which solves the problem more e�ciently and e�ectively in a

manner of batch update.

�e gradients of loss term, relaxation term, and regularization term are separable with respect to

each worker and they are calculated as:

∂L(W)
∂W:j :

= −γ
T∑
t=1

[ e−Yt (:, j)◦(XtWT
t j :)

1 + e−Yt (:, j)◦(XtWT
t j :)
◦ Yt (:, j)

]T
Xt · uTt

∂RP(W)
∂W:j :

=

3∑
l=1

βl
[
W:j : −

(
foldl (Ml )

)
:j :

]
∂R(W)
∂W:j :

= λW:j :

(20)

Based on the above derivation, the gradient of the overall objective can be split into the sum of

the gradients of all workers. It is an immediate proof of block separability of the overall objective in

terms of the crowdsourcing workers. �is is an appealing property because now we can design the

algorithm that runs in parallel for each worker. From another perspective, the separated updating

rules avoid the costly computation of large matrix multiplications. �us, it is possible to design a

scalable algorithm with high e�ciency.

We propose a randomized block coordinate descent algorithm to updateW in a batch manner

in order to speed up the calculation. Compare with a full gradient descent algorithm, the block

coordinate descent method is much cheaper and less memory demanding in the gradient com-

putation especially when the workload got involved is excessive due to the size of the problem.

On the other end, there are two less-costly strategies for choosing the updating block coordinate:

cyclic or random. Interestingly, the theoretical analysis of cyclic coordinate descent that satisfying

generality has not been done [31]. Many recent works suggest that the randomization can actually

improve the convergence rate [31, 37], and choosing all blocks with certain probabilities should

be able to avoid the worst-case order of block coordinates that cyclic updating may ends up with.

In our multi-task multi-worker se�ing, updating one worker at an iteration could degenerate the

performance because the crowdsourcing workers are mostly imperfect labelers. �erefore, in order

to balance the tradeo� of computation speed and performance, our proposed RBCD algorithm

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Multi-task Crowdsourcing via an Optimization Framework 1:13

updates a batch of workers at each iteration and the updating rule of each worker is:

W:j : ←W:j : −
∂L(W)
∂W:j :

− ∂RP(W)
∂W:j :

− ∂R(W)
∂W:j :

(21)

�e detail of the fast RBCD algorithm is summarized in Algorithm 2. �e computational complexity

of solving sub-problem (8) using batch-RBCD is reduced to O(m̃TNtNbP), where Nb is the batch

size of the selected group of workers.

6 EXTENSION TO MULTICLASS SETTING
One way to extend the MultiC

2
to multi-class se�ings is by training multiple binary classi�ers,

one for each class, using the one-vs-other strategy. However such approach can not capture

the correlations between di�erent classes and can be very time consuming for training. �en, a

natural and more e�cient way of address this se�ing is to construct the multi-class classi�er which

considers all classes at once.

A natural extension is using the so�max loss in the objective. However, this learning se�ing,

which involves taking the crowdsourcing labels as the input, requires the label space to have missing

labels and it is di�erent from the conventional so�max loss. On the other hand, our multi-task

multi-worker learning scenario are tensor based approaches which requires more e�orts to design

and combine the objective with heterogeneous source of information. Let us denote the label

space as Y = {0, 1, · · ·,K}, where K ≥ 3 represents the total number of classes and 0 represents

for the missing labels. �en, for the t-th task and the j-th worker, the weak classi�erWt j : is a

vector of size K(P + 1), which is denoted as ω for simplicity. Di�erent from the binary se�ing,

where we choose one class as the pivot and train the second class against it, we use the so�max

function without pivot to represent the probabilistic prediction of each class. Here, we denote

Wt jk =
(
ωk0,ωk1, · · ·,ωkP

)T
∈ IR

P+1
as the weak classi�er of the t-th task and the j-th worker on

the k-th class.

Wt j : =



ω10

...
ω1P
ω20

...
ω2P
...

ωK0

...
ωKP



 1st class : Wt j1

 2nd class : Wt j2

 K-th class : Wt jK

For multi-class classi�cation, the key challenge is looking for the proper way of de�ning the

loss term in the objective. Let us de�ne Pдi (xi ;w) = Pr (Y = дi |X = xi ,w) as the probability of
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predicting example xi with label дi . �en, the loss is de�ned as the negative log-likelihood:

L(W) = −
T∑
t=1

Nw∑
j=1

Nt∑
i=1

logPдi (Xt (i, :);Wt j :)

= −
T∑
t=1

Nw∑
j=1

Nt∑
i=1

log

(
eXt (i, :)Wt jдi∑K
k=1

eXt (i, :)Wt jk

)
=

T∑
t=1

Nw∑
j=1

Nt∑
i=1

[
log

( K∑
k=1

eXt (i, :)Wt jk
)
− Xt (i, :)Wt jдi

]
(22)

where, дi := Yt (i, j) ∈ {0, 1, · · ·,K} is the crowd label of i-th item provided by j-th worker. �e

terms of the new loss function have to satisfy the property that it penalizes less when the prediction

is correct and penalizes more when the prediction is incorrect. However, the labels provided by the

crowdsourcing workers can be missing. �us, we multiply the numerator and the denominator with

an indicator function on the linear prediction part to guarantee that the penalization is properly

de�ned when the labels are missing. �en, the loss term becomes:

L(W) =
T∑
t=1

Nw∑
j=1

Nt∑
i=1

[
log

( K∑
k=1

eXt (i, :)Wt jk I(дi,0)
)
− Xt (i, :)Wt jдi I

(
дi , 0

) ]
(23)

Similar to the binary se�ing, when the crowd label from a worker is missing, the associated loss is

loдK . When the prediction from a worker is incorrect, the loss is greater than loдK . Otherwise the

loss is smaller than loдK if the prediction is correct. One could simply skipping parts of the logistic

loss terms by ignoring the item-worker pair that has missing labels. However, this simple solution

has its drawbacks. First, the simpli�ed model with the loss associated with the missing labels being

removed has di�culty to converge. �e reason is that the number of missing labels provided by

one worker could be signi�cantly di�erent from the ones of other workers. �us, it is reasonable to

balance the loss between these workers by assigning a intermediate loss value to the item-work pair

that has a missing label. Second, it is a common practice to include some ‘gold standard’ questions

in the labeling tasks. �ese ‘gold standard’ questions are the ones to which the answers are known

in advance to the mechanism designer. By interweaving the ‘gold standard’ questions with real

crowdsourcing questions, the workers who intent to sabotage the tasks could be eliminated if

they continuously provide wrong or random answers to these ‘gold standard’ questions. Due

to the existence of the screening mechanism using ‘gold standard’ questions in crowdsourcing

platforms, workers are more cautious on labeling and intend to provide correct answers with

high con�dence. �ese missing labels have indicated this implicit con�dence information (missing

means low con�dence) which also supports the necessity to included loss with missing labels in

the overall objective.
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�en, as for the weak classi�er t-th task and j-th worker (denote as ω), the partial gradient of

the multi-class loss term with respect to r -th class and p-th feature is calculated as follows:

∂L(W)
∂ωrp

=

Nw∑
j=1

Nt∑
i=1

[ eXt (i, :)Wt jr I(дi,0)∑K
k=1

eXt (i, :)Wt jk I(дi,0)
Xt (i,p) − I

(
дi , 0 &&дi = r

)
Xt (i,p)

]
∂L(W)
∂ωr :

=

Nw∑
j=1

Nt∑
i=1

[ eXt (i, :)Wt jr I(дi,0)∑K
k=1

eXt (i, :)Wt jk I(дi,0)
Xt (i, :) − I

(
дi , 0 &&дi = r

)
Xt (i, :)

]
=

Nw∑
j=1

[ eXtWT
t jr ◦I

(
Yt (:, j),0

)
∑K

k=1
e
XtWT

t jk ◦I
(
Yt (:, j),0

) − I

(
Yt (:, j) , 0 ◦ Yt (:, j) = r

)]T
· Xt

∂L(W)
∂Wt :r

=
[ eXtWT

t :r ◦I
(
Yt,0

)
∑K

k=1
eXtWT

t :k ◦I
(
Yt,0

) − I
(
Yt , 0 ◦ Yt = r

) ]T
· Xt

(24)

Similar to the binary classi�cation se�ing, each task may have di�erent number of examples,

therefore we can only calculate the gradient of the new loss term in tensor slices with respect to

each task and each class. �e gradients of penalty term and regularization term remains the same as

they were under binary se�ing. �e algorithm for multi-class se�ings remains the same except that

the loss term is replaced by Equation (23). As for the entropy weight ensemble, it is straightforward

to extend to the multi-class scenario by de�ning the average entropy of j-th worker as:

Hj = −
1

Nt

Nt∑
i=1

K∑
k=1

Pk (xi ;Wt jk )log

(
Pk (xi ;Wt jk )

)
(25)

�e de�nition of the ensemble coe�cient c j remains the same as the binary se�ing. At last, when a

new testing example xtest given, the label prediction ỹ of it is given as:

ỹ = argmax

k=1, · · ·,K

{
(
Nw∑
j=1

c jWt j1)T xtest , · · ·, (
Nw∑
j=1

c jWt jK )T xtest
}

(26)

7 EXPERIMENTAL RESULTS
In this section, we formally present the details of the data sets, evaluation metrics, comparing

methods, and the se�ings of the crowd labeling model. �en, we also introduce the numerical

implementation details that need special a�ention. Next, we illustrate the experimental results and

answer these questions on two binary semi-synthetic data set.

• E�ectiveness: How e�ective is the proposed framework compare with other state-of-the-art

approaches?

• Robustness: Is the entropy ensemble method robust enough to identify various types of

workers?

• E�ciency and scalability: How fast and scalable are the proposed RBCD algorithm?

Moreover, we also show that this proposed framework can be applied on multi-class data set that

uses labels from synthetic workers and the real data set that uses labels from real crowdsourcing

workers.

7.1 Data set
In total, there are four data sets have been evaluated and compared. �e statistics of these data set

are listed in Table 3:
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Data set Tasks # Examples (each class) # Classes

Rec. vs Talk

Autos vs Guns 1844 (975/869) 2

Baseball vs Mideast 1545 (860/685) 2

Comp. vs Sci.

Ms-windows.misc vs Crypt 1875 (967/908) 2

Mac.hardware vs Space 1827 (871/956) 2

WebKB

Cornell 176 (42/32/19/83) 4

Texas 186 (34/31/18/103) 4

Washington 221 (66/27/21/107) 4

Wisconsin 255 (76/35/22/122) 4

Animal Breed

Cat 439 (245/194) 2

Canidae 514 (235/279) 2

Horse 485 (266/219) 2

Table 3. Statistics of all data set

• Rec. vs Talk: One of the largest subset of 20 Newsgroups data set. It includes two binary

document classi�cation tasks that are related but di�erent.

• Comp. vs Sci.: Another large subset of 20 Newsgroups data set, and it also has two binary

classi�cation tasks.

• WebKB: It is the collection of webpages from the computer science department of four

universities. In total, there are four related multi-class classi�cation tasks and each task

has four categories.

• Animal Breed: It is the collection of animal images from ImageNet, which includes three

related binary image classi�cation tasks.

7.2 Evaluation metrics
We use the following metrics for the performance evaluations of the proposed methods:

• Accuracy. �e accuracy for each class is de�ned as the proportion of the true positive

predictions plus the true negative predictions over the total number of examples. In the

multi-class case, we use the weighted average of the accuracy score of each class.

• Average F1-score. �e F1-score is the harmonic mean of precision and recall, and it is a more

strict and reliable evaluation metric than accuracy especially under learning se�ing where

the data set is unbalanced. Average F1-score is the weighted mean of the F1-scores of all

possible classes.

7.3 Comparing methods
In the comparison experiment, we employed four methods:

• Single task learning (STL). It learns a classi�er for each task using logistic regression with

ground truth (GT) labels;

• Multi-task learning (MTL). It also uses logistic regression and add L21 norm as the regular-

ization term to do jointly feature learning with GT labels;

• Multi-task learning with inferred labels (MMCE+MTL). It uses the same multi-task learning

algorithm except that labels are inferred from MMCE model;

• MultiC2
: Our proposed multi-task crowdsourcing classi�cation framework which directly

learns the classi�ers of multiple tasks using crowd labels.
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It should be noticed that the �rst two comparison methods STL and MTL uses the ground truth

labels for learning, which is in general impossible in the real-world scenarios. �e standard learning

methods trained with the inferred labels, e.g. MMCE+MTL, are widely applied in many applications.

7.4 Numerical implementation.
To implement the logistic loss term in the objective, e.g. Problem (8), or its gradient, e.g. Equation

(9), their mathematical formulations are not ideal from a practical standpoint. Speci�cally, the

sigmoid function ϕ(t) = 1

1+e−t could easily over�ow in the system even for some common input

values, e.g. t = −300. �is ends up assigning the loss term with an erroneous value of +∞. For this

reason, we split the loss term as follows to avoid over�ow issues:

ϕ(t) =
{

1

1+e−t , if t ≥ 0

e t
1+e t , otherwise

(27)

As for the cases of training with unbalancing data set, we preprocess the training data by automati-

cally adjusting data weights inversely proportional to class frequencies in the input data of each

worker. During the learning process, these data weights will be applied on the corresponding loss

of the prediction product of features x and classi�er w, e.g. in Equation (10), gradient of the loss[
e−Yt ◦(Xt ·W

T
t ::
)

1+e−Yt ◦(Xt ·W
T
t ::
) ◦ Yt

]T
· Xt will be replaced with its weighted version

[
e−Yt ◦(Xt ·W

T
t ::
)

1+e−Yt ◦(Xt ·W
T
t ::
) ◦ Yt ◦ Ω

]T
· Xt

represents the worker-wise inverse class frequency data weights. Similar reweighting strategy is

also applicable in the multi-class scenario.

7.5 Binary semi-synthetic data set.
�ere are two binary semi-synthetic multi-task learning data set have been generated. �ey are

the subset of the 20 News Groups data set
2
, which is a collection of approximately 20k newsgroup

documents that have been partitioned across 20 newsgroups. In our experiment, we have two

cross-domain subsets [16]: Rec. vs. Talk and Comp. vs. Sci. Each subset includes two tasks and

they belong to the top two categories in their subset. �e spli�ing in each subset ensures that the

tasks are related but di�erent. �e features we use are term frequency inverse document frequency

(TF-IDF) based on the same bag-of-word dictionary. In practice, we eventually keep the top 150

TF-IDF features for each example.

In order to collect the crowd labels, we synthetically generate a group of workers. Generation of

these workers is based on two parameters: number of workers Nw and number of classes K . In

our semi-synthetic experiment, we have generated 50 workers. For each worker, we generate a

K × K worker ability confusion matrix A as follows: the diagonal entries are independently and

uniformly sampled from a certain probability range. If the worker is an expert, a layman or a

spammer, then the probability range of diagonal entries is [0.5, 1]. Otherwise, the probability

range is [0, 0.5) for the smart adversary. �e o�-diagonal entries are randomly assigned with

positive probabilities under the constraint that the sum of each row of the confusion matrix is

equal to 1. Generation of the item di�culties is de�ned as follows: For each group of examples,

we learn a logistic regression classi�er w. If the ground truth label of an item xi is +1, then the

corresponding item di�culty is 1 − P(y = +1|xi ,w); Otherwise, the corresponding item di�culty

is 1 − P(y = −1|xi ,w). Since each worker does not have to label all items, for each worker, he/she

will decide to label the given item if p(d,a, 2) ≥ δ ·min(A11,A22, ...,ACC ) and we set δ = 0.9 in the

2
h�p://qwone.com/∼jason/20Newsgroups/
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implementation. A�er the crowd label matrix Y is obtained, we further randomly remove 70% of

them as the missing labels and leave 30% of them as the labeled ones.

Worker setting 1 setting 2 setting 3 setting 4 setting 5
Expert 10% 5% 0% 0% 0%

Layman 80% 85% 80% 70% 60%

Spammer 10% 10% 10% 10% 10%

Smart

adversary
0% 0% 10% 20% 30%

Table 4. Five se�ings of the workers in semi-synthetic data set.

7.5.1 �alitative study of inferred labels. To begin with, we report the quality of inferred labels.

�e purpose of this subsection is to verify our necessity of our modi�ed crowd labeling model. �ere

are three crowdsourcing methods being employed for labels inference: Dawid-Skene Expectation

Maximization (DS-EM), Minimax Conditional Entropy (MMCE) and Majority Voting(MV). �e

evaluation metric is the error rate of inferred labels and all the outcomes are the results of 10

independent runs. �ere are �ve se�ings of semi-synthetic data set have been employed and each

se�ing has a di�erent proportion of all types of workers. �e details of these se�ings are listed in

Table 4. In real-world crowdsourcing applications, the majority of the workers are the laymen, i.e.

the non-experts of the given tasks, whose labels will dominate the collected crowd labels. �e rest

of the workers could be the experts, the spammers, or the adversaries. Based on the characteristics

of di�erent types of the worker, we know that the labels collected from the experts and the laymen

are helpful toward model learning. However, the labels collected from the spammers and the

adversaries are either useless or could harm the model’s the performance. As we can see from Table

4, from se�ing 1 to se�ing 5, the portion of the ”good” workers gradually drops which means that

the corresponding crowd label quality is also decreasing. In the meantime, the increasing amount

of noisy (incorrect) labels collected from the adversaries could easily bias the model training. �ese

�ve types of worker combinations could re�ect the real-world crowdsourcing scenarios in a certain

way and the rationale of designing these se�ings (with decreased labeling qualities) is to verify the

robustness of the comparison methods.

�e details of results are shown in Figure 1(a)-(d). As was expected, the MV label inference has

the worst performance under all �ve se�ings because MV assumes all workers are equally good

and all items are equally di�cult. DS-EM and MMCE outperform MV because they both modeled

the worker abilities. MMCE has even lower error rate than DS-EM because it also modeled the

items di�culties and when the item di�cult is ignored, the MMCE model is reduced to DS-EM

model. One interesting thing we observed is that when smart adversary proportion is increasing,

the error rate of DS-EM and MMCE decrease �rst and then start to increase again.

7.5.2 E�ectiveness. For the e�ectiveness evaluation, each data set is randomly split into 50% for

training and & 50% for testing. We also observe that the 20NG subsets we used are balanced data set

and the values of True Positive (TP) and True Negative (TN) of two classes in the prediction results

are almost the same, therefore accuracy and average F1-score have similar values of the same

trend under various se�ings. �us, we only present the average F1-score metric to illustrate the

performance of all methods on the test data set. Figure 1 (e)-(h) summarize the average performances

of these methods on two semi-synthetic data set. Each data set is randomly split into 50% for

training and & 50% for testing. For evaluation, the average F1-score is applied as the metric to
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Fig. 1. (a) - (d): Error rate of labels inference using: MV, DS-EM and MMCE; (e) - (h): Classification perfor-
mances on test data set using: STL and MTL with ground truth labels; MTL with MMCE inferred labels and
our method (MultiC2).
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Fig. 2. Case study of entropy based weight learning

examine the performance of all methods on the test data set and all the outcomes are the results of

ten independent runs. As we can see, �e average F1-score of MMCE+MTL is comparable with

MTL in se�ings 1 and 2 because the label inference of MMCE has a low error rate. However

MMCE+MTL has a signi�cant performance drop in se�ings 3, 4 and 5. Our proposed method

MultiC
2

has consistent be�er performance than MMCE+MTL under all se�ings in every data set.

It is because our proposed method can capture the structural information of all types of workers of

across multiple tasks. We also observe that MultiC
2

can even outperform the MTL with ground

truth labels. It is reasonable because the ensemble of these classi�ers has reduced the chance of

over��ing and decreased the variance. �erefore, MultiC
2
, which uses the ensemble, could have a

be�er performance.
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Fig. 3. Parameter study of gamma (logscale)

7.5.3 Robustness. In this section, we conduct a case study with respect to the robustness of

the proposed method on task 1 of Comp. vs. Sci data set. �e result comes from synthetic se�ing

5, which is the most di�culty se�ing because 30 percent of smart adversaries are employed. In

Figure 2, the plot shows the entropy learned weights. As we can see, all the spammers and smart

adversaries, who have poor classi�cation performance, are founded and assigned with very low

ensemble weights.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2019.



Multi-task Crowdsourcing via an Optimization Framework 1:21

We also conduct a parameter study with respect to the γ , which controls the ratio of logistic

loss, on two methods: MultiC
2

and the Baseline method (which has removed the tensor low-rank

regularization term in MultiC
2
). We change γ in the range [0.001, 0.01, 0.1, 0.3, 1, 3, 10, 20, 50] while

�xing the rest parameters, and plot the corresponding average F1-score of ten independent runs on

a log-scaled γ . As we can see in Figure 3, our proposed model has consist be�er performance than

Baseline method with varying γ values. �e performance of Baseline has a signi�cant drop when γ
is extremely small, i.e. γ = 10

−3
, because of lacking of information from crowd labels. However,

the MultiC
2

only has a slightly performance drop under the same se�ing.
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Fig. 4. E�iciency and scalability of Batch-RBCD

7.5.4 E�iciency and scalability. �e e�ciency plots of MultiC
2

using Batch-RBCD updating

rule is presented in Figure 4. �e horizontal axis represents for the number of randomly selected

workers in each iteration, the vertical axis of (a) - (b) represents for the F1 score evaluation a�er

convergence, and the vertical axis of (c) - (d) represents for the average running time of every

training iteration. As we can see, the number of randomly selected workers is in a wide range.

Start from updating the gradient using one random worker until updating the full gradient using

all 50 workers, the performance of the framework shows that it is not very sensitive with respect to

the number of randomly selected workers using the RBCD algorithm. From the bo�om two plots

(c) and (d), we also observe that the running time of MultiC
2

scales linearly with respect to the

number of workers, which is consistent with our complexity analysis. It should be noticed that for

the training of these two data set Comp. vs. Sci. and Rec. vs. Talk, the randomized BCD algorithm
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will usually converge within 50 iterations. For the data set with a larger number of items and

more crowdsourcing workers, the convergence may require more iterations. Under the learning

scenario with more workers, the proposed randomized algorithm could have a more signi�cant

speedup. From another perspective, Batch-RBCD is not only a speed-up strategy that can improve

the running speed of the gradient method by reduce computational intensity but also a realistic

algorithm that considers the availability of the data de�ned in each worker block.

7.6 Multi-class semi-synthetic data set
�e WebKB data set

3
contains the website pages from computer science departments of four

universities: Cornell, Texas, Washington, and Wisconsin. Originally, there are 8282 website

documents that are manually classi�ed into seven categories. In our experiment, we have employed

the top four categories (student, faculty, course, and project) for our learning problem. Under the

multi-task learning se�ing, we consider classifying each group of documents of each university as

a task. Overall, we have four related learning tasks and four classes. Since each university’s web

pages have their own idiosyncrasies, we follow the recommendation of the original authors [10] to

train the model on the �rst three tasks and to test on the documents of the fourth task. �e features

we use are TF-IDF based on the same bag-of-word dictionary. We still keep same top 150 TF-IDF

features for each example.

�e process of collecting synthetic crowd labels is the similar to the one proposed in binary

se�ings except the generation of item di�culties, which is modi�ed as follows: if the ground truth

label of an item xi is class дi , then its corresponding item di�culty is 1−∑K
k,дi P(y = k |xi ,w). �e

implementation of the multi-class STL method is public available
4

and the multi-class MTL method

is implemented using the standard one-vs-others strategy. �e performances of the comparing

methods on multi-class data set are evaluated using both types of metrics (Accuracy and average

F-1 score) because the WebKB data set have multiple unbalanced classes. Figure 5 summarizes the

performances of these comparing methods on the multi-class data set. As we expected, the MTL

method have be�er performance than the STL method in terms of both evaluation metrics. �e

MultiC
2

framework consistently outperforms all other methods in terms of the accuracy but it has

lower average F1-score than MTL with GT labels in the third learning task. �e main reason is that

WebKB data set is severely unbalanced, the MultiC
2

framework has high TP and TN scores in the

class with majority examples but has relatively low performance in the minority classes. However,

our proposed framework still outperforms the MTL method with MMCE inferred labels.

7.7 Real data set.
�e Animal Breed data set [57] is designed for workers to label di�erent animal images based

on their breed type. Our approach builds on the insight that workers will get paid based on

their labeling performance. Besides that, we have designed the questionnaire with the options of

choosing domestic, wild, or not sure. Given this additional unsure option, the workers are provided

with a conservative labeling alternative if she/he is not con�dent about the answer.

In detail, there are 1438 images being selected from ImageNet [13] and this subset includes three

labeling tasks: Task 1: Domestic cat v.s. Wildcat; Task 2: Domestic canidae v.s. Wild canidae; Task

3: Domestic horse v.s. Wild horse. For the purpose of learning and evaluation, we randomly split

50% of the animal images as the training set, which is annotated by 31 real human crowdsourcing

workers who have various labeling qualities, and the rest 50% images are le� for testing. Regarding

the features extractions on images, we adopt the standard bag-of-visual-words approach with the

3
h�p://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/

4
h�ps://github.com/PRML/PRMLT
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Fig. 5. Performance of comparing methods on multi-class data set (Evaluation performed on Winsconsin)

(a) Bengal (b) Alaskan (c) Shire

(d) Lynx (e) Dingo (f) Przewalskis

Fig. 6. Sample images of three tasks (columns) from the Animal Breed data set. First row are domestic
animals and second row are wild animals.

following speci�c se�ings: Every image is resized to the one that has a maximum sides length of

300 pixels, then transformed into a grayscale image. Next, then a three-level image pyramid (resize

to 1, 1/2 and 1/4 scale) is generated and the dense SIFT features of patch size 20 × 20 pixels with

overlapping of 10 pixels are extracted on these image pyramids. All the collected SIFT features are

clustered into 230 clusters using the accelerated Kmeans to generate the visual words dictionary.

�en, the SIFT feature vector of each image is further quantized into the bag-of-visual-words

histogram representation using the generated visual words dictionary. Eventually, the quantized

features are transformed into the TF-IDF vectors and we found that using the top 110 TF-IDF features

can usually guarantee a good classi�cation performance. �e feature extraction module is built on

top of the VLFeat open source library [41]. �e results of the real data set are summarized in Table

5. For this problem, we compare with the MTL that uses MMCE inferred labels because we can only

get the inferred labels in practice. As we can see, our method outperforms the MTL method using

MMCE labels in all three classi�cation tasks in terms of both accuracy and average F1-score. �e

reason could be that the MTL with MMCE labels only utilizes the tasks commonality information

in the learning process, however, our proposed MultiC
2

method explores the dual heterogeneity
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Accuracy MTL
(MMCE label) MultiC2

Cat 0.7260 0.8174
Canidae 0.7743 0.8132
Horse 0.8093 0.8430

Average
F1-score

MTL
(MMCE label) MultiC2

Cat 0.7235 0.8020
Canidae 0.7701 0.8131
Horse 0.8086 0.8402

Table 5. Performance comparisons on real data set

correlations between tasks and workers. Also, the MTL uses the aggregated MMCE labels that

will have incorrect inferred labels which could bias the learned classi�ers. As a comparison, our

proposed framework learns directly from all the crowdsourcing labels and it could keep the rich

information of the redundant labels provided by these workers.

8 CONCLUSION
In this article, we formally de�ned the multi-task multi-worker dual heterogeneity learning problem

in the context of classi�cation. To address this challenge, we have developed a novel optimization

framework (MultiC
2
), which bypasses the standard two-step supervised learning procedure and

learns the ensemble classi�er directly using noisy and missing labels collected from crowdsourcing.

Furthermore, we extend the solutions to multi-class se�ings and propose a fast gradient algorithm

using RBCD. �en, we conduct several comparison experiments in terms of the e�ectiveness,

robustness, and e�ciency of our framework. �e experimental results of three semi-synthetic data

sets and one real data set have shown that our model outperforms the state-of-the-art techniques.
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