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The unprecedented amounts of data have catalyzed the trend of combining human insights with machine
learning techniques, which facilitate the use of crowdsourcing to enlist label information both effectively
and efficiently. One crucial challenge in crowdsourcing is the diverse worker quality, which determines the
accuracy of the label information provided by such workers. Motivated by the observations that same set
of tasks are typically labeled by the same set of workers, we studied their behaviors across multiple related
tasks and proposed an optimization framework for learning from task and worker dual heterogeneity. The
proposed method uses a weight tensor to represent the workers’ behaviors across multiple tasks, and seeks to
find the optimal solution of the tensor by exploiting its structured information. Then, we propose an iterative
algorithm to solve the optimization problem and analyze its computational complexity. To infer the true
label of an example, we construct a worker ensemble based on the estimated tensor, whose decisions will be
weighted using a set of entropy weight. We also prove that the gradient of the most time-consuming updating
block is separable with respect to the workers, which leads to a randomized algorithm with faster speed.
Moreover, we extend the learning framework to accommodate to the multi-class setting. Finally, we test the
performance of our framework on several data sets, and demonstrate its superiority over state-of-the-art
techniques.

CCS Concepts: sInformation systems —Data mining; Crowdsourcing; «Computer systems organiza-
tion — Heterogeneous (hybrid) systems;

Additional Key Words and Phrases: Multi-task learning, Crowdsourcing, Tensor representation, Optimization,
Entropy Ensemble

ACM Reference format:

Yao Zhou, Lei Ying, and Jingrui He. 2019. Multi-task Crowdsourcing via an Optimization Framework. ACM
Trans. Knowl. Discov. Data. 1, 1, Article 1 (January 2019), 26 pages.

DOI: 10.1145/3310227

1 INTRODUCTION

Many real world applications, ranging from natural language processing, speech recognition,
computer vision, and spam filtering, etc., exhibit two types of data heterogeneities. From one
hand, a learning problem, such as classification or regression, can often be viewed as a group
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of intrinsically correlated tasks that share a common representation. By exploiting the intrinsic
relationships between tasks, it can improve the generalization performance by learning these
related tasks jointly. This is frequently being referred as the task heterogeneity. From another
hand, in the era of big data, unstructured data is getting piled up at an increasing speed, various
approaches and platforms are emerging in order to help the researchers and businesses to make
greater analytical use of data. Among the latest approaches, crowdsourcing becomes the resort that
can leverage the wisdom of online workers to perform the customized micro-tasks, e.g. labeling the
images for the training of a classification model, etc. However, the label qualities of these workers
usually have large variation due to the various expertise of workers, which brings up the worker
heterogeneity of the data.

Compared with the traditional machine learning techniques, addressing the learning problem
with this type of data dual heterogeneity is challenging because how to jointly model the relations
between multiple types of heterogeneities still remains an open research question. Multi-task
learning (MTL) [2, 18, 19, 44, 52] has been proposed to solve the first type data heterogeneity and it
can be characterized as the problem of learning multiple tasks jointly, as opposed to learning each
task in isolation. Most multi-task learning methods focus on learning models under the supervised
setting which usually requires large amounts of labeled examples for training, but the labor for the
data labeling can be costly and time-consuming especially for the learning of a deep model. With
the emergence of crowdsourcing services, researchers are able to collect large amounts of low-cost
labels in a very short time. However, as a result of the tradeoff between quality and cost, these
collected labels can be noisy and missing in most cases because they are normally annotated by
imperfect online workers. In order to infer the ground truth labels from the large amounts of noisy
and possible missing labels, many solutions have been proposed: Majority voting, Dawid and Skene
EM method [12], Minimax conditional entropy method [49], Variational inference using mean field
[28], Tensor augmentation and completion [53], etc. These crowdsourcing models can generally be
categorized as generative models [12, 28, 49] and discriminative models [53]. Under some proper
assumptions, many generative models perform well on real-world applications. However, no matter
how complicated the generative model is designed, the true model that generated the crowd labels
remains unknown. Therefore, the label inference problem can never achieve an accuracy as good
as the ground truth.

To address the above challenges, we propose a novel structured framework extended from the
multi-task classification approach using crowdsourcing labels (MultiC?) [57]. Compared with
the traditional multi-task learning, which requires ground truth labels, MultiC? aims to leverage
the structural information between the learned classifiers of multiple tasks, various workers, and
extracted features. Moreover, in this manuscript, we extend the original binary-class learning frame-
work in multiple dimensions which includes proposing a randomized speedup algorithm, adapting
to the multi-class setting, and adding the corresponding experiments. The main contributions of
this manuscript are summarized as follows:

e Formulation: Instead of using the standard two-step procedure (label inference and model
learning), we propose to learn the classifiers using the noisy and missing labels directly.
We formulate the multi-task classification using crowdsourcing labels as a regularized
optimization problem. The key idea is to jointly learn the task commonality, worker
correlations, and feature similarity through a low-rank tensor regularization.

o Algorithm: We propose a blockwise iterative algorithm which jointly updates the weight
tensors of all workers across all tasks. Next, the entropy-based ensemble coefficient is
learned for the set of weak classifiers and the final prediction of a new data point is a
weighted vote of their predictions.
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e Extensions: The separability of the objective gradient is proved and it leads to a speedup
randomized algorithm which converges faster and can be computed in parallel. We also
design and extend the learning framework to accommodate the multi-class setting.

e Data sets and evaluations: We propose a crowd label generating model which includes four
types of workers: Expert, layman, spammer and smart adversary. Then we evaluate the
effectiveness, robustness, and efficiency of our framework on both semi-synthetic and real
data set.

The rest of this paper is organized as follows. Section 2 is the brief review of the related work. In
Sections 3 and 4, we formally present the proposed learning model, followed by the optimization
algorithm and ensemble method. The crowd label generating model is introduced in Section 5. In
Sections 6 and 7, we present the fast algorithm using randomized block coordinate descent and the
multi-class extension of the proposed framework. Section 8 illustrates the experimental results on
both semi-synthetic data set and real data sets. Finally, we conclude the paper in Section 9.

2 RELATED WORK

Multi-task learning. In many real world applications, the researchers are working on solving
multiple related classification or regression problems. One successful example is the spam filtering,
where all customers have different but similar distributions over the spam and normal emails,
yet there is a commonality among all the customers that can be used for the design of spam
filter. Another example is the house pricing prediction, where predicting the price using several
combinations of house related factors are coherent learning tasks. The most naive approach is
applying the conventional machine learning models to solve these tasks independently, one for
each. However, this approach ignores the task relatedness and could not benefit from utilizing the
shared information across tasks.

Start from the work proposed by [5], multi-task learning, which aims to exploiting the commonal-
ities and differences across tasks and solving multiple learning tasks at the same time, has emerged
as one important subdomain of machine learning. By simultaneously learning all tasks, multi-task
learning has shown great performance improvement in several related applications. Many existing
multi-task learning methods [2, 8, 9, 15, 17, 20, 26, 46, 51, 52] are formulated as the regularized
optimization problems with an empirical loss term of the training data plus a regularization term.
Their contributions usually focus on designing meaningful regularization terms in order to capture
the underlying commonality among tasks. Different assumptions on task relatedness lead to various
regularization formulations. Mean regularized multi-task learning, proposed by [15], assumes that
the models of all tasks are generated as the variants of their mean model. The regularization term
is designed to be the square loss of this mean model variances of all tasks. Multi-task learning
with joint feature sparsity learning, proposed by [1, 26], assumes that the relatedness between
multiple tasks can be addressed by constraining all models to have a shared set of features. The
robust low-rank multi-task learning [8] has the assumption that the model can be decomposed
into two components: a low-rank component that leverage the task commonality, and a group
sparse structure that detect outliers. Clustered multi-task learning [51] assumes that the models of
tasks have group structure so that tasks of the same group are closer than these of different groups,
and they propose to formulate this intrinsic relationship with a spectral relaxed k-mean clustering
regularization term. Instead of having the group truth labels like most MTL approaches do, our
framework only require the noisy and possibly missing labels from crowdsourcing as the input,
which is more suitable for real-world applications.

Crowdsourcing. Crowdsourcing is a special sourcing model in which pieces of micro-tasks
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are distributed to a pool of online workers. It has become a popular research topic in the recent
decades because of its widely commercial and academic adoption in areas such as machine learning
[22, 29, 47, 49, 56], computer vision [14, 55], medical healthcare [25, 30, 45], and graph mining
[6, 7, 42, 48, 50], etc. Modern machine learning tools such as deep models require massive amount
of labeled data. Therefore, crowdsourcing is a desired resort for the researchers and scientist
to collect large amounts of inexpensive and fast labels. The fundamental problem of interest is
how to maximize the accuracy on the usage of crowdsourcing labels given the fact that the hired
workers are non-experts. Despite that the use of crowdsourcing is becoming popular only in the
recent decade, the idea of dividing workload among workers has successful examples for a long
history. One of such earliest work is the Dawid-Skene EM model [12], which models the labeling
ability of each worker as a latent confusion matrix and it is often referred as the two-coin worker
model. Later on, inspired by this pioneering work, several extensions have been proposed. For
example, the minimax conditional entropy (MMCE) model [49] is able to further infer the true
labels, item difficulty, and worker ability jointly; Liu et al.[28] proposed a graphical model that
performs variational inference method using belief propagation and mean field algorithms. The EM
algorithm, proposed by Raykar et al.[36], imposes a beta prior over the worker confusion matrix and
learns the classifier and true labels together. The tensor augmentation and completion method [53]
proposed to use a tensor representation to capture the structural information in the crowd labeled
data and augment it with a ground truth layer for label inference. The multi-task classification
model using crowdsourcing labels (MultiC?) proposed by Zhou et al. [57] uses a tensor rank mini-
mization to capture the structural commonality between learning tasks and correlation between
crowdsourcing workers and their final prediction model is an ensemble of each worker’s weak
classifier using entropy weights. In this paper, we extend the MultiC?> model in multiple aspects:
(i). In the theoretical perspective, we have provided a detailed and logical smooth support for the
convergence of the algorithm. We also give a full justification for the computational complexity
analysis which considers the complexity of all optimization blocks; (ii). In the efficiency perspective,
We have proved the separability property of the gradient calculation w.r.t. the crowdsourcing
workers and proposed a faster randomized algorithm which has lower computational complexity
and can well adjust to the availability of the workers; (iii). In the perspective of generalization,
we have analyzed the possibility of extending the model to the multi-class learning setting and
proposed a generalized framework with its effectiveness being verified; (iv). In the perspective of
the experiments, we have pointed out the pitfalls of the numerical implementation, increased one
extra metric for evaluation, added a multi-class dataset for comparison, and verified the efficiency
and scalability of the proposed randomized algorithm.

3 MULTI-TASK CLASSIFICATION USING CROWDSOURCING LABELS

In this section, we first summarize the notations and then we formally present the setting of the
multi-task multi-worker learning problem.

3.1 Notation.

We use calligraphic letters (e.g. X), to denote tensors and upper case letters (e.g. M), to denote
matrices. Vectors and scalars are denoted by the bold lower case letters and lower case letters (e.g.
x and x) respectively. Without specific mention, all vectors are assumed to be column vectors. For
matrix indexing, we use M(i, j) to denote the entry at the i-th row and j-th column of matrix M
and use M(i,:) and M(:, j) to denote the i-th row and j-th column of matrix M. The matrix with
subscript M; denotes the ¢-th task of the learning problem and matrix transpose is denoted as M.
The trace norm of a matrix M is defined as: ||M||. = X3; 0i(M) and o;(M) denotes the i-th singular
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‘ Symbol | Definition
X the data matrix of ¢-th task
Y; the crowd label matrix of ¢-th task
N; # of examples in the ¢-th task
N,, # of workers in the crowd label matrix
P # of features
uy an unit vector with value of 1 on k-th element

Ay := unfold,(A) | matricization of a tensor A along I-th dimension
A = fold;(A(;)) | transform a unfolded matrix A(;) into a tensor
I() element-wise indicator function, return 0 or 1
M o M, hadamard product of two matrices

Table 1. Summary of symbols

value in descending order. An n-way tensor is denoted as X € RN1*NoX---XNu For tensor indexing,
the (i, j, k)-th entry of a three-way tensor X is represented by Xjj. A slice of a three-way tensor
X is denoted as Xj.;, X.j; or X.x. A fiber of a three-way tensor is denoted as Xiji, Xk or Xjj.. One
important operation of a tensor X is called matricization or unfold, which reorders a n-way tensor
into a matrix. We denote Xy, as the output of unfold operation along the k-th dimension of a
tensor X, i.e., Xx) = unfold, (X). Similarly, the fold, (X)) is the inverse operation of unfold and
it returns the tensor X. The Frobenius norm of a three-way tensor A € RN*N2XNs jg defined as

190 = ZR SN B8 1Al

3.2 Learning framework.

In this article, we consider the following multi-task learning setting. We have T learning (classifica-
tion) tasks and t-th task is associated with a set of training data:

{(Xe(1,2), Ye(1,9)), ooy (Xe(N,2), Ye(Ng,0) } € RP x RMY (1)

where the data matrix X; € RVN*P of ¢-th task has N; examples and P-dimensional features. Crowd
labels matrix Y; € {-1,0, 1}N~*Nw also has N; examples but with N,, workers providing the labels.
In crowdsourcing, the workers do not have to label all items. Therefore, if j-th worker is willing
to provide label for i-th item, Y;(i, j) is assigned with —1 (negative class) or +1 (positive class).
Otherwise, Y, (i, j) is assigned with 0 to represent missing label.

Given the data matrices and crowd label matrices of all tasks, our target is to learn a prediction
function f : x — y. To achieve that purpose, we propose to learn three-way weight tensor
W € RDNwXP g5 the first step. Each fiber w € R of this weight tensor is a weak classifier. If an
new example x is given, the probabilistic label prediction made by this weak classifier is given as:

fy=1lw)= ——— @
1+e

-wlx

where the feature vector x and weight vector w are both augmented with a bias term.

In multi-task learning, the goal is to improve the performance of the classifiers by jointly learning
from all the tasks [34]. In that case, it often leads to a better model for the general task because
domain knowledge has been utilized to allow the learner to share the commonality among all
tasks. In crowdsourcing, all workers are assigned to the same group of labeling tasks and naturally
the labels gathered from these workers are intrinsically correlated. In order to capture this dual
heterogeneous structural information, we propose to use the tensor rank minimization as the main
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principle. Then, the following is the general minimization problem that we propose to solve:

min ZT" D L(Yili. ). WX (G,3)) + Rank(W) + R(W) 3)

=1 i=1 j=1

where L(Yt(i,j),Wngt(i, :)) is the loss term, Rank(‘W) is the tensor rank, and R(‘W) is the

tensor regularizer to prevent over-fitting or introduce feature sparsity. In crowdsourcing, most
workers are not experts on the given tasks. As a result, if a worker attempt to finish a task that
she/he is not sure of, the provided answer could be very unreliable [24, 38]. Therefore, a more
effective mechanism design is to encourage the workers to select the unsure (missing) options
if they don’t have high confidence to label the item correctly. Following the same reward incen-
tives of [38], we also assume that a qualifying loss term should satisfy following the property:
Loss of correct prediction < Loss of missing label prediction < Loss of incorrect prediction. The se-

lection of the loss term L(Yt(i,j), "th:Xt(i, )) is flexible and we use the logistic loss function

L(y, f(x)) = log(1 + e7¥/™) in our model, although it can be naturally generalized to other loss
functions. Logistic loss is a convex and monotonically decreasing function which is commonly
used in practice for many real-world applications. Under the binary classification setting, when the
a crowd label from a worker is missing, the logistic loss is log 2. When the a crowd label from a
worker is incorrect, the associated loss is greater than log 2. Otherwise the loss is smaller than log 2
if the label is correct.

In crowdsourcing, each item will be redundantly labeled by multiple workers such that the trained
weak classifiers using the crowdsourcing labels provided by these workers should have correlations.
From another perspective, in multi-task learning, the tasks are similar but different such that they
share the commonalities in the learning process. These two types of intrinsic correlations can be
captured using the low-rank structure [8, 23, 39, 53, 54], therefore, we also introduce the tensor rank
term Rank(“W) in the minimization objective. However, the rank minimization problem is NP-hard
and non-convex [4] in general, one common alternative is to use trace norm to approximate the
rank, which has been proved to be the closest convex envelope of the rank. Furthermore, there
exist multiple ways to define the tensor trace norm. In this framework, we adopt the definition
proposed by Liu et al. [27]. Following their convention, the trace norm of an n-way tensor is
defined as the non-negative linear combination of the trace norms of tensor unfolded matrices
along all dimensions:

3
X1 = " allXull.

I=1

3
st Zal =L a>01=1,..3
=1

By introducing some intermediate matrices M, (I = 1, 2, 3) to relax tensor trace norm, the original
problem is simplified and the unfolded matrices can be optimized independently. Then we add the
Frobenius norm of weight tensor W as the regularization term to prevent overfitting, the final
formulation of multi-task crowdsourcing problem becomes:

T N; Ny

3
; Yo (i) W X (i) b g A )
Jmin ytz;z;z;log(l+e L0, ) WX i )+lz:a,||Ml||*+3||w(,)_Ml||F+5||W||F (5)

= << —
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3.3 MultiC? Algorithm

All terms in the objective are convex and the non-differentiable term is separable. Therefore we can
apply the Block Coordinate Descent (BCD) algorithm, which guarantees to find the global optimal
solution of this type of problem [40]. BCD is an iterative method which only optimizes one group
of variables at a time while other variables are fixed. In our case, we have four groups of variables:
W, {M;}, where | = 1, 2,3, because the weight tensors have the dimension of three. There are two
major sub-problems need to be solved in each BCD iteration: First sub-problem is to update the
weight tensor ‘W while fixing the other intermediate matrices M;, M,, M3; Second sub-problem is
to update one intermediate matrix M; while ‘W and other intermediate matrices are fixed.

3.3.1 Updating M;: With some simplification, the optimization sub-problem of first BCD itera-
tion becomes:

. al 1 2
s |IMills + S [[Woy = M,
min ﬂz” il 2|| 0 —Millg ©)

This problem is extensively studied in many recent work [3, 21, 32]. One of the earliest solutions of
this problem, named singular value thresholding (SVT), is given by Theorem 3.1 [3].

THEOREM 3.1. For each T > 0, the singular value shrinkage operator of ‘W{;) that has the SVD
decomposation as W,y = USVT, obeys:

D (’W(z))—argmln ﬂ_“Ml” + - ||’W(l)—M1||F (7)

where D (W) = UX,VT. It needs to compute the SVD of matrix W = UXVT, then replaces
> with its shrinkage version: ¥, = diag({o; — r}+). Here a; = max(a,0) and 7 = % is the threshold
of the shrinkage SVD. The above discussion shows that the first sub-problem of updating M; could
be readily solved by utilizing SVD. Furthermore, this sub-problem exists an unique minimizer
because the objective is strictly convex [3].

3.3.2  Updating ‘W : Similarly, with some simplification, the sub-problem of updating ‘W be-
comes:

T N; N,, 3
Y, (i, )WL X, (i ﬂ 2 A 2
min yZZZlog(l+e I G) 4 + ) Blw - Ml SIWIE ()
t=1 i=1 j= I=1 ———
regularization R(‘W)
logistic loss L(‘W) relaxation penalty RP(‘W)

In order to solve this convex optimization sub-problem, we apply gradient descent with back
tracking line search to choose the step size. By taking the element-wise derivative with respect to
one single entry of the weight tensor ‘W;;,, the partial gradient of the logistic loss term is:

L(W) Neo o Yol )Xe (i) Wi

a(Wt]p =Y £ 14+ e_Yt(l,])Xt(l )Wt Yt(l J)Xt(l p)

e~ Yi (5 j)o(Xe 'Wtj:)

©)

T
-y 0 m:,j)] - Xi(s,p)

1+ e_Yt(:’j)o(Xt'Wtj:)
In a similar way, we can calculate the slice-wise (with respect to ‘W;.. € RNwxP ) derivative of
logistic loss as follows:

AL(W) e YeoXe W)

a(‘/Vt::

T
o Yt] - X (10)

1+ e_YtO(Xt'Wtj::)
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ALGORITHM 1: MultiC? Algorithm

1: Input: training data Dy, qin, &, B, v, A, €, MaxIter
2: Output: ‘W, T groups of ensemble coefficient {cy,...,cn,, }
3: Initialization:

WO — {O}TXNWXP

m=1
On training data Dyrgin:
4: repeat
. o4} 1
{M]"} = argmin : —=[|M; || + = [[ W) — My|[%
M, B 2
T Nt Nw . T . ﬂ /1
W™ = argmin : }/Z Zlog(l + e_Y’(”])'Wtj:Xf(”')) + 7I|I'W(l) - M7+ §||“W||12v
w t=1i=1 j=1
m=m+1

5: until converged or m > MaxlIter

Ensemble coefficient learning for each task:

6: forj=1,2,.., N, do
1— ket

N\V j
Zj:1(1 — xeti)

€

7: end for

In multi-task learning, each task may have completely different number of examples, therefore we
can only use the slice-wise gradient descent to update f(“W) as shown in Equation (10). As for the
updating rules of relaxation penalty term RP(‘W) and regularization term R(‘W), the gradients of
them are calculated as below:

ORP(W) <
% _ ; Bi[W — fold,(M))] (11)
OR(W) _

AW (12)

ow

3.3.3  Worker ensemble with entropy weights: After the weight tensor ‘W for all workers is jointly
learned, there are multiple ways to apply these learned weights on a new testing example. One
simple baseline is to apply these weights separately on testing data and then use majority voting
to combine the predictions. Another baseline is taking the average of the weights of all workers
and then apply the average weights on testing data. However, all of the above combining methods
assume that the learned the classifiers of all workers are equally important, which is conceptually
wrong because abilities of different workers are totally different.

In our framework, we propose an unsupervised weight ensemble method for the predictions
of testing data. We assume the collection of item ground truth labels is generated according to
an unknown model ¢g(y), and we endeavor to find a fitted parametric model which provides a
suitable approximation to g(y). As we defined in Section 2, f(y|w;) is the probabilistic classification
function for j-th worker. After the optimization algorithm converges, we have a collection of
learned models & = {f(ylw1), f(y|w2), ..., f(ylwn,,)}. Then, similar to the average label entropy
criterion proposed in [58] as a heuristic prediction confidence estimate, we proposed an entropy
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based ensemble method to combine this set of classifiers as follows: for each learned classifier, we
treat the probability predictions Pj(x;) = f(y|x;, w;) of all examples as a sequence of Bernoulli
trials. Here N; is the number of training examples in ¢-th task, then the average entropy of j-th
classifier is defined as:

N:
H; = —Ni D Pi(x)log(Py(x:)) + (1 = Py(xi))log(1 - Pi(xy) (13)
=

The labeling abilities of different workers can have a wide difference, therefore the jointly learned
classifiers will have various qualities. The motivation of the ensemble is to assign larger weights on
these informative classifiers and smaller or zero weights on the others. Based on the information
theory, the probability distribution with the largest entropy should be the least informative default.
Thus, we define the ensemble coefficient as:

1—xell

N, .
Zj:l(l - KeHj)
where k = e"fmax and Hy,,, is the largest average entropy among all the workers. At last, when a
new testing example X;.s; is given, the predicted label 7 of it is:

Cj = (14)

N,,
g= sign(z CjoTXtest) (15)
j=1

The proposed algorithm is summarized in Algorithm 1 . It works as follows. We initialize the
weight tensor ‘W with all zeros. In each BCD iteration, we first optimize over the set of intermediate
matrices {M;} in Problem (6) using the close-form solution and next optimize over ‘W in Problem
(8) using gradient descend. Then, upon convergence, entropy weights are learned separately for
each task.

3.4 Convergence

Regarding the convergence property of the proposed Algorithm 1, our main interest is the block
coordinate descent (BCD) method which cyclically optimize over ‘W and M;, I = 1, 2, 3. The overall
objective of our approach is a regularized block multi-convex optimization problem, we will utilize
the following definitions and theorem to analysis its convergence.

Definition 3.2. A function f(x) is called block multi-convex, if the variable x can be decomposed
into s blocks x = (x1, . . ., X), and for each block of variable x;, f is a convex function with respect
to x; while all the other block variables are fixed.

Definition 3.3. A set is called block multi-convex if its projection to each block of variables is
convex.

THEOREM 3.4. For the optimization problem with the following format:

S
min F(x) = f(x1,. %) + ) rilx) (16)
i=1
where the variable x (of a closed and multi-conex feasible set) can be decomposed into blocks xy, . . ., xs,
f is differentiable and multi-convex, and r;,i = 1,...,s are extended-value convex functions. The
block coordinate descent (BCD) method which cyclically optimizes over x1, . . ., x5 can reach its global
convergence [43].
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The variable blocks of Algorithm 1 are ‘W, My, M, Ms. From Theorem 3.1, we know that the sub-
problems of updating M;,[ = 1, 2, 3 are strictly convex. The second sub-problem of updating ‘W is
also convex because it includes the logistic loss term and two Frobenius norms as the regularization
terms which are both convex. Overall, the logistic loss term L(‘W) with the relaxation penalty
term RP(‘W) are block multi-convex, and the regularization terms R(‘W) and Z?:l ar||M;||« are
the extend-value convex functions for each block respectively. Therefore, our proposed approach is
one of the practical instantiations of Theorem 3.4 and it is guaranteed to converge to the optimum.
The same converging property also holds for many general applications, e.g. non-negative matrix
and tensor factorization, matrix and tensor completion, which utilize the alternative least square
[33] and block coordinate descent to optimize.

3.5 Computational complexity.

The first part of the algorithm is the M; updating step in Problem (6), which involves the SVD
computation of the unfolded matrix ‘W,. In general, the computation cost of SVD is O(nr?) for
matrix W) of size! n X r. Using the accelerated SVT of [32], the complexity is further reduced to
O(rq?), where q < r denotes the approximation of rank-q. If the BCD algorithm has m iterations
before its convergence, then the complexity of the first sub-problem is O(mN,,q?).

The second part of the algorithm is the ‘W updating step in Problem (8), which involves the repeated
calculations of gradients. For each iteration, the number of floating points operation per second
that the gradient calculations needed are:

O(agg)) = O(TN,N,,P)
O(M;—d(;v)) = O(TN,,P) 17)
o8 _ou

Overall, the computation complexity of each iteration in the proposed Algorithm 1 is: O (me(anLTN P+

qz)), where m is the number of iterations needed for sub-problem (8) to converge. This analysis

shows that the computational complexity is linear with respect to the number of workers.

4 CROWD LABELING MODEL

In this section, we introduce the crowd labels generating model. In practice, many models have
been proposed, such as Dawid-Skene model [12] and Rasch Model [35] etc. In real world cases, a
worker is not guaranteed to correctly label the given items because the labeling abilities of different
workers can be significantly different.

In our labeling model, each worker is assumed to have an intrinsic probabilistic ability matrix to
represent her labeling ability. If the number of classes K is given, then each worker will have a
worker ability matrix of size K X K and the value of each entry in this matrix falls in the range
of [0, 1]. The (i, j)-th entry of the ability matrix represents the probability that this worker will
label one item belong to class i as class j. Obviously, the diagonal entries of this matrix denote the
ability that a worker can correctly label one class of items. The off-diagonal elements represent the
mislabeling probabilities. Besides considering the worker ability, the difficulty of labeling an item

Without loss of generality, we assume n > r in the unfolded matrix. In many real-world cases, number of workers N,, is
a smaller number than the multiplication of number of tasks T and number of feature P. Here, we assume r = N,, and
n=TP.
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should also be different from labeling another item no matter whether these two items belong to
the same class or not. Therefore, we also assume there is a labeling difficulty associated with each
item. The item difficulty is defined as the probability of this item being mislabeled as the incorrect
classes and the value of it falls in the range of [0, 1].

Based on the above assumptions, there are several types of workers: Experts are the type of
workers who can provide correct labels with high probability no matter how difficult the item is. It
is rare but possible that there are experts (with low payment) among the workers; Spammers,
who are also rare in crowdsourcing, are the type of workers who randomly assign labels regardless
the item difficulty. Their labeling results are analogous to random behavior. Laymen are the type
of workers who are lacking the prior knowledge about the tasks and the qualities of their labels are
reliable only when the item difficulty is relatively low. Otherwise, the labeling results of laymen
are similar to these of the spammers. Sometimes leymen are also referred as the non-experts.
Intuitively, the labeling accuracy of a worker on an item should be a function of item difficulty and
worker ability. One of such functions for binary classification has already been proposed by Dai et
al. [11] as:

p(d,a,2) = %(1 +(1-d)% (18)

o(d,a,2) = %(1 F1-d)b) (19)

We refer to the Equation (18) as the Experts preferred model and Equation (19) as the Laymen
preferred model. d represents the item difficulty and a represents the worker ability of a given item.
These two models are for binary setting, but the definitions of worker ability and item difficulty can
be generalized in multi-class settings. Given a worker ability matrix A € [0, 1]%*X if the ground
truth label of an item yy; = k,k € {1,...,K} is also given, the worker ability of a given item is

defined as: a = A’l"_‘l_/lléK.
’ Names \ Model formulation ‘
11+(1-d)a), a>0
Laymen and' p(d,a,2) = 2( (_1 )a), a
smart adversaries %(1 —da), a<o0

Table 2. Modified crowd labeling model.

Many existing crowdsourcing models have a basic assumption: the workers are better than
random behavior (i.e. the labeling accuracy of the worker is 50% if the tasks are binary). But
this assumption doesn’t hold in general and there is one more type of workers named smart
adversaries, whose prior knowledge about the tasks are biased and their labeling abilities are
always worse than the random guess. The accuracies of their labels are getting close to zero when
the difficulties of items are large and getting close to random guess when the difficulties of items are
relatively small. The conventional adversaries are the type of malicious workers who intentionally
sabotage labeling process and they can be eliminated by the filtering process in crowdsourcing
platforms, e.g. randomly adding several testing questions on each working page as the evaluation
mechanism. Different from conventional adversaries, smart adversaries still can exist even after
the filtering procedure, thus a robust crowdsourcing framework should be able to tolerate a certain
amount of this type of workers or even utilize the information contained in their labels. Under this
new setting, we propose that the worker ability is in the range [-1, +1] and the modified crowd
labeling models are shown in Table 2.
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ALGORITHM 2: Batch-RBCD Algorithm

: Input: training data D;,qin, intermediate matrices {M;} 1=1,2,3 batch size Ny, ‘W, B, A, Maxlter
: Output: W
: Initialization: i < 0
repeat:
Choose batch of workers ® c {1, - - -, N,, } of size N}, with uniform probability NLW;
Update W by Equation (21);
mem+1
: until converged or m > MaxIter

5 FAST GRADIENT USING RBCD

Solving the gradient descent of Problem (8) is time-consuming due to the high cost of large matrix
multiplication and repeated line search steps got involved. In order to the optimization, we first
prove that the gradient is separable with respect to each worker. Then, we propose a fast randomized
block coordinate descent algorithm which solves the problem more efficiently and effectively in a
manner of batch update.

The gradients of loss term, relaxation term, and regularization term are separable with respect to
each worker and they are calculated as:

6L((W) —Y[( j)O(Xt ) . ; )
- Y:(: X, -
yz[l+e Y j)o(Xe W) °© t(’J)] £ U

RP w

( ) Zﬁz [ Wy = (fold,(M))) ;] o)

]

OR('W) B
a(W_] _A(M/:J:

Based on the above derivation, the gradient of the overall objective can be split into the sum of
the gradients of all workers. It is an immediate proof of block separability of the overall objective in
terms of the crowdsourcing workers. This is an appealing property because now we can design the
algorithm that runs in parallel for each worker. From another perspective, the separated updating
rules avoid the costly computation of large matrix multiplications. Thus, it is possible to design a
scalable algorithm with high efficiency.

We propose a randomized block coordinate descent algorithm to update W in a batch manner
in order to speed up the calculation. Compare with a full gradient descent algorithm, the block
coordinate descent method is much cheaper and less memory demanding in the gradient com-
putation especially when the workload got involved is excessive due to the size of the problem.
On the other end, there are two less-costly strategies for choosing the updating block coordinate:
cyclic or random. Interestingly, the theoretical analysis of cyclic coordinate descent that satisfying
generality has not been done [31]. Many recent works suggest that the randomization can actually
improve the convergence rate [31, 37], and choosing all blocks with certain probabilities should
be able to avoid the worst-case order of block coordinates that cyclic updating may ends up with.
In our multi-task multi-worker setting, updating one worker at an iteration could degenerate the
performance because the crowdsourcing workers are mostly imperfect labelers. Therefore, in order
to balance the tradeoff of computation speed and performance, our proposed RBCD algorithm
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updates a batch of workers at each iteration and the updating rule of each worker is:

_OL(W)  GRP(W)  GR(W)

(M/:j; — (Wj: 6(W, a(W] 6(WJ

(21)

The detail of the fast RBCD algorithm is summarized in Algorithm 2. The computational complexity
of solving sub-problem (8) using batch-RBCD is reduced to O(mT N;NP), where N, is the batch
size of the selected group of workers.

6 EXTENSION TO MULTICLASS SETTING

One way to extend the MultiC? to multi-class settings is by training multiple binary classifiers,
one for each class, using the one-vs-other strategy. However such approach can not capture
the correlations between different classes and can be very time consuming for training. Then, a
natural and more efficient way of address this setting is to construct the multi-class classifier which
considers all classes at once.

A natural extension is using the softmax loss in the objective. However, this learning setting,
which involves taking the crowdsourcing labels as the input, requires the label space to have missing
labels and it is different from the conventional softmax loss. On the other hand, our multi-task
multi-worker learning scenario are tensor based approaches which requires more efforts to design
and combine the objective with heterogeneous source of information. Let us denote the label
space as Y = {0, 1, - -, K}, where K > 3 represents the total number of classes and 0 represents
for the missing labels. Then, for the t-th task and the j-th worker, the weak classifier W;;. is a
vector of size K(P + 1), which is denoted as w for simplicity. Different from the binary setting,
where we choose one class as the pivot and train the second class against it, we use the softmax
function without pivot to represent the probabilistic prediction of each class. Here, we denote

— T
Wik = (a)ko, Wk1s a)kp) € RP*! as the weak classifier of the t-th task and the j-th worker on
the k-th class.

o ]
Ist class : (wtjl
w1p
W20
2nd class : (Wtjz
(Wtj: - wap
WKO
K-th class : (W/U-K
|WKP]

For multi-class classification, the key challenge is looking for the proper way of defining the
loss term in the objective. Let us define Py, (x;; w) = Pr(Y = g;|X = x;, w) as the probability of
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predicting example x; with label g;. Then, the loss is defined as the negative log-likelihood:

Nw Nt

T
LW) == "> > TogPy,(X,(i, ), W)

t=1 j=1 i=1

Xt ()W ijg, )
(22)

= - log| —88M88—
¢ g( K X ()W jk
DIy /

Nw Nl

izz[logéexfa»w)—x«iml
t=1 j= k=1

where, g; := Y;(i,j) € {0,1,- - -, K} is the crowd label of i-th item provided by j-th worker. The
terms of the new loss function have to satisfy the property that it penalizes less when the prediction
is correct and penalizes more when the prediction is incorrect. However, the labels provided by the
crowdsourcing workers can be missing. Thus, we multiply the numerator and the denominator with
an indicator function on the linear prediction part to guarantee that the penalization is properly
defined when the labels are missing. Then, the loss term becomes:

T Nw Nt

wy =355 [log(Z XA IW 020} - X, (3, )W 54,1 (g1 # 0) (23)
k=1

t=1 j=1 i=1

Similar to the binary setting, when the crowd label from a worker is missing, the associated loss is
log K. When the prediction from a worker is incorrect, the loss is greater than log K. Otherwise the
loss is smaller than log K if the prediction is correct. One could simply skipping parts of the logistic
loss terms by ignoring the item-worker pair that has missing labels. However, this simple solution
has its drawbacks. First, the simplified model with the loss associated with the missing labels being
removed has difficulty to converge. The reason is that the number of missing labels provided by
one worker could be significantly different from the ones of other workers. Thus, it is reasonable to
balance the loss between these workers by assigning a intermediate loss value to the item-work pair
that has a missing label. Second, it is a common practice to include some ‘gold standard’ questions
in the labeling tasks. These ‘gold standard’ questions are the ones to which the answers are known
in advance to the mechanism designer. By interweaving the ‘gold standard’ questions with real
crowdsourcing questions, the workers who intent to sabotage the tasks could be eliminated if
they continuously provide wrong or random answers to these ‘gold standard’ questions. Due
to the existence of the screening mechanism using ‘gold standard’ questions in crowdsourcing
platforms, workers are more cautious on labeling and intend to provide correct answers with
high confidence. These missing labels have indicated this implicit confidence information (missing
means low confidence) which also supports the necessity to included loss with missing labels in
the overall objective.
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Then, as for the weak classifier ¢-th task and j-th worker (denote as w), the partial gradient of
the multi-class loss term with respect to r-th class and p-th feature is calculated as follows:

(W) Ny Ni Xt (i)W 1, 1(g;#0)

_ ” X,(i,p) = T(g; # 0&8& g; = ) X,(i, ]
aa)rp Z [ZIk(:l X1 (L)W i 1(gi #0) i P) (gl 9i ) « P)

j=1 i=1

OL(W) % Nioo X)Wy T(gi#0)

W XTLO—H9¢0&&m=rxwuﬂ
=1 =1 [ZK_ e Xt (L)W il (gi#0) ! (9 )X

Ny . OH(Yt(:,j)¢O) (24)

2l

OL(W) [ X W ol (vi20)

Mn@n¢00m@ﬂ=ﬁr1xt

AM

Zk e Xz O]I(Yt(,])#))

8(v_Vt:, ZK XzW o]I(Y,#O)

k=1€

T
—]I(Yt;tOOYt:r)] 'Xt

Similar to the binary classification setting, each task may have different number of examples,
therefore we can only calculate the gradient of the new loss term in tensor slices with respect to
each task and each class. The gradients of penalty term and regularization term remains the same as
they were under binary setting. The algorithm for multi-class settings remains the same except that
the loss term is replaced by Equation (23). As for the entropy weight ensemble, it is straightforward
to extend to the multi-class scenario by defining the average entropy of j-th worker as:
| N K
Hj=-— Z Z Pie(xi; W eji)log (Pre(xis W i) (25)
Ne=HE
The definition of the ensemble coefficient ¢; remains the same as the binary setting. At last, when a
new testing example x;.s; given, the label prediction g of it is given as:
Nw

Ny
= argmax {(Z ;W i) Xeests s (Z Cj(Wth)TXtest} (26)
P = —

7 EXPERIMENTAL RESULTS

In this section, we formally present the details of the data sets, evaluation metrics, comparing
methods, and the settings of the crowd labeling model. Then, we also introduce the numerical
implementation details that need special attention. Next, we illustrate the experimental results and
answer these questions on two binary semi-synthetic data set.

o Effectiveness: How effective is the proposed framework compare with other state-of-the-art
approaches?

e Robustness: Is the entropy ensemble method robust enough to identify various types of
workers?

e Efficiency and scalability: How fast and scalable are the proposed RBCD algorithm?

Moreover, we also show that this proposed framework can be applied on multi-class data set that
uses labels from synthetic workers and the real data set that uses labels from real crowdsourcing
workers.

7.1 Data set

In total, there are four data sets have been evaluated and compared. The statistics of these data set
are listed in Table 3:
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Data set \ Tasks # Examples (each class) \ # Classes ‘
Autos vs Guns 1844 (975/869 2
Rec. vs Talk Baseball vs Mideast 1545 §860/685; 2
Comp. vs Sci. Ms-windows.misc vs Crypt 1875 (967/908) 2
Mac.hardware vs Space 1827 (871/956) 2
Cornell 176 (42/32/19/83) 4
Texas 186 (34/31/18/103) 1
WebKB Washington 221 (66/27/21/107) 4
Wisconsin 255 (76/35/22/122) 4
Cat 439 (245/194) 2
Animal Breed Canidae 514 (235/279) 2
Horse 485 (266/219) 2

Table 3. Statistics of all data set

e Rec. vs Talk: One of the largest subset of 20 Newsgroups data set. It includes two binary
document classification tasks that are related but different.

e Comp. vs Sci.: Another large subset of 20 Newsgroups data set, and it also has two binary
classification tasks.

e WebKB: It is the collection of webpages from the computer science department of four
universities. In total, there are four related multi-class classification tasks and each task
has four categories.

o Animal Breed: 1t is the collection of animal images from ImageNet, which includes three
related binary image classification tasks.

7.2 Evaluation metrics

We use the following metrics for the performance evaluations of the proposed methods:

e Accuracy. The accuracy for each class is defined as the proportion of the true positive
predictions plus the true negative predictions over the total number of examples. In the
multi-class case, we use the weighted average of the accuracy score of each class.

e Average F1-score. The F1-score is the harmonic mean of precision and recall, and it is a more
strict and reliable evaluation metric than accuracy especially under learning setting where
the data set is unbalanced. Average F1-score is the weighted mean of the F1-scores of all
possible classes.

7.3 Comparing methods

In the comparison experiment, we employed four methods:

o Single task learning (STL). It learns a classifier for each task using logistic regression with
ground truth (GT) labels;

o Multi-task learning (MTL). It also uses logistic regression and add L;; norm as the regular-
ization term to do jointly feature learning with GT labels;

o Multi-task learning with inferred labels (MMCE+MTL). It uses the same multi-task learning
algorithm except that labels are inferred from MMCE model;

e MultiC?: Our proposed multi-task crowdsourcing classification framework which directly
learns the classifiers of multiple tasks using crowd labels.
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It should be noticed that the first two comparison methods STL and MTL uses the ground truth
labels for learning, which is in general impossible in the real-world scenarios. The standard learning
methods trained with the inferred labels, e.g. MMCE+MTL, are widely applied in many applications.

7.4 Numerical implementation.

To implement the logistic loss term in the objective, e.g. Problem (8), or its gradient, e.g. Equation
(9), their mathematical formulations are not ideal from a practical standpoint. Specifically, the
sigmoid function ¢(t) = ; +L_, could easily overflow in the system even for some common input
values, e.g. t = —300. This ends up assigning the loss term with an erroneous value of +oo. For this

reason, we split the loss term as follows to avoid overflow issues:

ift>0
otherwise

1
p) =T

1+et?

(27)

As for the cases of training with unbalancing data set, we preprocess the training data by automati-
cally adjusting data weights inversely proportional to class frequencies in the input data of each
worker. During the learning process, these data weights will be applied on the corresponding loss

of the prediction product of features x and classifier w, e.g. in Equation (10), gradient of the loss
T T

o~ YeoXe- W) . L . . o~ Yeoxe- W)
oY;| -X; will be replaced with its weighted version

et T “————F0Y,0Q| -X
4o YeoXe WD) LyeYeoxewl) © 7t t
represents the worker-wise inverse class frequency data weights. Similar reweighting strategy is

also applicable in the multi-class scenario.

7.5 Binary semi-synthetic data set.

There are two binary semi-synthetic multi-task learning data set have been generated. They are
the subset of the 20 News Groups data set?, which is a collection of approximately 20k newsgroup
documents that have been partitioned across 20 newsgroups. In our experiment, we have two
cross-domain subsets [16]: Rec. vs. Talk and Comp. vs. Sci. Each subset includes two tasks and
they belong to the top two categories in their subset. The splitting in each subset ensures that the
tasks are related but different. The features we use are term frequency inverse document frequency
(TF-IDF) based on the same bag-of-word dictionary. In practice, we eventually keep the top 150
TF-IDF features for each example.

In order to collect the crowd labels, we synthetically generate a group of workers. Generation of
these workers is based on two parameters: number of workers N,, and number of classes K. In
our semi-synthetic experiment, we have generated 50 workers. For each worker, we generate a
K x K worker ability confusion matrix A as follows: the diagonal entries are independently and
uniformly sampled from a certain probability range. If the worker is an expert, a layman or a
spammer, then the probability range of diagonal entries is [0.5, 1]. Otherwise, the probability
range is [0, 0.5) for the smart adversary. The off-diagonal entries are randomly assigned with
positive probabilities under the constraint that the sum of each row of the confusion matrix is
equal to 1. Generation of the item difficulties is defined as follows: For each group of examples,
we learn a logistic regression classifier w. If the ground truth label of an item x; is +1, then the
corresponding item difficulty is 1 — P(y = +1|x;, w); Otherwise, the corresponding item difficulty
is 1 — P(y = —1|x;, w). Since each worker does not have to label all items, for each worker, he/she
will decide to label the given item if p(d, a, 2) > § - min(A;1, Az, ..., Acc) and we set § = 0.9 in the

Zhttp://qwone.com/~jason/20Newsgroups/
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implementation. After the crowd label matrix Y is obtained, we further randomly remove 70% of
them as the missing labels and leave 30% of them as the labeled ones.

’ Worker \ setting 1 \ setting 2 \ setting 3 \ setting 4 \ setting 5 ‘

Expert 10% 5% 0% 0% 0%
Layman 80% 85% 80% 70% 60%
Spammer 10% 10% 10% 10% 10%

Smart 0% 0% 10% 20% 30%
adversary

Table 4. Five settings of the workers in semi-synthetic data set.

7.5.1 Qualitative study of inferred labels. To begin with, we report the quality of inferred labels.
The purpose of this subsection is to verify our necessity of our modified crowd labeling model. There
are three crowdsourcing methods being employed for labels inference: Dawid-Skene Expectation
Maximization (DS-EM), Minimax Conditional Entropy (MMCE) and Majority Voting(MV). The
evaluation metric is the error rate of inferred labels and all the outcomes are the results of 10
independent runs. There are five settings of semi-synthetic data set have been employed and each
setting has a different proportion of all types of workers. The details of these settings are listed in
Table 4. In real-world crowdsourcing applications, the majority of the workers are the laymen, i.e.
the non-experts of the given tasks, whose labels will dominate the collected crowd labels. The rest
of the workers could be the experts, the spammers, or the adversaries. Based on the characteristics
of different types of the worker, we know that the labels collected from the experts and the laymen
are helpful toward model learning. However, the labels collected from the spammers and the
adversaries are either useless or could harm the model’s the performance. As we can see from Table
4, from setting 1 to setting 5, the portion of the *good” workers gradually drops which means that
the corresponding crowd label quality is also decreasing. In the meantime, the increasing amount
of noisy (incorrect) labels collected from the adversaries could easily bias the model training. These
five types of worker combinations could reflect the real-world crowdsourcing scenarios in a certain
way and the rationale of designing these settings (with decreased labeling qualities) is to verify the
robustness of the comparison methods.

The details of results are shown in Figure 1(a)-(d). As was expected, the MV label inference has
the worst performance under all five settings because MV assumes all workers are equally good
and all items are equally difficult. DS-EM and MMCE outperform MV because they both modeled
the worker abilities. MMCE has even lower error rate than DS-EM because it also modeled the
items difficulties and when the item difficult is ignored, the MMCE model is reduced to DS-EM
model. One interesting thing we observed is that when smart adversary proportion is increasing,
the error rate of DS-EM and MMCE decrease first and then start to increase again.

7.5.2  Effectiveness. For the effectiveness evaluation, each data set is randomly split into 50% for
training and & 50% for testing. We also observe that the 20NG subsets we used are balanced data set
and the values of True Positive (TP) and True Negative (TN) of two classes in the prediction results
are almost the same, therefore accuracy and average F1-score have similar values of the same
trend under various settings. Thus, we only present the average F1-score metric to illustrate the
performance of all methods on the test data set. Figure 1 (e)-(h) summarize the average performances
of these methods on two semi-synthetic data set. Each data set is randomly split into 50% for
training and & 50% for testing. For evaluation, the average F1-score is applied as the metric to
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Fig. 1. (a) - (d): Error rate of labels inference using: MV, DS-EM and MMCE; (e) - (h): Classification perfor-
mances on test data set using: STL and MTL with ground truth labels; MTL with MMCE inferred labels and
our method (MultiC?).
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Fig. 2. Case study of entropy based weight learning

examine the performance of all methods on the test data set and all the outcomes are the results of
ten independent runs. As we can see, The average F1-score of MMCE+MTL is comparable with
MTL in settings 1 and 2 because the label inference of MMCE has a low error rate. However
MMCE+MTL has a significant performance drop in settings 3, 4 and 5. Our proposed method
MultiC? has consistent better performance than MMCE+MTL under all settings in every data set.
It is because our proposed method can capture the structural information of all types of workers of
across multiple tasks. We also observe that MultiC? can even outperform the MTL with ground
truth labels. It is reasonable because the ensemble of these classifiers has reduced the chance of
overfitting and decreased the variance. Therefore, MultiC?, which uses the ensemble, could have a
better performance.
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Fig. 3. Parameter study of gamma (logscale)

7.5.3  Robustness. In this section, we conduct a case study with respect to the robustness of
the proposed method on task 1 of Comp. vs. Sci data set. The result comes from synthetic setting
5, which is the most difficulty setting because 30 percent of smart adversaries are employed. In
Figure 2, the plot shows the entropy learned weights. As we can see, all the spammers and smart
adversaries, who have poor classification performance, are founded and assigned with very low
ensemble weights.
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We also conduct a parameter study with respect to the y, which controls the ratio of logistic
loss, on two methods: MultiC? and the Baseline method (which has removed the tensor low-rank
regularization term in MultiC?). We change y in the range [0.001,0.01,0.1,0.3, 1, 3, 10, 20, 50] while
fixing the rest parameters, and plot the corresponding average F1-score of ten independent runs on
a log-scaled y. As we can see in Figure 3, our proposed model has consist better performance than
Baseline method with varying y values. The performance of Baseline has a significant drop when y
is extremely small, i.e. y = 1072, because of lacking of information from crowd labels. However,
the MultiC? only has a slightly performance drop under the same setting.

(a) Performance (F1-score) on Comp. vs. Sci.  (b) Performance (F1-score) on Rec. vs. Talk
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Fig. 4. Efficiency and scalability of Batch-RBCD

7.5.4  Efficiency and scalability. The efficiency plots of MultiC? using Batch-RBCD updating
rule is presented in Figure 4. The horizontal axis represents for the number of randomly selected
workers in each iteration, the vertical axis of (a) - (b) represents for the F1 score evaluation after
convergence, and the vertical axis of (c) - (d) represents for the average running time of every
training iteration. As we can see, the number of randomly selected workers is in a wide range.
Start from updating the gradient using one random worker until updating the full gradient using
all 50 workers, the performance of the framework shows that it is not very sensitive with respect to
the number of randomly selected workers using the RBCD algorithm. From the bottom two plots
(c) and (d), we also observe that the running time of MultiC? scales linearly with respect to the
number of workers, which is consistent with our complexity analysis. It should be noticed that for
the training of these two data set Comp. vs. Sci. and Rec. vs. Talk, the randomized BCD algorithm
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will usually converge within 50 iterations. For the data set with a larger number of items and
more crowdsourcing workers, the convergence may require more iterations. Under the learning
scenario with more workers, the proposed randomized algorithm could have a more significant
speedup. From another perspective, Batch-RBCD is not only a speed-up strategy that can improve
the running speed of the gradient method by reduce computational intensity but also a realistic
algorithm that considers the availability of the data defined in each worker block.

7.6 Multi-class semi-synthetic data set

The WebKB data set’ contains the website pages from computer science departments of four
universities: Cornell, Texas, Washington, and Wisconsin. Originally, there are 8282 website
documents that are manually classified into seven categories. In our experiment, we have employed
the top four categories (student, faculty, course, and project) for our learning problem. Under the
multi-task learning setting, we consider classifying each group of documents of each university as
a task. Overall, we have four related learning tasks and four classes. Since each university’s web
pages have their own idiosyncrasies, we follow the recommendation of the original authors [10] to
train the model on the first three tasks and to test on the documents of the fourth task. The features
we use are TF-IDF based on the same bag-of-word dictionary. We still keep same top 150 TF-IDF
features for each example.

The process of collecting synthetic crowd labels is the similar to the one proposed in binary
settings except the generation of item difficulties, which is modified as follows: if the ground truth
label of an item x; is class g;, then its corresponding item difficulty is 1 — Zlk(ig,- P(y = k|x;, w). The
implementation of the multi-class STL method is public available* and the multi-class MTL method
is implemented using the standard one-vs-others strategy. The performances of the comparing
methods on multi-class data set are evaluated using both types of metrics (Accuracy and average
F-1 score) because the WebKB data set have multiple unbalanced classes. Figure 5 summarizes the
performances of these comparing methods on the multi-class data set. As we expected, the MTL
method have better performance than the STL method in terms of both evaluation metrics. The
MultiC? framework consistently outperforms all other methods in terms of the accuracy but it has
lower average F1-score than MTL with GT labels in the third learning task. The main reason is that
WebKB data set is severely unbalanced, the MultiC? framework has high TP and TN scores in the
class with majority examples but has relatively low performance in the minority classes. However,
our proposed framework still outperforms the MTL method with MMCE inferred labels.

7.7 Real data set.

The Animal Breed data set [57] is designed for workers to label different animal images based
on their breed type. Our approach builds on the insight that workers will get paid based on
their labeling performance. Besides that, we have designed the questionnaire with the options of
choosing domestic, wild, or not sure. Given this additional unsure option, the workers are provided
with a conservative labeling alternative if she/he is not confident about the answer.

In detail, there are 1438 images being selected from ImageNet [13] and this subset includes three
labeling tasks: Task 1: Domestic cat v.s. Wildcat; Task 2: Domestic canidae v.s. Wild canidae; Task
3: Domestic horse v.s. Wild horse. For the purpose of learning and evaluation, we randomly split
50% of the animal images as the training set, which is annotated by 31 real human crowdsourcing
workers who have various labeling qualities, and the rest 50% images are left for testing. Regarding
the features extractions on images, we adopt the standard bag-of-visual-words approach with the

Shttp://www.cs.cu.edu/afs/cs/project/theo-20/www/data/
*https://github.com/PRML/PRMLT

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2019.


http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
https://github.com/PRML/PRMLT

Multi-task Crowdsourcing via an Optimization Framework 1:23

(a) Accuracy of WebKB (b) Average F1-score of WebKB

0.94 T 0.85 T
I STL (GT label) Il STL (GT label)
0.92 [ MTL (GT label) 084 I MTL (GT label) | |
[T MTL (MMCE label) ) [TIMTL (MMCE label)
0.9 [ Imuitic? J " Imuitic?
— — @083
I — o
3 0.88 o 8
8 & 0821
5 0.86 w
8 8-, 0.81 1
o84 s
>
< 038
0.82
0.8 0.79 1
0.78 ! : 0.78 : ! -
Cornell Texas Washington Cornell Texas Washington
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Fig. 6. Sample images of three tasks (columns) from the Animal Breed data set. First row are domestic
animals and second row are wild animals.

following specific settings: Every image is resized to the one that has a maximum sides length of
300 pixels, then transformed into a grayscale image. Next, then a three-level image pyramid (resize
to 1, 1/2 and 1/4 scale) is generated and the dense SIFT features of patch size 20 X 20 pixels with
overlapping of 10 pixels are extracted on these image pyramids. All the collected SIFT features are
clustered into 230 clusters using the accelerated Kmeans to generate the visual words dictionary.
Then, the SIFT feature vector of each image is further quantized into the bag-of-visual-words
histogram representation using the generated visual words dictionary. Eventually, the quantized
features are transformed into the TF-IDF vectors and we found that using the top 110 TF-IDF features
can usually guarantee a good classification performance. The feature extraction module is built on
top of the VLFeat open source library [41]. The results of the real data set are summarized in Table
5. For this problem, we compare with the MTL that uses MMCE inferred labels because we can only
get the inferred labels in practice. As we can see, our method outperforms the MTL method using
MMCE labels in all three classification tasks in terms of both accuracy and average F1-score. The
reason could be that the MTL with MMCE labels only utilizes the tasks commonality information
in the learning process, however, our proposed MultiC?> method explores the dual heterogeneity
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MTL . Average MTL .
Accuracy | (\i\iCE label) MultiC* F1-sco§e (MMCE label) MultiC*
Cat 0.7260 0.8174 Cat 0.7235 0.8020

Canidae 0.7743 0.8132 Canidae 0.7701 0.8131
Horse 0.8093 0.8430 Horse 0.8086 0.8402

Table 5. Performance comparisons on real data set

correlations between tasks and workers. Also, the MTL uses the aggregated MMCE labels that
will have incorrect inferred labels which could bias the learned classifiers. As a comparison, our
proposed framework learns directly from all the crowdsourcing labels and it could keep the rich
information of the redundant labels provided by these workers.

8 CONCLUSION

In this article, we formally defined the multi-task multi-worker dual heterogeneity learning problem
in the context of classification. To address this challenge, we have developed a novel optimization
framework (MultiC?), which bypasses the standard two-step supervised learning procedure and
learns the ensemble classifier directly using noisy and missing labels collected from crowdsourcing.
Furthermore, we extend the solutions to multi-class settings and propose a fast gradient algorithm
using RBCD. Then, we conduct several comparison experiments in terms of the effectiveness,
robustness, and efficiency of our framework. The experimental results of three semi-synthetic data
sets and one real data set have shown that our model outperforms the state-of-the-art techniques.
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