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ABSTRACT. In this paper we revisit the transmission eigenvalue problem for an
inhomogeneous media of compact support perturbed by small penetrable ho-
mogeneous inclusions. Assuming that the inhomogeneous background media
is known and smooth, we investigate how these small volume inclusions ef-
fect the transmission eigenvalues. Our perturbation analysis makes use of the
formulation of the transmission eigenvalue problem introduced Kirsch in [8],
which requires that the contrast of the inhomogeneity is of one-sign only near
the boundary. Thus, our approach can handle small perturbations with posi-
tive, negative or zero (voids) contrasts. In addition to proving the convergence
rate for the eigenvalues corresponding to the perturbed media as inclusions’
volume goes to zero, we also provide the explicit first correction term in the
asymptotic expansion for simple eigenvalues. The correction term involves
computable information about the unperturbed known inhomogeneity as well
as the location, size and refractive index of small perturbations. Thus, our
asymptotic formula has the potential to be used to recover information about
small inclusions from a knowledge of real transmission eigenvalues, that can be
determined from scattering data.

1. Introduction. The transmission eigenvalue problem is intrinsic to the scatter-
ing theory for inhomogeneous media [2]. Real transmission eigenvalues are related
to non-scattering frequencies and can be determined from scattering data [1] and
[9], hence they can be used to obtain information about the inhomogeneity (see
e.g. [3]| for monotonicity results on real transmission eigenvalues in terms of the
refractive index in the media). One possible application is to identify small volume
perturbations of a known inhomogeneity using measured transmission eigenvalues.
In this case, asymptotic analysis is needed to quantify the effect of small perturba-
tions on transmission eigenvalues. This task is complicated due to the fact that the
transmission eigenvalue problem is non-selfadjoint and most of its mathematical for-
mulations lead to nonlinear eigenvalue problems. The celebrated paper by Osborn
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[12], generalized to nonlinear problems by Moskow [11], provide a mathematical
approach to obtain asymptotic formulas with first order correction term for per-
turbation of eigenvalues of a non-selfadjoint eigenvalue problem. This perturbation
approach has been used in [5] and [6] to obtain asymptotic expressions for transmis-
sion eigenvalues for the isotropic case and in [4] for the anisotropic case, where in
the latter preliminary results on the use of these asymptotic formulas to solve the
inverse problem have been presented. Unfortunately, bounded by the mathematical
formulation of the transmission eigenvalue problem, all the aforementioned work
required that the contrast in the know homogeneous media as well as in the small
perturbations does not change sign in the support of inhomogeneity. This assump-
tion significantly restrict the class of problems where our method can apply. More
recent papers on the transmission eigenvalue problem [16], [13], [14] have obtained
spectral results under the assumption that the contrast keep the same sign only in a
neighborhood of the boundary. Under this assumption, the formulation introduced
by Kirsch [8], which is a variational writing of the transmission eigenvalue problem
formulation first introduced by Sylvester [16] provides an conducive framework to
apply perturbation analysis in [12], [11], and the goal of this paper to do exactly
this. More specifically, the main result of our paper is obtaining convergence and
asymptotic formulas with correction term for the transmission eigenvalues corre-
sponding to isotropic inhomogeneous media of compact support perturbed by small
penetrable homogeneous inclusions. The only assumption on the media, besides
physical ones, is that the contrast in the refractive index of the known inhomo-
geneity is one sign only in a neighborhood of the boundary of its support. This
allows for the known inhomogeneity to have more general contrast inside the sup-
port, as well as for the small volume perturbations have positive, negative or zero
(voids) constant contrasts simultaneously. Although the calculations are presented
here for real transmission eigenvalues and real valued refractive index (motivated
by the practical fact that only real transmission eigenvalues are determined from
scattering data) our analysis can be carried through for complex eigenvalues and
complex-valued refractive index with obvious modifications when computing the
adjoint operators. We remark that, although the convergence analysis can be done
for multiple eigenvalues, our asymptotic formula is obtained only for simple eigen-
values due to technical difficulties stemming form the non-linearity of eigenvalue
problem as pointed out in [11].

2. Formulation of the transmission eigenvalue problem. In this section we
state a formulation of the transmission eigenvalue problem by Kirsch [8], which gave
a variational formulation for the transmission eigenvalue problem formulation first
introduced by Sylvester [16]. This formulation has the advantage of allowing for
a much more general class of contrasts in the media. Here we translate Kirsch’s
variational version back to an operator form, which we find convenient to work with.

Let D C R? (d = 2,3) be a given C? domain with coefficient (e.g. squared index
of refraction) given by (1 + ¢) € L*(D). Consider the transmission eigenvalue
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problem of finding k? and nontrivial V, W such that

AV +E*(1+q)V =0 in D (1)

AW + kK*W =0 in D (2)

W=V on 0D (3)

66—12/ = g—‘; on 9D. (4)

If one subtracts the second equation from the first and sets A := —k2, v:=V — W
and w := —k?W, the transmission eigenvalue problem may be written: find A € C

such that there exists nontrivial w € L?(D) and v € H3(D) satisfying
Av— A1+ q)v = quw in D (5)
Aw—Adw =0 in D. (6)
We define the Hilbert space X := L?(D) x H3(D) equipped with the inner product
(w,v;0,9)x = (w,9)r2(p) + (Av, AY)2(py for (w,v), (¢,¢) € X. (7)

One may check that a weak formulation of (5)-(6) on X is to find A € C and
nontrivial (w,v) € X such that (see e.g. [8])

/ (AY — \p)wdx + / (Av — A1+ q)v)¢ — quodr =0 (8)
D D
for all (¢,v) € X. Now we define the linear operator on X
_ —q A=A1+4q)
= ( (AA)1(A =) 0 | ®)
Here (AA)™': H=2(D) — H?(D) is defined by the weak solution of the equation
AAu=f, we€ HZ(D)and f € H %(D), (10)
that is, u solves
(u, @) gr2(py = (f;u)r2(p), for all ¢ € HF(D). (11)
Similarly, A : L?(D) — H~2(D) is defined by
(u, A)r2(py = (Au, @) gr-2(py, ¢ € HF(D). (12)

We abuse notation slightly and also use A to denote the usual mapping A :
H?(D) — L*(D). We will also use the sesquilinear form corresponding to Ay
(introduced in [8]) defined by

ax(w, v; ¢,9) = (Ax(w,v); (¢,)) x for all (w,v), (¢, ) € X. (13)

Clearly the operator Ay given by (9) is bounded on X. Furthermore, a straight-
forward calculation shows that (w,v) € Ker(A,) if and only if (w,v) is a solution
to the weak formulation of the transmission eigenvalue problem (8). So the trans-
mission eigenvalue problem can be written as: Find A € C and U = (w,v) € X =
L?(D) x HZ(D) such that

A\U = 0.
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3. Decomposition into invertible plus compact. In [16] and afterwards in [8]
it was shown with some restrictions on ¢ (near the boundary only) that the set
of transmission eigenvalues is discrete. We redo the result from [8] here both for
completeness and to show uniformity for families of ¢q. Additionally, the operator
form (9) simplifies some of the proofs.

Note that Ay is not self adjoint even for real \; however, it would be if we were
to shift it slightly. To this end define the bounded operator on X

i —q A—A

= (aaitan 07) .
and its associated sesquilinear form

ax(w, v 6, %) = (Ax(w,v): (6,0)) - (15)

Note that now for A € R, Ay is self-adjoint with respect to the inner product on X.
We also define the operator

. s 0 A—u(l+q)
KM,A—AM_A)\_( (AA)fl()\_’u) 0 ’ (16)
noting that
AN = A)\ + K A

We would like to find A such that A, is invertible and K u,x is compact. The second
is the easier of the two.

Proposition 3.1. For any A, € C and ¢ € L*=(D), K,, » is compact.

Proof. This is obvious; the top right component of K, » is multiplication by (A —
(14 q)) as a mapping from HZ(D) to L?(D), which is clearly compact by Sobolev
embedding. The bottom left component is the mapping (AA)~! from L?(D) to
HZ(D). By standard elliptic regularity theory, (AA)~! takes L?(D) functions into
H*(D), which embeds compactly into HZ(D). O

We first prove a lemma that is essential for the next proposition.

Lemma 3.2. Let A > 0 and w; be a sequence in L?(D) that weakly converges to 0.
Then, there exists a sequence z; € H*(D) defined by

—Azj+ Az = wj in D
zj =0 on 0D

that converges to 0 weakly in H?(D).
Proof. The bilinear form on H} (D) x HE (D)

a(z,8) = (V2. Vé)1a(p) + Mz 8)12(p) (17)
is coercive, so by Lax Milgram, the partial differential equation

—Az+Xz=gin D
{zzOOnaD (18)

has a unique weak solution z € H?(D) N H (D) for any g € L*(D). By standard
elliptic regularity, z satisfies the inequality

2l 20y < CllgllL2(p)- (19)
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For each j, let ¢ = w; and define z; as the solution to (18). Since w,; converges
weakly, it is norm bounded in L?(D), hence there exists an M > 0 such that

125l 2Dy < M. (20)
Since the sequence {z;} is bounded in H?(D), there exists a subsequence (we will

again denote it by z;) that converges to some z € H?(D) weakly. From this weak
convergence and the equation for z;, for any ¢ € H}(D),

/ (mAz+A2)pdz = lim [ (=Az; + A\z;)¢dx
D k—o0 D
= 1 b
i, ], et

which implies that z solves
—Az+Az=0in D.

By taking another subsequence, we must have the convergence strong in Hg, which
implies that z = 0 on 9D, and hence we have z = 0. The result follows. O

We now introduce a family of operators so we may state our final theorems of
the section, and we do this by first defining the parameter family {¢.} C L>°(D).

Assumption 3.3. We assume the family {q.} C L*>(D) satisfies the following
properties:
1. € € T where I is a compact subset of R.
2. The family {q.} is uniformly bounded in L (D).
3. Let R be a neighborhood of the boundary 0D; that is, R is an open set contained
in D with 0D C R. We assume q. is of one sign on R with either gc > a >0
or —qe > a > 0 holding in R.
4. The family has the property that for each €, € R, qc — g = 0 except on some
measurable subset D(e,€') C D\ R satisfying m(D(e,€')) — 0 as € — € where
m is the Lebesque measure on RY.

The following Lemma and Proposition are generalizations of Kirsch’s results in
[8]. The arguments are nearly identical to those of Kirsch, with the exception of a
few modifications to allow for a family {¢.}.

Lemma 3.4 (Kirsch, [8], Lemma 2.3). Let {q.} be a family of functions satisfying
Assumption 3.3. Then, there exists a A\g > 0 such that

1
Ry AR
D\R R

for all € > 0 and all w € L*(D) solving Aw — Aow =0 in D.

Proof. Let A > 0 and let R be the neighborhood of the boundary defined in As-
sumption 3.3. Let R’ be another neighborhood of D such that d := dist(D\ R, R)
is positive. This implies that R’ C R. Define p € C$°(D) to satisfy p =1 on D\ R'.
For w € L?(D) solving Aw — Aw = 0, from standard elliptic regularity we know
that w is in C{o.(D) , so pw € C*°(D) and we can apply Green’s representation
theorem for A — \:

e~ VAlz—yl

(@) = = [ [(Aw)(5) = Mpw) )

—T 21
prp— dy (21)
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The product rule yields

A(pw) = wAp+2Vp - Vw + pAw, (22)
which gives
e~ VAlz—yl
(pw)(z) = — /D [wAp+2Vp - Vw + pAw — A(pw)(y)}m dy. (23)
Note that pAw — A(pw) = 0 from the equation for w, and so we have
e~ VAlz—y|
(pw)(x) = — /D[wAp +2Vp- Vw]m dy. (24)
Since p=1on D\ R, Ap=Vp=0on D\ R and so
e~ VAlz—y|
(pw)(z) = —//[wAp +2Vp- Vw]m dy. (25)

We integrate the second term by parts to find

e~ VAlz—yl e~ VAlz—yl
(pw)(z) = // l—A ——— 4+ 2div, <V )1 wdy, (26)

Pimle —y P mle — ]

where the boundary term disappears since p € C°(D) and Vp = 0 on D\ R’ implies
that 0,+p =0 on OR’.
Now, letting x € D\ R’, we have

@) < Cem™ | uldy (27)

where C' depends only on D, R, R’, and p. By Cauchy-Schwartz and R’ C R, we
deduce

2
_ — 2
w)P < (e [ Julay) <C%e X (o )

<ce AR [ July)dy. (28)
R
Since ¢ > « on R, we have
wia)? < e AR [ 1102, (29)
R

As R’ C R, the above inequality holds for x € D\ R. We multiply by |g.(x)| and
integrating with respect to x over D \ R:

/D\que(y)llw(y)IQdySCQ@‘MﬁIR'ID\Rlllqelliww)/Rw(y)IQdy- (30)

Since ¢, is uniformly bounded, we can choose a \g large enough so that the result
holds. O

This next proposition states that the family of operators {Af\o} is uniformly
weakly coercive. Again, our arguments follow [8] with the only difference that here
we make sure that all estimates hold uniformly in € € 7.
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Proposition 3.5 (Kirsch [8], Theorem 2.4). Let {q.} be a family of functions satis-
fying Assumption 3.3, and for each €, let {Ajo} be the operator (14) corresponding
to ¢ = gqe and A = Xo, and let a5 denote their associated sesquilinear forms. Then
there exists a Ay > 0 and a ¢ > 0 such that for all e € T,
sup M > c||(w,v)||lx  for all (w,v) € X (31)
@20 (o ¥)llx

where ¢ is independent of €.

Proof. Assume that the estimate (31) does not hold, in which case we have a se-

quence (€;,w;,v;) € R x X where (wj,v;) has norm 1 in X and
&fj Wi, V535 @,

lim sup M 0. (32)

imoegup20 (0 9)llx

Now, since U; is of norm 1 and X is a Hilbert Space, it has a subsequence (denoted
U; for simplicity) that converges weakly to some U € X. We will first prove that
U=0.

Since €; € Z, there is a subsequence (which we abuse notation and denote {e;})
such that €; — €* as j — oo. From Lemma 3.4 there exists a Ag such that

1
[ Jadter? e < 5 [ faclulas ()

for all € € 7 and all w solving Aw — XAow = 0. Define U; = (wj,v;) and ® = (¢, ).
Then,

(AY — AU @) x  (Uy, (AT — AS))®)x

1]l x a (]l x
WUllx v aes  ger
< AV — AS )P 34
= ||(I)||X ||( Ao /\0) ||X ( )
since the operators are self adjoint. We claim
I(AS, — A5,)@llx — 0. (35)
Indeed, for ¥ = (¢1,4¢1) € X,
(45, = 45,)2.9)x = [ (4, = 0 )01 da (36)
[ @-wenia (37)
D(E]‘,E*)
where D(ej, €*) is the set defined in Assumption 3.3. Thus,
(AY = A)2, W) x < [lo — qoll=plléll L2(p(e; e 1]l x — 0 (38)

by the dominated convergence theorem. This proves assertion (35) after taking the
supremum over all ¥ € X. Combining (34) and (35) yields
(A3 U;,®)x (A5, U;, ®)x
= +o(1). (39)
12 x 12l
Next, by (32), for any ® € X, we have

ay (U;, ®
lim M -0, (40)

imoo || ®fIx
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and therefore, (39) becomes

(A5, Uj> ®)x

— 0. (41)
1| x
Recall U; converges weakly to some U € X. Therefore, for any ® € X,
Jli{go(AeAz Uj7 (p)X = (Ag; U7 (p)X (42)
Then, (42) and (41) gives
(A5, U, ®@)x =0 (43)

for any ® € X. We will show that this implies U = 0. Choosing ® = (—w,v), (43)
implies

/ —(AT — M) w + (Av — A\g0)TW — ge- |w|? dz = 0. (44)
D

By taking the real part, we have

/ Gex
D

w|?dz = 0. (45)

Since g~ is of one sign on R,

[t tae = [ acpof as). (40
R R
and from (45) and Lemma 3.4,
1
‘/ ge-|w|* dz| = / ge- |w|* da| < / |G ||w]? dz| < 7/ |G- ||w|?dz. (47)
R D\R D\R 2 R
Thus, (46) and the above imply w = 0 on R because
1
[ lacllwPas < 5 [ jaclfuopds (15)
R 2Jr

and g+ > « on R. Since w solves Aw — Agw = 0 in D, w is analytic by an
extension of Weyl’s theorem (see Corollary 11.4.13 [7]). We may then use analytic
continuation to conclude w = 0 on D. This also implies v = 0, since by choosing
® = (v,0) and substituting ® into (43),

/ (Av = Mov)vda = —/ |Vo|? 4+ Av|* dz = 0. (49)
D D

Assuming (31), we will show ||U;||x — 0, which contradicts that each U; has norm
1. Recall that in our case the bilinear form is not fixed.

Let R’ be a neighborhood of R so that R C RUdD. We take a non-negative
p1 € C(D) defined to be

no={ 4 L5 n (50)

and construct the sequence ®; = (—piwj, p1v;) € X. Of course, due to (32) we
have that
asl (U;, ®;
0 Ui ) (51)
1951

More explicitly,

1 _ _ __
T30x /D(A(Plvj) — Aop1Tj)wj — (Avj — Aov) 15 — gepr|wy|*dz — 0. (52)
J
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Given the support of p;, we have

1
T / (A(p17) = AoprT)w; — (Avj = Aov;) 1@ — geprlwj|*dz — 0. (53)
15lx Jr
From the product rule,
A(p1T7) = T;Ap1 + 2Vp1 - V7] + p1AT;. (54)
We substitute this into (53) and take the real part which yields
1
Re—— / TjwiApy + 2w;Vpy - VU; — qepr|w;*de — 0. (55)
125l x Jr

Since ||®;]|x < ||Uj||x =1 by construction, we must have
Re/ Tjw; Apy + 2w;Vpy - VT — gepr|w;|*dz — 0 (56)
R

since U; — 0, v; — 0 in H%(D). Since H?(D) is compactly embedded in H' (D), we
have v; converges strongly to 0 in H'!(D), since the inclusion operator is compact
and maps weakly convergent sequences to strongly convergent sequences. Therefore,
the first two terms in (56) go to 0, implying

/Rq6p1|wj|2dx — 0. (57)

Using the assumption that g¢ > o > 0 on R and p; = 1 on R/, the previous line
implies w; — 0 in L*(R').

We again define a neighborhood R” of 9D such that its closure is in R’ U dD.
For this neighborhood, we define a non-negative ps € C*°(D) such that

n@={1 5V o

Furthermore, we construct a sequence {z;} C H?(D) which for each j solves

AZj - )\02’]‘ = Wy inD
{ z; =0on dD. (59)
By choosing @ = (0, p22;), we may conclude from (32) that
1
,7/ (A(p27z7) — Aop27j)wjdz — 0. (60)
1®5llx Jp
We use the product rule to obtain
A(pgfj) =Z;Ap2 4+ 2V py - VZj + pa AZj, (61)
so that
/ (A(p2zj) — Aop2zj)w;de
D
= / (ZjAp2 + 2V p2 - VZj + paAZj, —AopaZj)w;de
D
= / (ZjAp2 + 2V p2 - VZj + powyj)w;du, (62)
D

using that z; solves (59). From Lemma 3.2, z; — 0 in H?(D), and therefore z; — 0
strongly H'(D). Therefore,
1

A /[)(TjApg +2Vps - VZj)w; dz — 0, (63)
jllz
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from which (62) and (60) imply

/D pa|w;|*dz — 0. (64)
From the definition of py this implies that w; — 0 in L?(D \ R’). Thus, we have
that w; — 0 in L2(D).

Finally, we can show v; — 0 in H?(D). Take ®” = (Av; — \ov;,0) € X. We
then have by (32),

1 —_— —_
127 x /D |Av; — Xov;|* — e, w; (AT — AgT5) dzz — 0. (65)
J
Of course,
1 —_— —
7”(1),_,“)( O qej wj(Avj — )\Ovj) dzx
J

1
< a0 oo gl o)llw; Avj — Mg, 0 (66
IACH —)\onHD”q | Lo (D) lwjll L2 () [[Av; = Aovjl L2 (D) (66)
since w; — 0 in L*(D) and ¢, is bounded uniformly in €;. From this, (65) implies
||A1]j — /\O'UjHD — 0. (67)

Since v; — 0 in H?(D), it converges strongly in L?*(D), which implies from the
previous line that Av; — 0 in L?(D). Therefore, v; — 0 in H?(D). This proves
that ||U;||x — 0, which is impossible as ||U;||x = 1 for all j. O

Corollary 3.6. Let Aj be defined by (14) and the family q. satisfy Assumption 3.3.
Then there exists a A\g > 0 such that the operator Aja is invertible for every e € T,
and the inverse operator is bounded uniformly with respect to € € T.

Proof. Choose \g as in the statement of Proposition 3.5. Then, the result of Propo-
sition 3.5 is sufficient to apply a generalized version of Lax Milgram (see Theorem
2.22 in [10]) which yields the result. O

We end the section by combining the previous results to show following theorem,
which was first shown in [16].

Theorem 3.7. For a fized q satisfying Assumption 3.3, the set of transmission
etgenvalues is discrete in C without any finite accumulation point.

Proof. We have shown that the transmission eigenvalue problem defined by (8) may
be written as finding a k& > 0 such that

A_;2 ZAAO —I—K,kz’)\o (68)

has a non trivial kernel, where /Ab\o is given by (14) and K_j:2 , is given by (16).
From Corollary 3.6, we can select \g as so that /1,\0 is invertible. Since k2 —
K_j2 », is analytic and K is compact, the result follows from the analytic Fredholm
theorem. O

Remark 3.8. For a fixed ¢ € C*°(D) satisfying Assumption 3.3, the existence of
an infinite set of transmission eigenvalues as well as completeness of generalized
eigenfunctions are proven in [14]. In this case results on the counting function
for transmission eigenvalues can be found in [13], [15]. However, techniques from
semiclassical analysis used in these papers restrict the existence results to smooth q.
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For L*° contrast ¢, but under the assumption that ¢ is one sign in D, the existence
of an infinite set of real transmission eigenvalues is shown in [3].

4. Transmission eigenvalue problem in the presence of small volume in-
homogeneities. We now introduce the class of inhomogeneities studied in the
remainder of this paper. We present here our convergence analysis and asymp-
totic formulas for real transmission eigenvalues. This is motivated by the fact that
only real transmission eigenvalues can be determined from the scattering data (see
e.g. [2]). However our results can be formulated and proven exactly in the same
way (with obvious modifications when writing the adjoint operators) for complex
transmission eigenvalues. Hence from now on we set 7 := —k? and assume that
TeR.

For simplicity of exposition, we first consider the case of a single inhomogeneity
centered at the origin. Let gg € C°°(D) be such that go satisfies

qo(z) >a>01in R, (69)

a neighborhood of the boundary of D as defined in Assumption 3.3. (One could
equivalently assume ¢q is negative on R.) Let now B be any open set containing
the origin. Consider ¢ > 0, and assume that

g = { 3‘1) : 2 39\ (eB) (70)

where ¢; € R. We will assume ¢ is small enough such that eB ¢ D\ R. It is
straightforward to check that this family of ¢. satisfy the conditions in Assumption
3.3.

Assume that )\ is not a transmission eigenvalue and is such that the coercivity
in Proposition 3.5 holds. We define for A > A,

- —q. A— )
Ae Z:AA: < (AA)_lc(IA—)\> 0 >a (71)
and
k0= ko= ((any om0 ). (72)

We further note that A, is self adjoint with respect to the inner product on X, but
K(7) is not. Its adjoint is given by

. 0 A—T
<= om0 ) (%)

In what follows we will use * to denote the adjoint with respect to the inner product
on X. Define

To(r) = —%A;lKE(T). (74)

Then, the transmission eigenvalue problem with scatterer gc may now be written as
finding 7. such that for U = (w,v) € X,

T T () U=U (75)

has a nontrivial solution.
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5. Preliminary estimates. We now will prove several lemmas about the opera-
tors A, and K., which we will later need to apply the perturbation theory.

Lemma 5.1. Let 7 € R and K, be defined by (71). Then we have the operator
norm estimate

IKe(7) = Ko (1)l 2(x) < Clrle?’?.
Proof. Let U := (w,v),® := (¢,7) € X. Then,

(Ke(r) — Ko(r))U, &) = — 7 / (g — qo)vdde

D

=- T/GB(QI — qo)vddz

<Irllas = aollz=collllze ) [ xexlolda
D
SC|7"||U||Hg(D)HXeBHLZ(D)H¢||L2(D)
<Clrle||U] x| @] x (76)
where we used Sobolev embedding and the definition of X. O

Lemma 5.2. Let A, and R be defined by (71) and (69) respectively. Choose D' C
D\ R to contain €B for all e € Z. Then, for U € X,

AU — AU and A7'U — Aj'U

in the X norm. If in addition we know that the first component of U is in L°°(D'),
we have

HAGU — A()UHX S Céd/Q.

Furthermore, given F € X and Uy = AglF, if the first component of Uy is in
L>(D’), then
|ATYF — AJYF||x < Ced/?,

Proof. We will prove the statement about A, first and use that result to prove the
statement about the inverse. Let U, ® € X. Then,

((Ae — Ao)U, B)x = /D (40 — g )wdde

/ (QO - Q1)w5d$
eB

<llgo — q1llz=(pyllwllz2(eB) 1Bl 2 (D)
<o(1)[|®] x. (77)

This proves the first statement. The second follows from the estimate
(e = 80)0U0)x = [ (a0~ a)uddo
D

/ (g0 — q)w da
eB

< lgo — q1ll Lo (pyllw Lo (D) I XeB | L2(D) |0l L2 (D)
< Ce?| @) x (78)
when w € L>(D’) where eB C D'.
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Now, we will prove the estimate on the inverse. Let F' € X and define
AU, = F and AUy = F. (79)
Then, for Uy := (wy, vg), we obtain

(Ae(Ue = Un), @) x =((Ao — A)Up, ®)x
< [[(Ao — A)Uo|lx 1P| x - (80)

Dividing by ||®||x and taking the supremum, we use Proposition 3.5 to obtain
_ _ 1
(AT = 86 Fllx = [Ue = Uollx < Z (A0 = A)Us|x- (81)

Since A. converges strongly to Ay, we have the strong convergence of the inverse
from (81). Furthermore, if the first component of Uy is in L°°(D’), we have the
desired estimate on the inverse from (78) and (81). O

We now have an estimate on the composition of the operators.
Lemma 5.3. Let 7 € R. Define A, and K (1) by (71). Then,
IAZ Ke(r) = Ay Ko(T) | 2(x) < Ce”’? max {|r], 1} .
Proof. Observe that we can write
ATTK(T) — A Ko (1) = A7 Ke(T) =Ko (7)) + (A7 — Ay HKo(7) := I+ I1. (82)

Since AZ! converges in the strong topology by Lemma 5.2, its norm is bounded by
the Uniform Boundedness Principle. This norm bound and Lemma 5.1 together
imply that I converges in the norm topology, and in particular that

1A (Ke(7) = Ko(m)ll2(x) < Clrle”?. (83)

Since A_! converges and is preceded by a compact operator, I converges in norm
as well, but we would like to also estimate the 7 dependence. For convenience we
prove the estimates for slightly more general operator

K(t, f) = ( t(Ag),l tg) (84)

for given f € C*°(D) and t € R. Take M = (m,n) € X. Then, define My :=
Ay K(t, f)M. Notice that the first component of K(t, f)M is tfn € H3(D). We
now compute estimates as in the proof of Lemma 5.2:

((Ac — Ao)K(t, f)M, B)x =1 /D (40 — ge) frf de

= t/ (g0 — q1) fno dx
eB
<[t fllzepyllgo — @1llLe (D) Inll Lo (D) IXeB | L2 (D) D]l L2 (D)
< CEd/Q””HHg(D)”‘I’HX
< Ce'? || M||x||®]|x (85)
by the Sobolev Embedding of HZ(D) into C°(D). We hence have shown that
[(Ac = Ao)K (¢, f)llcx) < Ce/2. (86)
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From (81), we obtain

(A7~ A5 K M Ilx < (Ao — AK(f, 1) M]x
< Cll(Ae = Ao) K (L, f)ll x| M ]| x
< Ce?||M | x, (87)
implying
1A = AGHE (L f)llx < Ce?V. (88)
Note that Ko = K(\, 1) + 7K(—1, o), and so
(A= AgHKo(r) = (A7 = AgHKN D) + (A7 —AgHK(=1,q0).  (89)
Therefore, by applying (88), we have that IT also converges in norm and

1A = Ag Ko ()l e(x) < C(L+|7])e?/. (90)

5.1. Convergence on the eigenspace. Let us define U = (w,v) € X be a trans-
mission eigenfunction for the background problem (74) when e = 0, corresponding
to a transmission eigenvalue 7:

TTo(T)U = U. (91)

We will now define a correction for the difference between A' and Aj'. By stan-
dard elliptic regularity, the first component of Ay U, wo, is H 2 .(D). Therefore, it
is well defined at the center of the inhomogeneity and we can define V., C. € X by

U, = ( XBB ) (92)

Ce = (q1(0) — q0(0))wo(0)¥. (93)

Lemma 5.4. Let A, be defined by (71) and C¢ by (93). Define a > 0 such that
H?*(D) c C%*(D). Then

|AZIU — AgU — ATIC || x < Ce¥/2He

and

where U is the solution to the background equation (91).

Proof. Define
AeUﬁ =U and A()UO =U. (94)
Let Uy := (wo, vp) and note that wy € HZ (D). Consider D’ to be a C? domain

satisfying eB C D’ C D for € € Z. Sobolev Embedding yields H?(D') ¢ C%*(D")
for some a > 0, and therefore, wy € C%®(D’). This allows us to obtain the bound

(Ac(Ue = Uy — AZCL), @) x =((Ag — A)Up — Ce, @) x

- / (a1 — qo)wo — (¢1(0) — q0(0))wo(0)) Pz

eB

SC’e“/ || dz
eB

< Ce”||xeBl L2y 1@l L2(D)
< Ot/ g x. (%9)
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By Proposition 3.5 and the argument at the end of Lemma 5.2, we have

- _ 1
I(AZT = AGHU = AZ'Ce|lx < (A0 = A)Uo = Cellx, (96)

€

which yields the result. O

We will now derive estimates for the strong operator convergence of the adjoint.
Recall that our operator

1
Te() = _*Ae_lKe(T)a
T
where A is self adjoint, but K.(7) is not.

Lemma 5.5. Let U be the solution of the background equation (91) and o > 0 such
that H*(D) C C%*(D). Then,

I(Ke(r)* At = Ko(r)*Ag U |[x < C(1+ |7)O(e+).
Proof. We begin by adding and subtracting to obtain
(Ke(1)* A7 = Ko(7)"Ag U = (Ke(7)" = Ko(m)*) (AT — AgHU
+ (Ke(7)* = Ko(m)*)Ag U +Ko(7)* (A = AgHU. (97)

The first term on the right hand side above converges with a speed of O(|7|e?)
thanks to Lemmas 5.1 and 5.2 and the regularity of the eigenfunction U. Recall
that in the proof of the previous lemma we defined Uy := (wg,vo) by AUy = U,
and that the first component wy is in H2 (D). For the second term on the right
hand side of (97), we observe that for D’ with D’ C D containing eB,

(K2 (r) — K§(r))Us, ®) x =T / (@ - wyupds

<I7lll(qr — go)woll oo (pr) ||| Loe (D) €
§C|T|€d||%/f||Hg(D)
<C|rle’(|®|x (98)

using Sobolev Embedding. Finally, for the third term on the right hand side of (97),
we have that

Ko(T)*(AZY — AgHU = Ko(7)* (AU — AU — AT1C) + Ko(7)* AT C. (99)

where C. is defined by (93). The first term in (99) is O((1 + 7)e%/?*®) by Lemma
5.4. We now estimate the second term where we keep in mind the fact that the
operator K is smoothing:

(K5(T)AZ Ce, @)x =(Ce, AT Ko(7)®) x
=(Ce, (A7" = Ag)Ko(T)®)x + (Ce, Ay 'Ko(T)®)x. (100)

Consider the first term on the right hand side of (100). It is obvious that ||C¢||x <
C'e?/? by the definition, and we recall from (90) that

I(AZT = ATHKo (M)l 2(x) < C(1+ )2, (101)
These results combine to yield
(Ce, (AT" = AT HKo(1) @) x < [ICellx (A7 — AgHKo (7)) 19| x
< Ce2(1 + 7)) @) x. (102)
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For the last term on the right hand side of (100), consider the first component of
Ay 'Ko®, and let us denote it by 1y. For for some D’ compactly contained in D
containing eB, we use Sobolev embedding on :

(oo Kol x] = |(@1(0) ~ 0 (@)o(©) | s
eB
<Clloll L (pry€”
<Clloll 2 (prye?.
<O+ |7])]|® x . (103)
This completes the proof. O

5.2. Inner product estimates. We will need the following lemmas to derive the
asymptotic formula for the eigenvalues.

Lemma 5.6. Let d =2,3. For A, be defined by (71) and V. by
v, — ( et ) (104)

(U, AW, ) x = O(e3)

we have that

holds as € — 0.

Proof. Let & denote the first component of A-'W, and R as defined in (69). Then,
by definition of A1, & is a weak (or distributional) solution to

A& — X =0 inD (105)

which implies, in particular, that £ € C°°(D) [7]. One may use Green’s represen-
tation formula to show that

|€c(z)] < C’/R |€(t)|dt forz € eB C D\ R, (106)

as in the proof of Lemma 3.4. This implies
e(@)] < C'llEcl 2oy < C'llAT el [ Wellx == C"e?/? (107)

because the norm of AZ?! is bounded due to Lemma 5.2 and the Uniform Bounded-
ness Principle. Therefore, we have the result

Lemma 5.7. Let U = (w,v) be the transmission eigenfunction solving (91) and
the operators A, and K. be defined by (71). For o such that H*(D) C C%%(D),

(AT Ke(m)=Ag 'Ko(m)U, U)x = €*(q1(0)~40(0))wo(0)| B (70(0) — w(0))+O(e™**)

where wy is the first component of AalU.

|(Te, AT W) x| =

< 0”ed/2/ dz = O(e29). (108)
eB

O

Proof. First, we observe
(A7TKe(m) = A Ko(r))U, U)x = ((A7! = Ag ") (Ke(7) = Ko(m)U, U)x

+ (AT = AgHKo(N)U,U)x + (Ag " (Ke(7) = Ko(7))U, U) x
=1+ 1T+ 111
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For I, we can use the fact that Ag is self adjoint and add and subtract a correction
term to obtain

I'=((Ke(r) =Ko(m)U, (AN = AgHU = AZ1C) x + (Ke(1) = Ko(1))U, A7 Co) x
< (Ee(r) = Ko(M)U || x (AT = AgHU = AT Ce|x
+ ((Re(1) = Ko(7))U, A7 Co) x
= ((Ke(7) = Ko(m))U, A7 C) x + O((1 4 7)edt)

by combining Lemmas 5.1 and 5.4. Recall that U := (w,v) with v € HZ(D), and
let & denote the first component of AZ'W,. Using the definition of ¥, and C, in
(92) and (93) we find,

(Ke(7) = Ko(1))U, A7 Co)x = —(q1(0) — qO(O))w(O)T/ (1 — qo)v€e da. (109)
eB
The Holder continuity of v with exponent « from Sobolev embedding, with « as in
Lemma 5.6, gives
(Ke(r) =Ko (r)U, A7 C) x = =7(q0(0)=q1(0))*0(0)w(0) (¥, A7) x +0(e34).

Thus, we conclude that
I =0(e) (110)

by Lemma 5.6.
For the second term, we first manipulate it algebraically. Since U satisfies the
background equation, the following equality holds:

—U = Aj'Ko(7)U. (111)
Therefore, we compute
IT=((A7" = Ay Ko (1)U, U)x
(A7 (Ao — A)AG Ko (1)U, U) x
=~ ((Ao —AJU, AT'U)x. (112)

From Lemmas 5.2 and 5.4, we may again use the correction to conclude that
1
IT = ~((ho — AU, A7 U + ATIC)x + 0 (ed+a>. (113)
T

Recall that we denote the first components of A ' and U by wo and w respectively,
and that wy € HZ (D) and w € C;2,(D). In fact, w is C*°(D) (see Theorem 11.1.1
[7]). In particular, both are in H?(D’) for some D' C D containing eB. We may
also use Holder continuity as in (5.2) to obtain

((AO - Ae)Uv A(Tl(J)X
- / (@ = ayunds = ¢!1B1((0) = 0(0)w(0)u(0) +Oc*).  (114)

Let & denote the first component of A~!W,. We may also use the Holder continuity
argument from (5.2) to show

(Ao — AU, AZC) x =(1(0) — 0(0))w(0) / (@1 — qo)us da

eB
=(q1(0) = q0(0))?[w(0)[*(We, AT We)x + O(e™). (115)
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Lemma 5.6 combined with the above yields
1T = —e*(q1(0) — 40(0))w(0)wo(0)| B + O(e?+). (116)

The estimation of the third term is similar. Again, as v and wy are in HZ (D), we
may use Hoélder continuity to conclude that

ITT =((K () — Ko (1)U, Ay 'U) x
= - T/ (90 — q1)vwo da
eB
= —7¢%(q0(0) — q1(0))v(0)wo (0)| B + O(e¥+*). (117)
‘We combine all terms to obtain
(A7'Ke(7) — Ag 'Ko(7))U, U) x
=~ (¢(a0(0) = 01(0)v(0)wo(0)| B ) ~ (€ (a1 (0) ~ 4o (0))w(0)wo (0)] B ) +O ()

= ¢*(q1(0) — qo(0))wo (0)| B| (Tv(0) — w(0)) + O(e**),
which completes the proof. O

6. Eigenvalue correction formula. In this section, we will use the following
nonlinear eigenvalue correction result from [11] to obtain an asymptotic formula for
a simple transmission eigenvalue.

Theorem 6.1 (Nonlinear Eigenvalue Correction [11]). Let X be a Banach space
and {T.(\) : X — X} a set of compact operator valued functions of X which are
analytic in a region U of the complex plane, such that Te(\) — To(A) in norm as
€ — 0 uniformly for A € U. Let \g # 0, A\g € U be a simple nonlinear eigenvalue of
TOa

AoTo(Ao)¢ = ¢,
define DTy(Ng) to be the derivative of Ty with respect to A evaluated at Ao, and let

¢ be the normalized eigenfunction and ¢* its dual. Then for any e small enough
there exists A\, a simple nonlinear eigenvalue of T., such that if

A (DTo(Xo)g, ¢*) # —1

we have the following formula

2 lT) — Tu(X))g, 6%)
A= A0 =N DT (), )

+0 (509 17200 = To() gy T ) = 75 ) -

where R(E) is the space spanned by ¢ and R(E)* is its dual or the space spanned
by ¢*.

We now apply this theorem to our operators to obtain the correction formula.

Theorem 6.2. Let U = (w,v) € X be the normalized transmission eigenfunction
for the background problem (91), with simple eigenvalue 7. Then for any € small
enough there exists a simple eigenvalue 7. of the perturbed problem (74) such that
7. — 7. Furthermore, for |U||x =1 and a > 0 such that H*>(D) C C%*(D),

e? —_—
(41(0) = 0(0))wo(0)| B[ (rv(0) — w(0)) + O(e*+®),

Te—T=——
w
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when
wi= / (1 + go)vwg + wog dz
is nonzero and (wg,vy) € X solvei
Avg — A\vg = w + qowp in D
Awg — Awg = AAv in D
for some fixed A > \g with g as defined in Proposition 3.5.

Proof. Let T, and Ty be defined by (74) and recall Ay YU = (wo,vg) with Ag defined
by (71). Then, by Lemma 5.3, we have the norm convergence which allows us
to apply Theorem 6.1. From Lemmas 5.3 and 5.5, we obtain that the rate of
convergence of the tail is O(e?T®). (Note that the norms are restricted to one
dimensional subspaces there.) The estimate in the inner product in Lemma 5.7
therefore yields the formula
_a_(01(0) = q0(0))wo(0)|B] (Tv(0) — w(0)) d+a
Te —T = €T 1+ r2(DTo (1)U, U)x + O(e"™), (118)

assuming the denominator is nonzero. We now calculate DTy (7). Recall that

1
T()(T) = —*AEIKO
T
with A independent of 7. From the product rule we have that
1 1 _
DTy(7) = —A 'Ko(r) — —Ag ' DKo,

and since K is linear in 7 , DKy = C where C : X — X is given by
_ 0 —(1+qo)
C( _(AA)-! 0 . (119)

1 1 _
DTy(7) = ﬁAO Ko (1) — ;AO Ic.

Hence

We next calculate that
2 (DTo (1)U, U) x = (A 'Ko(1) — TA;'C)U,U) = —1—-7 (CU,A;'U) . (120)
since Ay 'Ko(7)U = —U. So, the denominator in (118) becomes
1+ 7 (DTo(m)U,U) = —7 (CU, Ay 'U)

which is precisely 7w, from which the result follows. We remark also that the
nonzero denominator condition can be written as

(( —(AOA)‘1 _(loﬂ")) )UvA(TlU)X # 0. (121)
O

We end this section by remarking that the above analysis holds true if the back-
ground with contrast go(z) is perturbed by many small volume inhomogeneities of
arbitrary smooth shape. In particular, for i = 1,...,m, we define the bounded open
set B; to be smooth deformations of a ball centered at the origin, so that z; + €B;
is a small inhomogeneity centered at z;. We also assume that € is small enough so
that each scaled ball is separated from the others and is inside D \ R, in particular



20 FIORALBA CAKONI, SHARI MOSKOW, AND SCOTT ROME

TABLE 1. Parameters for Numerical Example

Domain D [—1,1]
Background Transmission Eigenvalue k = /—7 | 7.12761
Background Coefficient ¢q 6.29
Perturbed Coefficient ¢ 24
Parameter A 50.72217

(zi +€B;)N (25 + eB;j) =0 for i # j and (2; + €B;) C D\ R, where R is defined by
(69). We let W, be the union of these inhomogeneities, that is

m
We = U (Zz + EBZ) y
i=1
and we define the perturbed contrast g.:

| @ zez+eB;, i=1,...,m
qe(fv){ g x€D\W. (122)

where the ¢; € R are constants. In this case the main result of Theorem (6.2
becomes (see also [4] and [6])

Theorem 6.3. Let U = (w,v) € X be the normalized transmission eigenfunction
for the background problem (91), with simple eigenvalue 7. Then for any € small
enough there exists a simple eigenvalue T, of the perturbed problem (74) such that
7. — 7. Furthermore, for |U||x =1 and a > 0 such that H*>(D) C C%*(D),

Ed Ui
re— 7= =S 3 (@) — a0z wo (| Bil (ro(e:) — w(z) + O(),

i=1
when
W= / (1 + go)vwg + wog dz
is nonzero and (wo,vo) € X solvejz
Avg — Avg = w + gowg in D
Awg — Awg = AAv in D

for some fized X > Ao with \g as defined in Proposition 3.5.

7. Numerical Example. We will now attempt to validate our asymptotic formula
with a one dimensional numerical experiment. Although the theory here was for
dimensions d = 2, 3, we expect the same results to hold in dimension one. We choose
our scatterer D to be the interval [—1, 1] assume there is a single inhomogeneity
centered at the origin. We define ¢. on D to be

_J &1 z€(—€€):=€B

E { qo otherwise (123)
The definition of D and choices for parameters k, qo and ¢; are detailed in Table 1.
We note that we also chose gy so that the background eigenvalue is simple.

Recall that one also needs to choose the parameter A in the definition of T
(which we used to divide the operator into invertible plus compact). The best
choice numerically for X is not obvious, and several different choices were found to
yield the same correction accurately.
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Approximated vs. Actual
50.85
o T
*  mterl)
50.8% ® ® ® ®

®
50.75F

50.7

> 50.651

. . . . .
-8 -7 -6 -5 -4 -3
log x

FiGUre 1. Comparison of perturbed eigenvalues and corrected ei-
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Figures 1 and 2 show a comparison of the perturbed eigenvalues with the cor-
rected eigenvalues for various values of €, using the formula from Theorem 6.2. An
empirical study of the convergence rate 1 + a found in Theorem 6.2 yielded

a ~ 0.9625, (124)

or approximately €2 convergence, as expected.

8. Conclusion. In this paper we have derived rigorously a correction formula for
the transmission eigenvalues of perturbations of inhomogeneous media without sign
restrictions on the contrast (except for a region around the boundary). This was
accomplished by using the formulation the nonlinear eigenvalue correction formula
[11] which is an extension of Osborn’s theorem [12]. We then corroborated the
results by conducting a numerical simulation which demonstrated the accuracy
of the asymptotic formulas. Note that the formula derived in [6] was based on
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a different formulation of the transmission eigenvalue problem that requires that
q be of one sign. Hence the formula derived here is more general, but has the
disadvantage of requiring one to solve an auxiliary partial differential equation.
Since the two should of course coincide when ¢ is of one sign, it would be interesting
to see if a general formula exists without the need for solving an auxiliary problem.

It may also be possible to use the asymptotic formula to reconstruct the location
and/or strength of small the inhomogeneities inside the scatterer. A first attempt
along these lines is made in [4]. The formulas derived depend on the background
medium, the background transmission eigenvalue, the size and contrast of the in-
homogeneity, and the location of the center of the inhomogeneity. If knows the size
and contrast of the inhomogeneity, perhaps one can use this formula to determine
its location. This is the subject of future work.
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