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Abstract. In this paper we revisit the transmission eigenvalue problem for an
inhomogeneous media of compact support perturbed by small penetrable ho-
mogeneous inclusions. Assuming that the inhomogeneous background media
is known and smooth, we investigate how these small volume inclusions ef-
fect the transmission eigenvalues. Our perturbation analysis makes use of the
formulation of the transmission eigenvalue problem introduced Kirsch in [8],
which requires that the contrast of the inhomogeneity is of one-sign only near
the boundary. Thus, our approach can handle small perturbations with posi-
tive, negative or zero (voids) contrasts. In addition to proving the convergence
rate for the eigenvalues corresponding to the perturbed media as inclusions’
volume goes to zero, we also provide the explicit first correction term in the
asymptotic expansion for simple eigenvalues. The correction term involves
computable information about the unperturbed known inhomogeneity as well
as the location, size and refractive index of small perturbations. Thus, our
asymptotic formula has the potential to be used to recover information about
small inclusions from a knowledge of real transmission eigenvalues, that can be
determined from scattering data.

1. Introduction. The transmission eigenvalue problem is intrinsic to the scatter-
ing theory for inhomogeneous media [2]. Real transmission eigenvalues are related
to non-scattering frequencies and can be determined from scattering data [1] and
[9], hence they can be used to obtain information about the inhomogeneity (see
e.g. [3] for monotonicity results on real transmission eigenvalues in terms of the
refractive index in the media). One possible application is to identify small volume
perturbations of a known inhomogeneity using measured transmission eigenvalues.
In this case, asymptotic analysis is needed to quantify the effect of small perturba-
tions on transmission eigenvalues. This task is complicated due to the fact that the
transmission eigenvalue problem is non-selfadjoint and most of its mathematical for-
mulations lead to nonlinear eigenvalue problems. The celebrated paper by Osborn
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[12], generalized to nonlinear problems by Moskow [11], provide a mathematical
approach to obtain asymptotic formulas with first order correction term for per-
turbation of eigenvalues of a non-selfadjoint eigenvalue problem. This perturbation
approach has been used in [5] and [6] to obtain asymptotic expressions for transmis-
sion eigenvalues for the isotropic case and in [4] for the anisotropic case, where in
the latter preliminary results on the use of these asymptotic formulas to solve the
inverse problem have been presented. Unfortunately, bounded by the mathematical
formulation of the transmission eigenvalue problem, all the aforementioned work
required that the contrast in the know homogeneous media as well as in the small
perturbations does not change sign in the support of inhomogeneity. This assump-
tion significantly restrict the class of problems where our method can apply. More
recent papers on the transmission eigenvalue problem [16], [13], [14] have obtained
spectral results under the assumption that the contrast keep the same sign only in a
neighborhood of the boundary. Under this assumption, the formulation introduced
by Kirsch [8], which is a variational writing of the transmission eigenvalue problem
formulation first introduced by Sylvester [16] provides an conducive framework to
apply perturbation analysis in [12], [11], and the goal of this paper to do exactly
this. More specifically, the main result of our paper is obtaining convergence and
asymptotic formulas with correction term for the transmission eigenvalues corre-
sponding to isotropic inhomogeneous media of compact support perturbed by small
penetrable homogeneous inclusions. The only assumption on the media, besides
physical ones, is that the contrast in the refractive index of the known inhomo-
geneity is one sign only in a neighborhood of the boundary of its support. This
allows for the known inhomogeneity to have more general contrast inside the sup-
port, as well as for the small volume perturbations have positive, negative or zero
(voids) constant contrasts simultaneously. Although the calculations are presented
here for real transmission eigenvalues and real valued refractive index (motivated
by the practical fact that only real transmission eigenvalues are determined from
scattering data) our analysis can be carried through for complex eigenvalues and
complex-valued refractive index with obvious modifications when computing the
adjoint operators. We remark that, although the convergence analysis can be done
for multiple eigenvalues, our asymptotic formula is obtained only for simple eigen-
values due to technical difficulties stemming form the non-linearity of eigenvalue
problem as pointed out in [11].

2. Formulation of the transmission eigenvalue problem. In this section we
state a formulation of the transmission eigenvalue problem by Kirsch [8], which gave
a variational formulation for the transmission eigenvalue problem formulation first
introduced by Sylvester [16]. This formulation has the advantage of allowing for
a much more general class of contrasts in the media. Here we translate Kirsch’s
variational version back to an operator form, which we find convenient to work with.

Let D ⇢ Rd
(d = 2, 3) be a given C2 domain with coefficient (e.g. squared index

of refraction) given by (1 + q) 2 L1
(D). Consider the transmission eigenvalue
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problem of finding k2 and nontrivial V,W such that

�V + k2(1 + q)V = 0 in D (1)

�W + k2W = 0 in D (2)
W = V on @D (3)

@W

@⌫
=

@V

@⌫
on @D. (4)

If one subtracts the second equation from the first and sets � := �k2, v := V �W
and w := �k2W , the transmission eigenvalue problem may be written: find � 2 C
such that there exists nontrivial w 2 L2

(D) and v 2 H2
0 (D) satisfying

�v � �(1 + q)v = qw in D (5)
�w � �w = 0 in D. (6)

We define the Hilbert space X := L2
(D)⇥H2

0 (D) equipped with the inner product

(w, v;�,  )X := (w, �)L2(D) + (�v,� )L2(D) for (w, v), (�,  ) 2 X. (7)

One may check that a weak formulation of (5)-(6) on X is to find � 2 C and
nontrivial (w, v) 2 X such that (see e.g. [8])

Z

D

(� � � )w dx+

Z

D

(�v � �(1 + q)v)�� qw� dx = 0 (8)

for all (�,  ) 2 X. Now we define the linear operator on X

A� =

✓
�q �� �(1 + q)

(��)

�1
(�� �) 0

◆
. (9)

Here (��)

�1
: H�2

(D) ! H2
(D) is defined by the weak solution of the equation

��u = f, u 2 H2
0 (D) and f 2 H�2

(D), (10)

that is, u solves

(u, �)H2
0 (D) = (f, u)L2(D), for all � 2 H2

0 (D). (11)

Similarly, � : L2
(D) ! H�2

(D) is defined by

(u,��)L2(D) = h�u, �iH�2(D), � 2 H2
0 (D). (12)

We abuse notation slightly and also use � to denote the usual mapping � :

H2
(D) ! L2

(D). We will also use the sesquilinear form corresponding to A�
(introduced in [8]) defined by

a�(w, v;�,  ) = (A�(w, v); (�,  ))X for all (w, v), (�,  ) 2 X. (13)

Clearly the operator A� given by (9) is bounded on X. Furthermore, a straight-
forward calculation shows that (w, v) 2 Ker(A�) if and only if (w, v) is a solution
to the weak formulation of the transmission eigenvalue problem (8). So the trans-
mission eigenvalue problem can be written as: Find � 2 C and U = (w, v) 2 X =

L2
(D)⇥H2

0 (D) such that
A�U = 0.
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3. Decomposition into invertible plus compact. In [16] and afterwards in [8]
it was shown with some restrictions on q (near the boundary only) that the set
of transmission eigenvalues is discrete. We redo the result from [8] here both for
completeness and to show uniformity for families of q. Additionally, the operator
form (9) simplifies some of the proofs.

Note that A� is not self adjoint even for real �; however, it would be if we were
to shift it slightly. To this end define the bounded operator on X

ˆA� =

✓
�q �� �

(��)

�1
(�� �) 0

◆
, (14)

and its associated sesquilinear form

â�(w, v;�,  ) =
⇣
ˆA�(w, v); (�,  )

⌘

X
. (15)

Note that now for � 2 R, ˆA� is self-adjoint with respect to the inner product on X.
We also define the operator

Kµ,� = Aµ � ˆA� =

✓
0 �� µ(1 + q)

(��)

�1
(�� µ) 0

◆
, (16)

noting that
Aµ =

ˆA� +Kµ,�.

We would like to find � such that ˆA� is invertible and Kµ,� is compact. The second
is the easier of the two.

Proposition 3.1. For any �, µ 2 C and q 2 L1
(D), Kµ,� is compact.

Proof. This is obvious; the top right component of Kµ,� is multiplication by (� �
µ(1+ q)) as a mapping from H2

0 (D) to L2
(D), which is clearly compact by Sobolev

embedding. The bottom left component is the mapping (��)

�1 from L2
(D) to

H2
0 (D). By standard elliptic regularity theory, (��)

�1 takes L2
(D) functions into

H4
(D), which embeds compactly into H2

0 (D).

We first prove a lemma that is essential for the next proposition.

Lemma 3.2. Let � > 0 and wj be a sequence in L2
(D) that weakly converges to 0.

Then, there exists a sequence zj 2 H2
(D) defined by

⇢
��zj + �zj = wj in D
zj = 0 on @D

that converges to 0 weakly in H2
(D).

Proof. The bilinear form on H1
0 (D)⇥H1

0 (D)

a(z, �) := (rz,r�)L2(D) + �(z, �)L2(D) (17)

is coercive, so by Lax Milgram, the partial differential equation
⇢

��z + �z = g in D
z = 0 on @D (18)

has a unique weak solution z 2 H2
(D) \H1

0 (D) for any g 2 L2
(D). By standard

elliptic regularity, z satisfies the inequality

kzkH2(D)  CkgkL2(D). (19)
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For each j, let g = wj and define zj as the solution to (18). Since wj converges
weakly, it is norm bounded in L2

(D), hence there exists an M > 0 such that
kzjkH2(D)  M. (20)

Since the sequence {zj} is bounded in H2
(D), there exists a subsequence (we will

again denote it by zj) that converges to some z 2 H2
(D) weakly. From this weak

convergence and the equation for zj , for any � 2 H1
0 (D),

Z

D

(��z + �z)� dx = lim

k!1

Z

D

(��zj + �zj)� dx

= lim

k!1

Z

D

wj� dx

= 0,

which implies that z solves
��z + �z = 0 in D.

By taking another subsequence, we must have the convergence strong in H1
0 , which

implies that z = 0 on @D, and hence we have z = 0. The result follows.

We now introduce a family of operators so we may state our final theorems of
the section, and we do this by first defining the parameter family {q✏} ⇢ L1

(D).

Assumption 3.3. We assume the family {q✏} ⇢ L1
(D) satisfies the following

properties:

1. ✏ 2 I where I is a compact subset of R.

2. The family {q✏} is uniformly bounded in L1
(D).

3. Let R be a neighborhood of the boundary @D; that is, R is an open set contained

in D with @D ⇢ R. We assume q✏ is of one sign on R with either q✏ > ↵ > 0

or �q✏ > ↵ > 0 holding in R.

4. The family has the property that for each ✏, ✏0 2 R, q✏�q✏0 = 0 except on some

measurable subset D(✏, ✏0) ⇢ D \R satisfying m(D(✏, ✏0)) ! 0 as ✏! ✏0 where

m is the Lebesgue measure on Rd
.

The following Lemma and Proposition are generalizations of Kirsch’s results in
[8]. The arguments are nearly identical to those of Kirsch, with the exception of a
few modifications to allow for a family {q✏}.

Lemma 3.4 (Kirsch, [8], Lemma 2.3). Let {q✏} be a family of functions satisfying

Assumption 3.3. Then, there exists a �0 > 0 such that

Z

D\R
|q✏||w|2 dx  1

2

Z

R

|q✏||w|2dx

for all ✏ > 0 and all w 2 L2
(D) solving �w � �0w = 0 in D.

Proof. Let � > 0 and let R be the neighborhood of the boundary defined in As-
sumption 3.3. Let R0 be another neighborhood of @D such that ˆd := dist(D \R,R0

)

is positive. This implies that R0 ⇢ R. Define ⇢ 2 C1
c (D) to satisfy ⇢ = 1 on D \R0.

For w 2 L2
(D) solving �w � �w = 0, from standard elliptic regularity we know

that w is in C1
loc(D) , so ⇢w 2 C1

(D) and we can apply Green’s representation
theorem for �� �:

(⇢w)(x) = �
Z

D

[(�(⇢w)(y)� �(⇢w)(y)]
e�

p
�|x�y|

4⇡|x� y| dy. (21)
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The product rule yields

�(⇢w) = w�⇢+ 2r⇢ · rw + ⇢�w, (22)

which gives

(⇢w)(x) = �
Z

D

[w�⇢+ 2r⇢ · rw + ⇢�w � �(⇢w)(y)]
e�

p
�|x�y|

4⇡|x� y| dy. (23)

Note that ⇢�w � �(⇢w) = 0 from the equation for w, and so we have

(⇢w)(x) = �
Z

D

[w�⇢+ 2r⇢ · rw]
e�

p
�|x�y|

4⇡|x� y| dy. (24)

Since ⇢ = 1 on D \R0, �⇢ = r⇢ = 0 on D \R0 and so

(⇢w)(x) = �
Z

R0
[w�⇢+ 2r⇢ · rw]

e�
p
�|x�y|

4⇡|x� y| dy. (25)

We integrate the second term by parts to find

(⇢w)(x) =

Z

R0

"
��⇢e

�
p
�|x�y|

4⇡|x� y| + 2divy

 
r⇢e

�
p
�|x�y|

4⇡|x� y|

!#
w dy, (26)

where the boundary term disappears since ⇢ 2 C1
c (D) and r⇢ = 0 on D\R0 implies

that @⌫+⇢ = 0 on @R0.
Now, letting x 2 D \R0, we have

|w(x)|  Ce�d
p
�

Z

R0
|w| dy (27)

where C depends only on D, R, R0, and ⇢. By Cauchy-Schwartz and R0 ⇢ R, we
deduce

|w(x)|2 
✓
Ce�d

p
�

Z

R0
|w| dy

◆2

C2e�2d
p
�
�
k�R0kL2(R)kwkL2(R)

�2

C2e�2d
p
�|R0|

Z

R

|w(y)|2 dy. (28)

Since q✏ > ↵ on R, we have

|w(x)|2  C2e�2d
p
�|R0|

Z

R

|q✏(y)|
↵

|w(y)|2 dy. (29)

As R0 ⇢ R, the above inequality holds for x 2 D \ R. We multiply by |q✏(x)| and
integrating with respect to x over D \R:

Z

D\R
|q✏(y)||w(y)|2 dy  C2e�2d

p
�|R0||D \R|kq✏k2L1(D)

Z

R

|w(y)|2 dy. (30)

Since q✏ is uniformly bounded, we can choose a �0 large enough so that the result
holds.

This next proposition states that the family of operators { ˆA✏�0
} is uniformly

weakly coercive. Again, our arguments follow [8] with the only difference that here
we make sure that all estimates hold uniformly in ✏ 2 I.
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Proposition 3.5 (Kirsch [8], Theorem 2.4). Let {q✏} be a family of functions satis-

fying Assumption 3.3, and for each ✏, let { ˆA✏�0
} be the operator (14) corresponding

to q = q✏ and � = �0, and let â✏�0
denote their associated sesquilinear forms. Then

there exists a �0 > 0 and a c > 0 such that for all ✏ 2 I,

sup

(�, ) 6=0

â✏�0
(w, v;�,  )

k(�,  )kX
� ck(w, v)kX for all (w, v) 2 X (31)

where c is independent of ✏.

Proof. Assume that the estimate (31) does not hold, in which case we have a se-
quence (✏j , wj , vj) 2 R⇥X where (wj , vj) has norm 1 in X and

lim

j!1
sup

(�, ) 6=0

â
✏j
�0
(wj , vj ;�,  )

k(�,  )kX
! 0. (32)

Now, since Uj is of norm 1 and X is a Hilbert Space, it has a subsequence (denoted
Uj for simplicity) that converges weakly to some U 2 X. We will first prove that
U = 0.

Since ✏j 2 I, there is a subsequence (which we abuse notation and denote {✏j})
such that ✏j ! ✏⇤ as j ! 1. From Lemma 3.4 there exists a �0 such that

Z

D\R
|q✏||w|2 dx  1

2

Z

R

|q✏||w|2dx (33)

for all ✏ 2 I and all w solving �w� �0w = 0. Define Uj = (wj , vj) and � = (�,  ).
Then,

((

ˆA
✏j
�0

� ˆA✏
⇤

�0
)Uj ,�)X

k�kX
=

(Uj , ( ˆA
✏j
�0

� ˆA✏
⇤

�0
)�)X

k�kX

kUjkX
k�kX

k( ˆA✏j�0
� ˆA✏

⇤

�0
)�kX (34)

since the operators are self adjoint. We claim

k( ˆA✏j�0
� ˆA✏

⇤

�0
)�kX ! 0. (35)

Indeed, for  = (�1,  1) 2 X,

((

ˆA
✏j
�0

� ˆA✏
⇤

�0
)�, )X =

Z

D

(q✏j � q✏⇤)��1 dx (36)

=

Z

D(✏j ,✏⇤)
(q1 � q0)��1 dx (37)

where D(✏j , ✏⇤) is the set defined in Assumption 3.3. Thus,

((

ˆA
✏j
�0

� ˆA✏
⇤

�0
)�, )X  kq1 � q0kL1Dk�kL2(D(✏j ,✏⇤))k kX ! 0 (38)

by the dominated convergence theorem. This proves assertion (35) after taking the
supremum over all  2 X. Combining (34) and (35) yields

(

ˆA
✏j
�0
Uj ,�)X

k�kX
=

(

ˆA✏
⇤

�0
Uj ,�)X

k�kX
+ o(1). (39)

Next, by (32), for any � 2 X, we have

lim

j!1

â
✏j
�0
(Uj ,�)X

k�kX
! 0, (40)
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and therefore, (39) becomes

(

ˆA✏
⇤

�0
Uj ,�)X

k�kX
! 0. (41)

Recall Uj converges weakly to some U 2 X. Therefore, for any � 2 X,

lim

j!1
(

ˆA✏
⇤

�0
Uj ,�)X = (

ˆA✏
⇤

�0
U,�)X . (42)

Then, (42) and (41) gives
(

ˆA✏
⇤

�0
U,�)X = 0 (43)

for any � 2 X. We will show that this implies U = 0. Choosing � = (�w, v), (43)
implies Z

D

�(�v � �0v)w + (�v � �0v)w � q✏⇤ |w|2 dx = 0. (44)

By taking the real part, we have
Z

D

q✏⇤ |w|2 dx = 0. (45)

Since q✏⇤ is of one sign on R,
Z

R

|q✏⇤ ||w|2dx =

����
Z

R

q✏⇤ |w|2 dx
���� , (46)

and from (45) and Lemma 3.4,
����
Z

R

q✏⇤ |w|2 dx
���� =

�����

Z

D\R
q✏⇤ |w|2 dx

����� 

�����

Z

D\R
|q✏⇤ ||w|2 dx

����� 
1

2

Z

R

|q✏⇤ ||w|2dx. (47)

Thus, (46) and the above imply w = 0 on R because
Z

R

|q✏⇤ ||w|2dx  1

2

Z

R

|q✏⇤ ||w|2dx (48)

and q✏⇤ > ↵ on R. Since w solves �w � �0w = 0 in D, w is analytic by an
extension of Weyl’s theorem (see Corollary 11.4.13 [7]). We may then use analytic
continuation to conclude w = 0 on D. This also implies v = 0, since by choosing
� = (v, 0) and substituting � into (43),

Z

D

(�v � �0v)v dx = �
Z

D

|rv|2 + �|v|2 dx = 0. (49)

Assuming (31), we will show kUjkX ! 0, which contradicts that each Uj has norm
1. Recall that in our case the bilinear form is not fixed.

Let R0 be a neighborhood of R so that R0 ⇢ R [ @D. We take a non-negative
⇢1 2 C1

(D) defined to be

⇢1(x) =

⇢
1 x 2 R0

0 x 2 D \R (50)

and construct the sequence �j = (�⇢1wj , ⇢1vj) 2 X. Of course, due to (32) we
have that

â
✏j
�0
(Uj ,�j)

k�jkX
! 0. (51)

More explicitly,
1

k�jkX

Z

D

(�(⇢1vj)� �0⇢1vj)wj � (�vj � �0vj)⇢1wj � q✏⇢1|wj |2dx ! 0. (52)
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Given the support of ⇢1, we have
1

k�jkX

Z

R

(�(⇢1vj)� �0⇢1vj)wj � (�vj � �0vj)⇢1wj � q✏⇢1|wj |2dx ! 0. (53)

From the product rule,
�(⇢1vj) = vj�⇢1 + 2r⇢1 · rvj + ⇢1�vj . (54)

We substitute this into (53) and take the real part which yields

Re

1

k�jkX

Z

R

vjwj�⇢1 + 2wjr⇢1 · rvj � q✏⇢1|wj |2dx ! 0. (55)

Since k�jkX  kUjkX = 1 by construction, we must have

Re

Z

R

vjwj�⇢1 + 2wjr⇢1 · rvj � q✏⇢1|wj |2dx ! 0 (56)

since Uj * 0, vj * 0 in H2
(D). Since H2

(D) is compactly embedded in H1
(D), we

have vj converges strongly to 0 in H1
(D), since the inclusion operator is compact

and maps weakly convergent sequences to strongly convergent sequences. Therefore,
the first two terms in (56) go to 0, implying

Z

R

q✏⇢1|wj |2dx ! 0. (57)

Using the assumption that q✏ > ↵ > 0 on R and ⇢1 = 1 on R0, the previous line
implies wj ! 0 in L2

(R0
).

We again define a neighborhood R00 of @D such that its closure is in R0 [ @D.
For this neighborhood, we define a non-negative ⇢2 2 C1

(D) such that

⇢2(x) =

⇢
0 x 2 R00

1 x 2 D \R0.
(58)

Furthermore, we construct a sequence {zj} ⇢ H2
(D) which for each j solves

⇢
�zj � �0zj = wj in D

zj = 0 on @D.
(59)

By choosing �0
j = (0, ⇢2zj), we may conclude from (32) that

1

k�0
jkX

Z

D

(�(⇢2zj)� �0⇢2zj)wjdx ! 0. (60)

We use the product rule to obtain
�(⇢2zj) = zj�⇢2 + 2r⇢2 · rzj + ⇢2�zj , (61)

so that Z

D

(�(⇢2zj)� �0⇢2zj)wjdx

=

Z

D

(zj�⇢2 + 2r⇢2 · rzj + ⇢2�zj ,��0⇢2zj)wjdx

=

Z

D

(zj�⇢2 + 2r⇢2 · rzj + ⇢2wj)wjdx, (62)

using that zj solves (59). From Lemma 3.2, zj * 0 in H2
(D), and therefore zj ! 0

strongly H1
(D). Therefore,

1

k�0
jkx

Z

D

(zj�⇢2 + 2r⇢2 · rzj)wj dx ! 0, (63)
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from which (62) and (60) imply
Z

D

⇢2|wj |2dx ! 0. (64)

From the definition of ⇢2 this implies that wj ! 0 in L2
(D \ R0

). Thus, we have
that wj ! 0 in L2

(D).
Finally, we can show vj ! 0 in H2

(D). Take �00
= (�vj � �0vj , 0) 2 X. We

then have by (32),
1

k�00
j kX

Z

D

|�vj � �0vj |2 � q✏jwj(�vj � �0vj) dx ! 0. (65)

Of course,

1

k�00
j kX

Z

D

q✏jwj(�vj � �0vj) dx

 1

k�vj � �0vjkD
kq✏kL1(D)kwjkL2(D)k�vj � �0vjkL2(D) ! 0 (66)

since wj ! 0 in L2
(D) and q✏j is bounded uniformly in ✏j . From this, (65) implies

k�vj � �0vjkD ! 0. (67)

Since vj * 0 in H2
(D), it converges strongly in L2

(D), which implies from the
previous line that �vj ! 0 in L2

(D). Therefore, vj ! 0 in H2
(D). This proves

that kUjkX ! 0, which is impossible as kUjkX = 1 for all j.

Corollary 3.6. Let

ˆA✏� be defined by (14) and the family q✏ satisfy Assumption 3.3.

Then there exists a �0 > 0 such that the operator

ˆA✏�0
is invertible for every ✏ 2 I,

and the inverse operator is bounded uniformly with respect to ✏ 2 I.

Proof. Choose �0 as in the statement of Proposition 3.5. Then, the result of Propo-
sition 3.5 is sufficient to apply a generalized version of Lax Milgram (see Theorem
2.22 in [10]) which yields the result.

We end the section by combining the previous results to show following theorem,
which was first shown in [16].

Theorem 3.7. For a fixed q satisfying Assumption 3.3, the set of transmission

eigenvalues is discrete in C without any finite accumulation point.

Proof. We have shown that the transmission eigenvalue problem defined by (8) may
be written as finding a k > 0 such that

A�k2
=

ˆA�0 +K�k2,�0
(68)

has a non trivial kernel, where ˆA�0 is given by (14) and K�k2,�0
is given by (16).

From Corollary 3.6, we can select �0 as so that ˆA�0 is invertible. Since k2 !
K�k2,�0

is analytic and K is compact, the result follows from the analytic Fredholm
theorem.

Remark 3.8. For a fixed q 2 C1
(D) satisfying Assumption 3.3, the existence of

an infinite set of transmission eigenvalues as well as completeness of generalized
eigenfunctions are proven in [14]. In this case results on the counting function
for transmission eigenvalues can be found in [13], [15]. However, techniques from
semiclassical analysis used in these papers restrict the existence results to smooth q.
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For L1 contrast q, but under the assumption that q is one sign in D, the existence
of an infinite set of real transmission eigenvalues is shown in [3].

4. Transmission eigenvalue problem in the presence of small volume in-
homogeneities. We now introduce the class of inhomogeneities studied in the
remainder of this paper. We present here our convergence analysis and asymp-
totic formulas for real transmission eigenvalues. This is motivated by the fact that
only real transmission eigenvalues can be determined from the scattering data (see
e.g. [2]). However our results can be formulated and proven exactly in the same
way (with obvious modifications when writing the adjoint operators) for complex
transmission eigenvalues. Hence from now on we set ⌧ := �k2 and assume that
⌧ 2 R.

For simplicity of exposition, we first consider the case of a single inhomogeneity
centered at the origin. Let q0 2 C1

(D) be such that q0 satisfies

q0(x) > ↵ > 0 in R, (69)

a neighborhood of the boundary of D as defined in Assumption 3.3. (One could
equivalently assume q0 is negative on R.) Let now B be any open set containing
the origin. Consider ✏ > 0, and assume that

q✏ =

⇢
q0 x 2 D \ (✏B)

q1 x 2 ✏B
(70)

where q1 2 R. We will assume ✏ is small enough such that ✏B ⇢ D \ R. It is
straightforward to check that this family of q✏ satisfy the conditions in Assumption
3.3.

Assume that �0 is not a transmission eigenvalue and is such that the coercivity
in Proposition 3.5 holds. We define for � � �0,

A✏ := ˆA✏� =

✓
�q✏ �� �

(��)

�1
(�� �) 0

◆
, (71)

and

K✏(⌧) := K✏
⌧,� =

✓
0 �� ⌧(1 + q✏)

(��)

�1
(�� ⌧) 0

◆
. (72)

We further note that A✏ is self adjoint with respect to the inner product on X, but
K✏(⌧) is not. Its adjoint is given by

K⇤
✏ =

✓
0 �� ⌧

(��)

�1
((�� ⌧)� ⌧q✏) 0

◆
. (73)

In what follows we will use ⇤ to denote the adjoint with respect to the inner product
on X. Define

T✏(⌧) := �1

⌧
A�1
✏ K✏(⌧). (74)

Then, the transmission eigenvalue problem with scatterer q✏ may now be written as
finding ⌧✏ such that for U = (w, v) 2 X,

⌧✏T✏(⌧✏)U = U (75)

has a nontrivial solution.
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5. Preliminary estimates. We now will prove several lemmas about the opera-
tors A✏ and K✏, which we will later need to apply the perturbation theory.

Lemma 5.1. Let ⌧ 2 R and K✏ be defined by (71). Then we have the operator

norm estimate

kK✏(⌧)�K0(⌧)kL(X)  C|⌧ |✏d/2.

Proof. Let U := (w, v),� := (�,  ) 2 X. Then,

((K✏(⌧)�K0(⌧))U,�)X =� ⌧

Z

D

(q✏ � q0)v� dx

=� ⌧

Z

✏B

(q1 � q0)v� dx

|⌧ |kq1 � q0kL1(D)kvkL1(D)

Z

D

�✏B |�| dx

C|⌧ |kvkH2
0 (D)k�✏BkL2(D)k�kL2(D)

C|⌧ |✏d/2kUkXk�kX (76)

where we used Sobolev embedding and the definition of X.

Lemma 5.2. Let A✏ and R be defined by (71) and (69) respectively. Choose D0 ⇢
D \R to contain ✏B for all ✏ 2 I. Then, for U 2 X,

A✏U ! A0U and A�1
✏ U ! A�1

0 U

in the X norm. If in addition we know that the first component of U is in L1
(D0

),

we have

kA✏U � A0UkX  C✏d/2.

Furthermore, given F 2 X and U0 = A�1
0 F , if the first component of U0 is in

L1
(D0

), then

kA�1
✏ F � A�1

0 FkX  C✏d/2.

Proof. We will prove the statement about A✏ first and use that result to prove the
statement about the inverse. Let U,� 2 X. Then,

((A✏ � A0)U,�)X =

Z

D

(q0 � q✏)w� dx
Z

✏B

(q0 � q1)w� dx

 kq0 � q1kL1(D)kwkL2(✏B)k�kL2(D)

 o(1)k�kX . (77)

This proves the first statement. The second follows from the estimate

((A✏ � A0)U,�)X =

Z

D

(q0 � q✏)w� dx
Z

✏B

(q0 � q1)w� dx

 kq0 � q1kL1(D)kwkL1(D)k�✏BkL2(D)k�kL2(D)

 C✏d/2k�kX (78)

when w 2 L1
(D0

) where ✏B ⇢ D0.
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Now, we will prove the estimate on the inverse. Let F 2 X and define

A✏U✏ = F and A0U0 = F. (79)

Then, for U0 := (w0, v0), we obtain

(A✏(U✏ � U0),�)X =((A0 � A✏)U0,�)X

 k(A0 � A✏)U0kXk�kX . (80)

Dividing by k�kX and taking the supremum, we use Proposition 3.5 to obtain

k(A�1
✏ � A�1

0 )FkX = kU✏ � U0kX  1

c
k(A0 � A✏)U0kX . (81)

Since A✏ converges strongly to A0, we have the strong convergence of the inverse
from (81). Furthermore, if the first component of U0 is in L1

(D0
), we have the

desired estimate on the inverse from (78) and (81).

We now have an estimate on the composition of the operators.

Lemma 5.3. Let ⌧ 2 R. Define A✏ and K✏(⌧) by (71). Then,

kA�1
✏ K✏(⌧)� A�1

0 K0(⌧)kL(X)  C✏d/2 max {|⌧ |, 1} .

Proof. Observe that we can write

A�1
✏ K✏(⌧)�A�1

0 K0(⌧) = A�1
✏ (K✏(⌧)�K0(⌧))+ (A�1

✏ �A�1
0 )K0(⌧) := I+ II. (82)

Since A�1
✏ converges in the strong topology by Lemma 5.2, its norm is bounded by

the Uniform Boundedness Principle. This norm bound and Lemma 5.1 together
imply that I converges in the norm topology, and in particular that

kA�1
✏ (K✏(⌧)�K0(⌧))kL(X)  C|⌧ |✏d/2. (83)

Since A�1
✏ converges and is preceded by a compact operator, II converges in norm

as well, but we would like to also estimate the ⌧ dependence. For convenience we
prove the estimates for slightly more general operator

K(t, f) :=

✓
0 tf

t(��)

�1
0

◆
(84)

for given f 2 C1
(D) and t 2 R. Take M = (m,n) 2 X. Then, define M0 :=

A�1
0 K(t, f)M . Notice that the first component of K(t, f)M is tfn 2 H2

0 (D). We
now compute estimates as in the proof of Lemma 5.2:

((A✏ � A0)K(t, f)M,�)X = t

Z

D

(q0 � q✏)fn� dx

= t

Z

✏B

(q0 � q1)fn� dx

 |t|kfkL1(D)kq0 � q1kL1(D)knkL1(D)k�✏BkL2(D)k�kL2(D)

 C✏d/2knkH2
0 (D)k�kX

 C✏d/2kMkXk�kX (85)

by the Sobolev Embedding of H2
0 (D) into C0

(D). We hence have shown that

k(A✏ � A0)K(t, f)kL(X)  C✏d/2. (86)
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From (81), we obtain

k(A�1
✏ � A�1

0 )K(t, f)MkX  1

c
k(A0 � A✏)K(f, t)MkX

 Ck(A✏ � A0)K(t, f)kL(X)kMkX
 C✏d/2kMkX , (87)

implying
k(A�1

✏ � A�1
0 )K(t, f)kX  C✏d/2. (88)

Note that K0 = K(�, 1) + ⌧K(�1, q0), and so

(A�1
✏ � A�1

0 )K0(⌧) = (A�1
✏ � A�1

0 )K(�, 1) + ⌧(A�1
✏ � A�1

0 )K(�1, q0). (89)

Therefore, by applying (88), we have that II also converges in norm and

k(A�1
✏ � A�1

0 )K0(⌧)kL(X)  C(1 + |⌧ |)✏d/2. (90)

5.1. Convergence on the eigenspace. Let us define U = (w, v) 2 X be a trans-
mission eigenfunction for the background problem (74) when ✏ = 0, corresponding
to a transmission eigenvalue ⌧ :

⌧T0(⌧)U = U. (91)

We will now define a correction for the difference between A�1
✏ and A�1

0 . By stan-
dard elliptic regularity, the first component of A�1

0 U , w0, is H2
loc(D). Therefore, it

is well defined at the center of the inhomogeneity and we can define  ✏, C✏ 2 X by

 ✏ =

✓
�✏B
0

◆
(92)

and
C✏ = (q1(0)� q0(0))w0(0) ✏. (93)

Lemma 5.4. Let A✏ be defined by (71) and C✏ by (93). Define ↵ > 0 such that

H2
(D) ⇢ C0,↵

(D). Then

kA�1
✏ U � A�1

0 U � A�1
✏ C✏kX  C✏d/2+↵,

where U is the solution to the background equation (91).

Proof. Define
A✏U✏ = U and A0U0 = U. (94)

Let U0 := (w0, v0) and note that w0 2 H2
loc(D). Consider D0 to be a C2 domain

satisfying ✏B ⇢ D0 ⇢ D for ✏ 2 I. Sobolev Embedding yields H2
(D0

) ⇢ C0,↵
(D0

)

for some ↵ > 0, and therefore, w0 2 C0,↵
(D0

). This allows us to obtain the bound

(A✏(U✏ � U0 � A�1
✏ C✏),�)X =((A0 � A✏)U0 � C✏,�)X

=

Z

✏B

�
(q1 � q0)w0 � (q1(0)� q0(0))w0(0)

�
� dx

 C✏↵
Z

✏B

|�| dx

 C✏↵k�✏BkL2(D)k�kL2(D)

 C✏d/2+↵k�kX . (95)
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By Proposition 3.5 and the argument at the end of Lemma 5.2, we have

k(A�1
✏ � A�1

0 )U � A�1
✏ C✏kX  1

c
k(A0 � A✏)U0 � C✏kX , (96)

which yields the result.

We will now derive estimates for the strong operator convergence of the adjoint.
Recall that our operator

T✏(⌧) := �1

⌧
A�1
✏ K✏(⌧),

where A✏ is self adjoint, but K✏(⌧) is not.

Lemma 5.5. Let U be the solution of the background equation (91) and ↵ > 0 such

that H2
(D) ⇢ C0,↵

(D). Then,

k(K✏(⌧)⇤A�1
✏ �K0(⌧)

⇤A�1
0 )UkX  C(1 + |⌧ |)O(✏d/2+↵).

Proof. We begin by adding and subtracting to obtain

(K✏(⌧)⇤A�1
✏ �K0(⌧)

⇤A�1
0 )U = (K✏(⌧)⇤ �K0(⌧)

⇤
)(A�1

✏ � A�1
0 )U

+ (K✏(⌧)⇤ �K0(⌧)
⇤
)A�1

0 U +K0(⌧)
⇤
(A�1

✏ � A�1
0 )U. (97)

The first term on the right hand side above converges with a speed of O(|⌧ |✏d)
thanks to Lemmas 5.1 and 5.2 and the regularity of the eigenfunction U . Recall
that in the proof of the previous lemma we defined U0 := (w0, v0) by A0U0 = U ,
and that the first component w0 is in H2

loc(D). For the second term on the right
hand side of (97), we observe that for D0 with D0 ⇢ D containing ✏B,

((K⇤
✏ (⌧)�K⇤

0(⌧))U0,�)X =⌧

Z

✏B

(q1 � q0)w0 dx

|⌧ |k(q1 � q0)w0kL1(D0)k kL1(D)✏
d

C|⌧ |✏dk kH2
0 (D)

C|⌧ |✏dk�kX (98)

using Sobolev Embedding. Finally, for the third term on the right hand side of (97),
we have that

K0(⌧)
⇤
(A�1

✏ � A�1
0 )U = K0(⌧)

⇤
(A�1

✏ U � A�1
0 U � A�1

✏ C✏) +K0(⌧)
⇤A�1

✏ C✏ (99)

where C✏ is defined by (93). The first term in (99) is O((1 + ⌧)✏d/2+↵) by Lemma
5.4. We now estimate the second term where we keep in mind the fact that the
operator K0 is smoothing:

(K⇤
0(⌧)A�1

✏ C✏,�)X =(C✏,A�1
✏ K0(⌧)�)X

=(C✏, (A�1
✏ � A�1

0 )K0(⌧)�)X + (C✏,A�1
0 K0(⌧)�)X . (100)

Consider the first term on the right hand side of (100). It is obvious that kC✏kX 
C✏d/2 by the definition, and we recall from (90) that

k(A�1
✏ � A�1

0 )K0(⌧)kL(X)  C(1 + |⌧ |)✏d/2. (101)

These results combine to yield

(C✏, (A�1
✏ � A�1

0 )K0(⌧)�)X  kC✏kXk(A�1
✏ � A�1

0 )K0(⌧)kL(X)k�kX
 C✏d/2(1 + |⌧ |)✏d/2k�kX . (102)
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For the last term on the right hand side of (100), consider the first component of
A�1

0 K0�, and let us denote it by  0. For for some D0 compactly contained in D
containing ✏B, we use Sobolev embedding on  0:

|(C✏,A�1
0 K0(⌧)�)X | =

����(q1(0)� q0(0))w0(0)

Z

✏B

 0 dx

����

Ck 0kL1(D0)✏
d

Ck 0kH2(D0)✏
d.

C(1 + |⌧ |)k�kX✏d. (103)
This completes the proof.

5.2. Inner product estimates. We will need the following lemmas to derive the
asymptotic formula for the eigenvalues.

Lemma 5.6. Let d = 2, 3. For A✏ be defined by (71) and  ✏ by

 ✏ =

✓
�✏B
0

◆
(104)

we have that

( ✏,A�1
✏  ✏)X = O(✏

3
2d
)

holds as ✏! 0.

Proof. Let ⇠✏ denote the first component of A�1
✏  ✏ and R as defined in (69). Then,

by definition of A�1
✏ , ⇠✏ is a weak (or distributional) solution to

�⇠✏ � �⇠✏ = 0 in D (105)
which implies, in particular, that ⇠✏ 2 C1

(D) [7]. One may use Green’s represen-
tation formula to show that

|⇠✏(x)|  C

Z

R

|⇠✏(t)| dt for x 2 ✏B ⇢ D \R, (106)

as in the proof of Lemma 3.4. This implies

|⇠✏(x)|  C 0k⇠✏kL2(D)  C 0kA�1
⌧,✏kL(X)k ✏kX := C 00✏d/2 (107)

because the norm of A�1
✏ is bounded due to Lemma 5.2 and the Uniform Bounded-

ness Principle. Therefore, we have the result
��
( ✏,A�1

✏  ✏)X

��
=

����
Z

✏B

⇠✏ dx

����  C 00✏d/2
Z

✏B

dx = O(✏
3
2d
). (108)

Lemma 5.7. Let U = (w, v) be the transmission eigenfunction solving (91) and

the operators A✏ and K✏ be defined by (71). For ↵ such that H2
(D) ⇢ C0,↵

(D),

((A�1
✏ K✏(⌧)�A�1

0 K0(⌧))U,U)X = ✏d(q1(0)�q0(0))w0(0)|B| (⌧v(0)� w(0))+O(✏d+↵)

where w0 is the first component of A�1
0 U .

Proof. First, we observe

((A�1
✏ K✏(⌧)� A�1

0 K0(⌧))U,U)X = ((A�1
✏ � A�1

0 )(K✏(⌧)�K0(⌧))U,U)X

+ ((A�1
✏ � A�1

0 )K0(⌧)U,U)X + (A�1
0 (K✏(⌧)�K0(⌧))U,U)X

:= I + II + III.
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For I, we can use the fact that A0 is self adjoint and add and subtract a correction
term to obtain

I = ((K✏(⌧)�K0(⌧))U, (A�1
✏ �A�1

0 )U �A�1
✏ C✏)X +((K✏(⌧)�K0(⌧))U,A�1

✏ C✏)X

 k(K✏(⌧)�K0(⌧))UkXk(A�1
✏ � A�1

0 )U � A�1
✏ C✏kX

+ ((K✏(⌧)�K0(⌧))U,A�1
✏ C✏)X

= ((K✏(⌧)�K0(⌧))U,A�1
✏ C✏)X +O((1 + ⌧)✏d+↵)

by combining Lemmas 5.1 and 5.4. Recall that U := (w, v) with v 2 H2
0 (D), and

let ⇠✏ denote the first component of A�1
✏  ✏. Using the definition of  ✏ and C✏ in

(92) and (93) we find,

((K✏(⌧)�K0(⌧))U,A�1
✏ C✏)X = �(q1(0)� q0(0))w(0)⌧

Z

✏B

(q1 � q0)v⇠✏ dx. (109)

The Hölder continuity of v with exponent ↵ from Sobolev embedding, with ↵ as in
Lemma 5.6, gives

((K✏(⌧)�K0(⌧))U,A�1
✏ C✏)X = �⌧(q0(0)�q1(0))

2v(0)w(0)( ✏,A�1
✏  ✏)X+O(✏

3
2d+↵

).

Thus, we conclude that
I = O(✏d+↵) (110)

by Lemma 5.6.
For the second term, we first manipulate it algebraically. Since U satisfies the

background equation, the following equality holds:

� U = A�1
0 K0(⌧)U. (111)

Therefore, we compute

II =((A�1
✏ � A�1

0 )K0(⌧)U,U)X

=(A�1
✏ (A0 � A✏)A�1

0 K0(⌧)U,U)X

=� ((A0 � A✏)U,A�1
✏ U)X . (112)

From Lemmas 5.2 and 5.4, we may again use the correction to conclude that

II = �((A0 � A✏)U,A�1
0 U + A�1

✏ C✏)X +O

✓
1

⌧
✏d+↵

◆
. (113)

Recall that we denote the first components of A�1
0 U and U by w0 and w respectively,

and that w0 2 H2
loc(D) and w 2 C1

loc(D). In fact, w is C1
(D) (see Theorem 11.1.1

[7]). In particular, both are in H2
(D0

) for some D0 ⇢ D containing ✏B. We may
also use Hölder continuity as in (5.2) to obtain

((A0 � A✏)U,A�1
0 U)X

=

Z

✏B

(q1 � q0)ww0dx = ✏d|B|(q1(0)� q0(0))w(0)w0(0) +O(✏d+↵). (114)

Let ⇠✏ denote the first component of A�1
 ✏. We may also use the Hölder continuity

argument from (5.2) to show

((A0 � A✏)U,A�1
✏ C✏)X =(q1(0)� q0(0))w(0)

Z

✏B

(q1 � q0)w⇠✏ dx

=(q1(0)� q0(0))
2|w(0)|2( ✏,A�1

✏  ✏)X +O(✏d+↵). (115)



18 FIORALBA CAKONI, SHARI MOSKOW, AND SCOTT ROME

Lemma 5.6 combined with the above yields

II = �✏d(q1(0)� q0(0))w(0)w0(0)|B|+O(✏d+↵). (116)

The estimation of the third term is similar. Again, as v and w0 are in H2
loc(D), we

may use Hölder continuity to conclude that

III =((K✏(⌧)�K0(⌧))U,A�1
0 U)X

=� ⌧

Z

✏B

(q0 � q1)vw0 dx

=� ⌧✏d(q0(0)� q1(0))v(0)w0(0)|B|+O(✏d+↵). (117)

We combine all terms to obtain

((A�1
✏ K✏(⌧)� A�1

0 K0(⌧))U,U)X

= �⌧
⇣
✏d(q0(0)� q1(0))v(0)w0(0)|B|

⌘
�
⇣
✏d(q1(0)� q0(0))w(0)w0(0)|B|

⌘
+O(✏d+↵)

= ✏d(q1(0)� q0(0))w0(0)|B| (⌧v(0)� w(0)) +O(✏d+↵),

which completes the proof.

6. Eigenvalue correction formula. In this section, we will use the following
nonlinear eigenvalue correction result from [11] to obtain an asymptotic formula for
a simple transmission eigenvalue.

Theorem 6.1 (Nonlinear Eigenvalue Correction [11]). Let X be a Banach space

and {T✏(�) : X ! X} a set of compact operator valued functions of � which are

analytic in a region U of the complex plane, such that T✏(�) ! T0(�) in norm as

✏! 0 uniformly for � 2 U . Let �0 6= 0, �0 2 U be a simple nonlinear eigenvalue of

T0,
�0T0(�0)� = �,

define DT0(�0) to be the derivative of T0 with respect to � evaluated at �0, and let

� be the normalized eigenfunction and �⇤ its dual. Then for any ✏ small enough

there exists �✏, a simple nonlinear eigenvalue of T✏, such that if

�20hDT0(�0)�, �
⇤i 6= �1

we have the following formula

�✏ � �0 = �20
h(T0(�0)� T✏(�0))�, �⇤i
1 + �20hDT0(�0)�, �⇤i

+O

✓
sup

�2U
k(T✏(�)� T0(�))

��
R(E)

kk(T ⇤
✏ (�)� T ⇤

0 (�))
��
R(E)⇤

k
◆

where R(E) is the space spanned by � and R(E)

⇤
is its dual or the space spanned

by �⇤.

We now apply this theorem to our operators to obtain the correction formula.

Theorem 6.2. Let U = (w, v) 2 X be the normalized transmission eigenfunction

for the background problem (91), with simple eigenvalue ⌧ . Then for any ✏ small

enough there exists a simple eigenvalue ⌧✏ of the perturbed problem (74) such that

⌧✏ ! ⌧ . Furthermore, for kUkX = 1 and ↵ > 0 such that H2
(D) ⇢ C0,↵

(D),

⌧✏ � ⌧ = �✏
d

!
(q1(0)� q0(0))w0(0)|B| (⌧v(0)� w(0)) +O(✏d+↵),
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when

! :=

Z

D

(1 + q0)vw0 + wv0 dx

is nonzero and (w0, v0) 2 X solves

�v0 � �v0 = w + q0w0 in D

�w0 � �w0 = ��v in D

for some fixed � � �0 with �0 as defined in Proposition 3.5.

Proof. Let T✏ and T0 be defined by (74) and recall A�1
0 U = (w0, v0) with A0 defined

by (71). Then, by Lemma 5.3, we have the norm convergence which allows us
to apply Theorem 6.1. From Lemmas 5.3 and 5.5, we obtain that the rate of
convergence of the tail is O(✏d+↵). (Note that the norms are restricted to one
dimensional subspaces there.) The estimate in the inner product in Lemma 5.7
therefore yields the formula

⌧✏ � ⌧ = ✏d⌧
(q1(0)� q0(0))w0(0)|B| (⌧v(0)� w(0))

1 + ⌧2(DT0(⌧)U,U)X
+O(✏d+↵), (118)

assuming the denominator is nonzero. We now calculate DT0(⌧). Recall that

T0(⌧) = �1

⌧
A�1

0 K0

with A0 independent of ⌧ . From the product rule we have that

DT0(⌧) =
1

⌧2
A�1

0 K0(⌧)�
1

⌧
A�1

0 DK0,

and since K0 is linear in ⌧ , DK0 = C where C : X ! X is given by

C = �
✓

0 �(1 + q0)
�(��)

�1
0

◆
. (119)

Hence
DT0(⌧) =

1

⌧2
A�1

0 K0(⌧)�
1

⌧
A�1

0 C.

We next calculate that

⌧2 (DT0(⌧)U,U)X =

�
(A�1

0 K0(⌧)� ⌧A�1
0 C)U,U

�
X

= �1�⌧
�
CU,A�1

0 U
�
X

(120)

since A�1
0 K0(⌧)U = �U. So, the denominator in (118) becomes

1 + ⌧2 (DT0(⌧)U,U) = �⌧
�
CU,A�1

0 U
�
,

which is precisely ⌧!, from which the result follows. We remark also that the
nonzero denominator condition can be written as✓✓

0 �(1 + q0)
�(��)

�1
0

◆
U,A�1

0 U

◆

X

6= 0. (121)

We end this section by remarking that the above analysis holds true if the back-
ground with contrast q0(x) is perturbed by many small volume inhomogeneities of
arbitrary smooth shape. In particular, for i = 1, . . . ,m, we define the bounded open
set Bi to be smooth deformations of a ball centered at the origin, so that zi + ✏Bi

is a small inhomogeneity centered at zi. We also assume that ✏ is small enough so
that each scaled ball is separated from the others and is inside D \R, in particular
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Table 1. Parameters for Numerical Example

Domain D [�1, 1]
Background Transmission Eigenvalue k =

p
�⌧ 7.12761

Background Coefficient q0 6.29
Perturbed Coefficient q1 24

Parameter � 50.72217

(zi + ✏Bi) \ (zj + ✏Bj) = ; for i 6= j and (zi + ✏Bi) ⇢ D \R, where R is defined by
(69). We let W✏ be the union of these inhomogeneities, that is

W✏ :=

m[

i=1

(zi + ✏Bi) ,

and we define the perturbed contrast q✏:

q✏(x) =

⇢
qi x 2 zi + ✏Bi, i = 1, . . . ,m
q0 x 2 D \W✏

(122)

where the qi 2 R are constants. In this case the main result of Theorem (6.2
becomes (see also [4] and [6])

Theorem 6.3. Let U = (w, v) 2 X be the normalized transmission eigenfunction

for the background problem (91), with simple eigenvalue ⌧ . Then for any ✏ small

enough there exists a simple eigenvalue ⌧✏ of the perturbed problem (74) such that

⌧✏ ! ⌧ . Furthermore, for kUkX = 1 and ↵ > 0 such that H2
(D) ⇢ C0,↵

(D),

⌧✏ � ⌧ = �✏
d

!

mX

i=1

(qi(zi)� q0(zi))w0(zi)|Bi| (⌧v(zi)� w(zi)) +O(✏d+↵),

when

! :=

Z

D

(1 + q0)vw0 + wv0 dx

is nonzero and (w0, v0) 2 X solves

�v0 � �v0 = w + q0w0 in D

�w0 � �w0 = ��v in D

for some fixed � � �0 with �0 as defined in Proposition 3.5.

7. Numerical Example. We will now attempt to validate our asymptotic formula
with a one dimensional numerical experiment. Although the theory here was for
dimensions d = 2, 3, we expect the same results to hold in dimension one. We choose
our scatterer D to be the interval [�1, 1] assume there is a single inhomogeneity
centered at the origin. We define q✏ on D to be

q✏ :=

⇢
q1 x 2 (�✏, ✏) := ✏B
q0 otherwise

(123)

The definition of D and choices for parameters k, q0 and q1 are detailed in Table 1.
We note that we also chose q0 so that the background eigenvalue is simple.

Recall that one also needs to choose the parameter � in the definition of T
(which we used to divide the operator into invertible plus compact). The best
choice numerically for � is not obvious, and several different choices were found to
yield the same correction accurately.
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Figure 1. Comparison of perturbed eigenvalues and corrected ei-
genvalues. The red circles are the perturbed transmission eigenva-
lues (squared) and the blue stars the corrected approximations for
various values of ✏. The x-axis is log10 ✏.
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Figure 2. Log/log plot of the error (⌧✏ � (⌧0 + ✏⌧ (1)))/✏.

Figures 1 and 2 show a comparison of the perturbed eigenvalues with the cor-
rected eigenvalues for various values of ✏, using the formula from Theorem 6.2. An
empirical study of the convergence rate 1 + ↵ found in Theorem 6.2 yielded

↵ ⇡ 0.9625, (124)

or approximately ✏2 convergence, as expected.

8. Conclusion. In this paper we have derived rigorously a correction formula for
the transmission eigenvalues of perturbations of inhomogeneous media without sign
restrictions on the contrast (except for a region around the boundary). This was
accomplished by using the formulation the nonlinear eigenvalue correction formula
[11] which is an extension of Osborn’s theorem [12]. We then corroborated the
results by conducting a numerical simulation which demonstrated the accuracy
of the asymptotic formulas. Note that the formula derived in [6] was based on
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a different formulation of the transmission eigenvalue problem that requires that
q be of one sign. Hence the formula derived here is more general, but has the
disadvantage of requiring one to solve an auxiliary partial differential equation.
Since the two should of course coincide when q is of one sign, it would be interesting
to see if a general formula exists without the need for solving an auxiliary problem.

It may also be possible to use the asymptotic formula to reconstruct the location
and/or strength of small the inhomogeneities inside the scatterer. A first attempt
along these lines is made in [4]. The formulas derived depend on the background
medium, the background transmission eigenvalue, the size and contrast of the in-
homogeneity, and the location of the center of the inhomogeneity. If knows the size
and contrast of the inhomogeneity, perhaps one can use this formula to determine
its location. This is the subject of future work.
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