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We present a method to precondition the discretized Lippmann-Schwinger inte-4

gral equations to model scattering of time-harmonic acoustic waves through a thin5

inhomogeneous scattering medium. The preconditioner is based on asymptotic results6

as the thickness of the third component direction goes to zero and requires solving a7

two dimensional formulation of the problem at the preconditioning step.8
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1. Introduction. We consider the problem of scattering time-harmonic acoustic11

waves through thin, three dimensional inhomogeneities. This physical phenomenon is12

relevant in the study of photonic band gap structures. Such structures are designed to13

guide the propogation of light by blocking certain wavelengths in the band gap, while14

allowing others to pass freely through. Such structures facilitate information propaga-15

tion in optical communication networks and in optical computing. We consider three16

dimensional slab waveguides with two dimensional photonic crystal strucutre. Such17

structures are typically constucted with a high refraction index and are imbedded in18

a homogenous scattering medium, typically air. See [19], [20], [6] for more on thin19

photonic band gap structures.20

We are considering time-harmonic wave phenomenon modeled by the Helmholtz21

equation, whose solution gives the spatial component of the total wave velocity poten-22

tial. We solve the Helmholtz equation by numerically approximating the equivalent23

Lippmann-Schwinger volume integral equation [5]. The resulting finite dimensional24

linear system is large, dense, and non-Hermitian, however there are efficient matrix-25

vector product routines that make an iterative solver an appealing approach, see e.g.26

[1, 3, 8, 7, 14, 15]. However, spectral properties of the system often cause Krylov27

subspace based iterative methods to converge slowly.28

Moskow, Santosa, and Zhang demonstrated in [13] an asymptotic expansion of29

the Lippmann-Schwinger integral equation for inhomogeneities that are thin in one30

component direction. They showed that the difference in the solution to a two dimen-31

sional integral equation and the full three dimensional problem differed by O(h) as32

h→ 0, where h is the width of the inhomogeneity in the thin component direction. A33

natural extension of their work is to precondition the three dimensional problem using34

the two dimensional operator. In order for this approach to work, one must be able to35

formulate the preconditioner so that it can be applied to three dimensional data and36

yet be solved with the complexity of a two dimensional problem. We give a solution to37

this problem in section 2 and describe the numerical implemention in section 4. Fur-38

thermore we extend the asymptotic results of [13] into bounds on the GMRES residual39

applied to the preconditioned system in section 3. In section 5, we demonstrate the40
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2 J. A. SIFUENTES, S. MOSKOW

effectiveness of the preconditioner to significantly improve convergence speed and the41

efficacy of the bounds we develop.42

1.1. Problem Formulation. We consider the setting of an inhomogenous scat-43

tering medium S ∈ R3, thin in the third component direction, and set in a homogenous44

host medium such as air or some fluid. Let S be the cartesian cross product of its two45

dimensional cross section, Ω and the thin, third component direction [−h/2, h/2], i.e.46

S = Ω× [−h/2, h/2].47

The total scattered field u ∈ C2(R3) is modeled by the Helmholtz equation48

∆u+ κ2ε(s)u = 0 for all s ∈ R3(1)49

where the parameter κ is called the wave number and defined to be κ = ω/c0 for50

temporal frequency ω with c0 denoting the speed of wave propogation in the host51

medium. The total scattered field u = ui + us is the sum of a given incident wave52

ui and a scattered wave us. We require the scattered wave to satisfy the Sommerfeld53

radiation condtion, which implies there is no wave reflection at infinity [5]:54

∂us

∂r
− iκus = o(1/r), r = ‖s‖.(2)55

The incident wave ui satisfies the freespace Helmholtz equation, ∆ui + κ2ui = 0 for56

all of R3.57

Since we are considering the setting of two dimensional photonoic crystal struc-58

tures in a three dimensional scattering inhomogeneity, the refractive index is constant59

in the direction of the thin component direction. We adapt the convention of Moskow60

et. al. [13], where we write that the refractive index is represented by ε0(x)/h, where61

h is the length of the thin side. While refractive indices are material properties that62

do not depend on size, high refraction indices are necessary to sufficiently reduce the63

wavelength on the order of the length of the waveguide in the thin direction. Thus64

we define the refractive index function65

ε(x, z) =

{
1 for (x, z) 6∈ S;
ε0(x)
h for (x, z) ∈ S,(3)66

where ε0 is compactly supported on Ω. If u = us + ui satisfies equations (1) and (2),67

then u is also a solution to the Lippmann-Schwinger volume integral equation [5]68

u(s) + κ2

∫
S

(
1− εo(x

′)

h

)
G(s, s′)u(s′) ds′ = ui(s),(4)69

where x′ is the vector of the first two components of s′ and G(s) is the freespace70

Green’s function given by71

G(s, s′) =
eiκ‖s−s

′‖

4π‖s− s′‖
.(5)72

Separating the integral domain S into Ω and [−h/2, h/2] and letting s = (x, z) for
x ∈ Ω and z ∈ [−h/2, h/2], we rewrite the Lippmann-Schwinger equation (4) as

u(x, z) + κ2

∫
Ω

∫ h/2

−h/2

(
1− εo(x

′)

h

)
G((x, z), (x′, z′))u(x′, z′) dz′dx′ = ui(x, z),
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and apply the linear change of variable z = hζ to obtain

u(x, ζ) + κ2

∫
Ω

∫ 1/2

−1/2

(h− εo(x′))G((x, hζ), (x′, hζ ′))u(x′, ζ ′) dz′dx′ = ui(x, hζ).

We write this compactly as73

(I +K)u(x, ζ) = ui(x, hζ),(6)74

where75

(Ku)(x, ζ) := κ2

∫
Ω

∫ 1/2

−1/2

(h− εo(x′))G((x, hζ), (x′, hζ ′))u(x′, ζ ′) dζ ′dx′.(7)76

2. Application of the GMRES iterative method. Consider applying the77

GMRES iterative method [16] to the continuous equation (6). Since the operator we78

are interested in is of the form A := I +K, where K is compact, then A is bounded79

and has only a finite spectrum outside any neighborhood of one [11, pg. 421]. Thus,80

unlike discretizations of the Helmholtz equation (1), refining the discretizations of81

the Lippmann-Scwinger equation has little effect on the conditioning of the resulting82

linear system and therefore little effect on GMRES performance [10], [9]. Numerical83

experiements in [17] show that increased mesh resolution only adds high frequency84

eigenmodes to the spectrum, corresponding to eigenvalues of A close to one. Then85

we should expect that convergence analysis of the continuous case gives insight to86

convergence behavior of the discretized problem, see e.g. [2, 12, 18, 21].87

The continuous GMRES problem is the iterative minimization problem that solves88

at iteration m:89

‖rm‖ = min
u∈Km(A,ui)

‖ui −Au‖,(8)90

where Km(A, ui) := span{ui, Aui, A2ui, · · · , Am−1ui} is the Krylov subspace and ‖ · ‖91

is an appropriate operator norm. In our paper, and following the results of Moskow,92

et. al [13], we will use the L∞(X) vector norm and the operator norm it induces,93

where X is a compact set in R2 or R3 depending on context. Since the GMRES94

solution to the iterative minimization problem is the product of a linear combination95

of monomials of A and ui, we can write um as a product of a polynomial evaluated96

at A of degree m − 1 and the incident wave ui, and thus we can write the residual97

rm = ui −Aum as the product of a polynomial evaluated at A of degree m times ui,98

such that the polynomial is one at the origin. Then equation (8) is equivalent to99

‖rm‖ = min
pm∈P0

m

‖pm(A)ui‖,100

where P0
m is the set of all polynomials of degree m or less with a value of 1 when101

evaluated at the origin.102

In practice, when the GMRES method is applied to the discretized linear system,103

an orthogonal basis for the approximating space is generated by the Arnoldi iteration104

[16], therefore the cost per iteration and memory requirements grows with each iter-105

ation as more memory is needed to record the basis for the growing Krylov subspace.106

Thus, GMRES, is feasible if the number of iterations remain small. However GMRES107

is too computationally expensive for this problem without effective preconditioning.108
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4 J. A. SIFUENTES, S. MOSKOW

This is where we utilize the asymptotic results of [13] as a guide to building an109

effective preconditioning scheme. That is, rather than apply GMRES to equation (6),110

we solve the equivalent problem111 (
AA−1

0

)
(A0u) = ui,112

where a substantially lower order polynomial in P 0
m is small when evaluated at AA−1

0 ,113

and one can solve A0y = z relatively quickly for an arbitrary function z ∈ C(S). In114

this case, the right hand side data need have no physical meaning (it is actually a basis115

vector of the Krylov subspace of the current GMRES iteration). We point out that116

the regime for which preconditioning is necessary is when κ2(h − ε0) is of sufficient117

magnitude that the compact integral operator K defined in (7) is not less than one in118

magnitude. Since the operator A is a compact (and thus bounded) perturbation to119

the identity, if the compact perturbation is relatively small, then GMRES is expected120

to converge quickly without preconditioning.121

To build our preconditioning operator A0, consider the two dimensional integral122

equation123

(I −K2D)u0(x) = ui(x, 0)(9)124

where125

(K2Du0)(x) := κ2

∫
Ω

εo(x
′)G((x, 0), (x′, 0))u0(x′) dx′.(10)126

This is the two dimensional operator used to describe asymptotic behavior of a scat-127

tered wave over thin scattering domains. Note, however, that in order to use (9) as128

a preconditioner, we must pose it as a three dimensional integral operator to match129

the dimensions of the objective problem. Thus we define K0 : C(S)→ C(Ω) by130

(K0u)(x, η) = K2D

(∫ 1/2

−1/2

u(x, η) dη

)
(11)131

Note that K0 has a domain of continuous functions defined over the three dimensional132

compact set S, but has a range of functions that are constant in the z direction. Then133

the preconditioning operator is defined to be A0 := I −K0. Lemma 2 of [13] shows134

that A0 is continuously invertible on both L2(S) and C(S).135

2.1. Solving the Preconditioning Step as a two dimensional system. As136

mentioned before, the right hand side data for the preconditioning operator A0 has137

no physical interpretation, nor is it necessarily constant in the direction of the third138

component. Furthermore, for such a system (A0y)(s) = z(s), the solution y(s) need139

not be constant in the third component direction. However, this preconditioner, is140

only useful if we can solve it as a two dimensional problem.141

We solve this problem by noting that if (A0y)(s) = z(s), then

(K0y)(s) = y(s)− z(s).

This implies that y(s) − z(s) is constant in the z direction and therefore equal to142 ∫ 1/2

−1/2
y(x, ζ)− z(x, ζ) dζ This gives us the equation143

κ2

∫
Ω

∫ 1/2

−1/2

ε(x′)G((x, 0), (x′, 0))y(x′, ζ ′) dζ ′ dx′ =

∫ 1/2

−1/2

y(x, ζ ′)− z(x, ζ ′) dζ ′,144
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which can be rearranged to be145 ∫ 1/2

−1/2

y(x, ζ ′) dζ ′ − κ2

∫
Ω

ε(x′)G((x, 0), (x′, 0))

(∫ 1/2

−1/2

y(x′, ζ ′) dζ ′

)
dx′ =

∫ 1/2

−1/2

z(x, ζ ′) dζ ′146

Define147

ya(x) =

∫ 1/2

−1/2

y(x, ζ ′) dζ ′148

za(x) =

∫ 1/2

−1/2

z(x, ζ ′) dζ ′149

Then the preconditioning step is equivalent to solving the two dimension integral
equation

ya(x)− κ2

∫
Ω

ε(x′)G((x, 0), (x′, 0))ya(x′) dx′ = za(x)

Given our solution ya(x) to the above, we construct our sought after solution by150

y(x, ζ) = κ2

∫
Ω

ε(x′)G((x, 0), (x′, 0))ya(x′) dx′ + z(x, ζ)151

= ya(x)− za(x) + z(x, ζ)152

3. Asymptotic Results. We present here the main result from Moskow, et. al.153

[13] and extend it to obtain GMRES convergence bounds when applied to equations154

(9) and (10).155

Theorem 1. There exists a constant C, independant of the scattering obstacle156

thickness h, such that157

sup
(x,ζ)∈S

∫
Ω

|G((x, 0), (x′, 0))−G((x, hζ), (x′, hζ ′))| dx′ < Ch158

159

Proof. See Moskow, et. al. [13, Lemma 1]160

It’s follows from Lemma 1 of [13], that the constant C = κM + 1, and M =161

supx∈Ω

∫
Ω
‖x−x′‖−1 dx′. We can bound M ≤ πd, where d = diam(Ω). This will prove162

to be useful in computing convergence estimates for the preconditioned scattering163

problem.164

Corollary 2. Let A = I + K, where the operator K is defined in (7) and165

A0 = I −K0, where K0 is defined in (11). There exists a constant C ′, independent166

of h, but depending on κ such that167

‖I −AA−1
0 ‖L∞(S) < C ′h168

169

Proof.

‖I −AA−1
0 ‖ = ‖(A0 −A)A−1

0 ‖170

≤ ‖A−1
0 ‖‖A0 −A‖171

This manuscript is for review purposes only.



6 J. A. SIFUENTES, S. MOSKOW

Note that ‖A−1
0 ‖ is independent of h. Consider then the asymptotic term ‖A0 −A‖.172

‖A−A0‖ = sup
‖u‖=1

‖A0u−Au‖173

= sup
‖u‖=1

‖Kou+Ku‖174

≤ sup
‖u‖=1

sup
(x,ζ)∈S

(
hκ2

∫ 1/2

−1/2

∫
Ω

|G((x, 0), (x′, 0))| |u(s′)| ds′175

+hκ2

∫ 1/2

−1/2

∫
Ω

|G((x, 0), (x′, 0))−G((x, hζ), (x′, hζ ′))| |u(x′, ζ ′)| dζ ′dx′176

+ κ2

∫ 1/2

−1/2

∫
Ω

ε0(x′) |G((x, 0), (x′, 0))−G((x, hζ), (x′, hζ ′))| |u(x′, ζ ′)| dζ ′dx′
)

177

≤ hκ2

(
M

4π
+ Ch+ C‖ε0‖L∞(Ω)

)
178

Therefore ‖I−AA−1
0 ‖ is small if the scattering medium is sufficiently thin. However,179

note that this bound contains the constant ‖A−1
0 ‖, which, while independent of h,180

could possibly be very large. However, in practice we see that ‖I − AA0‖ is much181

smaller than the bounds we demonstrate in this corollary, where A, and A0 are182

discretizations of A and A0 respectively, using a collocation method we describe in183

section 4. We show this in figure 1.184
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Fig. 1. Here we illustrate numerically the results of Corollary 2: that ‖I−AA−1
0 ‖ = O(h) (for

ε0 = 1). The horizontal dashed line is at 1 and the sloped dashed line is h.

The reason we do better is that by factoring out the inverse of the preconditioning185

operator A0, we don’t take into account spectral deflating. That is, we show in186

corollary 3, that σ(A) ∈ σε(A0), for ε = O(h). Thus the spectrum of A0 approximates187

the spectrum of A. Then the intuition we gain from the numerical results in figure 1188

lead us to believe that we not only approximate well the eigenvalues but also those189

eigenmodes with low enough frequency that they have small dependence on the thin190

direction component (of course the eigenfunctions of A0 are constant in the thin191

direction). Indeed we show that σ(AA−1
0 )→ 1 as h→ 0 in figure 2.192

Corollary 3. Let A = I + K, where the operator K is defined in (7) and193
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A0 = I − K0, where K0 is defined in (11), then σ(A) ∈ σε(A0), where ε = O(h).194

195

Proof. Let (λ, v0) be an eigenpair of A0, such that ‖v0‖L∞(Ω) = 1. Then196

‖(λ−A)v0‖L∞(S) =

∣∣∣∣∣ sup
(x,ζ)∈S

κ2h

∫
S

G((x, hζ), (x′, hζ ′))v0(x′) dζ ′dx′197

+κ2

∫
Ω

∫ 1/2

−1/2

ε0(x′) (G((x, 0), (x′, 0))−G((x, hζ), (x′, hζ ′))) v0(x′) dζ ′dx′

∣∣∣∣∣198

≤ h sup
(x,ζ)∈S

∣∣∣∣κ2

∫
S

G((x, hζ), (x′, hζ ′))v0(x′) dζ ′dx′
∣∣∣∣199

+ sup
(x,ζ)∈S

κ2

∫
Ω

|ε0(x′)| |v0(x′)|
∫ 1/2

−/12

|G((x, 0), (x′, 0))−G((x, hζ), (x′, hζ ′))| dζ ′dx′200

≤ h‖K(ε0 = 1)‖L∞(S) + Ch‖ε0‖L∞(Ω),201

where C is the constant from theorem 1.202
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Fig. 2. The spectrum σ(AA−1
0 ) for values of h = 10−1, 10−1.2, 10−1.4, 10−1.6 going left to

right, top to bottom.

Now we can develop a bound for the preconditioned GMRES scheme.203

Corollary 4. Let A = I + K, where the operator K is defined in (7) and204

A0 = I −K0, where K0 is defined in (11). Then the relative residual of the GMRES205

problem applied to the right preconditioned problem206 (
AA−1

0

)
(A0u) = ui,207
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is bounded by εm at each iteration m, where ε = O(h).208

Proof. Recall that we can bound the GMRES residual by the minimal polynomial209

evaluated at AA−1
0 , and that is one at the origin. That is210

‖rm‖ ≤ min
pm∈P0

m

‖pm(A)‖‖ui‖211

Then Corollary 2 implies that212

‖rm‖
‖ui‖

≤ ‖(I −AA−1
0 )m‖213

≤ ‖I −AA−1
0 ‖m214

≤ εm215

where ε = O(h).216

4. Numerical Implementation. To facilitate notation of functions on the217

rescaled slab S̄ := Ω× [−1/2, 1/2], we use f : S → C to mean that, for s ≡ (x, ζ) ∈ S̄218

and f defined on S = Ω × [−h/2, h/2], then f̄(s) := f̄((x, ζ)) := f((x, hζ)). For219

example,220

Ḡ(s, s′) := Ḡ((x, ζ), (x, ζ)′) := G((x, hζ), (x, hζ)′),221

ūi(s) := ūi((x, ζ)) := ui((x, hζ)).222

We use f0 : S → C to denote functions that are constant in the z direction, that is,223

if f : S → C, then f0(s) := f(x, 0). Then for example,224

G0(s, s′) := G((x, 0), (x′, 0))225

ui0(s) := ui((x, 0)).226

We discretize our shifted compact operators A = I + K, and A0 = I − K by227

employing a collocation method. The collocation method restricts our solution space228

for (6) to a finite dimensional space and enforces equality at a finite set of collocation229

points. To this end, let {φi}Ni=1 be a set of linearly independent functions correspond-230

ing to a discretization of our rescaled scattering obstacle S̄ into the volumes {di}Ni=1231

where the points {si}Ni=1 = {(x, ξ)i}Ni=1 are midpoints of the discretization volumes.232

For the sake of presenting this idea in the simplest way, we use piecewise constant233

basis functions φj (φj(x) = 1 if x ∈ dj , and zero otherwise) and solve for ũ ∈234

span{φi}Ni=1 by requiring equality at the collocation points si for i = 1, · · · , N . This235

gives the linear system236

(I−K)u = ui237

where238

Kij = κ2

∫
dj

(h− ε(s′))G(si, s
′) ds′239

uii = ui(si)240

We evaluate each entry Kij using a Clenshaw-Curtis quadrature scheme [4].241
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4.1. Solving the Preconditioned system. Applying the same collocation242

method to the preconditioner operator A0 = I −K0, we get a preconditioning matrix243

I−K0244

where245

(K0)ij = κ2

∫
dj

ε(s′)G0(si, s
′) ds′246

Note that the integral defining (K0)ij integrates over the Ω and z direction, however247

the integrand is constant in the z direction. Therefore the matrix will have the tiled248

structure249

K0 = dz


K2D K2D · · · K2D

...
. . .

...
. . .

K2D K2D · · · K2D

 ,(12)250

where K2D corresponds to the discretization of the integral operator

(K2Du)(x) = κ2

∫
Ω

ε0(x′)G0(x,x′)u(x′) dx′,

and dz = 1/m is the height of the discretization volumes, m is the number of dis-
cretizations in the z direction. Thus

(K2D)ij = κ2

∫
ωj

ε0(x′)G((xi, 0), (x′, 0)) dx′,

where {ωj}nj=1 is a discretization of Ω corresponding to the discretization of Ω ×251

[−1/2, 1/2] into {dj}nj=1. The entries of K2D are approximated using Clenshaw Curtis252

quadrature.253

4.2. Solving the discretized Preconditioner as a two dimensional prob-
lem. The linear algebra analog to the method we used to pose the precondiioning
operator as a two dimensional problem derives from taking advantage of the tiling
effect of K0 The preconditioning step involves solving, for arbitrary data z

yk −
1

m
K2D

m∑
i=1

yi = zk for k = 1, . . . ,m

where m is the number of discretizations in the z direction. Note that for our regular
discretizatoin, dz = 1/m. Then the analog of averaging in the z direction the above
set of matrix equations to get

1

m

m∑
k=1

yk −
1

m
K2D

m∑
i=1

yi =
1

m

m∑
k=1

zk.

Let254

ya =
1

m

m∑
k=1

yk,255

za =
1

m

m∑
k=1

zk.256
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This gives the matrix equation on the order of the individual blocks

(I−K2D)ya = za

We reconstruct each yk from the solution to this system by257

yk = zk + K2Dua258

= zk − za + ya259

This implies that A−1
0 = (1/m)E ⊗ (A−1

2D − I) + I, where A2D = I −K2D and E is260

the m×m matrix of all ones and ⊗ is the Kronecker product.261
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Fig. 3. GMRES Iteration counts as a function of h for k = 2, 4, 6, 8 (left to right, top to
bottom). The solid black line gives the iteration count for the preconditioned system. The solid
grey line gives the iteration count for the unpreconditioned system. The maximum iteration was set
to 200. The dashed line gives the iteration bound dlogε(10−8)e if the bound is less than 200 and

ε := ‖I − AA−1
0 ‖2 < 1. For this problem ε0 = 3 and the right hand side vector was randomly

generated by Matlabs randn function.

5. Numerical Results. To demonstrate the effectiveness of the preconditioning262

scheme presented in the previous section, we present the results of several numerical263

experiments in this section. For all problems in the section, the scattering obstacle is264

a square slab that is κ×κ wavelengths with width h. That is, the scattering obstacle265

S = Ω× [−h/2, h/2], where Ω is the 2π × 2π square. The grid used for discretization266

is 24× 24× 7.267

The number of Chebyshev nodes used to compute each matrix entry is 32 for the268

two dimensional grid and 33 for the three dimensional grid. The refractive index is269
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Fig. 4. For κ = 2, ε0 = 1 and h = 10−1, 10−2, 10−3 left to right and top to bottom, we plot
the relative residuals in the solid black line and, if applicable, the bound ‖I−AA−1

0 ‖m2 in a dashed
line.

constant. Figure 4 illustrate the relative residual norm for the first ten iterates of the270

GMRES method, as well as the bound for the residual ‖I−AA−1
0 ‖m2 at each iteration271

m if applicable.272

GMRES shows considerable improved performance when applied to the precon-273

ditioned system compared to the original discretized system for sufficiently thin in-274

homogeneities. Figures 3 and 5 show that for values of h < 10−1 (and sometimes275

for thicker inhomogeneities), we begin to get substantial reduction in the number276

of GMRES iterations required for convergence. Furthermore, the numerical experi-277

ments show that the bounds demonstrated in Corollary 4 are effective at predicting278

the fast convergence for the preconditioned problem. The corollary suggests that279

the number of iterations required for convergence can be bounded by dlogε(tol)e if280

ε := ‖I−AA−1
0 ‖2 < 1. In all the numerical experiments presented here, the tolerance281

for the relative residual is set to tol = 10−8.282

Figure 5 illustrate the iterations necessary for convergence for the preconditioned
and unpreconditioned system as well as the iteration bound we’ve developed. For this
experiment, the refractive index is non constant and periodic and is given by

ε0(x) = 1 + | sin(3x1) sin(3x2)|.

6. Conclusion and Further Work. Building thin, photonic band gap media283

with two dimensional periodic structure is important to power and material reduction284

[19]. Therefore the efficient computational modeling of time harmonic scattering285
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Fig. 5. GMRES Iteration counts as a function of h for k = 2, 4, 6, 8 (left to right, top to
bottom). The solid black line gives the iteration count for the preconditioned system. The solid
grey line gives the iteration count for the unpreconditioned system. The maximum iteration was set
to 200. The dashed line gives the iteration bound dlogε(10−8)e if the bound is less than 200 and

ε := ‖I−AA−1
0 ‖2 < 1. For this problem ε0(x1, x2) = 1 + | sin(3x1) sin(3x2)|.

through such media is useful to such applications to the field of optics. We have shown286

that the asymptotic results in [13] can be used effectively to develop preconditioning287

systems for solving the full three dimensional scattering problem for waveguides with288

lengths less than 10−1 in the thin direction (and sometimes larger). Implementing such289

a preconditioner however required a novel implementation that allows inner solves to290

be carried out in two dimensional complexity yet still resolve three dimensional data.291

We have also developed asymptotic spectral bounds and GMRES bounds that give292

some indication when this preconditioning method will be effective.293

This problem is rich in opportunities for further work. The thin geometry of294

the inhomogeneity and the typical periodic structure of the refractive index suggest295

that there are meshes that would perform better than the regular meshes used in296

the numerical examples presented here. Furthermore, high resolution meshes would297

require developing fast integral methods for this iterative approach to be feasible. An298

efficient and fast integral algortihm would allow one to compute the matrix vector299

products required at each step of the GMRES process at less than O(N2) complexity300

(see e.g. [1, 3, 8, 7, 14, 15]). The examples included in this paper are low resolution301

and are included to illustrate the bounds we have derived. To suit this problem,302

This manuscript is for review purposes only.



ASYMPTOTIC PRECONDITIONING FOR THIN STRUCTURES 13

such an approach would have to align an efficient mesh configuration with the tiled303

format demonstrated in (12). It is important to point out, however, that if one were304

to employ a Nyström discretization, one would have to take care of vertically aligned,305

but unequal, vertices of the mesh, since as h→ 0, the Green’s function approaches a306

singularity that wouldn’t appear in the two dimensional discretization, implying that307

our preconditioner no longer approximates an inverse. However, we are confident that308

one can significantly accelerate the integral computations at a high order of accuracy309

and combine such a method with the preconditioning method described in this paper310

to produce a high order and efficient method for solving this problem. Such a result311

would be a significant and welcome contribution.312
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