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We present a method to precondition the discretized Lippmann-Schwinger inte-
gral equations to model scattering of time-harmonic acoustic waves through a thin
inhomogeneous scattering medium. The preconditioner is based on asymptotic results
as the thickness of the third component direction goes to zero and requires solving a
two dimensional formulation of the problem at the preconditioning step.
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1. Introduction. We consider the problem of scattering time-harmonic acoustic
waves through thin, three dimensional inhomogeneities. This physical phenomenon is
relevant in the study of photonic band gap structures. Such structures are designed to
guide the propogation of light by blocking certain wavelengths in the band gap, while
allowing others to pass freely through. Such structures facilitate information propaga-
tion in optical communication networks and in optical computing. We consider three
dimensional slab waveguides with two dimensional photonic crystal strucutre. Such
structures are typically constucted with a high refraction index and are imbedded in
a homogenous scattering medium, typically air. See [19], [20], [6] for more on thin
photonic band gap structures.

We are considering time-harmonic wave phenomenon modeled by the Helmholtz
equation, whose solution gives the spatial component of the total wave velocity poten-
tial. We solve the Helmholtz equation by numerically approximating the equivalent
Lippmann-Schwinger volume integral equation [5]. The resulting finite dimensional
linear system is large, dense, and non-Hermitian, however there are efficient matrix-
vector product routines that make an iterative solver an appealing approach, see e.g.
[1, 3, 8, 7, 14, 15]. However, spectral properties of the system often cause Krylov
subspace based iterative methods to converge slowly.

Moskow, Santosa, and Zhang demonstrated in [13] an asymptotic expansion of
the Lippmann-Schwinger integral equation for inhomogeneities that are thin in one
component direction. They showed that the difference in the solution to a two dimen-
sional integral equation and the full three dimensional problem differed by O(h) as
h — 0, where h is the width of the inhomogeneity in the thin component direction. A
natural extension of their work is to precondition the three dimensional problem using
the two dimensional operator. In order for this approach to work, one must be able to
formulate the preconditioner so that it can be applied to three dimensional data and
yet be solved with the complexity of a two dimensional problem. We give a solution to
this problem in section 2 and describe the numerical implemention in section 4. Fur-
thermore we extend the asymptotic results of [13] into bounds on the GMRES residual
applied to the preconditioned system in section 3. In section 5, we demonstrate the
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2 J. A. SIFUENTES, S. MOSKOW

effectiveness of the preconditioner to significantly improve convergence speed and the
efficacy of the bounds we develop.

1.1. Problem Formulation. We consider the setting of an inhomogenous scat-
tering medium S € IR?, thin in the third component direction, and set in a homogenous
host medium such as air or some fluid. Let S be the cartesian cross product of its two
dimensional cross section, €2 and the thin, third component direction [—h/2,h/2], i.e.
S=Qx[-h/2,h/2].

The total scattered field u € C?(IR?) is modeled by the Helmholtz equation

(1) Au+ K*e(s)u =0 for all s € R?

where the parameter x is called the wave number and defined to be kK = w/c¢y for
temporal frequency w with ¢y denoting the speed of wave propogation in the host
medium. The total scattered field u = u® + u® is the sum of a given incident wave
u' and a scattered wave u®. We require the scattered wave to satisfy the Sommerfeld
radiation condtion, which implies there is no wave reflection at infinity [5]:

ou . B
2 Wit =o(1fr), v =il

The incident wave u’ satisfies the freespace Helmholtz equation, Au’ + k?u’ = 0 for
all of R3.

Since we are considering the setting of two dimensional photonoic crystal struc-
tures in a three dimensional scattering inhomogeneity, the refractive index is constant
in the direction of the thin component direction. We adapt the convention of Moskow
et. al. [13], where we write that the refractive index is represented by ey(x)/h, where
h is the length of the thin side. While refractive indices are material properties that
do not depend on size, high refraction indices are necessary to sufficiently reduce the
wavelength on the order of the length of the waveguide in the thin direction. Thus
we define the refractive index function

dxw:{l for (x,2) ¢

# for (x,z2) € S,

3)

where €y is compactly supported on Q. If u = u® + u satisfies equations (1) and (2),
then w is also a solution to the Lippmann-Schwinger volume integral equation [5]

/
(4) u(s) + K2 / <1 - 6(;‘)> G(s,s)u(s') ds' = u'(s),
5
where x’ is the vector of the first two components of s’ and G(s) is the freespace
Green’s function given by
irf|s—s']l
(5) Gs.s) = ¢

Arls — ¢/

Separating the integral domain S into Q and [—h/2,h/2] and letting s = (x, z) for
x € Q and z € [—h/2,h/2], we rewrite the Lippmann-Schwinger equation (4) as

u(x, 2) + K* /Q /h/2 (1 — EO(;/)> G((x,2), (X, 2))u(x',2) dz'dx' = u'(x, ),

—h/2
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ASYMPTOTIC PRECONDITIONING FOR THIN STRUCTURES 3

and apply the linear change of variable z = h( to obtain

1/2 .
)+ 5 // h— e () G((x, hO), (', hC ) u(x, ) d='dx’ = (x, hC).

1/2

We write this compactly as

(6) (I + K)u(x,(¢) = u'(x, h(),
where
1/2
7 Ku)( =K — €o(x)G((x,h¢), (%', h))u(x', ") d¢'dx’.
M /// X ))G((x, hC), (<, b u(x, ') d

2. Application of the GMRES iterative method. Consider applying the
GMRES iterative method [16] to the continuous equation (6). Since the operator we
are interested in is of the form A := I + K, where K is compact, then A is bounded
and has only a finite spectrum outside any neighborhood of one [11, pg. 421]. Thus,
unlike discretizations of the Helmholtz equation (1), refining the discretizations of
the Lippmann-Scwinger equation has little effect on the conditioning of the resulting
linear system and therefore little effect on GMRES performance [10], [9]. Numerical
experiements in [17] show that increased mesh resolution only adds high frequency
eigenmodes to the spectrum, corresponding to eigenvalues of A close to one. Then
we should expect that convergence analysis of the continuous case gives insight to
convergence behavior of the discretized problem, see e.g. [2, 12, 18, 21].

The continuous GMRES problem is the iterative minimization problem that solves
at iteration m:

8 mll = — A,
®) Il =, _min u’ — Au]

where K, (A, u?) := span{u?, Au’, A%u?, ... | A1y} is the Krylov subspace and ||- ||
is an appropriate operator norm. In our paper, and following the results of Moskow,
et. al [13], we will use the L>°(X) vector norm and the operator norm it induces,
where X is a compact set in R? or IR® depending on context. Since the GMRES
solution to the iterative minimization problem is the product of a linear combination
of monomials of A and u?, we can write u,, as a product of a polynomial evaluated
at A of degree m — 1 and the incident wave u?, and thus we can write the residual
Tm = 4’ — Au,, as the product of a polynomial evaluated at A of degree m times u?,
such that the polynomial is one at the origin. Then equation (8) is equivalent to

lrmll = min - {lpm (A)’],

m m

where P, is the set of all polynomials of degree m or less with a value of 1 when
evaluated at the origin.

In practice, when the GMRES method is applied to the discretized linear system,
an orthogonal basis for the approximating space is generated by the Arnoldi iteration
[16], therefore the cost per iteration and memory requirements grows with each iter-
ation as more memory is needed to record the basis for the growing Krylov subspace.
Thus, GMRES, is feasible if the number of iterations remain small. However GMRES
is too computationally expensive for this problem without effective preconditioning.
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4 J. A. SIFUENTES, S. MOSKOW

This is where we utilize the asymptotic results of [13] as a guide to building an
effective preconditioning scheme. That is, rather than apply GMRES to equation (6),
we solve the equivalent problem

(AAal) (Aou) = u,

where a substantially lower order polynomial in P2, is small when evaluated at AA; L
and one can solve Agy = z relatively quickly for an arbitrary function z € C(S). In
this case, the right hand side data need have no physical meaning (it is actually a basis
vector of the Krylov subspace of the current GMRES iteration). We point out that
the regime for which preconditioning is necessary is when k?(h — &) is of sufficient
magnitude that the compact integral operator K defined in (7) is not less than one in
magnitude. Since the operator A is a compact (and thus bounded) perturbation to
the identity, if the compact perturbation is relatively small, then GMRES is expected
to converge quickly without preconditioning.

To build our preconditioning operator Ag, consider the two dimensional integral
equation

(9) (I — Kap)ug(x) = u'(x,0)

where

(10) (Kapug)(x) := /12/ €o(x')G((x,0), (x',0))uo(x’) dx'.
Q

This is the two dimensional operator used to describe asymptotic behavior of a scat-
tered wave over thin scattering domains. Note, however, that in order to use (9) as
a preconditioner, we must pose it as a three dimensional integral operator to match

the dimensions of the objective problem. Thus we define Ky : C(S) — C(Q2) by

1/2
(11) (Fou)(x,1) = Kap ( / (2, 17) dn)

—1/2

Note that K has a domain of continuous functions defined over the three dimensional
compact set S, but has a range of functions that are constant in the z direction. Then
the preconditioning operator is defined to be Ay := I — K. Lemma 2 of [13] shows
that Ag is continuously invertible on both L?(S) and C(S).

2.1. Solving the Preconditioning Step as a two dimensional system. As
mentioned before, the right hand side data for the preconditioning operator Ay has
no physical interpretation, nor is it necessarily constant in the direction of the third
component. Furthermore, for such a system (Agy)(s) = z(s), the solution y(s) need
not be constant in the third component direction. However, this preconditioner, is
only useful if we can solve it as a two dimensional problem.

We solve this problem by noting that if (Agy)(s) = z(s), then

(Koy)(s) = y(s) — 2(s)-

This implies that y(s) — z(s) is constant in the z direction and therefore equal to
fiiiz y(x,¢) — 2(x,¢) d¢ This gives us the equation
1/2

1/2
w [ G0, 0 O = [ () = sl )l
Q

—1/2 —1/2

This manuscript is for review purposes only.



ASYMPTOTIC PRECONDITIONING FOR THIN STRUCTURES 5

145 which can be rearranged to be

1/2 1/2 »

46 ! I 2 / ’ ;o , r_ , ,
14 /1/2 y(x,¢")d¢" — k /Qe(x )G((x,0), (x,0)) (/1/2 y(x', ¢ )dg‘) dx /1/2 2(x, (') d¢
147 Define

1/2
3 o — 7 N de!
148 Ya (%) /_1/2 y(x,¢’) d¢

1/2
. w0 = [ 0y

Then the preconditioning step is equivalent to solving the two dimension integral
equation

Ya(X) — nz/ﬂe(x’)G((x,O), (x',0))ya(x) dx’ = z4(x)

150 Given our solution y,(x) to the above, we construct our sought after solution by

151 y(x,¢) = 2 / €(x)G((x,0), (X', 0))ya (x) dx’ + 2(x, C)
Q
152 = ya<x) - Za(X> + Z(Xa C)
153 3. Asymptotic Results. We present here the main result from Moskow, et. al.

154 [13] and extend it to obtain GMRES convergence bounds when applied to equations
155 (9) and (10).

156 THEOREM 1. There exists a constant C, independant of the scattering obstacle
157  thickness h, such that

58 sup_ [ 16(6x,0), (<,0)) = G((x, k). (<, k)| dx’ < Ch
(x,)es 7 Q

160 Proof. See Moskow, et. al. [13, Lemma 1]

161 It’s follows from Lemma 1 of [13], that the constant C = kM + 1, and M =
162 Supyeq Jq [[x—x'[| 7t dx’. We can bound M < wd, where d = diam(£2). This will prove
163 to be useful in computing convergence estimates for the preconditioned scattering
164 problem.

165 COROLLARY 2. Let A = I + K, where the operator K is defined in (7) and
166 Ag = I — Ky, where Kq is defined in (11). There exists a constant C’, independent
167 of h, but depending on k such that

168 1T = AAGH | poo ) < C'h

169
Proof.

170 11— AAG = [[(Aog — A)AG|
171 < 14511140 — A

This manuscript is for review purposes only.



6 J. A. SIFUENTES, S. MOSKOW

172 Note that ||Ay"|| is independent of h. Consider then the asymptotic term || Ay — A].

75 A — Aol = sup [[Agu— Au|

flull=1
174 = sup ||Kou+ Kul
flull=1
1/2
175 < sup sup hliz/ /|G((x,0),(x',0))||u(s’)|ds’
lull=1 (x,¢)es -1/2JQ

1/2
176 s [ 161,00, (.0)) = Gl ). (B )

—1/2

—1/2

1/2
177 LR / / co(x')|G((x,0), (x,0)) — G((x, he), (<, 1)) [, ) dc'dx'>
Q
178 < hi? (i\i+0h+cne“m(m)

179 Therefore ||I — AAy*|| is small if the scattering medium is sufficiently thin. However,
180 mnote that this bound contains the constant ||Ay'||, which, while independent of h,
181 could possibly be very large. However, in practice we see that [|[I — AAg]| is much
182 smaller than the bounds we demonstrate in this corollary, where A, and Ag are
183 discretizations of A and Aq respectively, using a collocation method we describe in
184 section 4. We show this in figure 1.

IT-AAG

Fic. 1. Here we illustrate numerically the results of Corollary 2: that ||I — AA61|| = O(h) (for
€0 = 1). The horizontal dashed line is at 1 and the sloped dashed line is h.

185 The reason we do better is that by factoring out the inverse of the preconditioning
186 operator Ay, we don’t take into account spectral deflating. That is, we show in
187 corollary 3, that o(A) € o¢(Ap), for e = O(h). Thus the spectrum of Ay approximates
188 the spectrum of A. Then the intuition we gain from the numerical results in figure 1
189 lead us to believe that we not only approximate well the eigenvalues but also those
190 eigenmodes with low enough frequency that they have small dependence on the thin
191 direction component (of course the eigenfunctions of Ay are constant in the thin
192 direction). Indeed we show that o(AA;') — 1 as h — 0 in figure 2.

193 COROLLARY 3. Let A = I + K, where the operator K is defined in (7) and
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Ag = I — Ky, where Ky is defined in (11), then o(A) € o.(Ap), where e = O(h).

Proof. Let (A, vp) be an eigenpair of Ay, such that |[vg|/z ) = 1. Then

[[(A = A)UOHLoo(E) =

sup HQh/gG((X,h(),(x',h(’))vo(x’)dC’dx’

(x,0)esS
1/2
+rK / / ((x,0), (x',0)) — G((x, h¢), (X', hC'))) vo(x) d¢'dx’
1/2
<h swp_|w? /, G, hQ), (' B ) '’
(x,0)es

1/2
+ s [ o) () / (x,0)) = G((x, hC), (!, h¢'))| dcdx’
(x,0)eS
< h|[K(eo = 1)|| (5 + Chlleol| L= (0,

where C' is the constant from theorem 1.

2 : 2

1 1

0 r—-ci 0 —
- 0 1 2 - 0 1 2
2 2 .

1 1

0 - 0 -

- 0 1 2 - 0 1 2

Fic. 2. The spectrum O'(AAEI) for values of h = 10=1,10712,10= 14,1016 going left to

right, top to bottom.

Now we can develop a bound for the preconditioned GMRES scheme.

COROLLARY 4. Let A = I + K, where the operator K is defined in (7) and
Ay =1 — Ky, where Kq is defined in (11). Then the relative residual of the GMRES

problem applied to the right preconditioned problem
(AAgl) (Agu) = u',

This manuscript is for review purposes only.
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is bounded by €™ at each iteration m, where € = O(h).
Proof. Recall that we can bound the GMRES residual by the minimal polynomial
evaluated at AA; ! and that is one at the origin. That is

lrmll < min, lpm (A1’

m m

Then Corollary 2 implies that

ll7ml -1
— < —AA)™
[l 0

< [T - AAGH™

<em

where € = O(h).

4. Numerical Implementation. To facilitate notation of functions on the
rescaled slab S := Q x [~1/2,1/2], we use f : S — C to mean that, for s = (x,¢) € S
and f defined on S = Q x [~h/2,h/2], then f(s) := f((x,¢)) := f((x,h()). For
example,

Gls, ) = G((x, ), (x,0)') i= G((x, hO), (. 7)),
#'(s) = (%, O)) = i ((x hC).

We use fo : S — C to denote functions that are constant in the z direction, that is,
if f:5 — C, then fy(s) := f(x,0). Then for example,

G((x,0), (x',0))

Go(s,s') :

We discretize our shifted compact operators A = [ + K, and Ag = [ — K by
employing a collocation method. The collocation method restricts our solution space
for (6) to a finite dimensional space and enforces equality at a finite set of collocation
points. To this end, let {qbi}f\;l be a set of linearly independent functions correspond-
ing to a discretization of our rescaled scattering obstacle S into the volumes {d;}¥
where the points {s;}¥; = {(x,&);}¥, are midpoints of the discretization volumes.

For the sake of presenting this idea in the simplest way, we use piecewise constant
basis functions ¢; (¢;(x) = 1 if € d;, and zero otherwise) and solve for & €
span{¢; }¥.; by requiring equality at the collocation points s; for i = 1,--- , N. This
gives the linear system

I-Ku=u'

where

Ki; = r? /d‘(h —e(s")G(sy,8") ds’

ul =7'(s;)

We evaluate each entry K;; using a Clenshaw-Curtis quadrature scheme [4].

This manuscript is for review purposes only.
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4.1. Solving the Preconditioned system. Applying the same collocation
method to the preconditioner operator Ay = I — K|, we get a preconditioning matrix

I-K,
where
(Ko)y = / €(s')Gols:, s') ds’
d;

Note that the integral defining (Ko);; integrates over the 2 and z direction, however
the integrand is constant in the z direction. Therefore the matrix will have the tiled
structure

Kop Kop -+ Kop
(12) Ko=d.| = ,

Kop Kop -+ Kop

where Ksp corresponds to the discretization of the integral operator
(Kopu)(x) = /—12/ e0(x")Go(x, x )u(x') dx’,
Q

and d, = 1/m is the height of the discretization volumes, m is the number of dis-
cretizations in the z direction. Thus

(Kop)ij = 52/ e0(x')G((x;,0), (x',0)) dx/,
wj

where {w;}7_; is a discretization of (2 corresponding to the discretization of Q x
[—1/2,1/2] into {d;}}_;. The entries of Kop are approximated using Clenshaw Curtis
quadrature.

4.2. Solving the discretized Preconditioner as a two dimensional prob-
lem. The linear algebra analog to the method we used to pose the precondiioning
operator as a two dimensional problem derives from taking advantage of the tiling
effect of Ko The preconditioning step involves solving, for arbitrary data z

1 m
yk_EKQDZ;Yi:Zk for k=1,...,m

where m is the number of discretizations in the z direction. Note that for our regular
discretizatoin, d, = 1/m. Then the analog of averaging in the z direction the above
set of matrix equations to get

m m

;Lkz:}’k - ;LKQDX;}%‘ = %sz
=1 im

k=1
Let

Ya

1 m
E};}%

1 m
Z, = — E Zj.
m
k=1

This manuscript is for review purposes only.
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This gives the matrix equation on the order of the individual blocks

(I - KZD)Ya =1Zq

We reconstruct each yy from the solution to this system by

This implies that A;' = (1/m)E ® (A} —I) + I, where Ayp

Yk

=z, + Kapu,

=Zk —Zqa T Ya

=1-Ksp and E is

the m x m matrix of all ones and ® is the Kronecker product.

h

200 =4 = Preconditioned System 200
\ Unpreconditioned System
\ = =Theoretical Bound
5 150 - \ 5 150 1
= =1
2 \ 2
= =
8 g
o 100+ o 100 1
g &)
=1
- _—
= =1
©} ©)
50 \ 50 1
1
\
107 102 10% 10 10° 107 10°
h
200 === 200 pmmmmmm
w 150 F 5 150
= =1
S .S
= =
8 g
72 100 7 100
M &)
g &
= =
&) &}
50 50
107 102 103 104 10°° 107 102 103 1074 10

h

Fic. 3. GMRES Iteration counts as a function of h for k = 2,4, 6,8 (left to right, top to
bottom). The solid black line gives the iteration count for the preconditioned system. The solid
grey line gives the iteration count for the unpreconditioned system. The mazimum iteration was set
to 200. The dashed line gives the iteration bound [log.(1078)] if the bound is less than 200 and
€= |I— AA61||2 < 1. For this problem g = 3 and the right hand side vector was randomly
generated by Matlabs randn function.

5. Numerical Results. To demonstrate the effectiveness of the preconditioning
scheme presented in the previous section, we present the results of several numerical
experiments in this section. For all problems in the section, the scattering obstacle is
a square slab that is k X K wavelengths with width h. That is, the scattering obstacle
S =Q x [-h/2,h/2], where Q is the 27 x 27 square. The grid used for discretization
is 24 x 24 x 7.

The number of Chebyshev nodes used to compute each matrix entry is 32 for the
two dimensional grid and 33 for the three dimensional grid. The refractive index is
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10° ‘ 10° ‘
‘—GMRES relative residual‘ = GMRES relative residual
= =Convergence Bound
102} 102¢
- 4L = -4
B 10 e 10
= =
= 10°¢ = 10
108} 108
-10 L L -10 L
10 10
0 5 10 15 0 10 15
m m
10° ‘ 10° ‘
= GMRES relative residual = GMRES relative residual
= =Convergence Bound = =Convergence Bound
102F 102
= 04l = 104t
B 10 e 10
= =
= =
= 100 \ = 10°
\
\
108k \ 108
\
\
1070 : : 10710 ‘
0 5 10 15 0 10 15

m

m

FIG. 4. For k =2,e0 = 1 and h = 101, 1072, 10~3 left to right and top to bottom, we plot
the relative residuals in the solid black line and, if applicable, the bound ||I — AA0_1||£” in a dashed
line.

constant. Figure 4 illustrate the relative residual norm for the first ten iterates of the
GMRES method, as well as the bound for the residual |[I—AA;'||5* at each iteration
m if applicable.

GMRES shows considerable improved performance when applied to the precon-
ditioned system compared to the original discretized system for sufficiently thin in-
homogeneities. Figures 3 and 5 show that for values of h < 107! (and sometimes
for thicker inhomogeneities), we begin to get substantial reduction in the number
of GMRES iterations required for convergence. Furthermore, the numerical experi-
ments show that the bounds demonstrated in Corollary 4 are effective at predicting
the fast convergence for the preconditioned problem. The corollary suggests that
the number of iterations required for convergence can be bounded by [log,(tol)] if
e:=|I-AA; (]2 < 1. In all the numerical experiments presented here, the tolerance
for the relative residual is set to tol = 1078,

Figure 5 illustrate the iterations necessary for convergence for the preconditioned
and unpreconditioned system as well as the iteration bound we’ve developed. For this
experiment, the refractive index is non constant and periodic and is given by

eo(x) = 1+ |sin(3zy) sin(3z2)|.

6. Conclusion and Further Work. Building thin, photonic band gap media
with two dimensional periodic structure is important to power and material reduction
[19]. Therefore the efficient computational modeling of time harmonic scattering

This manuscript is for review purposes only.
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200F = ======--~- ] 200

1
1
1
1
1
wn ] 92]
g 150f : g 150¢
= : =
a [ o
Q L] [}
s ' =
22100 ! 2100
n . ”n
&) ' e
z - =
= '
O 50 ' O s0r

.o
==

GMRES_‘iterations
o

Fic. 5. GMRES Iteration counts as a function of h for k = 2,4, 6, 8 (left to right, top to
bottom). The solid black line gives the iteration count for the preconditioned system. The solid
grey line gives the iteration count for the unpreconditioned system. The mazimum iteration was set
to 200. The dashed line gives the iteration bound [log.(1078)] if the bound is less than 200 and
e:=|I— AA0_1||2 < 1. For this problem eo(x1, x2) = 1 + | sin(3z1) sin(3z2)|.

through such media is useful to such applications to the field of optics. We have shown
that the asymptotic results in [13] can be used effectively to develop preconditioning
systems for solving the full three dimensional scattering problem for waveguides with
lengths less than 10~1 in the thin direction (and sometimes larger). Implementing such
a preconditioner however required a novel implementation that allows inner solves to
be carried out in two dimensional complexity yet still resolve three dimensional data.
We have also developed asymptotic spectral bounds and GMRES bounds that give
some indication when this preconditioning method will be effective.

This problem is rich in opportunities for further work. The thin geometry of
the inhomogeneity and the typical periodic structure of the refractive index suggest
that there are meshes that would perform better than the regular meshes used in
the numerical examples presented here. Furthermore, high resolution meshes would
require developing fast integral methods for this iterative approach to be feasible. An
efficient and fast integral algortihm would allow one to compute the matrix vector
products required at each step of the GMRES process at less than O(N?) complexity
(see e.g. [1, 3, 8, 7, 14, 15]). The examples included in this paper are low resolution
and are included to illustrate the bounds we have derived. To suit this problem,
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such an approach would have to align an efficient mesh configuration with the tiled
format demonstrated in (12). It is important to point out, however, that if one were
to employ a Nystrom discretization, one would have to take care of vertically aligned,
but unequal, vertices of the mesh, since as h — 0, the Green’s function approaches a
singularity that wouldn’t appear in the two dimensional discretization, implying that
our preconditioner no longer approximates an inverse. However, we are confident that
one can significantly accelerate the integral computations at a high order of accuracy
and combine such a method with the preconditioning method described in this paper
to produce a high order and efficient method for solving this problem. Such a result
would be a significant and welcome contribution.
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