Structure Validation of Complex Natural Products: Time to Change
the Paradigm. What did Synthesis of Alstofolinine A Prove?
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ABSTRACT: Total synthesis has been an effective and broadly practiced approach for structure validation (or revision) of
complex natural products. It appears that computational methods for structure elucidation are gradually becoming a better
alternative; faster and more reliable. The case of alstofolinine A.

Computer-aided methods for structure elucidation of
complex natural products are becoming faster, more accu-
rate, and more user-friendly. Synthesis of natural prod-
ucts will always be valuable for moving synthetic method-
ology forward, and also for offering an alternative supply of
biologically active molecules often available only from
scarce natural sources. However, when it comes to struc-
ture validation or revision, computational tools are quickly
evolving as a better, cost-effective alternative.!?3

Recently reported synthesis of (-)-alstofolinine A em-
ploys several creative synthetic solutions, including the un-
derutilized aza-Achmatowicz rearrangement followed by
indole nucleophilic cyclization.# It achieves the target
compound, matching perfectly the 'H and 3C NMR data
obtained by the Kam lab in the original isolation of this
natural product from the stem-bark and leaf extracts of the
Malayan Alstonia macrophylla in 2014.5 However, our
DUS8+ computational analysis®” of the presented NMR data
reveals that these data do not support the structure of (-)-
alstofolinine A synthesized in ref.4 (i.e. the shown endo-bu-
tanolide), as it gives a poor match for the calculated 3C and
'H NMR chemical shifts and proton spin-spin coupling
constants: rmsd(dc) = 2.50 ppm, rmsd(dy) = 0.20 ppm, and
rmsd(Jun) = 3.82 Hz, Figure 1 (note that Figure 1 deals with
diastereomers, no absolute configuration is implied. For
discussion of the absolute configuration see Figure 4).

Which diastereomer? All three rmsd values for the cal-
culated data matched the shown exo-butanolide structure
much better: rmsd(dc) = 1.38 ppm, rmsd(dy) = 0.12 ppm,
rmsd(Jun) = 0.38 Hz, leaving no doubt that this is the cor-
rect diastereomer.

This predicament necessitated a critical analysis of the
synthetic path to the target alstofolinine A.  The stereo-
chemical outcome of the hydrogenation step 12 — 13
shown in Figure 1 was examined. The most plausible ex-
planation is that the Pd/C hydrogenation of butenolide 12
occurs not from the exo- but rather from the endo-face,
producing the exo-butanolide isomer of precursor 13. This
hypothesis is supported by calculated 3C NMR chemical
shifts for both precursor 13 and its exo-diastereomer. The

match is better for the exo-isomer, rmsd(dc) = 1.27 ppm,
than for the reported endo-isomer 13, rmsd(éc) = 1.86 ppm.
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Figure 1. Last two steps in the total synthesis (ref.4). The
corrected diastereomer of alstofolinine A implies that the
hydrogenation of 12 occurs from the endo-face yielding the
exo-butanolide product 13.

Analysis of the proton spin-spin coupling constants
(SSCCs) for alstofolinine A reveals additional irreconcila-
ble differences for the endo-structure, while providing sup-
port for the correct exo-diastereomer, Figure 2. The most
instructive discrepancy is revealed by the calculated values
for Jus-mes. In the experimental NMR data for alstofolinine
A, proton Hs is described as a doublet with Jys-sa = 6 Hz,
indicating that the value of the second constant, Jus.ms, is
small. For the correct exo-structure the value of Jus.is is
calculated to be small indeed, 1.3 Hz. However, in the in-
correct endo isomer this SSCC is calculated at 7.5 Hz, which
is not observed experimentally. Also, for the correct exo-
isomer, both Jis.Hiya and Jiis.ri» are matching nicely with
the calculated values, while for the incorrect endo-isomer
the value of Jui6.ri7s deviates by > 11 Hz.
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Figure 2. Most informative proton spin-spin coupling con-
stants for the exo- and endo-candidate diastereomers; ex-
perimental values (black) are above calculated (magenta);
rmsd values (Hz) for all nine reported SSCCs are also
shown.

The combined DUS8+ calculated data establishes the
structure of alstofolinine A as the exo-butanolide diastere-
omer, with the error most likely originating in the incor-
rect assumption about the facial selectivity of the Pd-cata-
lyzed hydrogenation step.

A related question is whether the natural product was
initially mischaracterized upon its isolation. We do not be-
lieve that this is the case, although somewhat esoteric de-
piction of the bridgehead protons in the original isolation
paper may have contributed to the confusion, Figure 3A.
Perhaps a more explicit and concise drawing convention is
required for specifying the bridgehead stereochemical con-
figuration unambiguously.® Admittedly, this way of de-
picting configuration of bicyclo[m.n.1] compounds (i.e.
when the single atom bridge is located on the same face of
the molecule as the “hedged” bridgehead hydrogen atoms)
is adopted by a number of natural product research groups.
If this indeed is the convention, the original isolation struc-
ture should be rewritten as shown in Figure 3B.
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Figure 3. Depiction of the bridgehead stereochemical con-
figuration used in the original isolation paper by Kam et al.
(A); and its more conventional interpretations (B).

Besides the fact that the natural product is an exo-buta-
nolide, as the calculations predict, it represents the enanti-
omer of the exo-corrected synthetic alstofolinine A.

Which enantiomer? In the original assignment, Kam and
co-workers correctly relied on the similarity between the
newly isolated (-)-alstofolinine A and macroline-type in-
dole alkaloids. Both the natural and synthetic alstofolinine
A have nearly identical optical rotation data: [o]p = -104° (¢
= 0.36, CHCL,;) and [a]p = -108° (¢ = 0.12, CHCl;), respec-
tively, suggesting that the synthetic sample has the same

absolute configuration. To resolve this discrepancy, we
calculated the [a]p values for both enantiomers of the exo-
diastereomer of alstofolinine A at the B3LYP/6-
31++G(2d,2p)//B3LYP/6-3u+(d,p) level of DFT theory.
Figure 4 shows that these [a]p calculations better match
presumed original absolute configuration proposed by
Kam et al., not its enantiomer, as the exo-corrected syn-
thetic structure would suggest. Calculations for the mid-
dle, i.e. synthetic endo-structure in Figure 4 implies that
the exo/endo butanolide moiety does not override the op-
tical rotation of the macroline core.

Experimental specific optical rotation of alstofolinine A:
original isolation [a]p = - 104° (¢ = 0.36 CHCl3)
synthetic [op = - 108° (¢ = 0.12 CHCl3)
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Figure 4. Experimental and calculated (B3LYP/6-
31++G(2d,2p)//B3LYP/6-3u+(d,p) ) optical rotation for
candidate structures.

Analysis of the asymmetric total synthesis revealed a po-
tential source for error, see Figure 5. In the synthetic se-
quence the critical stereogenic center is introduced via the
reaction of ketone 8 with Ellman's sulfinamide, followed by
the reduction of the imine with (+)-diisopinocam-
pheylborane to yield sulfonamide g with the S-configura-
tion (original numbering of compounds in the synthetic
paper is preserved). We do not have a reason to doubt the
stereochemical outcome of this time-proven amination.
However, we noticed that the aza-Achmatowicz product
6g was depicted with the inversion of configuration at the
C(N) stereocenter (i.e. R-configuration). This produced
the wrong enantiomer of the bicyclic macroline core struc-
ture, which was carried through the rest of the synthetic
sequence. This was compounded by the incorrect facial di-
astereoselectivity of the hydrogenation step.
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Figure 5. Introduction of the critical stereogenic center
with Ellman's sulfonamide and a possible problem with the
stereochemical outcome of the aza-Achmatowicz reaction

(original numbering of compounds).



To conclude, based on our computational analysis, we
confirm the relative and absolute configuration of (-)-al-
stofolinine A assigned by Kam et al. and as shown in Figure
6.
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Figure 6. Confirmed correct relative and absolute config-
uration of (-)-alstofolinine A as reported by Kam et al.

The lesson learned here is that independent total synthe-
sis does not guarantee 100% error-free structure validation,
and that practitioners in the field should embrace modern
computational tools for predicting NMR spectra (and other
physical observables). These increasingly user-friendly
computational tools are now fast and sufficiently accurate
in most cases to expeditiously detect a misassignment and
avoid errors.
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