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SUMMARY 
 

The cerebrospinal fluid surrounds the brain and the spinal cord, and is believed to be a potential risk 
factor to many CNS diseases. The biomechanics of the CSF flow in the brain ventricles is poorly 
understood due partly to the difficulty in obtaining the flow data in vivo. This paper describes the 
outcomes of a computational study to examine the elastic response of the walls of the ventricles and 
its effects on the flow. Comparisons of the simulated results are guided by clinical data obtained with 
the Time-SLIP MRI, which captures ventricular CSF flows in real time in vivo.  

 
Key words: cerebrospinal fluid flow, elastic wall, simulation 
 
 
1   INTRODUCTION 
 
In the cranial vault, the cerebrospinal fluid (CSF) fills the cerebral ventricle and the subarachnoid 
space. Clinical evidence continues to indicate CSF as a potential risk factor to many diseases of the 
central nervous system. Significant advances in the visualization of the transient CSF flow in the 
ventricles inside the brain were made recently by the development of the Time-SLIP MRI (Time-
Spatial Labeling Inversion Magnetic Resonance Imaging) medical imaging technology [1-6]. The 
Time-SLIP MRI captures views of the ventricular CSF flow in real time in vivo, which has not been 
possible with cardiac-gated brain MRI.  
 
CSF is reported to have a specific gravity of about 1.007, close to that of water. Deep inside the brain, 
the ventricles, including the paired lateral ventricles, the third ventricle, and the fourth ventricle are 
interconnected, allowing the CSF to move freely in the brain ventricles and to the subarachnoid 
space. The flow of the CSF in the ventricles is believed to present throughout the ventricles. The 
ventricular CSF flow performs many irreplaceable tasks that are critical to the functioning of the 
brain. For instance, the ventricular CSF flow transports nutrients, hormones, and brain metabolites 
from where they are produced to target nucleuses, such as the circumventricular organs. The 
pressure-volume relationship between the intracranial pressure, the volume of CSF, blood, and brain 
tissue, is known as the Monro-Kellie doctrine. The cranium’s constituents maintain a homeostasis, 
such that any increase in the volume of one of the cranial constituents must be compensated by a 
decrease in the volume of the others. CSF flow dynamics is a result of the interaction between brain 
tissues, the vascular systems, and other factors, such as respiration.  
 
Computational models are being applied at increasing rate toward a better understanding and 
assessment of the circulation of biofluids, and prediction of deleterious human physiological effects. 
Computational modeling provides detailed spatial and temporal descriptions of biofluid flow, which 
are not readily achievable via physical measurement. Patient-specific computational fluid dynamics 
(CFD) simulations, using commercial software, of the CSF flow in the spinal or cranial 
compartments [7-9] have been reported, where measured flow volume and velocity at the 
computational boundaries are applied to generate pulsating CSF flow. Through the use of 







 

 

pulsating CSF flow should be modeled in the computer simulation platform, which is consistent with 
the Monro-Kellie doctrine.  
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