

1 **Review: Molecular physiology of copepods - from biomarkers to transcriptomes**
2 **and back again**

3 Ann M. Tarrant^{1*}, Birgitte Nilsson², Benni Winding Hansen²

4 ¹ Biology Department, Woods Hole Oceanographic Institution, 45 Water Street,
5 Woods Hole MA 02544, USA

6 ² Department of Science and Environment, Roskilde University. Universitetsvej 1,
7 Roskilde, Denmark

8 * Corresponding author: atarrant@whoi.edu

9

10 **Abstract**

11 Planktonic copepods are a diverse and abundant group of small (~mm sized) aquatic
12 animals that play a critical role in linking the base of the food chain with higher trophic
13 levels. These invertebrates are a primary food source for marine fish larvae. Their
14 ubiquitous presence is thus of vital importance for recruitment of fish stocks and also
15 as promising live feed for finfish production in aquaculture. This paper reviews the
16 application of molecular approaches to understanding copepod physiology, particularly
17 in non-parasitic species. The review includes both targeted gene approaches and
18 untargeted transcriptomic approaches, with suggestions for best practices in each case.
19 Issues particularly relevant to studies of copepods include heterogeneity within species,
20 morphologically cryptic species, experimental artifacts associated with sample
21 handling, and limited annotation of copepod genes and transcripts. The emergence of
22 high-throughput sequencing and associated increased availability of genomic and
23 transcriptomic databases has presented a huge opportunity to advance knowledge of
24 copepod physiology. The research community can leverage this opportunity through
25 efforts to maintain or improve data accessibility, database annotation, and
26 documentation of analytical pipelines.

27

28 **Key words**

29 best practices, biomarker, Copepoda, gene expression, non-model, review, RNA-seq,
30 transcriptome

31

32 **1. Introduction**

33 Copepods (Subclass Copepoda) are a diverse and ecologically important group of
34 crustaceans that reside freshwater, estuarine and marine environments. They inhabit the
35 water column and the benthos, may be free-living or parasitic, and range from the
36 intertidal to deep ocean basins. They have even been suggested as the most numerous
37 multicellular organisms on earth (Walter and Boxshall, 2019). Several recent molecular
38 studies have indicated that the traditional grouping of Crustacea is paraphyletic, and
39 have suggested a new clade Pancrustacea or Tetraconata that includes hexapods (e.g.,
40 insects; Dohle, 2001; Regier et al., 2005). The relationships of copepods to other
41 lineages within the Pancrustacea is still under debate and is considered a matter of
42 active research (Oakley et al., 2012; Regier et al., 2010; Rota-Stabelli et al., 2012).
43 Copepoda is the second largest subclass in the Crustacea, including approximately
44 12,000 copepod species described to date (Encyclopedia of Life, Accessed 8 June
45 2018), with the greatest diversity in the marine environment (Boxshall and Defaye,
46 2008; 11,443 species listed in the World Register of Marine Species, Accessed 8 June
47 2018).

48 Within marine and freshwater food webs, small planktonic copepods serve a critical
49 role linking phytoplankton and microzooplankton with larger predators (Sherr and
50 Sherr, 2016; Turner, 2004; Zöllner et al., 2009). Thus, they channel energy from
51 primary producers and the microbial loop up to higher trophic levels. Diel vertical
52 migration of planktonic copepods is a significant conduit for the biological pump,
53 which exports organic carbon below the euphotic zone (reviewed by Steinberg and
54 Landry, 2017). Seasonal dormancy of many species enables efficient grazing of
55 seasonally abundant phytoplankton populations, and within the Calanidae, creates an
56 additional mechanism for export as lipids are respiration at depth over a prolonged period

57 (i.e., the "lipid pump"; Jónasdóttir et al., 2015). In coastal and freshwater ecosystems,
58 many species produce quiescent or diapausing embryos that settle into the sediments,
59 where they remain for months to years until hatching during favorable conditions
60 (Holm et al., 2017). This "egg bank" enables species to adapt to seasonal variability,
61 helps to smooth the effects of variable reproduction across years, and facilitates the
62 coexistence of diverse species and genotypes (Hairston, 1996; Marcus et al., 1994).

63 In addition to their importance to natural ecosystems, copepods also have significance
64 for aquaculture, due both to their impacts as parasites and to their promising
65 contributions as a source of live feed. Copepods parasitize diverse species in the wild
66 and within aquaculture. Among the parasitic species, caligid copepods ("sea lice",
67 primarily in the *Lepeophtheirus* and *Caligus* genera) have infested salmonid cultures,
68 where they can both compromise commercial production and spread to local wild
69 populations. Treatments to reduce parasite load can have unintended consequences,
70 such as the development of drug-resistant populations and impacts on non-target
71 species (reviewed by Aaen et al., 2015). On the other hand, cultured free-living
72 copepods can have significant benefits for aquaculture. Relative to more traditional
73 food sources like brine shrimp and rotifers, copepod nauplii can result in increased
74 survival and other quality metrics of fish larvae (Drillet et al., 2011; Nielsen et al.,
75 2017). However, rearing copepods at high densities on a commercial scale requires
76 optimization and is a subject of active research (Nilsson et al., 2017 and references
77 therein; Vu et al., 2017).

78 Improved understanding of copepod physiology can refine our ability to predict how
79 natural copepod populations will respond to environmental change. Furthermore,
80 increased knowledge of copepod physiology can aid efforts to optimize live-feed
81 production for aquaculture. Aspects of copepod physiology can be monitored using

82 gross organismal end-points like survival, development, growth, fecundity, respiration
83 and swimming behavior. All of these can provide insight into physiological condition;
84 however, to gain a comprehensive mechanistic understanding of copepod physiology a
85 molecular approach is necessary.

86 To date, the application of molecular tools to study copepod physiology has been
87 patchy, with different model species (Figure 1) used to study distinct sets of questions
88 and relatively little integration between research communities. Ecologists have focused
89 much attention on the impacts of climate change on species and ecosystems, including
90 the potential for physiological plasticity to mitigate impacts. Elegant studies have
91 demonstrated heritable and plastic components of thermal tolerance in the intertidal
92 copepod *Tigriopus californicus* (Kelly et al., 2017; Lima and Willett, 2017; Pereira et
93 al., 2014, 2017; Schoville et al., 2012; Tangwancharoen et al., 2018). In oceanic
94 environments, investigations of the responses of *Calanus* spp. to the thermal
95 environment have focused on understanding the interactions between physiological
96 tolerances and range shifts in shaping future ecosystems (Ramos et al., 2015; Smolina
97 et al., 2015). Ecotoxicological studies exploring the effects of diverse chemical
98 stressors have most commonly focused on *Tigriopus japonicus* and *Calanus* spp., but
99 a handful of other species have been used (Table 1). Estuarine species, including
100 *Acartia tonsa* and *Eurytemora affinis*, have been studied in many contexts including
101 characterization of responses to salinity changes and handling (Nilsson et al., 2018;
102 Petkeviciute et al., 2015; Rahlff et al., 2017; Xuereb et al., 2012). Many copepods
103 incorporate a dormant stage within their life history, which has consequences for
104 developmental progression and energy utilization. Molecular approaches have been
105 used to study embryonic dormancy in *Acartia tonsa* (Nilsson and Hansen, 2018),
106 juvenile dormancy and lipid utilization in *Calanus finmarchicus* (Tarrant et al., 2008,

107 2014), and emergence from adult diapause in *Neocalanus flemingeri* (Roncalli et al.,
108 2018b). Finally, molecular approaches have been extensively used to characterize the
109 life history and stress responses of parasitic copepods, (e.g., Núñez-Acuña et al., 2016;
110 Poley et al., 2015). In this case, many of the stress responses studied are intentionally
111 induced with the aim of developing treatments to weaken or impair the propagation of
112 these pests. Overall, most of the species discussed above and throughout this
113 manuscript are calanoids (i.e., members of Order Calanoida), but studies have also been
114 targeted toward a few species of harpacticoids (*Tigriopus* spp. and *Tisbe holothuriae*),
115 siphonostomatiods (especially *Lepeophtheirus salmonis* and *Caligus rogercresseyi*),
116 and cyclopoids (*Apocyclops royi* and *Paracyclops nana*).

117 This review seeks to provide a resource that summarizes previous studies of copepod
118 molecular physiology, divided between targeted “candidate gene” approaches and
119 untargeted transcriptomic approaches. To do this, we build upon earlier reviews
120 focused on copepods that articulated the value of emerging genomic resources (Bron et
121 al., 2011; Amato and Carotenuto, 2018) and characterized molecular stress responses
122 (Lauritano et al., 2012). We focus primarily on non-parasitic species that are marine or
123 euryhaline. In synthesizing the results from studies conducted with a wide variety of
124 focal species and for diverse applications, we will both demonstrate how techniques
125 have advanced over time and make suggestions for future study design and data
126 analysis.

127

128 **2. Common Methodological Considerations**

129 Within this section, we discuss considerations common to both targeted and untargeted
130 gene expression studies. For any gene expression study, it is essential to minimize

131 artifacts associated with handling of the animals and to maintain high-quality RNA
132 throughout the molecular analysis. Also, in studying the responses of copepods to
133 environmental stressors or other experimental conditions, developmental and sex-
134 specific specificity should be considered. These topics are explored below.

135 **Handling**

136 Studies of copepod physiology have been conducted in a variety of contexts, including
137 direct sampling of wild populations, short-term laboratory manipulations of field-
138 collected animals, and genetically controlled experiments with animals that had been
139 maintained in the laboratory over multiple generations. The potential effects of
140 handling stress have rarely been assessed in copepods. In a limited example, *C.*
141 *finmarchicus* expression of three small heat shock proteins was shown to increase
142 between the time of collection and 2-3 hours post-collection (Aruda et al., 2011). More
143 broadly, a transcriptomic study of *A. tonsa* demonstrated that intense handling stress
144 created by holding adult copepods outside of water for 10 minutes on Nitex mesh led
145 to substantial changes in gene expression 24 hours later (Nilsson et al., 2018). While
146 the study did not profile handling-induced changes in gene expression under other
147 conditions, elevated mortality was observed in copepods held out of the water for as
148 little as 1 minute. As Nilsson et al. (2018) suggested, the stress imposed by field
149 collections can be high and varies according to factors such as tow speed, mesh size,
150 the temperature during retrieval and processing, and any additional manipulations
151 associated with isolation and preservation. This study highlights the need to minimize
152 stress effects during sampling and experimental manipulation. This can be done through
153 the use of gentle towing methods, maintaining constant temperature and salinity, and
154 minimizing the total time from collection until preservation. To the extent possible, the

155 effectiveness of any laboratory acclimatization periods should be experimentally
156 validated, and controls for handling should be included.

157 **Selection of Developmental Stage**

158 Previous studies of copepod physiology have varied in the developmental stage(s) that
159 were tested, along with the experimental duration, sampling times, season, and other
160 environmental factors. This diversity in study designs is naturally driven by the diverse
161 objectives of the individual studies, but such differences also make it difficult to
162 compare across species or studies. Among these many factors, developmental stage
163 merits additional discussion in the context of sensitivity to environmental stressors.

164 Within many groups of marine invertebrates, early life stages exhibit increased
165 sensitivity to abiotic stressors, including hypercapnia, extreme temperatures (reviewed
166 by Kurihara, 2008). Among crustaceans, studies in decapods have identified early
167 developmental stages that are particularly vulnerable to thermal stress (e.g., Schiffer et
168 al., 2014; Storch et al., 2011).

169 In copepods, relatively little research has been devoted to comparing the dynamics of
170 gene expression across developmental stages, but among the available studies, there
171 has been no consistent pattern in stage sensitivity to diverse stressors. For example,
172 Nilsson et al. (2018) found that *A. tonsa* adults were much more sensitive to handling
173 stress than nauplii, while nauplii were more sensitive to salinity stress than adults.
174 Tangwancharoen and Burton (2014) showed that *T. californicus* adults were more
175 sensitive to thermal stress than nauplii and copepodites. Jager et al. (2016) found that
176 within *C. finmarchicus*, adult males were the most sensitive to exposure to fresh and
177 weathered oil, followed by late copepodites. They reviewed numerous studies showing
178 the differential sensitivity of copepod developmental stages to environmental toxicants,
179 including several showing the increased sensitivity of nauplii (e.g., Lotufo and Fleeger,

180 1997; Saiz et al., 2009). The authors pointed toward the need for additional empirical
181 observations in multiple species and also suggested that the molt from last naupliar
182 stage to the first copepodite stage might be particularly energetically demanding and
183 sensitive to external stressors. The physiological basis for stage-specific sensitivity of
184 copepods to environmental stressors is not generally known, but transcriptional
185 profiling can provide some insight. Using RNA-seq, Roncalli et al. (2017b) observed
186 increased sensitivity of *C. finmarchicus* nauplii to saxitoxin, and also noted that, unlike
187 adults, nauplii did not upregulate digestive enzymes in response to saxitoxin exposure.
188 They hypothesized that upregulation of digestive enzymes by adults reduces
189 assimilation of the toxin and provides increased tolerance.

190 For lipid-storing copepods, such as *Calanus* spp., accumulation of lipophilic
191 compounds in the oil sac and potential mobilization of these contaminants into adult
192 tissues and offspring may be a significant route of exposure. While studies in this area
193 are just beginning, Hansen et al. (2016) showed that polycyclic aromatic hydrocarbons
194 (PAHs) could be transferred from oil-exposed mothers to offspring and that maternal
195 exposure resulted in mild but measurable effects on naupliar hatching and gene
196 expression. Toxværd et al. (2018) found that exposure of females to pyrene during
197 overwintering lead to a reduced rebuilding of lipid reserves, as well as decreased
198 survival and egg production.

199 Sex is an additional consideration in studies of adult copepods. Female copepods
200 usually have longer lifespans and higher stress resistances than males (e.g., Foley et al.,
201 2019; Parrish and Wilson, 1978). This difference in resistance, and other physiological
202 differences associated with reproduction may result in different transcriptional
203 responses to stressors. When studying adult copepods, the selection of sex or the choice
204 to include a mixture of sexes, should be carefully considered in light of the scientific

205 question to be answered. More broadly, understanding of developmental changes in
206 environmental sensitivity is improving, but considerable work is needed to create an
207 integrative view of molecular physiology during copepod development.

208 **Sample preparation**

209 Any measurement of gene expression requires that high RNA quality is maintained
210 throughout sampling, storage, extraction, and subsequent analysis. Copepods have been
211 successfully stored in liquid nitrogen for at least 10 years with high RNA yields, and
212 no evidence on degradation (Hassett et al., 2010); however, preservation in liquid
213 nitrogen is not always tractable. Obtaining liquid nitrogen in remote field locations can
214 be difficult, liquid nitrogen levels must be maintained, and liquid nitrogen storage can
215 pose problems during shipment. Alternative suitable storage methods include guanidine
216 thiocyanate/phenol-based reagents and RNAlater. Zhang et al. (2013) reported that
217 samples preserved in guanidine thiocyanate/phenol-based reagents (e.g. TRI Reagent,
218 TRIzol), could be stored without degradation at 4°C for up to two weeks, or at -80°C
219 for two years. They also reported satisfactory extraction of RNA following storage in
220 RNAlater but noted that copepods stored in RNAlater sometimes become transparent
221 and easy to lose during the extraction protocols. Asai et al. (2015) reported higher RNA
222 yield and improved quality following storage in RNAlater compared with storage in
223 TRIzol, but they did not specify the length of storage prior to extraction. In samples
224 stored in RNAlater, Nilsson et al. (2018) obtained high-quality RNA following 1 week
225 of storage at -20°C, but a noted decreased quality after transport on dry ice and a total
226 of 3 months of storage at -20°C.

227 With copepod samples, several extraction protocols have been used to obtain total RNA
228 that is of suitable quality for downstream measurements of gene expression (reviewed
229 by Asai et al., 2015; Zhang et al., 2013). While DNase is frequently used during the

230 extraction protocol to remove residual genomic DNA before transcript quantification,
231 this step can lead to RNA degradation, and effects on sample quality must be monitored
232 (Nilsson, 2018; Zhang et al., 2013).

233 Assessment of RNA quality is a critical best practice for both targeted and untargeted
234 gene expression studies; however, RNA quality metrics are not always reported.
235 Spectrophotometry (e.g., NanoDropTM by ThermoScientific) and fluorometry (e.g.,
236 QubitTM by Invitrogen) enable assessment of RNA yield, and spectrophotometric
237 absorbance ratios indicate sample purity. RNA integrity can be assessed through
238 visualization on denaturing agarose gels, or automated electrophoresis (via
239 BioanalyzerTM or TapeStationTM, both produced by Agilent Technologies). Automated
240 electrophoresis has been used to assess copepod RNA quality for many years (e.g.,
241 Voznesensky et al. 2004), and the approach is now common, particularly in association
242 with RNA-seq studies. In automated electrophoresis of total RNA, the most commonly
243 used single metric of quality is the RNA Integrity Number (RIN), which is derived
244 from an algorithm that compares the relative proportions of 28S and 18S rRNA; values
245 range from 1 to 10, with lower values indicating degradation. In copepods, like many
246 other arthropods, the 28S band is fragile and can break (“the hidden break”) during
247 sample preparation (Asai et al., 2015; McCarthy et al., 2015). Thus, many copepod
248 studies disregard the RIN metrics and rely on a subjective visual analysis of an
249 electropherogram trace, including the presence of a strong discrete 18S band, the
250 absence of larger bands indicating contamination by genomic DNA, and limited
251 smearing within the smaller size ranges (e.g., Almada and Tarrant 2016, Zhou et al.
252 2018). In many cases 28S breakage occurs during heat denaturing of samples
253 immediately before analysis, so integrity can sometimes be preserved by omitting this
254 step (e.g., Figure 2 within Asai et al. 2015).

255

256 **3. Biomarkers**

257 Broadly, biomarkers are detectable molecular, biochemical, and tissue-level changes
258 that indicate physiological effects (Smit et al., 2009). Compared to organismal metrics,
259 biomarkers can provide increased sensitivity to detect changes and specific insights into
260 their likely causes (reviewed by Hook et al., 2014). Quantitative real-time RT-PCR
261 (qPCR) has been the primary approach to measure the expression of individual
262 biomarker genes. Biomarker expression is typically normalized to the expression of one
263 or more reference genes that exhibit stable expression. Below we first discuss criteria
264 for selection of reference genes and methods of normalization. We then review the
265 desirable characteristics of biomarkers and their historical application to studies of
266 copepod physiology. Finally, we point toward additional considerations for future
267 studies.

268 **Reference genes**

269 Relative changes in mRNA levels can be estimated through a variety of methods,
270 including the comparative threshold cycle ($2^{-\Delta\Delta C_t}$) (Livak and Schmittgen, 2001),
271 Pfaffl (Pfaffl, 2001) and LinRegPCR (Ruijter et al., 2009) methods. With each of these
272 methods, users typically account for systematic variation (e.g., differences in starting
273 material, RNA quality, and PCR efficiencies) by normalizing expression against one or
274 more reference genes (Chervoneva et al., 2010; Livak and Schmittgen, 2001).

275 Commonly used reference genes are often carry-overs from older studies that used
276 semi-quantitative methods, e.g., Northern blots, RNase protection assays, and
277 conventional reverse-transcription PCR assays (Huggett et al., 2005). Suitable
278 reference genes should exhibit stable expression across experimental conditions or

279 groups to be compared, such as various developmental stages and tissue types.
280 Unfortunately, the stability of reference genes is often insufficiently assessed and the
281 requirement for stability is frequently violated (Dheda et al., 2005; Huggett et al., 2005;
282 Kozera and Rapacz, 2013; Pfaffl et al., 2004; Svingen et al., 2015). Commonly used
283 reference genes for copepods (Table 2) might exhibit stable expression within a set of
284 experimental conditions, but will not necessarily be stable across a different set of
285 conditions or in other species. Thus, it is important to carefully select and validate the
286 reference genes to ensure optimal normalization.

287 Some recent studies with copepods have used only a single, or few, reference genes for
288 normalization (e.g., Nilsson et al., 2017; Petkeviciute et al., 2015; Rahlff et al., 2017).
289 The limited selection of references genes has historically been due to difficulties in
290 generating suitable primers from species with no available genomic or transcriptomic
291 resources. With the continued improvement of sequencing technologies and lower
292 costs, copepod sequence resources are increasing, which makes it easier to identify and
293 generate new primers for reference genes (e.g., Nilsson and Hansen, 2018). It is
294 strongly recommended to normalize gene expression of target genes against the
295 geometric mean of multiple reference genes (Vandesompele et al., 2002).

296 Several algorithms are available for selection of the most suitable reference genes,
297 including geNorm (Perkins et al., 2012; Vandesompele et al., 2002), BestKeeper (Pfaffl
298 et al., 2004) and NormFinder (Andersen et al., 2004). Of these, geNorm calculates a
299 gene stability value (M), which is defined as the average pairwise variation of gene
300 expression. The procedure is iterative, where the least-desirable reference gene is
301 discarded, with subsequent recalculation of the M-values. The ranking of M-values is
302 carried out in a step-wise manner starting with the two genes having the lowest pairwise
303 variation. M-values lower than 1.5 are recommended for selecting stable reference

304 genes (Vandesompele et al., 2002). Furthermore, geNorm is able to estimate how many
305 reference genes should be used for normalization in a given study (Perkins et al., 2012).
306 BestKeeper assumes that reference genes have similar expression patterns; hence
307 suitable reference genes should have highly-correlated expression patterns. From the
308 geometric mean of Ct values and their standard deviation (SD), a “BestKeeper index”
309 is estimated. Genes that are stably expressed have an SD below 1. The genes are
310 compared pairwise, and those with the lowest SD values and highest coefficients of
311 correlation (r) are assumed to exhibit the most stable expression among the candidate
312 genes (Pfaffl et al., 2004). NormFinder uses a statistical linear mixed-effect model to
313 estimate intra- and inter-group variation of gene expression and combines the two into
314 a stability value. The genes with the lowest stability value are assumed to be the most
315 stable across the experimental conditions (Andersen et al., 2004).

316 Across copepod species and conditions, *elongation factor 1 α* (*EFA*, Table 1) and
317 *Histone H3* (*HIST*, Table 1), have been validated as some of the most stable reference
318 genes (Christie et al., 2016; Hansen et al., 2008, 2010; Jeong et al., 2015; Lee et al.,
319 2017). Another commonly used reference gene, that often is validated as stable, is the
320 *18S ribosomal RNA* (*18S*) (e.g., Jeong et al., 2015). However, the expression of *18S* has
321 been shown to be very high expression compared with other candidate reference genes
322 and biomarker genes in studies with multiple copepod species and tested conditions
323 (e.g., Lauritano et al., 2015; Nilsson and Hansen, 2018). This suggests that *18S* is not
324 generally suitable as a reference gene for copepods. Where possible, reference genes
325 should be selected from distinct functional groups to avoid co-regulation (Riemer et al.,
326 2012).

327 **Biomarker selection and application in copepods**

328 Desirable characteristics in a biomarker include sensitivity, a large signal-to-noise ratio,
329 consistency in responses, and known specificity for environmental stressor or other
330 drivers of response. Numerous studies of copepods have reported the expression of
331 small numbers of target genes, which were selected as putative biomarkers of processes
332 of interest, including detoxification, antioxidant activity, apoptosis, and protein
333 refolding (Table 1). Many of the individual genes that have been used as biomarkers
334 belong to larger families (e.g., heat shock protein, cytochrome 450 oxidases). Within
335 large gene families, gene function typically diverges and diversifies, with individual
336 genes developing distinct expression patterns (developmental, tissue-specific and/or
337 subcellular) and functionality (e.g., substrate specificity). These features contribute to
338 the dynamic range of expression for each gene and the environmental conditions that
339 affect that expression.

340 Initially, due to a lack of genomic resources, copepod genes needed to be individually
341 cloned and sequenced, using degenerate primers based on known sequences in other
342 animals. The genes selected for these studies were necessarily evolutionarily conserved
343 and typically were widely used as biomarkers of similar processes in other animals. For
344 example, heat shock proteins (HSPs) are a deeply conserved superfamily of molecular
345 chaperones that enable proper three-dimensional folding of nascent proteins, help to
346 repair or recycle damaged proteins, contribute to subcellular localization and prevent
347 aggregation (reviewed by Kregel, 2002; Lanneau et al., 2010). While these proteins
348 play essential roles in cellular maintenance, HSPs are also frequently up-regulated in
349 response to diverse cellular stressors. As a biomarker, the best-studied form is the
350 highly inducible cytosolic HSP70. In copepods, induced expression of HSP70 has been
351 reported in response to elevated temperature, crowding, handling, embryonic transition
352 between subitaneous and quiescence states, abnormal salinity, and various chemical

353 contaminants (e.g., Aruda et al., 2011; Nilsson et al., 2014; Petkeviciute et al., 2015;
354 Rahlff et al., 2017; Rhee et al., 2009, VanderLugt, 2009). In addition to HSP70, several
355 other HSP molecules display changes expression in response to temperature (Seo et al.,
356 2006c, but see also Rhee et al. 2009), handling (Aruda et al., 2011), as well as exposure
357 to endocrine disruptors (Seo et al., 2006b) or toxic diatoms (Lauritano et al., 2011b).

358 Another broad class of biomarkers is related to antioxidant activity. Reactive oxygen
359 and reactive nitrogen compounds are produced through normal cellular metabolism,
360 through exposure to and metabolism of environmental contaminants, and as a result of
361 exposure to ultraviolet radiation or other physical stressors. Animals have developed
362 several classes of antioxidant enzymes to neutralize these reactive compounds, and
363 accordingly, studies in copepods have measured expression of antioxidant enzymes,
364 including superoxide dismutases (Jiang et al., 2013; Kim et al., 2011), catalases
365 (Hansen et al., 2008; Lauritano et al., 2011b, 2016), glutathione peroxidases (Zhuang
366 et al., 2017) and peroxiredoxins (Zhuang et al., 2017). While exposure to cellular
367 oxidants is broadly expected to lead to induction of antioxidant defenses, the observed
368 patterns are complicated and dependent upon the duration, concentration, and type of
369 stressor, as well as the specific genes, measured.

370 Genes are often selected as biomarkers based on their specific mode of action to
371 indicate the disruption of a process process or exposure to a specific stressor. For
372 example, xenobiotic metabolizing enzymes often indicate exposure to chemical
373 stressors. Among these, cytochrome P450 oxidases and glutathione S-transferases have
374 been most widely studied in copepods (see Table 2). Vitellogenins are precursors to
375 major egg yolk proteins and have been proposed as markers of the reproductive
376 condition in copepods. Studies in *L. salmonis* have demonstrated that vitellogenins are
377 produced in subcuticular tissues of adult females, secreted into the hemolymph, and

378 deposited in the maturing oocytes (Dalvin et al., 2011). Vitellogenins have been
379 identified in other copepod species, with measurable expression in late copepodid
380 stages that greatly increases in adult females (e.g., Hwang et al., 2009). Two studies
381 have demonstrated induction of vitellogenin expression in response to metal exposure,
382 but the mechanism of disruption and links to reproductive endpoints are still unclear
383 (Hwang et al., 2010b; Lee et al., 2008a).

384 **Challenges and opportunities**

385 To date, there have been limited instances where biomarkers developed for copepods
386 have been adopted for studies by distinct research groups or across species. As with
387 many physiological studies, experimental differences in factors such as handling
388 protocols, the nutritional status and developmental stage of the animals, and the
389 duration and intensity of any experimental exposure complicate direct comparisons
390 across studies. Two additional consideration merit additional discussion: homologous
391 relationships of biomarkers and genetic complexity of study species.

392 Homologous relationships

393 Because full copepod transcriptomic databases have only recently become available,
394 earlier biomarker studies frequently required cloning and sequencing of individual
395 genes. In the case of multi-gene families, this could lead to an analysis of paralogous
396 genes that might not be directly comparable to one another. For example, in studies of
397 *Calanus finmarchicus*, Voznesensky et al. (2004) reported the induction of HSP70
398 following thermal stress, but Hansen et al. (2008) found no effect of naphthalene
399 exposure on HSP70 expression. While it is entirely plausible that the two different
400 stressors would induce distinct physiological responses, it would not be evident to a
401 casual reader that the two studies measured different HSP70 family members (Aruda

402 et al., 2011). This issue of homology becomes even more complex in cross-species
403 comparisons, in which the roles of various gene family members may have diverged.

404 High-throughput sequencing and the increased availability of copepod transcriptomes
405 and genomes have also provided an opportunity to place biomarkers within a gene
406 family, and more broadly to study gene diversification and loss. As an example, Porter
407 et al. (2017) characterized the evolutionary relationships among phototransduction
408 genes in 10 copepod species from diverse lineages and identified four primary groups
409 of copepod opsins, two of which were broadly distributed, and two of which were
410 restricted to a subset of species.

411 Genetic complexity

412 It is becoming increasingly apparent that morphological identification may be
413 insufficient for many copepod species. This is particularly problematic for studies of
414 natural populations, where cryptic species may co-occur. For example, it has recently
415 been demonstrated that morphological characters do not reliably discriminate *C.*
416 *finmarchicus* and *C. glacialis* and that these species widely co-occur, particularly
417 within fjord environments (Choquet et al., 2017, 2018). Smolina et al. (2015)
418 incorporated this consideration into their methodology, using genetic techniques to
419 verify species identity before pooling RNA from multiple individuals and measuring
420 gene expression.

421 Heritable physiological variability has been described in both *Acartia tonsa* and *A.*
422 *hudsonica* (Avery, 2005; Cournoyer, 2013), along with substantial genetic diversity
423 within each group. It has been suggested that the major genetic lineages represent
424 cryptic species, which share broadly overlapping ranges (Chen and Hare, 2011;
425 Milligan et al., 2011). No studies have yet compared these physiological

426 characteristics of these *Acartia* lineages in a controlled genetic context. In contrast,
427 studies conducted in *Eurytemora affinis* and *Tigriopus californicus*, have frequently
428 incorporated genetic variation into their experimental design, comparing expression in
429 genetically distinct populations or genetically-controlled lineages to study gene by
430 environment interactions, adaptation to novel environments, and predicted responses
431 to climate change (e.g., Kelly et al. 2017; Lee et al. 2011; Pereira et al. 2014, 2017).

432 Thus, moving forward with natural populations, it will be necessary in many cases to
433 conduct molecular species identifications alongside any other biomarker analyses. This
434 has consequences for experimental design. For example, addressing this concern
435 requires nucleic acid extraction and analysis before pooling any material from
436 individual animals.

437

438 **4. Transcriptomes**

439 The development of high-throughput sequencing and associated bioinformatic
440 pipelines has revolutionized our understanding of copepod physiology. As copepod
441 physiologists have adopted these new methods, best practices for experimental design,
442 analysis, documentation and data availability have also developed. This section reviews
443 transcriptional profiling approaches that have been applied to copepods, including
444 technical recommendations and suggestions for best practices.

445 **Early untargeted approaches to expression profiling**

446 An advantage of whole-transcriptome profiling is that it enables candidate biomarkers
447 to be identified based on observed expression patterns, without requiring *a priori*
448 selection of candidate genes. Before the development of high-throughput sequencing,
449 gene sequences were typically determined by targeted amplification and cloning using

450 degenerate primers, or by mining libraries of expressed sequence tags (ESTs) produced
451 through Sanger sequencing. EST libraries also facilitated *de novo* identification of
452 candidate biomarkers, both within suppressive subtractive hybridization (SSH)
453 experiments and by enabling probe design for microarray analysis (e.g., Lenz et al.
454 2012). Because ESTs are derived from longer Sanger sequences, they have sometimes
455 provided a useful check on the accuracy of transcripts predicted from the assembly of
456 shorter reads produced by high-throughput sequencing (e.g., Christie et al., 2013).
457 Overall, while these older methods are becoming less common, microarrays, in
458 particular, are still useful for some applications and continue to be used.

459 With SSH, complementary DNA fragments from two different libraries (e.g., treatment
460 and control) are hybridized, and fragments overrepresented within one of the libraries
461 are amplified, cloned and sequenced. This method has been used to identify biomarkers
462 associated with copepod energetics and diapause (*Calanus finmarchicus*, Tarrant et al.,
463 2008), as well as with exposure to nickel (*Pseudodiaptomus annandalei*, Jiang et al.,
464 2013), diethanolamine (*C. finmarchicus*, Hansen et al., 2010), toxic diets (*C.
465 helgolandicus*, Carotenuto et al., 2014), an organophosphate (*Lepeophtheirus salmonis*,
466 Walsh et al., 2007) and multiple stressors (*C. finmarchicus*, Hansen et al., 2007). This
467 approach has produced useful biomarkers: for example, genes identified during an SSH
468 screen of active lipid-storing copepods were subsequently shown to parallel changes in
469 oil sac volume during juvenile copepod development (Tarrant et al., 2014). Limitations
470 of the method include a high rate of false positives and a bias toward genes with high
471 overall expression. For example, Jiang et al. (2013) tested 8 randomly-selected genes
472 from an SSH screen and was able to verify consistent expression patterns for only 5 of
473 them using quantitative PCR (qPCR). In bi-directional screens comparing active and
474 dormant copepods, Tarrant et al. (2008) found that ribosomal genes represented 18%

475 of the clone libraries, and the highly expressed myosin transcripts represented 32% of
476 the annotated mRNA sequences.

477 For microarray analysis of gene expression, DNA probes are arrayed onto glass slides
478 and hybridized with fluorescently-labeled cDNA. The probes may be prepared from
479 cDNA libraries or synthetic oligonucleotides, and the hybridization may be with one
480 sample or two distinctly labeled samples. Microarrays have been extensively used to
481 characterize responses of the intertidal copepod *Tigriopus japonicus* to environmental
482 stressors including copper (Ki et al., 2009), manganese (Kim et al., 2013a), ultraviolet
483 radiation (Rhee et al., 2012), and β -naphthoflavone (Rhee et al., 2015). Lee et al. (2011)
484 used a custom cDNA microarray to study changes in Na⁺K⁺ ATPase expression
485 associated with invasion of freshwater habitats by *Eurytemora affinis*. A targeted
486 “physiological” microarray was used to measure changes in *Calanus finmarchicus* gene
487 expression associated with food availability, lipid storage, development and vertical
488 migration (Lenz et al., 2012; Unal et al., 2013). A distinct broad-scale array was used
489 to evaluate the effects of components of petroleum extraction on *C. finmarchicus*
490 (Jensen et al., 2016). For the parasitic *Lepeophtheirus salmonis*, microarrays have been
491 used to characterize adult female maturation (Eichner et al., 2008) and abiotic stress
492 responses of free-living larvae (Sutherland et al., 2012). For some species, multiple
493 arrays have been designed, generally increasing in complexity over time. Successive *T.*
494 *japonicus* arrays produced by the same research group increased from ~6000 35-mer
495 probes (Ki et al., 2009) to ~55,000 60-mer probes (Rhee et al., 2012). For *C.*
496 *finmarchicus* and *L. salmonis*, earlier arrays were built using cDNA amplified from
497 normalized clone libraries, which were enriched for rare genes (Eichner et al., 2008;
498 Lenz et al., 2012). Later arrays constructed for both of these species used larger
499 numbers of oligonucleotide probes (Jensen et al., 2016; Sutherland et al., 2012).

500 While microarray is a powerful technique, it requires a substantial initial investment in
501 array design and synthesis. In addition, sample preparation, hybridization, scanning and
502 downstream data processing all require careful optimization and quality control. The
503 popularization of microarray approaches eventually led to the development of
504 analytical pipelines, standards for data reporting, and best practices for data analysis
505 (e.g., Brazma et al., 2001; Knapen et al., 2009; Shi et al., 2008). This increased attention
506 toward data management provided some of the initial frameworks for data analysis and
507 storage associated with high-throughput sequencing approaches. Within NCBI, the
508 Gene Expression Omnibus (GEO) is a public repository for curated gene expression
509 datasets produced using either microarray or sequencing-based platforms (Barrett et al.,
510 2013).

511 ***De novo Transcriptome Assembly***

512 To identify current and recent practices in transcriptome assembly, we searched the
513 NCBI transcriptome shotgun assembly (TSA) in August 2018 for available copepod
514 transcriptomes. From each of these, we compiled details of the source biological
515 material, methods of sequencing and assembly, and statistics regarding the number of
516 contigs, and BUSCO score (Table 3, Figure 2). We also included the *Apocyclops royi*
517 transcriptome, which had not yet been publicly released. In total, we identified 19
518 transcriptome assemblies, corresponding to 13 non-parasitic marine species. These
519 efforts were not uniformly distributed across taxonomic groups; for example, five of
520 the transcriptomes corresponded to two species of *Calanus*, and four of the
521 transcriptomes corresponded to three species of *Tigriopus*. In addition to the TSA's,
522 we identified 6 whole-genome shotgun assemblies (WGS) (*Eurytemora affinis*:
523 GCA_000591075.2, GCA_000591075.2; *Calanus finmarchicus*: GCA_002740975.1,

524 GCA_002740985.1; *Oithona nana*: GCA_900157175.1; *Acartia tonsa*:
525 GCA_900241095.1) for 4 copepod species.

526 Sequencing technologies included Illumina-based methods (HiSeq, MiSeq, and
527 NextSeq), 454 pyrosequencing (e.g., 454 GS FLX), and Ion-Torrent. Assembly
528 methods included Trinity, CLC, Mira, Newbler, and CAP3. Of the most recently
529 published assemblies (9 transcriptomes published or posted from 2016-2018), the
530 majority used Illumina-based methods (HiSeq and NextSeq). All of these used paired-
531 end reads. In most of these, (7 of 9) the read length was 150 bp, and in the other cases,
532 the read length was 100 or 125 bp. Trinity was used for all of these assemblies, and one
533 of the studies included both Trinity and CAP3 assemblies.

534 In the 18 published transcriptomes, the number of contigs ranged dramatically from
535 28,954 to 554,991. Some of this range represents variation in the extent of coverage
536 and completeness of the transcriptome assembly. One approach to assess the
537 completeness of an assembled transcriptome is the comparison with a curated set of
538 well-conserved single copy eukaryotic genes. To apply this method, we used BUSCO
539 ver. 2 (Benchmarking Universal Single-Copy Orthologs; Simão et al., 2015) to assess
540 the completeness of the same 18 copepod transcriptomes shown in Table 3. Of these,
541 three (*C. finmarchicus*, GBXU; *C. glacialis* GBXT and HACJ) had a large proportion
542 of missing or fragmented genes (79-87% combined). These three assemblies were
543 produced from relatively shallow sequencing (0.7-5 Mb total) and using either Ion-
544 Torrent or 454 GS FLX methods. While these smaller assemblies miss a large number
545 of genes, they can still be useful for targeted applications, such as profiling expression
546 of highly expressed genes and identification of biomarker sequences for qPCR studies
547 (e.g., Smolina et al., 2015). In contrast to the smaller transcriptome assemblies, nine
548 transcriptomes had less than two percent missing BUSCO genes, but also had 20-54%

549 of the genes represented by more than one transcript. While some of these may
550 represent true lineage-specific duplications, the BUSCO gene set was curated to include
551 genes represented by single orthologs in a vast majority of the diverse animal taxa
552 studied. Thus, a large proportion of the apparent duplications are thought to represent
553 incorrectly assembled haplotypes (Simão et al., 2015). Of the two *C. finmarchicus*
554 transcriptomes with nearly complete BUSCO sets (GAXK and GBFB), the proportion
555 of duplicated genes was lower in the assembly by Lenz et al. (2015; GAXK, 26%
556 duplicated BUSCO genes), which included 206,012 contigs, compared with the
557 assembly by Tarrant et al. (2014; GBFB, 36% duplicated BUSCO genes), which
558 contained 241,140 contigs. Thus, the BUSCO analysis suggests that many of the
559 additional contigs in the second transcriptome may represent duplicates. A likely
560 explanation for this difference is that the smaller transcriptome was filtered post-
561 assembly to retain only the longest contig associated with each clustered component
562 (“comp”) produced by the Trinity assembler. While this filtering approach undoubtedly
563 removes many duplicates, it can also result in the removal of some distinct genes (e.g.,
564 Lenz et al., 2014). Finally, it should also be noted that the BUSCO score does not
565 directly indicate the completeness of the transcriptome; transcriptome assemblies with
566 high BUSCO scores may still be missing large proportions of rare or conditionally
567 expressed transcripts.

568 **Transcriptome-wide Differential Gene Expression via RNA-seq**

569 To evaluate recent methods for analyzing differential gene expression in copepods, we
570 identified 18 RNA-seq-based studies published between 2012 and 2019 (Table 4; new
571 studies continue to emerge, and this list is not comprehensive). The studies were
572 conducted in a total of 8 species, and they investigated responses to a range of
573 environmental or experimental conditions, including salinity shock, handling stress,

574 pH, and temperature, as well as experimental exposure to cultured bacteria, toxic
575 dinoflagellates, or organic contaminants. In addition, some studies addressed variation
576 among geographically isolated populations or across developmental stages. All of these
577 studies utilized pools of copepods to construct each library, with the specific number
578 ranging from 3 to 500. Most of the studies (13 of 18 in Table 4) included biological
579 replication, typically with 3 or 4 replicates per treatment. Replication occurred at
580 different levels. For example, Kelly et al. (2017) produced only one library per genetic
581 line and treatment, but the experimental conditions were fully replicated across three
582 genetic lines (i.e., providing full biological replication). Bailey et al. (2017) included 5-
583 6 replicates per treatment, including three experimental replicates (separate aquaria),
584 each with 1-2 libraries. Five studies had only one biological replicate per treatment;
585 however, these often used the differential expression analysis in a more exploratory
586 manner. For example, Smolina et al. (2015) conducted a small-scale transcriptomic
587 study of responses in *Calanus* spp. to different temperature conditions and used the
588 results to develop hypotheses regarding thermal sensitivity and to select genes for more
589 detailed expression profiling by qPCR.

590 The studies in Table 4 used a variety of methods for read-alignment, calculation of
591 counts per read and identification of differentially expressed sequences; however, not
592 all studies indicated the method used for each step. For alignment, methods included
593 bowtie, bowtie2, bwa, Rsubread, and the proprietary CLC genomics workbench. Two
594 studies used the Kallisto alignment-free method (described below). From the mapping
595 results, matrices of counts per transcript can be generated using RSEM, Rsubread, and
596 other custom scripts; in these analyses, transcripts with very low levels of expression
597 are frequently removed prior to differential expression analysis. Differentially
598 expressed genes are typically identified using R-based packages including

599 DESeq/DESeq2, edgeR, limma, and Sleuth (Anders and Huber, 2010; Love et al., 2014;
600 Pimentel et al., 2016; Ritchie et al., 2015; Robinson et al., 2010).
601 Overall, most of these pipelines have included *de novo* transcriptome assembly
602 followed by read mapping, abundance estimation, and differential expression analysis.
603 These methods are time-consuming, require high computational capacity, and can be
604 limited by the quality of the reference genome or transcriptome (Bray et al., 2016;
605 Pimentel et al., 2016). “Alignment-free” methods (e.g., Sailfish, Kallisto, Salmon) have
606 recently been developed, in which the reference transcriptomes are shredded into kmers
607 (Conesa et al., 2016). The kmers from experimental reads can then be matched to the
608 kmers from the transcriptome, resulting in fast and accurate estimations of abundance.
609 Kallisto (e.g., used by Nilsson et al., 2018), constructs a *de Bruijn* graph from
610 transcriptome kmers (abbreviated as t-DBG), and then a pseudo-alignment is
611 constructed in which the kmers from experimental reads are evaluated for compatibility
612 with the t-DBG (Bray et al., 2016). By skipping kmers for which compatibility does
613 not change with the t-DBG, the process is accelerated. Because Kallisto only accounts
614 for exact k-mer matches, most sequencing errors are discarded (Bray et al., 2016).
615 Expression of genes or transcripts is determined by quantifying the k-mers associated
616 with each component of the indexed reference transcriptome. The R package Sleuth is
617 designed for processing the output from Kallisto and analyzing differential expression
618 at the transcript or gene level (Pimentel et al., 2016). Analysis methods continue to
619 develop, and future studies will most likely include a balance between investigators
620 using established pipelines and those choosing to incorporate new methods.

621 **Best Practices and Challenges**

622 Sequencing method and experimental design

623 Most considerations of sequencing depth and replication are not unique to copepods.
624 Specific concerns are mostly related to working with heterogeneous samples and
625 lacking a well-annotated reference genome for scaffolding. Illumina-based sequencing
626 is the most widely used technique for *de novo* transcriptome assembly, and paired-end,
627 stranded reads of at least 100 bp are recommended (Haas et al., 2013). Studies in diverse
628 animals have shown that *de novo* assemblies derived from 20-40 M reads can typically
629 recover most transcripts (Francis et al., 2013; MacManes, 2016). In evaluating a
630 *Calanus finmarchicus* transcriptome assembly, Lenz et al. (2014) progressively
631 subsampled their data set and found steep increases in the number of assembled contigs
632 obtained when increasing from 6 M to 50 M reads (100 bp, paired-end). They report
633 that a good quality assembly can be constructed from as few as 50 M reads, but suggest
634 based on rarefaction analysis that rare transcripts may be missing even with up to 400
635 M reads.

636 In comparing transcript expression among groups of samples, choices must be made to
637 optimize the statistical power of the study within the constraints of funding and sample
638 availability (reviewed by Todd et al., 2016). Several studies have demonstrated that
639 increased replication is more important than sequencing depth in maximizing statistical
640 power. Depending on the type of sample, once 10-20 M reads are obtained, it is
641 generally much more beneficial to increase the number of replicates rather than
642 sequencing depth (Ching et al., 2014; Liu et al., 2013). Another possible element of the
643 experimental design is the use of paired samples or blocking factors. For example,
644 copepods from replicate cultures (or collection sites) may each be split into treatment
645 and control groups that are treated as pairs. In this case, such a design would account
646 for variability among cultures (or collection sites), can increase the signal-to-noise
647 ratio, and thereby can increase statistical power in gene expression studies (Ching et

648 al., 2014). Paired or blocked study designs should be considered in future studies with
649 copepods.

650 Assessment of Transcriptome Quality

651 The best approach for transcriptomic or targeted gene expression studies depends on
652 the available resources as well as the goals of the study. While a variety of methods can
653 be successfully used, most recent high-throughput sequencing studies have used paired-
654 end Illumina-based sequencing coupled with *de novo* assembly using the Trinity
655 software suite. Until recently, few tools were available to assess and compare the
656 quality of various transcriptome assemblies, with many investigators citing the number
657 of contigs along with some transcript size metrics. The most common size metric has
658 been the N50, which was developed for genome assemblies where very long contigs
659 (full chromosomes) are desirable, and sequence representation should be uniform.
660 More recently, the ExN50, which is weighted toward the most abundant transcripts, has
661 been proposed as a more relevant metric for transcriptome assemblies
662 (<https://github.com/trinityrnaseq/trinityrnaseq/wiki>, Accessed 8 March 2019). Overall,
663 such general assembly statistics provide a useful metric of comparison, but they do not
664 necessarily provide direct insight into the completeness or accuracy of the assembly.
665 BUSCO analysis, as we have used here, provides one means to assess transcriptome
666 completeness and duplication. Other methods include DETONATE (Li et al., 2014)
667 and TransRate (Smith-Unna et al., 2016). The selection of specific tools will depend on
668 factors such as the sequencing platform and the availability of a sequenced reference
669 genome (e.g., Moreton et al., 2016). As sequencing technologies and assembly
670 algorithms continue to develop and improve, these tools can and should be used to
671 inform choices about sequencing platforms, assembly parameters, and post-assembly
672 filtering.

673 Variability

674 For eventual comparison across samples, it has been recommended to pool all sequence
675 reads from all samples prior to transcriptome assembly (Haas et al., 2013). However,
676 sequence polymorphism increases the complexity of the *de Bruijn* graph and can
677 negatively affect the assembly (Iqbal et al., 2012; Studholme, 2010). To account for
678 this, MacManes (2016) recommended assembling sequences derived from a single
679 individual. In cases where distinct sets of transcripts may be present in different groups
680 of animals (e.g., developmentally restricted or sex-specific transcripts), sequences
681 should be assembled from one individual per group. For larger-bodied copepods and
682 later developmental stages, it is possible to obtain sufficient RNA for library
683 construction from individual animals, and this relatively new recommendation has been
684 adopted into some of the most recent copepod transcriptome assemblies (e.g., Nilsson
685 et al., 2018; Roncalli et al., 2018a).

686 In studies that encompass divergent populations, investigators have sometimes utilized
687 the alternative approach of independently assembling population-specific
688 transcriptomes. In several studies comparing isolated and divergent populations of the
689 intertidal copepod *Tigriopus californicus*, investigators have utilized custom analysis
690 pipelines to integrate the transcriptomic databases and enable analysis of orthologous
691 transcript sets (Barreto et al., 2014; DeBiasse et al., 2018; Kelly et al., 2017; Lima and
692 Willett, 2017).

693 Genomic resources

694 As with other non-model organisms, a challenge with molecular physiology studies of
695 copepods is the limited availability of genomic resources, including genome
696 assemblies, annotation, and integration of data types. Aspects of this situation are

697 rapidly improving, particularly with recent successes in genome assembly. At the time
698 of writing, sequenced genomes are available for at least 7 non-parasitic copepod
699 species: *Acartia tonsa*, *Apocyclops royi*, *Eurytemora affinis*, *Oithona nana*, *Tigriopus*
700 *californicus*, *T. japonicus* and *T. kinsejongensis* (Barreto et al., 2018; Eyun et al., 2017;
701 Jørgensen et al., in press; Kang et al., 2017; Lee et al., 2010; Madoui et al., 2017).
702 Among these, the *T. californicus* genome assembly is of particularly high quality, with
703 >94% complete predicted transcripts when compared to the BUSCO arthropod gene
704 set, and >99% of assembled sequence contained within 12 chromosomal scaffolds. The
705 relatively compact genome size of *T. californicus*, thought to be around 200 Mb,
706 undoubtedly facilitated its assembly (Barreto et al. 2018).

707 In other cases, assembly of copepod genomes has proven more challenging, for reasons
708 including low GC content, small organism size, and sometimes large genomes with
709 high proportions of repetitive DNA (Bron et al., 2011; Jørgensen et al., in press). For
710 example, the complete *A. tonsa* genome is estimated to be nearly 2.5 Gb, with only ~0.5
711 Gb assembled and non-repetitive sequence (Jørgensen et al., in press). Concerning
712 genome size, another potentially complicating factor is chromatin diminution, the
713 process by which selected heterochromatin regions are eliminated from somatic cells
714 during early embryogenesis. Chromatin diminution has been identified in 23 species
715 of freshwater cyclopoid copepods (reviewed by Grishanin, 2014). The process creates
716 large differences in genome size between the somatic and germ lineages and differences
717 in somatic genome structure among related copepod species (reviewed by Bron et al.,
718 2011). Other considerations affecting genome assembly have included variation
719 associated with pooling heterogeneous individuals and contamination with prey or
720 epibiont sequences. A variety of approaches are being used to address these challenges,

721 including low-input sequencing, rearing of inbred stocks, careful selection of input
722 material, and improved bioinformatic pipelines for filtering of foreign sequences.

723 The utility of these newly available genomes and transcriptomes will increase as efforts
724 continue to improve their annotation. In January 2016, a symposium “Tapping the
725 Power of Crustacean Transcriptomes to Address Grand Challenges in Comparative
726 Biology” was convened as part of the annual meeting of the Society of Integrative and
727 Comparative Biology. A key recommendation emerging from an associated workshop
728 was to improve integration of genomic and transcriptomic assemblies to facilitate
729 visualization of gene-specific expression patterns, cross-species comparisons, and
730 identification of novel genes (Mykles et al., 2016). Toward this end, if appropriately
731 leveraged, RNA-seq studies can help to improve gene predictions, reveal alternative
732 splicing and allelic variants, and provide functional insights. Annotation of genomic
733 and transcriptomic databases would benefit from integration with ongoing efforts
734 toward annotating other crustacean databases (e.g., RNA-seq studies in decapods,
735 reviewed by Nguyen et al., 2018) and incorporating emerging results from functional
736 studies conducted in crustaceans (e.g., knockout and knockdown approaches).

737 Data Availability and Analytical Reproducibility

738 As the application of high-throughput sequencing has matured, expectations for data
739 availability and analytical reproducibility have increased. These expectations are not
740 unique to studies of copepods (Conesa et al., 2016; Das et al., 2016), but studies
741 published by the community (e.g., those within Tables 3 and 4) have shown increasing
742 documentation of workflows and improved availability of data. Minimally,
743 publications must provide access to raw sequence data and reference databases. Each
744 step of the analysis pipeline must be clearly described, including names and versions
745 of software programs, along with details of options specified within the analysis.

746 Expectations for sharing of custom code have varied. In some cases, the code is
747 provided only for complex analyses, but increasingly investigators have documented
748 complete analytical pipelines and referenced version-controlled scripts and workflows
749 in repositories such as GitHub.

750

751 **5. Back Again**

752 Now that both targeted and untargeted approaches at expression profiling have become
753 widely accessible, it is possible to reflect on some lessons learned and directions for
754 future research. In the following sections, we first consider how high-throughput
755 sequencing has greatly accelerated our ability to identify candidate biomarkers that can
756 be used in targeted physiological studies. We then provide some “food for thought” as
757 to how additional physiological insight can be gained from targeted functional studies,
758 characterization of taxonomically restricted genes, and integration of databases.

759 **Building a Better Biomarker**

760 The increasing availability of annotated transcriptomes and transcriptome-wide
761 expression data has greatly informed the selection of biomarkers. For example, Tarrant
762 et al. (2014) compared transcriptomic patterns between two times within a copepodite
763 developmental stage. From this dataset, they identified variable genes related to
764 development and molting and then conducted detailed profiling of a small number of
765 genes during progression through the stage. Similarly, Roncalli et al. (2016) used both
766 transcriptome-wide expression profiling and targeted qPCR to characterize the effects
767 of consumption of toxic algae on the expression of glutathione-S-transferase (GST)
768 enzymes. From the 41 predicted GSTs in *C. finmarchicus*, three were profiled over time
769 in two independent experiments; expression of one of these three genes was induced by

770 exposure to toxic algae. RNA-seq analysis of a subset of time points corroborated the
771 qPCR analysis and revealed two other GSTs that were induced by exposure to toxic
772 algae. These additional genes could serve as useful biomarkers in future experiments.

773 **From Sequences to Functional Characterization**

774 Beyond selecting biomarkers based on their expression pattern and the known functions
775 of homologous genes in other organisms, new physiological understanding will come
776 from the functional characterization of genes in copepods. Among the possible
777 knockdown/knockout approaches, RNAi has been successfully used for targeted
778 knockdown of copepod transcripts. To date, this approach has primarily been applied
779 to parasitic species (e.g., Eichner et al., 2015; Trölöö et al., 2014), but RNAi was also
780 used to confirm the role of HSPb1 in conferring thermal tolerance to the free-living *T.*
781 *californicus* (Barreto et al. 2014). Direct functional studies provide a much deeper
782 understanding of the roles played by biomarker genes, and have the potential to
783 transform our current understanding of copepod physiology.

784 **Where next?**

785 As curated sequence databases (e.g., Swiss-Prot/Uniprot) have grown, the ability to
786 annotate copepod transcriptomes has improved. As a rough example (significance
787 thresholds and other methodological details varied among studies), early efforts to
788 annotate *Calanus* transcriptomes reported 33-40% of transcripts with positive BLAST
789 hits and only 11-28% of these homologous sequences associated with GO terms (Lenz
790 et al., 2014; Tarrant et al., 2014). More recently, Roncalli et al. (2018a) annotated 57%
791 of coding transcripts against Swiss-Prot, and over 90% of the annotated transcripts were
792 associated with GO terms. Still, the GO annotations are based primarily on knowledge
793 of gene function in model organisms, and many genes remain unannotated. This limited

794 annotation of copepod genes and transcripts has represented a challenge in harnessing
795 the full power of transcriptomic approaches. Homology-based annotation is by
796 definition biased toward evolutionarily conserved genes, yet within eukaryotes,
797 taxonomically restricted genes (TRGs, also called lineage-specific genes) provide an
798 important source of developmental, physiological and regulatory diversity (Lespinet et
799 al., 2002). TRGs can evolve in association with lineage-specific traits, such as honeybee
800 sociality (Johnson and Tsutsui, 2011) or coral calcification (Moya et al., 2012). In
801 addition, TRGs are strongly associated with adaptation to changing environments
802 (Schlötterer, 2015). For example, TRGs are overrepresented in responses by *C. elegans*
803 to extreme environments (Zhou et al., 2015) and *Daphnia magna* to a suite of
804 environmental perturbations (Orsini et al., 2018). Weighted gene co-expression
805 network analysis (WGCNA) methods can provide powerful insight into regulatory
806 patterns of TRGs by identifying clusters or modules of genes with similar expression
807 patterns. The annotation of conserved genes within individual modules can provide
808 some clues as to potential functions for unannotated genes and can facilitate the
809 selection of biomarkers. For example, investigators can use WGCNA results to identify
810 sets of candidate genes that belong to distinct modules and reflect different
811 physiological processes, or they can select multiple genes within a module to enable
812 more detailed analysis of the association. WGCNA-based methods are increasingly
813 being applied to non-model organisms (e.g., Fuess et al., 2018; Johnson et al., 2018),
814 and will likely become prevalent within future studies in copepods.

815 Mining underutilized data from older studies, including data generated with older
816 technologies (e.g. microarrays), with machine learning approaches (reviewed by
817 Golestan Hashemi et al., 2018) may enable researchers to further leverage existing data
818 to unlock new insights into copepod physiology. In many cases, data was generated for

819 answering questions within a targeted study and used in a relatively narrow context.
820 Re-analyzing publicly available data in new ways with new questions has the potential
821 to entrain a broader community of scientists and could lead to novel discoveries without
822 the need for additional sequencing costs and labor. A major challenge in this approach
823 is the harmonization of heterogeneous data from multiple platforms into a unified
824 computational framework to extract the signals. When appropriately harmonized,
825 combining multiple datasets can aid in the construction of expression atlases and
826 identification of regulatory relationships. Expression atlases are frequently built to
827 synthesize spatiotemporal expression patterns within an organism or tissue (e.g.,
828 Papatheodorou et al., 2017; Zhang et al., 2014). To date, little is known regarding
829 spatial gene expression patterns within copepods, but a great deal of data is being
830 amassed regarding the environmental, developmental, and experimental conditions
831 associated with expression. Using methods such as WGCNA, described above, genes
832 with similar expression profiles within expression atlases can be associated with a
833 shared function and provisionally annotated (Carnielli et al., 2015; Oliver, 2000). With
834 increasing availability of ‘omics data (e.g., transcriptomic, proteomic and
835 metabolomic) for copepods, another possibility will be to concatenate the information
836 across distinct types of ‘omics analysis (i.e., multi-omics) to gain more information
837 about biological processes, to identify regulatory networks, and to search for robust
838 biomarkers across datasets (Bersanelli et al., 2016).

839 In conclusion, the tools and databases available for expression profiling studies in
840 copepods have radically advanced over the past ten years. These technological
841 advances are being matched with increased sophistication in analytical approaches as
842 well as improved practices for experimental design, documentation, and data

843 accessibility. Leveraging these rich datasets will lead to a greatly improved
844 understanding of copepod physiology and copepod responses to environmental change.

845

846 **Acknowledgements** This work was supported by the National Science Foundation
847 (Award Number OPP-1746087) to A.M.T., and the Villum Foundation (Project
848 AMPHICOP no. 8960) to B.W.H.

849
850

851 **Figure Legends**
852

853 **Figure 1.** Examples of diverse marine copepods utilized in physiological studies. (A)
854 The calanoid *Acartia tonsa* male, (B) The calanoid *Calanus glacialis* C5 copepodite
855 with prominent oil sac, (C) The cyclopoid *Apocyclops royi* egg-bearing female (D)
856 The harpacticoid *Tigriopus japonicus* egg-bearing female. Of these, *Tigriopus spp.*
857 (particularly *T. californicus*, not shown) have been extensively developed as a model
858 for studies of molecular evolution and plasticity. The others represent a growing
859 diversity of species for which molecular physiology studies are being driven by their
860 ecological importance. Photos courtesy of Dr. Minh Thi Thui Vu (A), A.M.T. (B),
861 Dr. Hans van Someren Gréve (C), and Professor Hans Uwe Dahms (D).

862

863

864 **Figure 2.** BUSCO analysis of the following copepod transcriptomes (with NCBI
865 accession numbers, alphabetized by scientific name as in Table 3): **GFWY**: *Acartia*
866 *tonsa* (GFWY00000000.1, 27-sep-2017); **HAGX**: *Acartia tonsa* (HAGX00000000.1,
867 29-sep-2017); **GAXK**: *Calanus finmarchicus* (GAXK00000000.1, 14-may-2018);
868 **GBFB**: *Calanus finmarchicus* (GBFB00000000.1, 30-jan-2015); **GBXU**: *Calanus*
869 *finmarchicus* (GBXU00000000.1, 13-jan-2015); **GBXT**: *Calanus glacialis*
870 (GBXT00000000.1, 13-jan-2015); **HACJ**: *Calanus glacialis* (HACJ00000000.1, 29-
871 sep-2017); **GBGO**: *Eurytemora affinis* (GBGO00000000.1, 07-jul-2015); **GEAN**:
872 *Eurytemora affinis* (GEAN00000000.1, 16-nov-2016); **GFWO**: *Labidocera madurae*
873 (GFWO00000000.1, 14-may-2018); **GFUD**: *Neocalanus flemingeri*
874 (GFUD00000000.1, 14-may-2018) ; **GCJT**: *Paracyclopina nana* (GCJT00000000.1,
875 20-jul-2015); **GFCI**: *Pleuromamma xiphias* (GFCI00000000.1, 18-dec-2017); **GBSZ**:
876 *Tigriopus californicus* (GBSZ00000000.1, 02-feb-2015); **GBTC**: *Tigriopus*
877 *californicus* (GBTC00000000.1, 02-feb-2015); **GCHA**: *Tigriopus japonicus*
878 (GCHA00000000.1, 20-jul-2015) ; **GDFW**: *Tigriopus kingsejongensis*
879 (GDFW00000000.1, 18-apr-2016); **HAHV**: *Tisbe holothuriae* (HAHV00000000.1,
880 23-jan-2018).

881

882

References Cited

883
884
885 Aaen, S.M., Helgesen, K.O., Bakke, M.J., Kaur, K., Horsberg, T.E., 2015. Drug
886 resistance in sea lice: a threat to salmonid aquaculture. *Trends Parasitol.* 31, 72-81.

887 Aguilera, V.M., Vargas, C.A., Lardies, M.A., Poupin, M., 2016. Adaptive variability
888 to low-pH river discharges in *Acartia tonsa* and stress responses to high pCO₂
889 conditions. *Mar. Ecol.* 37, 215-226.

890 Almada, A.A., Tarrant, A.M., 2016. *Vibrio* colonists elicit targeted transcriptional
891 responses from copepod hosts. *FEMS Microbiol. Ecol.* 92, fiw072.

892 Amato, A., and Carotenuto, Y., 2018. Planktonic calanoids embark into the 'omics'
893 era. In: *Trends in Copepod Studies - Distribution, Biology and Ecology*, edited by M.
894 Uttieri. New York: Nova Science Publishers, Inc. pp 287-314. ISBN: 978-1 53612-
895 593-1.

896 Anders, S., Huber, W., 2010. Differential expression analysis for sequence count data.
897 *Genome Biol.* 11, R106.

898 Andersen, C.L., Jensen, J.L., Ørntoft, T.F., 2004. Normalization of real-time
899 quantitative reverse transcription-PCR data: a model-based variance estimation
900 approach to identify genes suited for normalization, applied to bladder and colon
901 cancer data sets. *Cancer Res.* 64, 5245-5250.

902 Aruda, A.M., Baumgartner, M.F., Reitzel, A.M., Tarrant, A.M., 2011. Heat shock
903 protein expression during stress and diapause in the marine copepod *Calanus*
904 *finmarchicus*. *J. Insect Physiol.* 57, 665-675.

905 Asai, S., Ianora, A., Lauritano, C., Lindeque, P.K., Carotenuto, Y., 2015. High-quality
906 RNA extraction from copepods for Next Generation Sequencing: a comparative
907 study. *Mar. Genom.* 24, 115-118.

908 Avery, D.E., 2005. Induction of embryonic dormancy in the calanoid copepod *Acartia*
909 *hudsonica*: heritability and phenotypic plasticity in two geographically separated
910 populations. *J. Exp. Mar. Biol. Ecol.* 314, 215-225.

911 Bailey, A., De Wit, P., Thor, P., Browman, H.I., Bjelland, R., Shema, S., Fields,
912 D.M., Runge, J.A., Thompson, C., Hop, H., 2017. Regulation of gene expression is
913 associated with tolerance of the Arctic copepod *Calanus glacialis* to CO₂-acidified
914 sea water. *Ecol. Evol.* 7, 7145-7160.

915 Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall
916 KA, Phillippy KH, Sherman PM, Holko M, Yefanov A., 2012. NCBI GEO: archive
917 for functional genomics data sets—update. *Nucl. Acids Research.* 41, D991-5.

918
919 Barreto, F.S., Pereira, R.J., Burton, R.S., 2014. Hybrid dysfunction and physiological
920 compensation in gene expression. *Mol. Biol. Evol.* 32, 613-622.

921 Barreto, F.S., Schoville, S.D., Burton, R.S., 2015. Reverse genetics in the tide pool:
922 knock-down of target gene expression via RNA interference in the copepod *Tigriopus*
923 *californicus*. *Mol. Ecol. Res.* 15, 868-879.

924 Barreto, F.S., Watson, E.T., Lima, T.G., Willett, C.S., Edmands, S., Li, W., Burton,
925 R.S., 2018. Genomic signatures of mitonuclear coevolution across populations of
926 *Tigriopus californicus*. *Nature Ecol. Evol.* 2, 1250-1257.

927 Bersanelli, M., Mosca, E., Remondini, D., Giampieri, E., Sala, C., Castellani, G.,
928 Milanesi, L., 2016. Methods for the integration of multi-omics data: mathematical
929 aspects. *BMC Bioinformatics* 17, S15.

930 Borchel, A., Komisarczuk, A.Z., Rebl, A., Goldammer, T., Nilsen, F., 2018.
931 Systematic identification and characterization of stress-inducible heat shock proteins
932 (HSPs) in the salmon louse (*Lepeophtheirus salmonis*). *Cell Stress Chaperones* 23,
933 127-139.

934 Boxshall, G.A., Defaye, D., 2008. Global diversity of copepods (Crustacea:
935 Copepoda) in freshwater. *Hydrobiologia* 595, 195-207.

936 Bray, N.L., Pimentel, H., Melsted, P., Pachter, L., 2016. Near-optimal probabilistic
937 RNA-seq quantification. *Nat. Biotechnol.* 34, 525.

938 Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C.,
939 Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., 2001. Minimum information about
940 a microarray experiment (MIAME)—toward standards for microarray data. *Nat.*
941 *Genet.* 29, 365.

942 Bron, J.E., Frisch, D., Goetze, E., Johnson, S.C., Lee, C.E., Wyngaard, G.A., 2011.
943 Observing copepods through a genomic lens. *Front. Zool.* 8, 22.

944 Carnielli, C.M., Winck, F.V., Leme, A.F.P., 2015. Functional annotation and
945 biological interpretation of proteomics data. *Biochimica et Biophysica Acta -Proteins*
946 *Proteomics* 1854, 46-54.

947 Carotenuto, Y., Dattolo, E., Lauritano, C., Pisano, F., Sanges, R., Miraldo, A.,
948 Procaccini, G., Ianora, A., 2014. Insights into the transcriptome of the marine
949 copepod *Calanus helgolandicus* feeding on the oxylipin-producing diatom
950 *Skeletonema marinoi*. *Harmful Algae* 31, 153-162.

952 Chan, C., Pankey, S., Kelly, M., 2014. Identifying the gene (s) that allow *Tigriopus*
953 *californicus* to survive under thermal stress. *Can. Young Sci. J.* 2014, 18-23.

954 Chen, G., Hare, M.P., 2011. Cryptic diversity and comparative phylogeography of the
955 estuarine copepod *Acartia tonsa* on the US Atlantic coast. *Mol. Ecol.* 20, 2425-2441.

956 Chervoneva, I., Li, Y., Schulz, S., Croker, S., Wilson, C., Waldman, S.A., Hyslop, T.,
957 2010. Selection of optimal reference genes for normalization in quantitative RT-PCR.
958 *BMC Bioinformatics* 11, 253.

959 Ching, T., Huang, S., Garmire, L.X., 2014. Power analysis and sample size estimation
960 for RNA-Seq differential expression. *RNA* 20, 1-13.

961 Choquet, M., Hatlebakk, M., Dhanasiri, A.K., Kosobokova, K., Smolina, I., Søreide,
962 J.E., Svensen, C., Melle, W., Kwaśniewski, S., Eiane, K., 2017. Genetics redraws
963 pelagic biogeography of *Calanus*. *Biol. Lett.* 13, 20170588.

964 Choquet, M., Kosobokova, K., Kwaśniewski, S., Hatlebakk, M., Dhanasiri, A.K.,
965 Melle, W., Daase, M., Svensen, C., Søreide, J.E., Hoarau, G., 2018. Can morphology
966 reliably distinguish between the copepods *Calanus finmarchicus* and *C. glacialis*, or
967 is DNA the only way? Limnol. Oceanogr. Methods 16, 237-252.

968 Christie, A.E., Roncalli, V., Lenz, P.H., 2016. Diversity of insulin-like peptide
969 signaling system proteins in *Calanus finmarchicus* (Crustacea; Copepoda)—Possible
970 contributors to seasonal pre-adult diapause. Gen. Comp. Endocrinol. 236, 157-173.

971 Christie AE, Roncalli V, Wu LS, Ganote CL, Doak T, Lenz PH., 2013. Peptidergic
972 signaling in *Calanus finmarchicus* (Crustacea, Copepoda): in silico identification of
973 putative peptide hormones and their receptors using a de novo assembled
974 transcriptome. Gen. Comp. Endocrinol. 187,117-35.

975

976 Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson,
977 A., Szcześniak, M.W., Gaffney, D.J., Elo, L.L., Zhang, X., 2016. A survey of best
978 practices for RNA-seq data analysis. Genome Biol. 17, 13.

979 Cournoyer, B.L., 2013. Can *Acartia* spp. adapt to global warming? Heritable within-
980 population genetic variation in life history traits. M.S. Thesis, University of
981 Connecticut, 48 pp.

982 Dalvin, S., Frost, P., Loeffen, P., Skern-Mauritzen, R., Baban, J., Rønnestad, I.,
983 Nilsen, F., 2011. Characterisation of two vitellogenins in the salmon louse
984 *Lepeophtheirus salmonis*: molecular, functional and evolutional analysis. Dis. Aquat.
985 Org. 94, 211-224.

986 Das, S., Shyamal, S., Durica, D.S., 2016. Analysis of annotation and differential
987 expression methods used in RNA-Seq studies in crustacean systems. Integr. Comp.
988 Biol. 56, 1067-1079.

989 De Wit, P., Dupont, S., Thor, P., 2016. Selection on oxidative phosphorylation and
990 ribosomal structure as a multigenerational response to ocean acidification in the
991 common copepod *Pseudocalanus acuspes*. Evol. App. 9, 1112-1123.

992 DeBiase, M.B., Kawji, Y., Kelly, M.W., 2018. Phenotypic and transcriptomic
993 responses to salinity stress across genetically and geographically divergent *Tigriopus*
994 *californicus* populations. Mol. Ecol. 27, 1621-1632.

995 Dheda, K., Huggett, J., Chang, J., Kim, L., Bustin, S., Johnson, M., Rook, G., Zumla,
996 A., 2005. The implications of using an inappropriate reference gene for real-time
997 reverse transcription PCR data normalization. Anal. Biochem. 344, 141-143.

998 Dohle, W., 2001. Are the insects terrestrial crustaceans? A discussion of some new
999 facts and arguments and the proposal of the proper name 'Tetraconata' for the
1000 monophyletic unit Crustacea+ Hexapoda. J Ann. Soc. Entomol. Fr. 37, 85-103.

1001 Drillet, G., Frouël, S., Sichlau, M.H., Jepsen, P.M., Højgaard, J.K., Joarder, A.K.,
1002 Hansen, B.W., 2011. Status and recommendations on marine copepod cultivation for
1003 use as live feed. Aquaculture 315, 155-166.

1004 Eichner C, Dalvin S, Skern-Mauritzen R, Malde K, Kongshaug H, Nilsen F., 2015.
1005 Characterization of a novel RXR receptor in the salmon louse (*Lepeophtheirus*
1006 *salmonis*, Copepoda) regulating growth and female reproduction. *BMC Genomics*.
1007 16, 81.

1008 Eichner, C., Frost, P., Dysvik, B., Jonassen, I., Kristiansen, B., Nilsen, F., 2008.
1009 Salmon louse (*Lepeophtheirus salmonis*) transcriptomes during post molting
1010 maturation and egg production, revealed using EST-sequencing and microarray
1011 analysis. *BMC Genomics* 9, 126.

1012 Eyun, S.I., Soh, H.Y., Posavi, M., Munro, J.B., Hughes, D.S., Murali, S.C., Qu, J.,
1013 Dugan, S., Lee, S.L., Chao, H., Dinh, H., 2017. Evolutionary history of
1014 chemosensory-related gene families across the Arthropoda. *Mol. Biol. Evol.* 34, 1838-
1015 1862.

1016 Foley, H. B., Sun, P. Y., Ramirez, R., So, B. K., Venkataraman, Y. R., Nixon, E. N.,
1017 Davies, K.J.A., Edmands, S., 2019. Sex-specific stress tolerance, proteolysis, and
1018 lifespan in the invertebrate *Tigriopus californicus*. *Exp. Gerontol.* 119, 146-156.

1019

1020 Francis, W.R., Christianson, L.M., Kiko, R., Powers, M.L., Shaner, N.C., Haddock,
1021 S.H., 2013. A comparison across non-model animals suggests an optimal sequencing
1022 depth for *de novo* transcriptome assembly. *BMC Genomics* 14, 1.

1023

1024 Fuess, L.E., Mann, W.T., Jinks, L.R., Brinkhuis, V., Mydlarz, L.D., 2018.
1025 Transcriptional analyses provide new insight into the late-stage immune response of a
1026 diseased Caribbean coral. *R. Soc. Open Sci.* 5, 172062.

1027

1028 Golestan Hashemi, F.S., Razi Ismail, M., Rafii Yusop, M., Golestan Hashemi, M.S.,
1029 Nadimi Shahraki, M.H., Rastegari, H., Miah, G., Aslani, F., 2018. Intelligent mining
1030 of large-scale bio-data: Bioinformatics applications. *Biotechnol. Biotechnol. Equip.*
32, 10-29.

1031

1032 Grishanin A., 2014. Chromatin diminution in Copepoda (Crustacea): pattern,
biological role and evolutionary aspects. *Comp. Cytogenetics* 8:1.

1033

1034 Haas, B.J., Pananicoulaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J.,
1035 Couger, M.B., Eccles, D., Li, B., Lieber, M., MacManes, M.D., Ott, M., Orvis, J.,
1036 Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C.N.,
1037 Henschel, R., LeDuc, R.D., Friedman, N., Regev, A., 2013. *De novo* transcript
1038 sequence reconstruction from RNA-seq using the Trinity platform for reference
generation and analysis. *Nat. Protoc.* 8, 1494-1512.

1039

1040 Hairston, N.G.J., 1996. Zooplankton egg banks as biotic reservoirs in changing
environments. *Limnol. Oceanogr.* 41, 1087-1092.

1041

1042 Han, J., Won, E.-J., Kim, H.-S., Nelson, D.R., Lee, S.-J., Park, H.G., Lee, J.-S.,
2015a. Identification of the full 46 cytochrome P450 (CYP) complement and
1043 modulation of CYP expression in response to water-accommodated fractions of crude
1044 oil in the cyclopoid copepod *Paracyclops nana*. *Environ. Sci. Technol.* 49, 6982-
1045 6992.

1046 Han, J., Won, E.-J., Lee, M.-C., Seo, J.S., Lee, S.-J., Lee, J.-S., 2015b. Developmental
1047 retardation, reduced fecundity, and modulated expression of the defensome in the
1048 intertidal copepod *Tigriopus japonicus* exposed to BDE-47 and PFOS. *Aquat. Toxicol.* 165, 136-143.

1050 Hansen, B., Altin, D., Vang, S.-H., Nordtug, T., Olsen, A., 2008. Effects of
1051 naphthalene on gene transcription in *Calanus finmarchicus* (Crustacea: Copepoda).
1052 *Aquat. Toxicol.* 86, 157-165.

1053 Hansen, B.H., Altin, D., Booth, A., Vang, S.-H., Frenzel, M., Sørheim, K.R.,
1054 Brakstad, O.G., Størseth, T.R., 2010. Molecular effects of diethanolamine exposure
1055 on *Calanus finmarchicus* (Crustacea: Copepoda). *Aquat. Toxicol.* 99, 212-222.

1056 Hansen, B.H., Altin, D., Nordtug, T., Olsen, A.J., 2007. Suppression subtractive
1057 hybridization library prepared from the copepod *Calanus finmarchicus* exposed to a
1058 sublethal mixture of environmental stressors. *Comp. Biochem. Physiol. D: Genom.*
1059 *Proteom.* 2, 250-256.

1060 Hansen, B.H., Altin, D., Rørvik, S.F., Øverjordet, I.B., Olsen, A.J., Nordtug, T., 2011.
1061 Comparative study on acute effects of water accommodated fractions of an artificially
1062 weathered crude oil on *Calanus finmarchicus* and *Calanus glacialis* (Crustacea:
1063 Copepoda). *Sci. Total Environ.* 409, 704-709.

1064 Hansen, B.H., Jager, T., Altin, D., Øverjordet, I.B., Olsen, A.J., Salaberria, I.,
1065 Nordtug, T., 2016. Acute toxicity of dispersed crude oil on the cold-water copepod
1066 *Calanus finmarchicus*: elusive implications of lipid content. *J. Toxicol. Environ.*
1067 *Health Part A* 79, 549-557.

1068 Hansen, B.H., Nordtug, T., Altin, D., Booth, A., Hessen, K.M., Olsen, A.J., 2009.
1069 Gene expression of GST and CYP330A1 in lipid-rich and lipid-poor female *Calanus*
1070 *finmarchicus* (Copepoda: Crustacea) exposed to dispersed oil. *J. Toxicol. Environ.*
1071 *Health Part A* 72, 131-139.

1072 Hassett, R. P., P. H. Lenz, and D. W. Towle., 2010. Gene expression and biochemical
1073 studies of the marine copepod *Calanus finmarchicus*. *MDI Biol. Lab. Bull.* 49: 115–
1074 117.

1075 Holm, M.W., Kiørboe, T., Brun, P., Licandro, P., Almeda, R., Hansen, B.W., 2017.
1076 Resting eggs in free living marine and estuarine copepods. *J. Plank. Res.* 40, 2-15.

1077 Hook, S.E., Gallagher, E.P., Batley, G.E., 2014. The role of biomarkers in the
1078 assessment of aquatic ecosystem health. *Integr. Environ. Assess. Manage.* 10, 327–
1079 341.

1080 Huggett, J., Dheda, K., Bustin, S., Zumla, A., 2005. Real-time RT-PCR
1081 normalisation; strategies and considerations. *Genes and Immunity* 6, 279.

1082 Hwang, D.-S., Han, J., Won, E.-J., Kim, D.-H., Jeong, C.-B., Hwang, U.-K., Zhou, B.,
1083 Choe, J., Lee, J.-S., 2016. BDE-47 causes developmental retardation with down-
1084 regulated expression profiles of ecdysteroid signaling pathway-involved nuclear
1085 receptor (NR) genes in the copepod *Tigriopus japonicus*. *Aquat. Toxicol.* 177, 285–
1086 294.

1087 Hwang, D.-S., Lee, J.-S., Rhee, J.-S., Han, J., Lee, Y.-M., Kim, I.-C., Park, G.S., Lee,
1088 J., Lee, J.-S., 2010a. Modulation of p53 gene expression in the intertidal copepod
1089 *Tigriopus japonicus* exposed to alkylphenols. Mar. Environ. Res. 69, S77-S80.

1090 Hwang, D.-S., Lee, K.-W., Han, J., Park, H.G., Lee, J., Lee, Y.-M., Lee, J.-S., 2010b.
1091 Molecular characterization and expression of vitellogenin (Vg) genes from the
1092 cyclopoid copepod, *Paracyclops nana* exposed to heavy metals. Comp. Biochem.
1093 Physiol. C: Pharmacol. Toxicol. Endocrinol.
1094 151, 360-368.

1095 Hwang DS, Lee KW, Lee JS. 2009. Cloning and expression of vitellogenin 2 gene
1096 from the intertidal copepod *Tigriopus japonicus*. Annals New York Acad. Sci. 1163,
1097 417-20.

1098 Jager, T., Altin, D., Miljeteig, C., Hansen, B.H., 2016. Stage-dependent and sex-
1099 dependent sensitivity to water-soluble fractions of fresh and weathered oil in the
1100 marine copepod *Calanus finmarchicus*. Environ. Toxicol. Chem. 35, 728-735.

1101 Jensen, L.K., Halvorsen, E., Song, Y., Hallanger, I.G., Hansen, E.L., Brooks, S.J.,
1102 Hansen, B.H., Tollefsen, K.E., 2016. Individual and molecular level effects of
1103 produced water contaminants on nauplii and adult females of *Calanus finmarchicus*.
1104 J. Toxicol. Environ. Health Part A 79, 585-601.

1105 Jeong, C.-B., Kang, H.-M., Seo, J.S., Park, H.G., Rhee, J.-S., Lee, J.-S., 2016.
1106 Identification and molecular characterization of nitric oxide synthase (NOS) gene in
1107 the intertidal copepod *Tigriopus japonicus*. Gene 577, 47-54.

1108 Jeong, C.-B., Kim, B.-M., Kim, R.-K., Park, H.G., Lee, S.-J., Shin, K.-H., Leung,
1109 K.M.Y., Rhee, J.-S., Lee, J.-S., 2014. Functional characterization of P-glycoprotein in
1110 the intertidal copepod *Tigriopus japonicus* and its potential role in remediating metal
1111 pollution. Aquat. Toxicol. 156, 135-147.

1112 Jeong, C.-B., Lee, M.C., Lee, K.-W., Seo, J.S., Park, H.G., Rhee, J.-S., Lee, J.-S.,
1113 2015. Identification and molecular characterization of dorsal and dorsal-like genes in
1114 the cyclopoid copepod *Paracyclops nana*. Mar. Genom. 24, 319-327.

1115 Jiang, J.-L., Wang, G.-Z., Mao, M.-G., Wang, K.-J., Li, S.-J., Zeng, C.-S., 2013.
1116 Differential gene expression profile of the calanoid copepod, *Pseudodiaptomus*
1117 *annandalei*, in response to nickel exposure. Comp. Biochem. Physiol. C: Toxicol.
1118 Physiol. 157, 203-211.

1119 Johnson, B.R., Tsutsui, N.D., 2011. Taxonomically restricted genes are associated
1120 with the evolution of sociality in the honey bee. BMC Genomics 12, 164.

1121 Johnson, K.M., Wong, J.M., Hoshijima, U., Sugano, C.S., Hofmann, G.E., 2018.
1122 Seasonal transcriptomes of the Antarctic pteropod, *Limacina helicina antarctica*. Mar.
1123 Environ. Res.

1124 Jónasdóttir, S.H., Vissir, A.W., Richardson, K., Heath, M.R., 2015. Seasonal copepod
1125 lipid pump promotes carbon sequestration in the deep North Atlantic. Proc Nat Acad
1126 Sci 112, 12122-12126.

1127 Jørgensen, T.S., Nielsen, B.L.H., Petersen, B., Browne, P.D., Hansen, B.W., Hansen,
1128 L.H., In press. The whole genome sequence and mRNA transcriptome of the tropical
1129 cyclopoid copepod *Apocyclops royi*. G3, manuscript in press.

1130

1131 Jørgensen, T.S., Petersen, B., Hansen, L.H., Hansen, B.W., unpublished data. The
1132 genome and transcriptome of the cosmopolitan calanoid copepod *Acartia tonsa* Dana
1133 expand the understanding of copepod genome size evolution. Manuscript in revision,
1134 submitted to Genome Biol. Evol.

1135 Kang, S., Ahn, D.H., Lee, J.H., Lee, S.G., Shin, S.C., Lee, J., Min, G.S., Lee, H.,
1136 Kim, H.W., Kim, S., Park, H., 2017. The genome of the Antarctic-endemic copepod,
1137 *Tigriopus kingsejongensis*. Gigascience, 6, giw010.

1138 Kelly, M.W., Pankey, M.S., DeBiasse, M.B., Plachetzki, D.C., 2017. Adaptation to
1139 heat stress reduces phenotypic and transcriptional plasticity in a marine copepod.
1140 Funct. Ecol. 31, 398-406.

1141 Ki, J.-S., Raisuddin, S., Lee, K.-W., Hwang, D.-S., Han, J., Rhee, J.-S., Kim, I.-C.,
1142 Park, H.G., Ryu, J.-C., Lee, J.-S., 2009. Gene expression profiling of copper-induced
1143 responses in the intertidal copepod *Tigriopus japonicus* using a 6K oligochip
1144 microarray. Aquat. Toxicol. 93, 177-187.

1145 Kim, B.-M., Choi, B.-S., Lee, K.-W., Ki, J.-S., Kim, I.-C., Choi, I.-Y., Rhee, J.-S.,
1146 Lee, J.-S., 2013a. Expression profile analysis of antioxidative stress and
1147 developmental pathway genes in the manganese-exposed intertidal copepod *Tigriopus*
1148 *japonicus* with 6K oligochip. Chemosphere 92, 1214-1223.

1149 Kim, B.-M., Jeong, C.-B., Han, J., Kim, I.-C., Rhee, J.-S., Lee, J.-S., 2013b. Role of
1150 crustacean hyperglycemic hormone (CHH) in the environmental stressor-exposed
1151 intertidal copepod *Tigriopus japonicus*. Comp. Biochem. Physiol. C: Toxicol.
1152 Physiol. 158, 131-141.

1153 Kim, B.-M., Jeong, C.-B., Lee, M.C., Rhee, J.-S., Lee, J.-S., 2015a. Identification of
1154 the retinoblastoma (Rb) gene and expression in response to environmental stressors in
1155 the intertidal copepod *Tigriopus japonicus*. Mar. Genom. 24, 387-396.

1156 Kim, B.-M., Rhee, J.-S., Jeong, C.-B., Seo, J.S., Park, G.S., Lee, Y.-M., Lee, J.-S.,
1157 2014. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat
1158 shock protein (hsp) modulation in the intertidal copepod *Tigriopus japonicus*. Comp.
1159 Biochem. Physiol. C: Toxicol. Physiol. 166, 65-74.

1160 Kim, B.-M., Rhee, J.-S., Park, G.S., Lee, J., Lee, Y.-M., Lee, J.-S.J.C., 2011. Cu/Zn-
1161 and Mn-superoxide dismutase (SOD) from the copepod *Tigriopus japonicus*:
1162 molecular cloning and expression in response to environmental pollutants.
1163 Chemosphere 84, 1467-1475.

1164 Kim, H.-S., Lee, B.-Y., Han, J., Lee, Y.H., Min, G.-S., Kim, S., Lee, J.-S., 2016. De
1165 novo assembly and annotation of the Antarctic copepod (*Tigriopus kingsejongensis*)
1166 transcriptome. Mar. Genom. 28, 37-39.

1167 Kim, H.-S., Lee, B.-Y., Won, E.-J., Han, J., Hwang, D.-S., Park, H.G., Lee, J.-S.,
1168 2015b. Identification of xenobiotic biodegradation and metabolism-related genes in
1169 the copepod *Tigriopus japonicus* whole transcriptome analysis. Mar. Genom. 24, 207-
1170 208.

1171 Knapen, D., Vergauwen, L., Laukens, K., Blust, R., 2009. Best practices for
1172 hybridization design in two-colour microarray analysis. Trends Biotechnol. 27, 406-
1173 414.

1174 Kozera, B., Rapacz, M., 2013. Reference genes in real-time PCR. J. Appl. Genet. 54,
1175 391-406.

1176 Kregel, K.C., 2002. Invited review: heat shock proteins: modifying factors in
1177 physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92,
1178 2177-2186.

1179 Kurihara, H., 2008. Effects of CO₂-driven ocean acidification on the early
1180 developmental stages of invertebrates. Mar. Ecol. Prog. Ser. 373, 275-284.

1181 Lanneau, D., Wettstein, G., Bonniaud, P., Garrido, C., 2010. Heat shock proteins: cell
1182 protection through protein triage. Sci. World J. 10, 1543-1552.

1183 Lauritano, C., Borra, M., Carotenuto, Y., Biffali, E., Miraldo, A., Procaccini, G.,
1184 Ianora, A., 2011a. First molecular evidence of diatom effects in the copepod *Calanus*
1185 *helgolandicus*. J. Exp. Mar. Biol. Ecol. 404, 79-86.

1186 Lauritano, C., Borra, M., Carotenuto, Y., Biffali, E., Miraldo, A., Procaccini, G.,
1187 Ianora, A., 2011b. Molecular evidence of the toxic effects of diatom diets on gene
1188 expression patterns in copepods. PLoS ONE 6, e26850.

1189 Lauritano, C., Carotenuto, Y., Procaccini, G., Turner, J.T., Ianora, A., 2013. Changes
1190 in expression of stress genes in copepods feeding upon a non-brevetoxin-producing
1191 strain of the dinoflagellate *Karenia brevis*. Harmful Algae 28, 23-30.

1192 Lauritano, C., Carotenuto, Y., Vitiello, V., Buttino, I., Romano, G., Hwang, J.-S.,
1193 Ianora, A., 2015. Effects of the oxylipin-producing diatom *Skeletonema marinoi* on
1194 gene expression levels of the calanoid copepod *Calanus sinicus*. Mar. Genom. 24, 89-
1195 94.

1196 Lauritano, C., Procaccini, G., Ianora, A., 2012. Gene expression patterns and stress
1197 response in marine copepods. Mar. Environ. Res. 76, 22-31.

1198 Lauritano, C., Romano, G., Roncalli, V., Amoresano, A., Fontanarosa, C., Bastianini,
1199 M., Braga, F., Carotenuto, Y., Ianora, A., 2016. New oxylipins produced at the end of
1200 a diatom bloom and their effects on copepod reproductive success and gene
1201 expression levels. Harmful Algae 55, 221-229.

1202 Lee, B.-Y., Kim, H.-S., Choi, B.-S., Hwang, D.-S., Choi, A.Y., Han, J., Won, E.-J.,
1203 Choi, I.-Y., Lee, S.-H., Om, A.-S., 2015. RNA-seq based whole transcriptome
1204 analysis of the cyclopoid copepod *Paracyclops nana* focusing on xenobiotics
1205 metabolism. Comp. Biochem. Physiol. D: Genom. Proteom. 15, 12-19.

1206 Lee, C.E., Kiergaard, M., Gelembiuk, G.W., Eads, B.D., Posavi, M., 2011. Pumping
1207 ions: rapid parallel evolution of ionic regulation following habitat invasions.
1208 Evolution 65, 2229-2244.

1209 Lee, K.-W., Hwang, D.-S., Rhee, J.-S., Ki, J.-S., Park, H.G., Ryu, J.-C., Raisuddin, S.,
1210 Lee, J.-S., 2008a. Molecular cloning, phylogenetic analysis and developmental
1211 expression of a vitellogenin (Vg) gene from the intertidal copepod *Tigriopus*
1212 *japonicus*. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 150, 395-402.

1213 Lee, K.-W., Raisuddin, S., Rhee, J.-S., Hwang, D.-S., Yu, I.T., Lee, Y.-M., Park,
1214 H.G., Lee, J.-S., 2008b. Expression of glutathione S-transferase (GST) genes in the
1215 marine copepod *Tigriopus japonicus* exposed to trace metals. Aquat. Toxicol. 89,
1216 158-166.

1217 Lee, K.W., Rhee, J.S., Raisuddin, S., Park, H.G., Lee, J.S., 2008c. A corticotropin-
1218 releasing hormone binding protein (CRH-BP) gene from the intertidal copepod,
1219 *Tigriopus japonicus*. Gen. Comp. Endocrinol. 158, 54-60.

1220 Lee, K.-W., Rhee, J.-S., Han, J., Park, H.G., Lee, J.-S., 2012. Effect of culture density
1221 and antioxidants on naupliar production and gene expression of the cyclopoid
1222 copepod, *Paracyclopsina nana*. Comp. Biochem. Physiol. A: Mol. Integr. Physiol.
1223 161, 145-152.

1224 Lee, J.S., Rhee, J.S., Kim, R.O., Hwang, D.S., Han, J., Choi, B.S., Park, G.S., Kim,
1225 I.C., Park, H.G., Lee, Y.M., 2010. The copepod *Tigriopus japonicus* genomic DNA
1226 information (574 Mb) and molecular anatomy. Mar. Environ. Res. 69, S21-S23.
1227

1228 Lee, M.-C., Puthumana, J., Lee, S.-H., Kang, H.-M., Park, J.C., Jeong, C.-B., Han, J.,
1229 Hwang, D.-S., Seo, J.S., Park, H.G., 2016. BDE-47 induces oxidative stress, activates
1230 MAPK signaling pathway, and elevates de novo lipogenesis in the copepod
1231 *Paracyclopsina nana*. Aquat. Toxicol. 181, 104-112.

1232 Lee, Y.-M., Lee, K.-W., Park, H., Park, H.G., Raisuddin, S., Ahn, I.-Y., Lee, J.-S.,
1233 2007. Sequence, biochemical characteristics and expression of a novel Sigma-class of
1234 glutathione S-transferase from the intertidal copepod, *Tigriopus japonicus* with a
1235 possible role in antioxidant defense. Chemosphere 69, 893-902.

1236 Lee, Y.-M., Park, T.-J., Jung, S.-O., Seo, J.S., Park, H.G., Hagiwara, A., Yoon, Y.-D.,
1237 Lee, J.-S., 2006. Cloning and characterization of glutathione S-transferase gene in the
1238 intertidal copepod *Tigriopus japonicus* and its expression after exposure to endocrine-
1239 disrupting chemicals. Mar. Environ. Res. 62, S219-S223.

1240 Lee, Y.H., Kang, H.-M., Kim, D.-H., Wang, M., Jeong, C.-B., Lee, J.-S., 2017.
1241 Adverse effects of methylmercury (MeHg) on life parameters, antioxidant systems,
1242 and MAPK signaling pathways in the copepod *Tigriopus japonicus*. Aquat. Toxicol.
1243 184, 133-141.

1244 Legrand, E., Forget-Leray, J., Duflot, A., Olivier, S., Thomé, J.-P., Danger, J.-M.,
1245 Boulangé-Lecomte, C., 2016. Transcriptome analysis of the copepod *Eurytemora*
1246 *affinis* upon exposure to endocrine disruptor pesticides: Focus on reproduction and
1247 development. Aquat. Toxicol. 176, 64-75.

1248 Lenz, P.H., Roncalli, V., Hassert, R.P., Wu, L.S., Cieslak, M.C., Hartline, D.K.,
1249 Christie, A.E., 2014. *De novo* assembly of a transcriptome for *Calanus finmarchicus*
1250 (Crustacea, Copepoda) - The dominant zooplankton of the North Atlantic Ocean. PLoS
1251 ONE 9, e88589.

1252 Lenz, P.H., Unal, E., Hassett, R.P., Smith, C.M., Bucklin, A., Christie, A.E., Towle,
1253 D.W., 2012. Functional genomics resources for the North Atlantic copepod, *Calanus*
1254 *finmarchicus*: EST database and physiological microarray. Comp. Biochem. Physiol.
1255 D: Genom. Proteom. 7, 110-123.

1256 Lespinet, O., Wolf, Y.I., Koonin, E.V., Aravind, L., 2002. The role of lineage-specific
1257 gene family expansion in the evolution of eukaryotes. Genome Res. 12, 1048-1059.

1258 Li, B., Fillmore, N., Bai, Y., Collins, M., Thomson, J.A., Stewart, R., Dewey, C.N.,
1259 2014. Evaluation of *de novo* transcriptome assemblies from RNA-Seq data. Genome
1260 Biol. 15, 553.

1261 Lima, T.G., Willett, C.S., 2017. Locally adapted populations of a copepod can evolve
1262 different gene expression patterns under the same environmental pressures. Ecol.
1263 Evol. 7, 4312-4325.

1264 Liu, Y., Zhou, J., White, K.P., 2013. RNA-seq differential expression studies: more
1265 sequence or more replication? Bioinformatics 30, 301-304.

1266 Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using
1267 real-time quantitative PCR and the 2(-DDC(T)) Method. Methods 25, 402-408.

1268 Lotufo, G.R., Fleeger, J.W., 1997. Effects of sediment-associated phenanthrene on
1269 survival, development and reproduction of two species of meiobenthic copepods.
1270 Mar. Ecol. Prog. Ser. 151, 91-102.

1271 Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and
1272 dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

1273 Maas, A.E., Blanco-Bercial, L., Lo, A., Tarrant, A.M., Timmins-Schiffman, E., 2018.
1274 Variations in copepod proteome and respiration rate in association with diel vertical
1275 migration and circadian cycle. Biol. Bull. 235, 30-42.

1276 MacManes, M.D., 2016. Establishing evidenced-based best practice for the *de novo*
1277 assembly and evaluation of transcriptomes from non-model organisms. bioRxiv,
1278 035642.

1279 Madoui, M.A., Poulain, J., Sugier, K., Wessner, M., Noel, B., Berline, L., Labadie,
1280 K., Cornils, A., Blanco-Bercial, L., Stemmann, L. and Jamet, J.L., 2017. New insights
1281 into global biogeography, population structure and natural selection from the genome
1282 of the epipelagic copepod *Oithona*. Mol. Ecol. 26(17), 4467-4482.
1283

1284 Marcus, N.H., Lutz, R., Burnett, W., Cable, P., 1994. Age, viability, and vertical
1285 distribution of zooplankton resting eggs from an anoxic basin: Evidence of an egg
1286 bank. Limnol. Oceanogr. 39, 154-158.

1287 Mauchline, J., 1998. The Biology of Calanoid Copepods. Advances in Marine
1288 Biology, Volume 33, Academic Press, London UK ISBN 30-12-105545-105540,
1289 105710 pp.

1290 McCarthy, S.D., Dugon, M.M., Power, A.M., 2015. 'Degraded' RNA profiles in
1291 Arthropoda and beyond. PeerJ 3, e1436.

1292 Milligan, P.J., Stahl, E.A., Schizas, N.V., Turner, J.T., 2011. Phylogeography of the
1293 copepod *Acartia hudsonica* in estuaries of the northeastern United States.
1294 Hydrobiologia 666, 155-165.

1295 Moreton, J., Izquierdo, A., Emes, R.D., 2016. Assembly, assessment, and availability
1296 of de novo generated eukaryotic transcriptomes. Front. Genet. 6, 361.

1297 Moya, A., Huisman, L., Ball, E., Hayward, D., Grasso, L., Chua, C., Woo, H.,
1298 Gattuso, J.P., Foret, S., Miller, D.J., 2012. Whole transcriptome analysis of the coral
1299 *Acropora millepora* reveals complex responses to CO₂-driven acidification during the
1300 initiation of calcification. Mol. Ecol. 21, 2440-2454.

1301 Mykles, D.L., Burnett, K.G., Durica, D.S., Joyce, B.L., McCarthy, F.M., Schmidt,
1302 C.J., Stillman, J.H., 2016. Resources and recommendations for using transcriptomics
1303 to address grand challenges in comparative biology. Integr. Comp. Biol. 56, 1183-
1304 1191.

1305 Nguyen, T.V., Jung, H., Rotllant, G., Hurwood, D., Mather, P., Ventura, T., 2018.
1306 Guidelines for RNA-seq projects: applications and opportunities in non-model
1307 decapod crustacean species. Hydrobiologia, 1-23.

1308 Nielsen, R., Nielsen, M., Abate, T.G., Hansen, B.W., Jepsen, P.M., Nielsen, S.L.,
1309 Støttrup, J.G., Buchmann, K., 2017. The importance of live-feed traps–farming
1310 marine fish species. Aquaculture Research 48, 2623-2641.

1311 Nilsson, B., 2018. Molecular Stress Physiology in the Calanoid Copepod *Acartia*
1312 *tonsa*. PhD Dissertation, Roskilde University, 148 pp.

1313 Nilsson, B., Hansen, B.W., 2018. Timing of embryonic quiescence determines
1314 viability of embryos from the calanoid copepod, *Acartia tonsa* (Dana). PLoS ONE 13,
1315 e0193727.

1316 Nilsson, B., Jakobsen, H.H., Stief, P., Drillet, G., Hansen, B.W., 2017. Copepod
1317 swimming behavior, respiration, and expression of stress-related genes in response to
1318 high stocking densities. Aquacult. Rep. 6, 35-42.

1319 Nilsson, B., Jepsen, P.M., Bucklin, A., Hansen, B.W., 2018. Environmental stress
1320 responses and experimental handling artifacts of a model organism, the copepod
1321 *Acartia tonsa* (Dana). Front. Mar. Sci. 5, 156.

1322 Nilsson, B., Jepsen, P.M., Rewitz, K., Hansen, B.W., 2014. Expression of hsp70 and
1323 ferritin in embryos of the copepod *Acartia tonsa* (Dana) during transition between
1324 subitaneous and quiescent state. J. Plank. Res. 36, 513-522.

1325 Núñez-Acuña, G., Vera-Bizama, F., Boltaña, S., Hawes, C., Marambio, J.P.,
1326 Wadsworth, S., Gallardo-Escárate, C., 2016. In-feed additives modulate ionotropic
1327 receptor genes from the sea louse *Caligus rogercresseyi*: a comparative analysis in
1328 two host salmonid species. *Aquaculture* 451, 99-105.

1329 Oakley, T.H., Wolfe, J.M., Lindgren, A.R., Zaharoff, A.K.J.M.b., 2012.
1330 Phylogenomics to bring the understudied into the fold: monophyletic Ostracoda,
1331 fossil placement, and pancrustacean phylogeny. *Mol. Biol. Evol.* 30, 215-233.

1332 Oliver, S., 2000. Proteomics: guilt-by-association goes global. *Nature* 403, 601.

1333 Orsini, L., Brown, J.B., Shams Solari, O., Li, D., He, S., Podicheti, R., Stoiber, M.H.,
1334 Spanier, K.I., Gilbert, D., Jansen, M., 2018. Early transcriptional response pathways
1335 in *Daphnia magna* are coordinated in networks of crustacean-specific genes. *Mol.*
1336 *Ecol.* 27, 886-897.

1337 Papatheodorou, I., Fonseca, N.A., Keays, M., Tang, Y.A., Barrera, E., Bazant, W.,
1338 Burke, M., Füllgrabe, A., Fuentes, A.M.-P., George, N., 2017. Expression Atlas: gene
1339 and protein expression across multiple studies and organisms. *Nucleic Acids Res.* 46,
1340 D246-D251.

1341 Park, J.C., Han, J., Lee, M.-C., Seo, J.S., Lee, J.-S., 2017. Effects of triclosan (TCS)
1342 on fecundity, the antioxidant system, and oxidative stress-mediated gene expression
1343 in the copepod *Tigriopus japonicus*. *Aquat. Toxicol.* 189, 16-24.

1344 Parrish, K.K., Wilson, D.F., 1978. Fecundity studies on *Acartia tonsa* (Copepoda:
1345 Calanoida) in standardized culture. *Mar. Biol.* 46, 65–81.

1346 Pereira, R.J., Barreto, F.S., Burton, R.S., 2014. Ecological novelty by hybridization:
1347 experimental evidence for increased thermal tolerance by transgressive segregation in
1348 *Tigriopus californicus*. *Evolution* 68, 204-215.

1349 Pereira, R.J., Sasaki, M.C., Burton, R.S., 2017. Adaptation to a latitudinal thermal
1350 gradient within a widespread copepod species: the contributions of genetic divergence
1351 and phenotypic plasticity. *Proc. Royal Soc. London B: Biol. Sci.* 284, 20170236.

1352 Perkins, J.R., Dawes, J.M., McMahon, S.B., Bennett, D.L., Orengo, C., Kohl, M.,
1353 2012. ReadqPCR and NormqPCR: R packages for the reading, quality checking and
1354 normalisation of RT-qPCR quantification cycle (Cq) data. *BMC Genomics* 13, 296.

1355 Petkeviciute, E., Kania, P.W., Skovgaard, A., 2015. Genetic responses of the marine
1356 copepod *Acartia tonsa* (Dana) to heat shock and epibiont infestation. *Aquacult. Rep.*
1357 2, 10-16.

1358 Pfaffl, M., 2001. A new mathematical model for relative quantification in real-time
1359 RT-PCR. *Nucleic Acids Res.* 29, e45.

1360 Pfaffl, M.W., Tichopad, A., Prgomet, C., Neuvians, T.P., 2004. Determination of
1361 stable housekeeping genes, differentially regulated target genes and sample integrity:
1362 BestKeeper—Excel-based tool using pair-wise correlations. *Biotechnol. Lett.* 26, 509-
1363 515.

1364 Pimentel, H., Sturmels, P., Bray, N., Melsted, P., Pachter, L., 2016. The Lair: a
1365 resource for exploratory analysis of published RNA-Seq data. *BMC Bioinformatics*
1366 17, 490.

1367 Poley, J.D., Igboeli, O.O., Fast, M.D., 2015. Towards a consensus: Multiple
1368 experiments provide evidence for constitutive expression differences among sexes
1369 and populations of sea lice (*Lepeophtheirus salmonis*) related to emamectin benzoate
1370 resistance. *Aquaculture* 448, 445-450.

1371 Puthumana, J., Lee, M.-C., Han, J., Kim, H.-S., Hwang, D.-S., Lee, J.-S., 2017.
1372 Ecdysone receptor (EcR) and ultraspiracle (USP) genes from the cyclopoid copepod
1373 *Paracyclopsina nana*: Identification and expression in response to water
1374 accommodated fractions (WAFs). *Comp. Biochem. Physiol. C: Toxicol. Physiol.* 192,
1375 7-15.

1376 Rahlff, J., Peters, J., Moyano, M., Pless, O., Claussen, C., Peck, M.A., 2017. Short-
1377 term molecular and physiological responses to heat stress in neritic copepods *Acartia*
1378 *tonsa* and *Eurytemora affinis*. *Comp. Biochem. Physiol. A: Mol. Integr. Physiol.* 203,
1379 348-358.

1380 Ramos, A.A., Weydmann, A., Cox, C.J., Canario, A.V.M., Serrao, E.A., Pearson,
1381 G.A., 2015. A transcriptome resource for the copepod *Calanus glacialis* across a
1382 range of culture temperatures. *Mar. Genomics* 23, 27-29.

1383 Regier, J.C., Shultz, J.W., Kambic, R.E., 2005. Pancrustacean phylogeny: hexapods
1384 are terrestrial crustaceans and maxillopods are not monophyletic. *Proc. Royal Soc.*
1385 *London B: Biol. Sci.* 272, 395-401.

1386 Regier, J.C., Shultz, J.W., Zwick, A., Hussey, A., Ball, B., Wetzer, R., Martin, J.W.,
1387 Cunningham, C.W., 2010. Arthropod relationships revealed by phylogenomic
1388 analysis of nuclear protein-coding sequences. *Nature* 463, 1079.

1389 Rhee, J.-S., Kim, B.-M., Choi, B.-S., Lee, J.-S., 2012. Expression pattern analysis of
1390 DNA repair-related and DNA damage response genes revealed by 55 K
1391 oligomicroarray upon UV-B irradiation in the intertidal copepod, *Tigriopus japonicus*.
1392 *Comp. Biochem. Physiol. C: Toxicol. Pharmacol.* 155, 359-368.

1393 Rhee, J.-S., Raisuddin, S., Lee, K.-W., Seo, J.S., Ki, J.-S., Kim, I.-C., Park, H.G., Lee,
1394 J.-S., 2009. Heat shock protein (Hsp) gene responses of the intertidal copepod
1395 *Tigriopus japonicus* to environmental toxicants. *Comp. Biochem. Physiol. C: Toxicol.*
1396 *Pharmacol.* 149, 104-112.

1397 Rhee, J.-S., Yu, I.T., Kim, B.-M., Jeong, C.-B., Lee, K.-W., Kim, M.-J., Lee, S.-J.,
1398 Park, G.S., Lee, J.-S., 2013. Copper induces apoptotic cell death through reactive
1399 oxygen species-triggered oxidative stress in the intertidal copepod *Tigriopus*
1400 *japonicus*. *Aquat. Toxicol.* 132, 182-189.

1401 Rhee, J.S., Lee, Y.M., Kim, B.M., Leung, K.M.Y., Kim, I.C., Yim, J.H., Lee, J.S.,
1402 2015. β -Naphthoflavone induces oxidative stress in the intertidal copepod, *Tigriopus*
1403 *japonicus*. *Environ. Toxicol.* 30, 332-342.

1404 Riemer, A.B., Keskin, D.B., Reinherz, E.L., 2012. Identification and validation of
1405 reference genes for expression studies in human keratinocyte cell lines treated with
1406 and without interferon- γ —a method for qRT-PCR reference gene determination. *Exp.*
1407 *Dermatology* 21, 625-629.

1408 Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K., 2015.
1409 limma powers differential expression analyses for RNA-sequencing and microarray
1410 studies. *Nucleic Acids Res.* 43, e47-e47.

1411 Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. *edgeR*: a Bioconductor package
1412 for differential expression analysis of digital gene expression data. *Bioinformatics* 26,
1413 139-140.

1414 Roncalli, V., Christie, A.E., Sommer, S.A., Cieslak, M.C., Hartline, D.K., Lenz, P.H.,
1415 2017a. A deep transcriptomic resource for the copepod crustacean *Labidocera*
1416 *madurae*: A potential indicator species for assessing near shore ecosystem health.
1417 *PloS ONE* 12, e0186794.

1418 Roncalli, V., Cieslak, M.C., Lenz, P.H., 2016a. Transcriptomic responses of the
1419 calanoid copepod *Calanus finmarchicus* to the saxitoxin producing dinoflagellate
1420 *Alexandrium fundyense*. *Sci. Rep.* 6, 25708.

1421 Roncalli, V., Cieslak, M.C., Sommer, S.A., Hopcroft, R.R., Lenz, P.H., 2018a. *De*
1422 *novo* transcriptome assembly of the calanoid copepod *Neocalanus flemingeri*: A new
1423 resource for emergence from diapause. *Mar. Genom.* 37, 114-119.

1424 Roncalli, V., Jungbluth, M.J., Lenz, P.H., 2016b. Glutathione S-Transferase
1425 regulation in *Calanus finmarchicus* feeding on the toxic dinoflagellate *Alexandrium*
1426 *fundyense*. *PLoS ONE* 11, e0159563.

1427 Roncalli, V., Lenz, P.H., Cieslak, M.C., Hartline, D.K., 2017b. Complementary
1428 mechanisms for neurotoxin resistance in a copepod. *Sci. Rep.* 7, 14201.

1429 Roncalli, V., Sommer, S.A., Cieslak, M.C., Clarke, C., Hopcroft, R.R., Lenz, P.H.,
1430 2018b. Physiological characterization of the emergence from diapause: A
1431 transcriptomics approach. *Sci. Rep.* 8, 12577.

1432 Rota-Stabelli, O., Lartillot, N., Philippe, H., Pisani, D., 2012. Serine codon-usage bias
1433 in deep phylogenomics: pancrustacean relationships as a case study. *Syst. Biol.* 62,
1434 121-133.

1435 Ruijter, J., Ramakers, C., Hoogaars, W., Karlen, Y., Bakker, O., Van den Hoff, M.,
1436 Moorman, A., 2009. Amplification efficiency: linking baseline and bias in the
1437 analysis of quantitative PCR data. *Nucleic Acids Res.* 37, e45-e45.

1438 Saiz, E., Movilla, J., Yebra, L., Barata, C., Calbet, A., 2009. Lethal and sublethal
1439 effects of naphthalene and 1, 2-dimethylnaphthalene on naupliar and adult stages of
1440 the marine cyclopoid copepod *Oithona daviseae*. *Environ. Pollut.* 157, 1219-1226.

1441 Schiffer, M., Harms, L., Lucassen, M., Mark, F.C., Pörtner, H.-O., Storch, D., 2014.
1442 Temperature tolerance of different larval stages of the spider crab *Hyas araneus*
1443 exposed to elevated seawater pCO₂. *Front. Zool.* 11, 87.

1444 Schlötterer, C., 2015. Genes from scratch—the evolutionary fate of *de novo* genes.
1445 Trends Genet. 31, 215-219.

1446 Schoville, S.D., Barreto, F.S., Moy, G.W., Wolff, A., Burton, R.S., 2012.
1447 Investigating the molecular basis of local adaptation to thermal stress: population
1448 differences in gene expression across the transcriptome of the copepod *Tigriopus*
1449 *californicus*. BMC Evol. Biol. 12, 170.

1450 Seo, J., Park, T.-J., Lee, Y.-M., Park, H., Yoon, Y.-D., Lee, J.-S., 2006a. Small heat
1451 shock protein 20 gene (Hsp20) of the intertidal copepod *Tigriopus japonicus* as a
1452 possible biomarker for exposure to endocrine disruptors. Bull. Environ. Contam.
1453 Toxicol. 76.

1454 Seo, J.S., Lee, K.-W., Rhee, J.-S., Hwang, D.-S., Lee, Y.-M., Park, H.G., Ahn, I.-Y.,
1455 Lee, J.-S., 2006b. Environmental stressors (salinity, heavy metals, H2O2) modulate
1456 expression of glutathione reductase (GR) gene from the intertidal copepod *Tigriopus*
1457 *japonicus*. Aquat. Toxicol. 80, 281-289.

1458 Seo, J.S., Lee, Y.-M., Park, H.G., Lee, J.-S., 2006c. The intertidal copepod *Tigriopus*
1459 *japonicus* small heat shock protein 20 gene (Hsp20) enhances thermotolerance of
1460 transformed *Escherichia coli*. Biochem. Biophys. Res. Comm. 340, 901-908.

1461 Sherr, E.B., Sherr, B.F., 2016. Phagotrophic protists: central roles in microbial food
1462 webs, Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective.
1463 Springer, 3-12.

1464 Shi, L., Perkins, R.G., Fang, H., Tong, W., 2008. Reproducible and reliable
1465 microarray results through quality control: good laboratory proficiency and
1466 appropriate data analysis practices are essential. Curr. Opin. Biotechnol. 19, 10-18.

1467 Simão, F.A., Waterhouse, R.M., Ionnidis, P., Kriventseva, E.V., Zdobnov, E.M.,
1468 2015. BUSCO: assessing genome assembly and annotation completeness with single-
1469 copy orthologs. Bioinformatics 31, 3210-3212.

1470 Smit, M.G., Bechmann, R.K., Hendriks, A.J., Skadsheim, A., Larsen, B.K., Baussant,
1471 T., Bamber, S., Sanni, S., 2009. Relating biomarkers to whole-organism effects using
1472 species sensitivity distributions: A pilot study for marine species exposed to oil.
1473 Environ. Toxicol. Chem. 28, 1104-1109.

1474 Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J.M., Kelly, S., 2016. TransRate:
1475 reference-free quality assessment of *de novo* transcriptome assemblies. Genome Res.
1476 26, 1134-1144.

1477 Smolina, I., Kollas, S., Moller, E.F., Lindeque, P., Arvind, Y.M., Fernandes, J.M.O.,
1478 Hoarau, G., 2015. Contrasting transcriptome response to thermal stress in two key
1479 zooplankton species *Calanus finmarchicus* and *C. glacialis*. Mar. Ecol. Prog. Ser.
1480 534, 79-93.

1481 Steinberg, D.K., Landry, M.R., 2017. Zooplankton and the ocean carbon cycle. Ann.
1482 Rev. Mar. Sci. 9, 413-444.

1483 Storch, D., Fernández, M., Navarrete, S.A., Pörtner, H.-O., 2011. Thermal tolerance
1484 of larval stages of the Chilean kelp crab *Taliepus dentatus*. Mar. Ecol. Prog. Ser. 429,
1485 157-167.

1486 Semmouria, I., Asselmana J., Nieuwerburgh, F., Deforce, D., Janssen C.R., De
1487 Schamphelaere, K.A.C., 2019. The transcriptome of the marine calanoid copepod
1488 *Temora longicornis* under heat stress and recovery. Mar. Environ. Res. 143, 10-23.

1489 Sutherland, B.J., Jantzen, S.G., Yasuike, M., Sanderson, D.S., Koop, B.F., Jones,
1490 S.R., 2012. Transcriptomics of coping strategies in free-swimming *Lepeophtheirus*
1491 *salmonis* (Copepoda) larvae responding to abiotic stress. Mol. Ecol. 21, 6000-6014.

1492 Svingen, T., Letting, H., Hadrup, N., Hass, U., Vinggaard, A.M., 2015. Selection of
1493 reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under
1494 physiological and toxicological conditions. PeerJ 3, e855.

1495 Tangwancharoen, S., Burton, R.S., 2014. Early life stages are not always the most
1496 sensitive: heat stress responses in the copepod *Tigriopus californicus*. Mar. Ecol.
1497 Prog. Ser. 517, 75-83.

1498 Tangwancharoen, S., Moy, G.W., Burton, R.S., 2018. Multiple modes of adaptation:
1499 regulatory and structural evolution in a small heat shock protein gene. Mol. Biol.
1500 Evol. 35, 2110-2119.

1502 Tarrant, A., Baumgartner, M., Verslycke, T., Johnson, C., 2008. Differential gene
1503 expression in diapausing and active *Calanus finmarchicus* (Copepoda). Mar. Ecol.
1504 Prog. Ser. 355, 193-207.

1506 Tarrant, A.M., Baumgartner, M.F., Hansen, B.H., Altin, D., Nordtug, T., Olsen, A.J.,
1507 2014. Transcriptional profiling of reproductive development, lipid storage and
1508 molting throughout the last juvenile stage of the marine copepod *Calanus*
1509 *finmarchicus*. Front. Zool. 11, 91.

1510 Todd, E.V., Black, M.A., Gemmell, N.J., 2016. The power and promise of RNA-seq
1511 in ecology and evolution. Mol. Ecol. 25, 1224-1241.

1512 Toxværd, K., Van Dinh, K., Henriksen, O., Hjorth, M., Nielsen, T., 2018. Impact of
1513 pyrene exposure during overwintering of the Arctic copepod *Calanus glacialis*.
1514 Environ. Sci. Technol.

1515 Tribble, N.D., Burka, J.F., Kibenge, F.S.B., 2007. Evidence for changes in the
1516 transcription levels of two putative P-glycoprotein genes in sea lice (*Lepeophtheirus*
1517 *salmonis*) in response to emamectin benzoate exposure. Mol. Biochem. Parasitol. 153.

1518 Trößé C, Nilsen F, Dalvin S., 2014. RNA interference mediated knockdown of the
1519 KDEL receptor and COPB2 inhibits digestion and reproduction in the parasitic
1520 copepod *Lepeophtheirus salmonis*. Comp. Biochem. Physiol. B: Biochem. Mol. Biol.
1521 170:1-9.

1522 Turner, J.T., 2004. The importance of small planktonic copepods and their roles in
1523 pelagic marine food webs. Zool. Stud. 43, 255-266.

1524 Unal, E., Bucklin, A., Lenz, P.H., Towle, D.W., 2013. Gene expression of the marine
1525 copepod *Calanus finmarchicus*: Responses to small-scale environmental variation in
1526 the Gulf of Maine (NW Atlantic Ocean). *J. Exp. Mar. Biol. Ecol.* 446, 76-85.

1527 VanderLugt, K. , Cooney, M. J., Lechner, A. and Lenz, P. H., 2009, Cultivation of the
1528 paracalanid copepod, *Bestiolina similis* (Calanoida: Crustacea). *J. World Aquacult.*
1529 Soc., 40: 616-628.

1530 Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A.,
1531 Speleman, F., 2002. Accurate normalization of real-time quantitative RT-PCR data by
1532 geometric averaging of multiple internal control genes. *Genome Biol.* 3,
1533 RESEARCH0034.

1534 Voznesensky, M., Lenz, P.H., Spanings-Pierrot, C., Towle, D.W., 2004. Genomic
1535 approaches to detecting thermal stress in *Calanus finmarchicus* (Copepoda:
1536 Calanoida). *J. Exp. Mar. Biol. Ecol.* 311, 37-46.

1537 Vu, M.T., Hansen, B.W., Kiørboe, T., 2017. The constraints of high density
1538 production of the calanoid copepod *Acartia tonsa* Dana. *J. Plank. Res.* 39, 1028-1039.

1539 Walsh, T.K., Lyndon, A.R., Jamieson, D.J., 2007. Identification of cDNAs induced
1540 by the organophosphate trichlorphon in the parasitic copepod *Lepeophtheirus*
1541 *salmonis* (Copepoda; Caligidae). *Pestic. Biochem. Physiol.* 88, 26-30.

1542 Walter, T.C., Boxshall, G., 2019. World of Copepods database. Accessed at
1543 http://www.marinespecies.org/copepoda_on_2019-01-31.

1544 Weaver, R.J., Hill, G.E., Kuan, P.-L., Tseng, Y.-C., 2016. Copper exposure reduces
1545 production of red carotenoids in a marine copepod. *Ecol. Indic.* 70, 393-400.

1546 Willett, C.S., Burton, R.S., 2002., Proline biosynthesis genes and their regulation
1547 under salinity stress in the euryhaline copepod *Tigriopus californicus*. *Comp.*
1548 *Biochem.Physiol.B: Biochem. Mol. Biol.* 132,739-750.

1549 Willett, C.S., Burton, R.S., 2003. Characterization of the glutamate dehydrogenase
1550 gene and its regulation in a euryhaline copepod. *Comp. Biochem. Physiol. B:*
1551 *Biochem. Mol. Biol.* 135, 639-646.

1552 Xuereb, B., Forget-Leray, J., Souissi, S., Glippa, O., Devreker, D., Lesueur, T., Marie,
1553 S., Danger, J.-M., Boulangé-Lecomte, C., 2012. Molecular characterization and
1554 mRNA expression of grp78 and hsp90A in the estuarine copepod *Eurytemora affinis*.
1555 *Cell Stress Chaperones* 17, 457-472.

1556 Yi, A.X., Han, J., Lee, J.-S., Leung, K.M., 2014. Ecotoxicity of triphenyltin on the
1557 marine copepod *Tigriopus japonicus* at various biological organisations: from
1558 molecular to population-level effects. *Ecotoxicology* 23, 1314-1325.

1559 Zhang, H., Finiguerra, M., Dam, H.G., Huang, Y., Xu, D., Liu, G., Lin, S., 2013. An
1560 improved method for achieving high-quality RNA for copepod transcriptomic studies.
1561 *J. Exp. Mar. Biol. Ecol.* 446, 57-66.

1562 Zhang, R., Lahens, N.F., Ballance, H.I., Hughes, M.E., Hogenesch, J.B., 2014. A
1563 circadian gene expression atlas in mammals: implications for biology and medicine.
1564 Proc. Nat. Acad. Sci. 111, 16219-16224.

1565 Zhou, C., Carotenuto, Y., Vitiello, V., Wu, C., Zhang, J., Buttino, I., 2018. De novo
1566 transcriptome assembly and differential gene expression analysis of the calanoid
1567 copepod *Acartia tonsa* exposed to nickel nanoparticles. Chemosphere 209, 163-172.
1568

1569 Zhou, K., Huang, B., Zou, M., Lu, D., He, S., Wang, G., 2015. Genome-wide
1570 identification of lineage-specific genes within *Caenorhabditis elegans*. Genomics
1571 106, 242-248.

1572 Zhou, K., Wang, M., Sun, S., 2016. Effects of elevated temperature and food supply
1573 on the termination of over-summering and subsequent development of the calanoid
1574 copepod *Calanus sinicus*: morphology, physiology and gene expression. PLoS ONE
1575 11, e0161838.

1576 Zhuang, Y., Yang, F., Xu, D., Chen, H., Zhang, H., Liu, G., 2017. Spliced leader-
1577 based analyses reveal the effects of polycyclic aromatic hydrocarbons on gene
1578 expression in the copepod *Pseudodiaptomus poplesia*. Aquat. Toxicol. 183, 114-126.

1579 Zöllner, E., Hoppe, H.-G., Sommer, U., Jürgens, K., 2009. Effect of zooplankton-
1580 mediated trophic cascades on marine microbial food web components (bacteria,
1581 nanoflagellates, ciliates). Limnol. Oceanogr. 54, 262-275.
1582

1583

Table 1. Commonly used reference genes in copepods.

Gene	Species	Reference	Validation
β -actin (ACT)	<i>Acartia tonsa</i>	(Nilsson et al., 2018)	Yes
		(Aguilera et al., 2016)	No
		(Nilsson et al., 2014, 2017; Petkeviciute et al., 2015; Rahlf et al., 2017)	No
	<i>Calanus finmarchicus</i>	(Hansen et al., 2008; Roncalli et al., 2016b)	Yes
		(Lauritano et al., 2011a, 2013, 2016)	Yes
		(Lauritano et al., 2015)	Yes
		(Rahlf et al., 2017)	No
		(Hwang et al., 2010b)	No
		(Jeong et al., 2015)	Yes
		(Jiang et al., 2013)	No
		(Zhuang et al., 2017)	Yes
		(Chan et al., 2014)	No
	<i>Tigriopus californicus</i>	(Lee et al., 2007, 2008b; Rhee et al., 2009; Seo et al., 2006b)	No
		(Jeong et al., 2014; Lee et al., 2017)	Yes
Elongation factor 1 α (EFA)	<i>Acartia tonsa</i>	(Nilsson et al., 2014, 2017; Petkeviciute et al., 2015)	No
	<i>Calanus finmarchicus</i>	(Hansen et al., 2008, 2010; Roncalli et al., 2016b)	Yes
	<i>Calanus helgolandicus</i>	(Lauritano et al., 2011a, 2013, 2016)	Yes
	<i>Calanus sinicus</i>	(Zhou et al., 2016)	No
	<i>Lepeophtheirus salmonis</i>	(Lauritano et al., 2015)	Yes
		(Tribble et al., 2007)	No
		(Borchel et al., 2018; Park et al., 2017)	Yes
		(Jeong et al., 2015)	Yes
		(Zhuang et al., 2017)	Yes
		(Park et al., 2017)	No
		(Jeong et al., 2015; Lee et al., 2017)	Yes
18S rRNA (18S)	<i>Calanus helgolandicus</i>	(Lauritano et al., 2011a, 2013, 2016)	Yes
	<i>Calanus sinicus</i>	(Lee et al., 2017)	Yes
		(Lauritano et al., 2015; Lee et al., 2017)	Yes
	<i>Paracyclops nana</i>	(Han et al., 2015a; Lauritano et al., 2015; Lee et al., 2012, 2016; Puthumana et al., 2017)	No
		(Jeong et al., 2015; Lauritano et al., 2011a, 2013, 2016)	Yes
	<i>Tigriopus japonicus</i>	(Han et al., 2015a, 2015a; Hwang et al., 2016; Jeong et al., 2014, 2015, 2016; Kim et al., 2011, 2013a, 2013b, 2014, 2015a; Lee et al., 2012, 2016; Puthumana et al., 2017; Rhee et al., 2013; Yi et al., 2014)	No
Ribosomal protein S16 (S16)	<i>Calanus finmarchicus</i>	(Aruda et al., 2011; Roncalli et al., 2016b)	No
	<i>Calanus sinicus</i>	(Roncalli et al., 2016b)	Yes
Ribosomal protein S20 (S20)		(Zhou et al., 2016)	No
<i>Calanus helgolandicus</i>	(Lauritano et al., 2011a, 2013, 2016)	Yes	
<i>Calanus sinicus</i>	(Lauritano et al., 2015)	Yes	
Ribosomal protein S7 (S7)	<i>Pseudodiaptomus poplesia</i>	(Zhuang et al., 2017)	Yes
	<i>Calanus helgolandicus</i>	(Lauritano et al., 2011a, 2013, 2015, 2016)	Yes
	<i>Calanus sinicus</i>	(Lauritano et al., 2015)	Yes
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)	<i>Calanus helgolandicus</i>	(Lauritano et al., 2011a, 2013, 2016)	Yes
	<i>Calanus sinicus</i>	(Zhou et al., 2016)	No
		(Jeong et al., 2015; Lauritano et al., 2015)	Yes
	<i>Paracyclops nana</i>	(Jeong et al., 2015)	Yes
	<i>Pseudodiaptomus annandalei</i>	(Jiang et al., 2013)	No
	<i>Tigriopus californicus</i>	(Barreto et al., 2015)	No
	<i>Tigriopus japonicus</i>	(Lee et al., 2006, 2017; Seo et al., 2006a, 2006c)	No
Ubiquitin (UBI)	<i>Calanus helgolandicus</i>	(Lauritano et al., 2011a, 2013)	Yes

	<i>Calanus sinicus</i>	(Lauritano et al., 2015)	Yes
<i>Histone H3</i> (<i>HIST</i>)	<i>Acartia tonsa</i>	(Nilsson and Hansen, 2018)	Yes
	<i>Calanus helgolandicus</i>	(Lauritano et al., 2011a, 2013, 2015, 2016)	Yes
	<i>Calanus sinicus</i>	(Lauritano et al., 2015)	Yes
<i>ATP synthase</i> (<i>ATPS</i>)	<i>Acartia tonsa</i>	(Nilsson and Hansen, 2018)	Yes
	<i>Calanus helgolandicus</i>	(Lauritano et al., 2011a, 2013, 2015)	Yes
	<i>Calanus sinicus</i>	(Lauritano et al., 2015)	Yes

1585
1586

1587
1588
1589
1590

Table 2. Commonly-used biomarkers for transcriptional analysis with real-time quantitative PCR in copepods. Copepod species abbreviations: *Acartia tonsa* (*A. tonsa*); *Calanus finmarchicus* (*C. finmarchicus*); *Calanus glacialis* (*C. glacialis*); *Calanus helgolandicus* (*C. helgolandicus*); *Eurytemora affinis* (*E. affinis*); *Paracyclops nana* (*P. nana*); *Pseudodiaptomus annandalei* (*P. annandalei*); *Pseudodiaptomus poplesia* (*P. poplesia*); *Tigriopus californicus* (*T. californicus*); *Tigriopus japonicus* (*T. japonicus*);

Biomarker	Stressors	Effect	Species	References
<i>Aldehyde dehydrogenases (ALDHs)</i>	Diatom toxins	Isoform dependent	<i>C. helgolandicus</i>	(Lauritano et al., 2011b, 2016)
<i>Catalases (CATs)</i>	Naphthalene	No significant change	<i>C. finmarchicus</i>	(Hansen et al., 2008)
	Toxic diatoms	No significant change	<i>C. helgolandicus</i>	(Lauritano et al., 2011b)
		Elevated expression	<i>C. helgolandicus</i>	(Lauritano et al., 2016)
<i>Cell cycle and apoptosis regulatory 1 protein</i>	Toxic diatoms	No significant change	<i>C. helgolandicus</i>	(Lauritano et al., 2011b)
<i>Cellular apoptosis susceptibility protein</i>	Toxic diatoms	Decreased expression	<i>C. helgolandicus</i>	(Lauritano et al., 2016)
<i>Corticotropin Releasing Hormone Binding Protein</i>	Salinity	Elevated expression	<i>T. japonicus</i>	(Lee et al., 2008c)
<i>COI</i>	Copper	Elevated expression	<i>T. japonicus</i>	(Weaver et al., 2016)
	Diatom toxins	Isoform dependent	<i>C. helgolandicus</i>	(Lauritano et al., 2011b, 2016)
	Naphthalene	Concentration dependent down regulation	<i>C. finmarchicus</i>	(Hansen et al., 2008)
	Diethanolamine	Decreased expression	<i>C. finmarchicus</i>	(Hansen et al., 2010)
<i>Cytochromes P450 (CYPs)</i>	Water-soluble fractions of crude oil and oil droplets	Stressor dependent	<i>C. finmarchicus</i>	(Hansen et al., 2009)
	Polycyclic aromatic hydrocarbons, water accommodated fractions of crude oil	Elevated expression	<i>P. nana</i>	(Han et al., 2015a)
<i>Delta-1 pyrroline-5-carboxylase reductase</i>	Salinity	No significant change	<i>T. californicus</i>	(Willett and Burton, 2002)
<i>Delta-pyrroline-5-carboxylate synthase</i>	Salinity	No significant change	<i>T. californicus</i>	(Willett and Burton, 2002)
<i>DnaJ homolog</i>	Increasing temperature	No significant change	<i>C. finmarchicus</i>	(Smolina et al., 2015)
	Crowding	No significance	<i>A. tonsa</i>	(Nilsson et al., 2017)
<i>Ferritin</i>	Quiescence	Time dependent peaks	<i>A. tonsa</i>	(Nilsson et al., 2014)
	Epibiont infestation	Elevated expression	<i>A. tonsa</i>	(Petkeviciute et al., 2015)

	CO ₂ pressure	Acclimatization dependent (elevated expression for coastal copepods compared to estuarine copepods)	<i>A. tonsa</i>	(Aguilera et al., 2016)
	Nickel	Elevated expression	<i>P. annandalei</i>	(Jiang et al., 2013)
<i>Glucose-Regulated Protein, 78kDa</i>	Temperature; salinity shock	Elevated expression	<i>E. affinis</i>	(Xuereb et al., 2012)
<i>Glutamate Dehydrogenase</i>	Increasing temperature	Elevated expression, time dependent	<i>C. finmarchicus</i>	(Smolina et al., 2015)
	Salinity	No significant change	<i>T. californicus</i>	(Willett and Burton, 2003)
<i>Glutathione Peroxidases (GPxs)</i>	Pyrene; naphthalene	No significant change	<i>P. poplesia</i>	(Zhuang et al., 2017)
<i>Glutathione Reductase (GR)</i>	Salinity	Elevated for high salinities, decreased for low	<i>T. japonicus</i>	(Seo et al., 2006b)
	Heavy metals (Cu, Mn)	Elevated expression	<i>T. japonicus</i>	(Weaver et al., 2016)
	Hydrogen peroxide	Concentration and time dependent	<i>T. japonicus</i>	(Seo et al., 2006b)
	Endocrine disrupting chemicals	Concentration and stressor dependent	<i>T. japonicus</i>	(Lee et al., 2006)
	Toxic diatoms and dinoflagellates	Time and/or isoform dependent	<i>C. helgolandicus</i> , <i>C. finmarchicus</i>	(Lauritano et al., 2011b., 2016; Roncalli et al., 2016b)
	Heavy metals (Cu, Mn, Ag, As, Cd)	Time, metal-type and isoform dependent	<i>T. japonicus</i>	(Lee et al., 2007, 2008b)
<i>Glutathione S-transferases (GSTs)</i>	Naphthalene	Elevated expression	<i>C. finmarchicus</i>	(Hansen et al., 2008)
	Hydrogen peroxide	Elevated expression (peak)	<i>P. poplesia</i>	(Zhuang et al., 2017)
	Pyrene	Time dependent	<i>T. japonicus</i>	(Lee et al., 2007)
	Water-soluble fractions and water accommodated fractions of crude oil, oil droplets	Time and isoform dependent	<i>P. poplesia</i>	(Zhuang et al., 2017)
	Diethanolamine	Concentration - and time dependent	<i>C. finmarchicus</i> , <i>C. glacialis</i>	(Hansen et al., 2009, 2011)
	Triphenyltin chloride	Concentration and time dependent	<i>C. finmarchicus</i>	(Hansen et al., 2010)
	Decreased expression		<i>T. japonicus</i>	(Yi et al., 2014)
<i>Glutathione Synthase</i>	Toxic diatoms	No significant change	<i>C. helgolandicus</i>	(Lauritano et al., 2011b)
	Diethanolamine	Concentration dependent	<i>C. finmarchicus</i>	(Hansen et al., 2010)
	Temperature	No significant change	<i>T. japonicus</i>	(Rhee et al., 2009)
		Elevated expression for high and, decreased expression for low temperatures	<i>T. japonicus</i>	(Seo et al., 2006c)
<i>Heat-shock protein 10, 20, 21, 22, 40, 60, 94 or 105 kDa</i>	Salinity	No significant change	<i>T. japonicus</i>	(Seo et al., 2006b)
	Endocrine disrupter chemicals	Stressor dependent	<i>T. japonicus</i>	(Seo et al., 2006b)
	Handling	Elevated expression	<i>C. finmarchicus</i>	(Aruda et al., 2011)
	Diapause	Elevated expression	<i>C. finmarchicus</i>	(Aruda et al., 2011)
	Toxic diatoms	Decreased expression	<i>C. helgolandicus</i>	(Lauritano et al., 2011b)
<i>Heat-shock protein 70kDa (HSP70)</i>	Heat-shock / increasing temperature	Elevated expression (acclimatization result in lower expression)	<i>A. tonsa</i> <i>E. affinis</i> <i>T. japonicus</i> <i>T. californicus</i> <i>C. finmarchicus</i> <i>C. finmarchicus</i>	(Petkeviciute et al., 2015; Rahlf et al., 2017) (Rahlf et al., 2017) (Rhee et al., 2009) (Chan et al., 2014) (Voznesensky et al., 2004) (Smolina et al., 2015)
		No significance		

	Handling	Elevated expression	<i>C. finmarchicus</i> <i>E. affinis</i>	(Aruda et al., 2011; Rahlf et al., 2017) (Rahlf et al., 2017)
	Salinity	Concentration dependent, but in general elevated expression outside acclimatization range	<i>A. tonsa</i>	(Petkeviciute et al., 2015)
	Crowding	No significance	<i>A. tonsa</i>	(Nilsson et al., 2017)
	Quiescence	Time dependent	<i>A. tonsa</i>	(Nilsson et al., 2014)
	CO ₂ pressure	Acclimatization dependent (elevated expression for coastal copepods compared to estuarine copepods)	<i>A. tonsa</i>	(Aguilera et al., 2016)
	Shallow active vs. deep diapausing copepods	Elevated expression for active copepods in shallow waters	<i>C. finmarchicus</i>	(Aruda et al., 2011)
	Naphthalene	No significant change	<i>C. finmarchicus</i>	(Hansen et al., 2008)
	Toxic diatoms	Elevated expression	<i>C. helgolandicus</i>	(Lauritano et al., 2016)
		No significant change	<i>C. helgolandicus</i>	(Lauritano et al., 2011b)
	Heavy metals (Cu, Ag, Zn)	Elevated expression	<i>T. japonicus</i>	(Rhee et al., 2009)
	Endocrine disrupting chemicals	Concentration and /or stressor dependent	<i>T. japonicus</i>	(Rhee et al., 2009; Yi et al., 2014)
<i>Heat-shock protein 90kDa (HSP90)</i>	Heat shock / increasing temperature	No significant change	<i>T. japonicus</i>	(Rhee et al., 2009)
		Elevated expression	<i>E. affinis</i>	(Xuereb et al., 2012)
		Elevated expression	<i>A. tonsa</i>	(Petkeviciute et al., 2015)
	Salinity shock	Concentration dependent, elevated expression outside acclimatization range	<i>A. tonsa</i>	(Petkeviciute et al., 2015)
	Naphthalene	No significant change	<i>E. affinis</i>	(Xuereb et al., 2012)
	Crowding	No significant change	<i>C. finmarchicus</i>	(Hansen et al., 2008)
			<i>A. tonsa</i>	(Nilsson et al., 2017)
<i>Inhibitor of apoptosis protein</i>	Toxic diatoms	Decreased expression	<i>C. helgolandicus</i>	(Lauritano et al., 2011b)
<i>Methylmalonate-semialdehyde dehydrogenase</i>	Pyrene	Elevated expression	<i>P. poplesia</i>	(Zhuang et al., 2017)
<i>Myohemerythrin-1</i>	Nickel	Elevated expression	<i>P. annandalei</i>	(Jiang et al., 2013)
<i>Nucleosome Assembly Protein 1</i>	Increasing temperature	Elevated expression, time dependent	<i>C. finmarchicus</i>	(Smolina et al., 2015)
<i>p53 tumor suppressor protein</i>	Endocrine disrupting chemicals	Elevated expression	<i>T. japonicus</i>	(Hwang et al., 2010a)
<i>Peroxiredoxin-6</i>	Naphthalene	Elevated expression	<i>P. poplesia</i>	(Zhuang et al., 2017)
<i>Ras-related C3 botulinum toxin substrate 1</i>	Naphthalene	Elevated expression	<i>P. poplesia</i>	(Zhuang et al., 2017)
<i>Retinoid X receptor</i>	Triphenyltin chloride	Decreased expression	<i>T. japonicus</i>	(Yi et al., 2014)

<i>Ribosomal protein L13</i>	Nickel	Elevated expression	<i>P. annandalei</i>	(Jiang et al., 2013)
<i>Ribosomal Protein S11</i>	Increasing temperature	No significant change	<i>C. finmarchicus</i>	(Smolina et al., 2015)
<i>Separase</i>	Nickel	Elevated expression	<i>P. annandalei</i>	(Jiang et al., 2013)
	Heavy metals (Cu, Zn, Ag)	Elevated expression at high concentrations	<i>T. japonicus</i>	(Kim et al., 2011)
	Endocrine disrupting chemicals	Concentration and stressor dependent	<i>T. japonicus</i>	(Kim et al., 2011)
<i>Superoxide dismutases (SODs)</i>	Naphthalene	No significant change	<i>C. finmarchicus</i>	(Hansen et al., 2008)
	Toxic diatoms	No significant change	<i>C. helgolandicus</i>	(Lauritano et al., 2011b)
		Decreased expression	<i>C. helgolandicus</i>	(Lauritano et al., 2016)
	Nickel	Elevated expression (dose response)	<i>P. annandalei</i>	(Jiang et al., 2013)
<i>Toll-like receptor</i>	Increasing temperature	Elevated expression	<i>T. californicus</i>	(Chan et al., 2014)
<i>Tubulins</i>	Toxic diatoms	Decreased expression	<i>C. helgolandicus</i>	(Lauritano et al., 2011b)
	Nickel	Elevated expression	<i>T. japonicus</i>	(Jiang et al., 2013)
<i>Ubiquitin</i>	Naphthalene	No significant change	<i>C. finmarchicus</i>	(Hansen et al., 2008)
	Diethanolamine	Concentration dependent	<i>C. finmarchicus</i>	(Hansen et al., 2010)
<i>Vitellogenin</i>	Heavy metals (Cd, Ag, As, Cu)	Metal dependent	<i>T. japonicus</i>	(Lee et al., 2011)
		Elevated expression	<i>P. nana</i>	(Hwang et al., 2010b)

1591
1592

1593
1594
1595
1596
1597
1598
1599

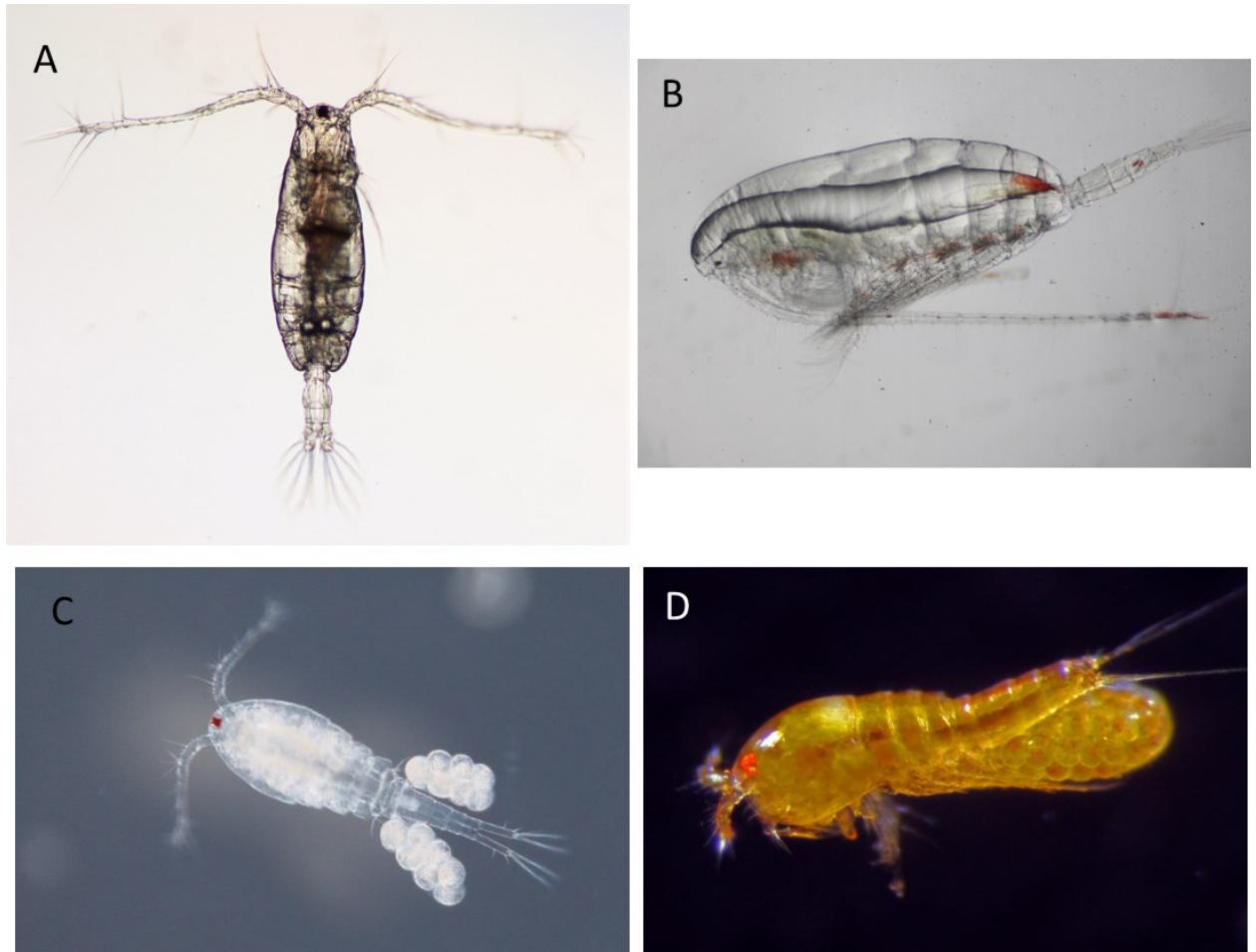
Table 3. Copepod transcriptome assemblies. Type is the type of Illumina sequencing in terms of read length (bp) and if it is paired-end (PE), or single-end (SE) sequencing. Reads used in assembly are reported in millions; the number of pairs is reported when paired reads were generated. Software gives the used assembly software (“CLC” indicates CLC Genomics Workbench, Trinity versions indicated if reported). Contigs is the number of resulting contigs within the assembly. BUSCO analyses were performed in August 2018 using publicly accessible NCBI Transcriptome Shotgun Assemblies (TSA); the rounded percent of complete (C, includes both single and duplicated) and complete single-copy (S) transcripts is shown.

Species	Sample	Platform	Type	Reads Used	Software	Contigs	BUSCO %	NCBI accession	Resources
<i>Acartia tonsa</i>	1 adult female	Illumina NextSeq	150 PE	~350 M	Trinity 2.3.2	60,662	99% C 45% S	GFWY00000000	(Nilsson et al., 2018)
<i>Acartia tonsa</i>	Multiple eggs, nauplii, copepodites, and adults	Illumina Next/Mi-Seq	150 PE	111 M	Trinity 2.5.1	119,439	88% C 45% S	HAGX00000000	(T.S. Jørgensen et al., unpublished data)
<i>Apocyclops roysi</i>	Multiple eggs, nauplii, copepodites, and adults	Illumina NextSeq	150 SE	203 M	Trinity v. 2.5.1	75,477	na	GHAJ00000000	(Jørgensen et al., in press),
<i>Calanus finmarchicus</i>	Multiple eggs, nauplii, copepodites, and adults	Illumina HiSeq	100 PE	28 M per stage 640 M total	Trinity r2012-03-17- IU ZIH TUNED	206,012	99% C 72% S	GAXK00000000	(Lenz et al., 2014)
<i>Calanus finmarchicus</i>	3 CV stage copepodites	Illumina HiSeq	100 PE	93 M	Trinity r2012-06-08	241,140	97% C 61% S	GBFB00000000	(Tarrant et al., 2014)
<i>Calanus finmarchicus</i>	5 individuals exposed to short – and long-term thermal stress (3 temperatures)	Ion-Torrent	N/A	5 M	Trinity r2013-08-14	28,954	13% C 10% S	GBXU00000000	(Smolina et al., 2015)
<i>Calanus glacialis</i>	5 individuals short – and long-term stress exposed to 3 temperatures.	Ion-Torrent	N/A	3.5 M	Trinity r2013-08-14	36,880	21% C 14% S	GBXT00000000	(Smolina et al., 2015)
<i>Calanus glacialis</i>	10 CV stage copepodites	454 GS FLX	N/A	720 K	Mira v 3.0	54,344	17% C 12% S	HACJ00000000	(Ramos et al., 2015)
<i>Eurytemora affinis</i>	Females exposed to two strains of <i>Vibrio</i> and females not exposed	Illumina HiSeq	100 PE	300 M	Trinity r2013-08-14	138,088	100% C 65% S	GBGO00000000	(Almada and Tarrant, 2016)
<i>Eurytemora affinis</i>	Pooled adult males and females	Illumina HiSeq	100 PE	Not reported	Trinity r2013-11-10	107,445	71% C 29% S	GEAN00000000	Unpublished, Munro, J.B., Posavi, M., Brady, A., Orvis, J., Nadendla, S., Abolude, K., Kumari, P., Shetty, A. Lee, C.E. and Silva, J.C.
<i>Labidocera madurae</i>	5-6 adult females 15-26 CIII-CV stage copepodites	Illumina NextSeq	150 PE	530 M	Trinity v. 2.0.6	211,002	99% C 59% S	GFWO00000000	(Roncalli et al., 2017a)
<i>Neocalanus flemingeri</i>	1 adult female	Illumina NextSeq	150 PE	150 M	Trinity v. 2.0.6 & CAP3	140,841	98% C 62% S	GFUD00000000	(Roncalli et al., 2018a)

<i>Paracyclops nana</i>	Unknown - adults	Illumina HiSeq	100 PE	200 M	Trinity	60,687	85% C 64% S	GCJT00000000	(Lee et al., 2015)
<i>Pleuromamma xiphias</i>	Pooled adult males and females	Illumina HiSeq	125 PE	267 M	Trinity v. 2.1.1	554,991	85% C 76% S	GFCI00000000	(Maas et al., 2018)
<i>Temora longicornis</i>	Pooled adult males and females (7:10 males:females ratio)	Illumina HiSeq	150 PE	460 M	Trinity v. 2.1.1	179,569	80% C 67% S	GGQN01000000	(Semmouria et al., 2019)
<i>Tigriopus californicus</i>	4-500 mixed developmental stages. San Diego population	Illumina HiSeq	100 PE	128 M	CLC v. 5.1	36,620	63% C 61% S	GBSZ00000000	(Barreto et al., 2014)
<i>Tigriopus californicus</i>	4-500 mixed developmental stages. Santa Cruz population	Illumina HiSeq	100 PE	49 M	CLC v. 5.1	43,077	62% C 61% S	GBTC00000000	(Barreto et al., 2014)
<i>Tigriopus japonicus</i>		Illumina HiSeq	100 PE	108 M	Trinity	54,758	99% C 55% S	GCHA00000000	(Kim et al., 2015b)
<i>Tigriopus kingsejongensis</i>	200 adults	Illumina HiSeq	150 PE	140 M	Trinity v. 2.0.6	38,250	98% C 77% S	GDFW00000000	(Kim et al., 2016)
<i>Tisbe holothuriae</i>	Multiple eggs, nauplii, copepodites, and adults	Illumina NextSeq	150 PE	162 M	Trinity v. 2.2.0	218,711	46% C 28% S	HAHV00000000	Roskilde University, 2017

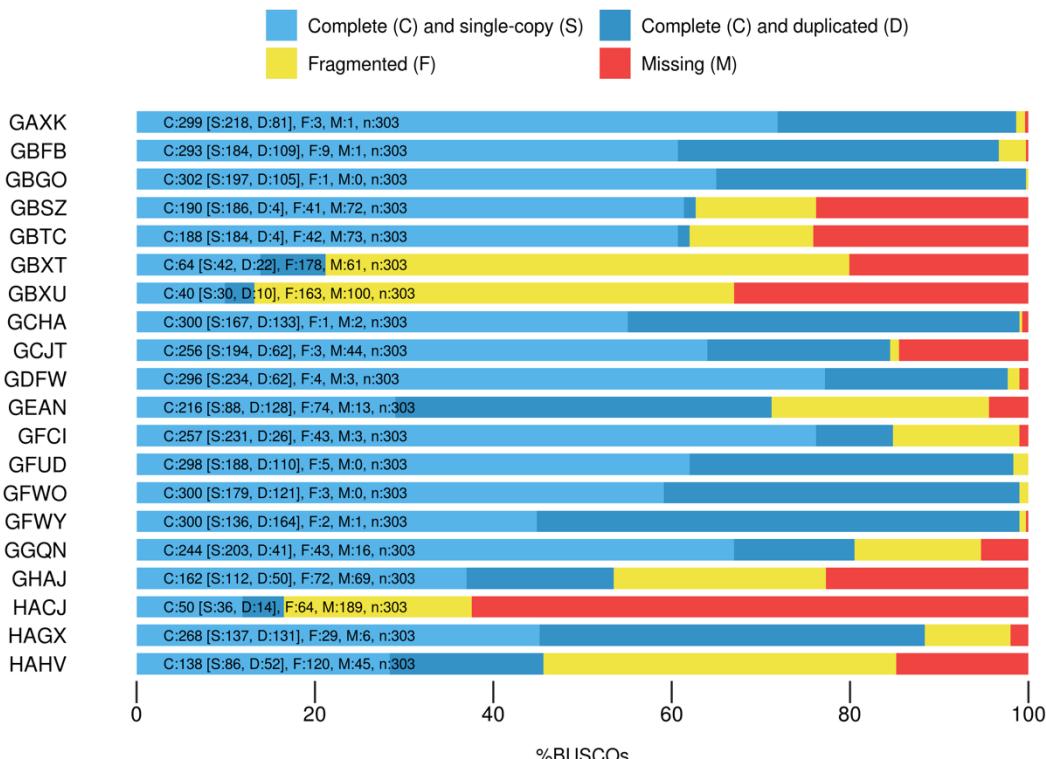
1600

1601
1602
1603**Table 4.** Overview of sequencing depth and number of replicates for differential gene expression assessment in copepods by RNA sequencing. M: million reads. # rep: replicates used per treatment. Type: type of used animals, field-caught or culture-reared. Seq. depth: sequencing depth.


Species	Treatments	# Individuals	Seq. depth	Method	# rep.	Type	Reference
<i>Acartia tonsa</i>	Control, salinity shock, handling stress	10 adults	~25 M	Kallisto/Sleuth	3	Culture	(Nilsson et al., 2018)
<i>Calanus finmarchicus</i>	Control and feeding on the neurotoxic <i>Alexandrium fundyense</i>	~74-80 pooled nauplii	~20 M	Bowtie, Custom script, edgeR	3	Field	(Roncalli et al. 2017b)
<i>Calanus finmarchicus</i>	Control, low-dose – and high-dose of dinoflagellate, two times	10 adult females	~26 M	Bowtie, edgeR	3	Field	(Roncalli et al., 2016a)
<i>Calanus finmarchicus</i>	Short – and long-term stress exposed to 3 temperatures	5 individuals	~0.8M	Rsubread, featureCounts, DESeq2	1	Field	(Smolina et al., 2015)
<i>Calanus finmarchicus</i>	CIV to CV molt (collected on day 3 and 10)	3 CV stage copepodites	~12M	Bowtie, RSEM, edgeR	4	Field/Culture	(Tarrant et al., 2014)
<i>Calanus glacialis</i>	Four pH treatments	10 nauplii	~28 M	BWA, Custom script (De Wit et al. 2012), DESeq2	5-6	Field	(Bailey et al., 2017)
<i>Calanus glacialis</i>	Control and 5 temperature treatments	10 CV stage copepodites	~60-180K	IDEG6	1	Field	(Ramos et al., 2015)
<i>Calanus glacialis</i>	Short – and long-term stress exposed to 3 temperatures	5 individuals	~0.6M	Rsubread, featureCounts, DESeq2	1	Field	(Smolina et al., 2015)
<i>Eurytemora affinis</i>	Control, exposure to acetone, pyriproxyfen and chlordanone. 3 experimental replicates pooled for sequencing	400-500 females or males	~11- 50 M	Bowtie2, RSEM, EBseq	1	Field	(Legrand et al., 2016)
<i>Eurytemora affinis</i>	Control, exposure to <i>Vibrio</i> sp. (F10) and <i>V. ordalii</i>	20 females	~25 M	Bowtie, RSEM, edgeR	4	Culture	(Almada and Tarrant, 2016)
<i>Neocalanus flemingeri</i>	Diapause, emergence phase from diapause (10 weeks)	6 females (diapause), 4 females (emergence phase)	~10-22 M	Kallisto/ edgeR	3 per week	Field	(Roncalli et al., 2018b)
<i>Pseudocalanus acuspes</i>	7 pCO ₂ exposure conditions	28-74 adults	~12-25M	Custom ANCOVA analysis	2	Field	(De Wit et al., 2016)
<i>Temora longicornis</i>	4 temperature treatments	50 adults (7:10 males:females ratio)	Unknown	Bowtie, TopHat, Cuffmerge, HTseq, edgeR	3	Field	(Semmouria et al., 2019)
<i>Tigriopus californicus</i>	2 populations, 2 temperatures	>300 copepods, mixed stages	2.5-7 M	CLC genomics workbench, Z-test	1	Field	(Schoville et al., 2012)
<i>Tigriopus californicus</i>	2 distinct populations and 2 interpopulation crosses	400-500 pooled	~3-40 M	CLC genomics workbench, edgeR	2-3	Field	(Barreto et al., 2014)
<i>Tigriopus californicus</i>	2 populations, 3 salinities	50 pooled	~24 M	RSEM, DESeq2	3	Cultured 2 generations	(DeBiasse et al., 2018)

<i>Tigriopus californicus</i>	Control (parent populations) and F4 crossed population exposed control and high-temperature selection conditions.	30 adults	Unknown	RSEM, limma	3 genetic lines	Field/Culture	(Kelly et al., 2017)
<i>Tigriopus californicus</i>	4 sites, 2 thermal regimes, 2 times	100 pooled	~7.6-29M	CLC genomics workbench, edgeR	2	Field	(Lima and Willett, 2017)

1604


1605

1606

1608
1609

1610 **Figure 1.** Examples of diverse marine copepods utilized in physiological studies. (A)
1611 The calanoid *Acartia tonsa* male, (B) The calanoid *Calanus glacialis* C5 copepodite
1612 with prominent oil sac, (C) The cyclopoid *Apocyclops royi* egg-bearing female (D)
1613 The harpacticoid *Tigriopus japonicus* egg-bearing female. Of these, *Tigriopus spp.*
1614 (particularly *T. californicus*, not shown) have been extensively developed as a model
1615 for studies of molecular evolution and plasticity. The others represent a growing
1616 diversity of species for which molecular physiology studies are being driven by their
1617 ecological importance. Photos courtesy of Dr. Minh Thi Thui Vu (A), A.M.T. (B),
1618 Dr. Hans van Someren Gréve (C), and Dr. Greg Rouse (D).
1619

BUSCO Assessment Results

Figure 2. BUSCO analysis of the following copepod transcriptomes (with NCBI accession numbers, alphabetized by scientific name as in Table 3): **GFWY**: *Acartia tonsa* (GFWY00000000.1, 27-sep-2017); **HAGX**: *Acartia tonsa* (HAGX00000000.1, 29-sep-2017); **GAXK**: *Calanus finmarchicus* (GAXK00000000.1, 14-may-2018); **GBFB**: *Calanus finmarchicus* (GBFB00000000.1, 30-jan-2015); **GBXU**: *Calanus finmarchicus* (GBXU00000000.1, 13-jan-2015); **GBXT**: *Calanus glacialis* (GBXT00000000.1, 13-jan-2015); **HACJ**: *Calanus glacialis* (HACJ00000000.1, 29-sep-2017); **GBGO**: *Eurytemora affinis* (GBGO00000000.1, 07-jul-2015); **GEAN**: *Eurytemora affinis* (GEAN00000000.1, 16-nov-2016); **GFWD**: *Labidocera madurae* (GFWD00000000.1, 14-may-2018); **GFUD**: *Neocalanus flemingeri* (GFUD00000000.1, 14-may-2018); **GCJT**: *Paracyclops nana* (GCJT00000000.1, 20-jul-2015); **GFCI**: *Pleuromamma xiphias* (GFCI00000000.1, 18-dec-2017); **GGQN**: *Temora longicornis* (GGQN00000000, 12-jun-2018); **GBSZ**: *Tigriopus californicus* (GBSZ00000000.1, 02-feb-2015); **GBTC**: *Tigriopus californicus* (GBTC00000000.1, 02-feb-2015); **GCHA**: *Tigriopus japonicus* (GCHA00000000.1, 20-jul-2015); **GDFW**: *Tigriopus kingsejongensis* (GDFW00000000.1, 18-apr-2016); **HAHV**: *Tisbe holothuriae* (HAHV00000000.1, 23-jan-2018).