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In this work, we propose the use of contact resonances, controlled via an external magnetic field, as a
tunable platform to manipulate the dispersion of surface acoustic waves (SAWs). We exploit the analogy
between surface acoustic waves in a semi-infinite medium and edge waves in a plate, to realize a compact
experimental setup and to demonstrate our tuning strategy. The setup consists of a set of ferromagnetic
bead resonators in contact with thin, permanent magnets and positioned at the free edge of an elastic
plate. An additional set of magnets, placed at a controlled and variable distance from the beads, is used
to alter the contact stiffness and natural frequencies of the bead resonators. We exploit resonances to open
large-frequency band gaps via edge-wave hybridization and implement our tuning strategy to shift their
frequency ranges. We predict the tuned dispersive properties of hybridized edge waves via numerical
models and experimentally reconstruct them via laser vibrometry, finding excellent agreement. The use
of magnetic interaction and contact mechanics as a tuning strategy for SAW systems could pave the way
toward programmable devices for sensing and electronic components.
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I. INTRODUCTION

Controlling the propagation of surface acoustic waves
(SAWs) can provide unique opportunities to design
devices across vastly different length scales, ranging from
compact radio-frequency components in wireless telecom-
munication systems [1] at the micro- and nanoscale, to
wave barriers and seismic cloaks [2–5] at the geophysical
scale. These applications require the design of structured
surface layers, e.g., phononic crystals and metamaterials,
that can interact with SAWs and control their dispersive
properties. As an example, periodic patterns of micro-
scopic holes on an elastic substrate can be used to design
filters for SAWs [6] and waveguides [7], exploiting Bragg
scattering phenomena. Similarly, ordered and disordered
arrays of surface pillars are able to induce subwavelength
band gaps due to the hybridization between the SAW
modes and pillars’ resonances [8]. These hybrid modes can
be exploited for subwavelength waveguiding [9,10] and to
achieve negative lensing effects [11]. The same hybridiza-
tion phenomenon is observed when SAWs interact with a
granular layer of silica microbeads, owing to the contact
resonance of each sphere adhered to the elastic substrate.
These granular metamaterials have been thoroughly inves-
tigated with the goal of understanding the microbeads’
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contact dynamics [12,13] and to realize SAW filters in the
megahertz and gigahertz range [14].

Granular systems present an additional desirable feature
with respect to other platforms—the possibility of tuning
their response by altering the contact stiffness. The tun-
ability of contact mechanics via external precompression
has been explored at the mesoscale for multiple engi-
neering applications, e.g., filters [15–17], acoustic lenses
[18], and rectifiers [19]. More recently, external magnetic
fields have been used to control the dynamics of ferromag-
netic beads for the realization of one-dimensional tunable
magnetogranular chains, where the interparticle contact
forces are varied by changing the applied field [20,21].
The prospect of achieving tunability by using external,
noncontact interaction forces is also particularly appeal-
ing in the context of SAWs, where examples of tunable
systems are still limited [22,23] with respect to bulk and
plate structures [24–29]. In light of these considerations,
in this work, we propose and demonstrate a strategy for
SAW manipulation that involves contact-based ferromag-
netic resonators controlled via an external magnetic field.
Our tabletop experimental setup consists of a thin plate,
serving as a two-dimensional (2D) model, equipped with
an array of ferromagnetic resonators on the plate edge.
The compact setup is used to experimentally measure the
tuning of plate edge waves, whose dispersive properties
are analogous to those of SAWs in a semi-infinite medium
[30,31]. We tune the resonances of the ferromagnetic beads
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by changing the position of a second array of permanent
magnets, thus altering the frequency ranges over which
hybridization band gaps occur. While we use this platform
to demonstrate band-gap shifting, the same paradigm could
be seamlessly extended to other wave manipulation effects,
such as subwavelength waveguiding or lensing [32].

II. A “COMPACT” SAW EXPERIMENTAL SETUP

Our experimental setup is shown in Fig. 1(a). It consists
of a 610 × 927 × 9 mm (H × L × t) acrylic plate (PMMA)
with Young’s modulus E = 5.5 GPa, Poisson’s ratio ν =
0.35, and density ρ = 1190 kg m−3. The plate is clamped
to an optical table at its bottom edge and is decorated
with an array of 44 permanent magnets (K&J magnet-
ics B662-N52) ((Nd, Fe)B) at its top edge. The magnets
have dimensions of 9 × 9 × 3 mm (am × am × tm) and a
relative spacing s = 15 mm [see Fig. 1(b)]. A steel bead
(McMaster-Carr 9642K49) with radius rb = 4.75 mm and
mass M = 3.5 g is placed atop each magnet to realize an
array of mechanical resonators. An identical array of mag-
nets is arranged on a movable acrylic beam hanging over
the bead chain at a prescribed distance d, variable within
the range 0–25 mm. Vertically polarized plate edge waves
are excited using an acoustic coil (HiWave HIAX11C005-
32), placed at a distance lm = 130 mm from the first bead,
and driven by a signal generator (Agilent 33220A) and
an audio amplifier (Topping TP30). The signal of choice
is a wide-band Ricker wavelet centered at 10 kHz. For
this wavelet, the characteristic wavelength of the travel-
ing wave on the pristine elastic plate, i.e., λ ≈ 120 mm,
is significantly larger than the bead dimensions and spac-
ing. A laser doppler vibrometer (LDV, Polytec OFV-5000)
mounted on a motorized linear stage is used to measure
the vertical velocity component of desired points along the
plate’s top edge. The data are acquired using an oscillo-
scope (Tektronix DPO3034) and postprocessed in Matlab.
The use of thin plates to probe the dynamic of SAWs in
semi-infinte media is supported by the similarity between
Rayleigh waves and extensional waves traveling at the
edge of a semi-infinite plate, which share an analogous dis-
persive relationship. For the sake of clarity, we here report
the analytical dispersion relation of extensional waves
traveling on the edge of a semi-infinite elastic plate. The
interested reader can find the detailed derivation in Refs.
[30,33]. For a thin plate (t � λ) occupying the x-z plane
from z = 0 to z = −∞, with free stress boundary condi-
tions at z = 0, the phase velocity c of edge waves traveling
in the x direction can be calculated from
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where cP,pl = [E/ρ(1 − ν2)]1/2 is the velocity of dilata-
tional waves in the plate. Note that Eq. (1) is identical to
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FIG. 1. (a) Picture of the experimental setup and (b) detailed
schematic of it, indicating all the components and geometrical
parameters of interest.

the one describing Rayleigh waves in a semi-infinite solid
[34], with the plate dilatational velocity replacing the bulk
dilatational velocity. Indeed, the use of thin sheets and edge
modes to discuss the dynamics of SAWs is a standard in
the context of seismology [30,31], where 2D models are
preferred for the ease of fabrication and lower setup cost.

III. SAW-CONTACT-RESONANCE INTERACTION

To predict and interpret the results of our experimental
platform, we analyze the dynamics of an array of resonant
beads in contact with an elastic substrate. We first recall the
dynamics of a resonant bead attached to a rigid substrate,
resorting to the model discussed in Ref. [35]. We uti-
lize this analytical model to derive the linearized response
of the bead resonance and to obtain a discrete descrip-
tion (i.e., a two-degree-of-freedom (DOF) model) of the
bead dynamics. Then, we utilize finite-element simulations
to discuss the bead-substrate interaction, employing the
discrete bead description to model the resonator response.

A. Dynamics of a single resonant bead

We model the bead as a rigid body of mass M , with the
sphere-substrate contact represented by normal and shear
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springs [Fig. 2(a)]. The normal spring is described via
Hertz’s contact model [36]; thus, the force-displacement
law between an elastic sphere and an elastic half-space
reads

Fc = 4
3

E∗r1/2
b δ3/2, (2)

with E∗ = [(1 − ν2
b)/Eb + (1 − ν2

m)/Em]−1, where δ is the
normal contact displacement, and where Eb, Em, νb, and νm
are the Young’s moduli and Poisson’s ratios of the bead (b)
and magnet (m), respectively. The Hertzian interaction can
be linearized about a static displacement δ0, leading to the
expression of the normal stiffness:

KN = 2E∗r1/2
b δ

1/2
0 . (3)

Similarly, the shear spring KS is derived from Mindlin’s
shear contact force-displacement law [37]:

Fs = 8G∗r1/2
b δsδ

1/2, (4)

with G∗ = [(2 − νb)/Gb + (2 − νm)/Gm]−1, where Gb and
Gm are the shear moduli of bead and magnet, respectively,
and δs the displacement of the bead center of mass in the
direction transverse to the contact normal. By linearizing
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FIG. 2. Schematic of a single bead over a rigid substrate: (a)
three-DOF and (b) equivalent two-DOF system. (c) Schematic
of the wave-finite-element model.

Eq. (4) about the equilibrium position δ0, δs0, and setting
δs0 = 0, the shear spring constant KS is

KS = 8G∗r1/2
b δ

1/2
0 = 4

G∗

E∗ KN . (5)

Equipped with a linearized description of the contact stiff-
ness, we describe the dynamics of a single bead using a
three-DOF system, namely the horizontal (X ) and vertical
(Z) displacement of the bead’s centroid and the bead rota-
tion (θ ) with respect to its central axis of inertia, following
the approach detailed in Ref. [35]. Assuming small dis-
placements about the equilibrium position (δ0, δs0), the free
vibrations of this system can be described by the following
set of equations:

MZ̈ + KN Z = 0,

MẌ + KS(X + rbθ) = 0,

I θ̈ + KSrb(rbθ + X ) = 0,

(6)

where I = 2
5 Mr2

b is the moment of inertia of the sphere.
As evident from Eq. (6), the system is characterized by
an uncoupled vertical mode with a resonance frequency
fv = √

KN /M/2π . In addition, two coupled horizontal-
rotational motions exist, one of them being a rigid roto-
translation, i.e., fHR = 0, and the second one with a
resonance at fRH = √

7KS/(2M )/2π (see details on the
isolated sphere dynamics in Ref. [35]). Hence, by discard-
ing the rigid motion, we can represent the bead dynamics
by a set of two orthogonal resonators, with spring con-
stants KN and KS, respectively, and mass Mv = M and
Mh = 2

7 M [Fig. 2(b)]. In the following, we adopt this set of
orthogonal resonators to couple the dynamics of a contact
resonance with SAWs traveling in the elastic substrate.

B. Resonant beads on an elastic substrate

We now analyze the dispersive properties of an infi-
nite array of bead-magnet resonators resting on an elas-
tic substrate. The coupling between SAWs and randomly
distributed surface oscillators was first analyzed in Ref.
[38]. Closed-form dispersion relations for uniformly dis-
tributed resonators were then derived in Refs. [12,35]
utilizing an effective medium approach. Although effi-
cient, this approach remains valid only in the long-
wavelength regime, where the dispersive effects induced
by the periodicity of the beads’ array are negligible. In
our experiments, because of the additional presence of
periodically distributed permanent magnets, such effects
cannot be disregarded, preventing us from utilizing such
closed-form analytical solutions. For this reason, we resort
to finite-element simulations to model an infinite array of
magnet-bead units over an elastic substrate, employing
a wave-finite-element (WFE) approach. Specifically, we
consider a 2D FE model of the system’s unit cell in
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COMSOL Multiphysics and restrict our analysis to verti-
cally polarized surface waves. The unit cell comprises a
vertical strip of plate of width equal to the magnet spac-
ing (s), a magnet, and the bead-contact resonator modeled
by a couple of orthogonal mass-spring resonators to sim-
ulate both vertical and horizontal resonances as detailed
in Secs. III A [Fig. 2(c)]. We assume plane-stress condi-
tions. To model each mass-spring resonator, we utilize a
truss element with a point mass at the truss tip [39,40]. To
account for periodicity, we impose Bloch-Floquet bound-
ary conditions (BCs) on the vertical edges of the cell,
along the direction of wave propagation. Fixed boundary
conditions are applied at the bottom of the unit cell to
simulate the boundary conditions of the setup. The elas-
tic substrate and the magnet domains are discretized with a
converged mesh of quadratic triangular elements, ensuring
a minimum number of six elements for the shortest wave-
length considered. The contact springs are modeled with
linear Lagrangian truss elements, sufficient to describe the
stiffness of the single-DOF resonators. Dispersion curves
are calculated setting up and solving an eigenfrequency
problem for 50 wavenumber values within the range
k = 1/λ = 0–1/(2s) 1/m.

IV. RESULTS

A. Magnetic force and contact-resonance tuning

We now consider the tuning effects provided by the
movable array of permanent magnets introduced in Sec. II.
To characterize this tuning effect, we measure the pulling
force required to position the bead at varying distances
d = 0–10 mm from the magnet, utilizing a standard test-
ing machine (Instron E3000), as shown in Fig. 3(a). The
measured pulling force is fitted using the interpolation
function

Fm(d) = p0

pd2d2 + pd1d + pd0
(7)

(p0 = 1 N, pd2 = 0.07414 m−2, pd1 = 0.03975 m−1, pd0 =
0.1739), which is characteristic of a dipole interaction and
adequately describes the measured force (Fig. 3(b)). We
then utilize the expression in Eq. (7) to estimate the net
contact force Fc(d) exerted by a bead over the surface mag-
net m1 when a second magnet m2 (the one providing the
tuning) is placed at a distance d2 = d from the sphere [as
in Fig. 4(a)], as follows:

Fc(d) = Fm1 − Fm2 = Fm(0) − Fm(d), (8)

where Fm1 and Fm2 are the forces exerted by the two
magnets on the bead. Using this contact force prediction,
we can calculate the bead’s vertical resonance frequency
fv(d) by means of Eqs. (2), (3), and (6). First, we cal-
culate the bead’s vertical resonance without magnet m2,
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FIG. 3. Experimental characterization of the bead-magnet
interaction force. (a) Schematic of the experimental setup. (b)
Results, featuring experimental and fitted data.

i.e., when Fc = Fm1 = 5.7 N. For our steel bead (Eb =
210 GPa, νb = 0.3 [41]) in contact with the surface of a
nickel-coated magnet (Em = 190 GPa, νm = 0.3 [41]), this
amounts to fv = √

KN /M = 9.5 kHz. The same model pre-
dicts a variation of the resonance frequency in the range
fv(d) = 5.4–9.4 kHz for a distance d = 0.2–5.0 mm [blue
line in Fig. 4(b)]. Given the proportionality between the
vertical and horizontal linear spring constants in Eq. (5),
the same frequency tunability can be achieved for the hor-
izontal mode, which can be varied in the range fRH(d) =
9.2–16 kHz (see the Appendix).

We verify these analytical predictions using the experi-
mental setup illustrated in Fig. 4(b). The bead, in contact
with the permanent magnet m1, is excited using a longi-
tudinal piezoelectric transducer (Panametrics V1011). On
the other side, a second magnet m2 is positioned at a given
distance d = 0.1270–5.080 ± 0.125 mm to replicate the
conditions assumed in the analytical model. The bead is
excited using a Ricker pulse centered at 10 kHz and its
transient response is recorded using our LDV. For each
distance d, we perform three measurements and evaluate
the average resonance frequency fv(d). The experimental
resonances [markers with error bars in Fig. 4(b)] show
excellent agreement with the analytical predictions, con-
firming our ability to largely tune the bead’s dynamics.
As a representative example, Figs. 4(c) and 4(d) pro-
vide the time (t) and frequency (f ) normalized ampli-
tude (Norm. Ampl.) response, i.e. At,f / max(At,f ), of the
bead for a distance d = 1.01 ± 0.125 mm; in this specific
case, the bead resonates at 8.35 kHz with a quality factor
Q ≈ 10.

B. SAW dispersion tuning

We experimentally investigate the interaction between
surface waves and arrays of resonators. We record the
vertical velocity wave field over an ensemble of 41
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measurement points located between magnets. All mea-
surements are carried out using a small-amplitude exci-
tation, to verify the linearized bead dynamics discussed
in Sec. III. We record the surface velocity time histories
and postprocess the data via 2D Fourier transforms, to
reconstruct the experimental dispersion curves (Fig. 5).
We reconstruct the dispersion of the pristine plate, the
plate with magnets and no beads, and the plate with
magnet-bead resonators (untuned). These measurements
are conducted to (i) validate experimentally the possibil-
ity of investigating SAWs in a compact, platelike setup;
(ii) understand the dispersive features introduced by the
presence of magnets on the surface; and (iii) highlight the
fundamental dynamics of SAWs interacting with contact
resonances and validate the numerical WFE model.

The experimental dispersion curve for the pristine
plate is shown in Fig. 5(a). The Ricker pulse gener-
ated by the acoustic coil travels as a nondispersive mode
with a velocity cR = 1205 m s−1, which can be predicted
analytically using the Rayleigh-like dispersion relation in
Eq. (1), marked in the plot by the dashed red line. Note
that, although the Ricker pulse is centered at 10 kHz,
we observe a significant amplification of the signal con-
tent within the range 12–15 kHz, possibly related to the
dynamics of the acoustic coil. Placing magnets on the
plate’s surface introduces a dispersive character to the fun-
damental SAW, which “bends” toward the Bragg limit
(kBragg = 33.33 m−1) and deviates from the sound cone
region (f /k ≥ cT, marked by the dashed black line) due
to the periodicity of the array [Fig. 5(b)]. This behav-
ior is well captured by the WFE predictions (dashed red
line) and provides the baseline to interpret the additional
dispersive features introduced by the collective beads’ res-
onances. The addition of surface resonators manifests in
the dispersion curve as a hybridization between the trav-
eling wave and the collective resonance modes. In our
experiment, the vertical (fv) and rototranslational (fRH) res-
onances of the beads interact with the dispersive SAW,
resulting in two slow-propagating flat branches [Fig. 5(c)],
similarly to what has been observed in microscale dynam-
ics [35]. Note that the frequencies where these modes
flatten mark the beads’ resonances. With respect to our
single-bead predictions, we here observe a significant shift
of the bead vertical (from 9.5 to 8.1 kHz) and rototransla-
tional resonance (from 16 to 12.2 kHz), which we ascribe
to the coupling between the rigid contact dynamics and
the softer elastic substrate. These frequency shifts are
naturally accounted for in the WFE model, which accu-
rately predicts the dynamics of such hybrid modes. The
hybridization phenomenon is accompanied by an “avoided
crossing” behavior, which results in a SAW band gap,
where energy is leaked into the substrate bulk [12]. In
detail, each frequency gap is bounded between a resonance
frequency and the intersection of the upper dispersive
branch with the bulk shear wave line, i.e., �fi = [fi,BG− −
fi,BG+], with fi,BG− = fi and fi,BG+ = kcT, where i is the
band-gap number (either 1 or 2). In our setup, accord-
ing to the numerical predictions, this condition translates
into a negligible lower frequency gap �f1 = 8.2–8.3 kHz
and into a second wider gap �f2 = 12.2 − 16.0 kHz.
Numerical predictions are confirmed by the experimental
dispersion curve: at f = 14 kHz, a representative fre-
quency inside the band gap, the system with beads shows
a significantly lower amplitude A ≈ 0.2Amax [Fig. 5(c)]
with respect to the case without beads, where A ≈ Amax
[Fig. 5(a)].The reader can find examples of recorded time
histories used to extract the dispersion curve in Figs. 5(a)
and 5(c) of the Appendix. To demonstrate the tunabil-
ity of our platform, we analyze the dispersive behavior
of SAWs interacting with modulated contact resonances,
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FIG. 5. Experimental characterization of SAWs interacting with contact resonances, with dispersion curves of (a) SAWs traveling
in a pristine plate; (b) SAWs traveling in the plate decorated with the array of magnets; (c) SAWs interacting with the array of
magnet-bead resonators; and SAWs interacting with the array of magnet-bead resonators modulated with a second chain of magnets
placed at a distance (d) d = 1.5 mm, (e) d = 0.7 mm, (f) d = 0.5 mm. Gray color maps are obtained as 2D Fourier transforms of the
experimental time-space data. The red dashed curves are the dispersion branches predicted by the WFE model [except for panel (a),
where the prediction is obtained analytically, according to Eq. (1)], while the gray dashed one marks the shear nondispersive branch.
The horizontal gray lines indicate the analytical resonances and coincide with the gaps’ onsets.

obtained by positioning an array of hanging magnets at a
decreasing distance d = [1.5, 0.7, 0.5] ± 0.2 mm from the
bead. As expected, the large tunability of contact reso-
nances discussed in Secs. IV A results in the possibility
of significantly changing the position of the hybridized
branches and, in turn, the position and width of the related
SAW band gaps. For example, for a modulating distance
d = 1.5 mm, experimental and numerical results predict
two hybrid modes approaching, respectively, the tuned res-
onances fv(1.5 mm) = 7.5 kHz and fRH(1.5 mm) = 11.1
kHz; they also highlight an upper SAW band gap extend-
ing in the �f2(1.5 mm) = 11.6–13.7 kHz range [Fig. 5(d)].
It is worth pointing out that the numerical model, updated
using the tuned contact force formula in Eq. (8), does
not require any additional fitting parameter to predict the
measured frequency shifts. As expected, larger resonance
and band-gap variations are achieved for smaller mod-
ulating distances d, i.e., �f2(0.7 mm) = 10.7–12.5 kHz,
�f2(0.5 mm) = 10.2–11.7 kHz [Figs. 5(e) and 5(f)]. For
these configurations, at the representative frequency f =
14 kHz, which now lies outside the tuned band gaps, no
amplitude attenuation is observed [Figs. 5(d)–5(f)]. Note
that, for very short bead-magnet distances (d = 0.5–0.7
mm), the energy traces of the lower hybrid branches are
less pronounced, due to the lower amount of energy con-
vened by the Ricker excitation to frequencies below 8
kHz and to the finite precision of our positioning sys-
tem, which causes a slight inherent variability between
resonances of different beads in the array. Removing
this variability, e.g., via automatically controlled position
systems, would allow us to also achieve a larger range of
tunability.

V. CONCLUSIONS

In this work, we demonstrate how SAWs can be
attenuated at desired frequencies using an array of tunable
contact resonances. We show that mechanical resonators
can be easily realized with spherical beads in contact with
permanent magnets. By exploiting the large sensitivity to
contact forces of the beads and modulating the contact
forces using an additional movable array of magnets, we
demonstrate the possibility of tuning the bead resonances.
This result, in turn, allows us to control the hybridization
gaps arising from the coupling between traveling waves
and bead resonances and, hence, filter out the propaga-
tion of edge modes at selected frequency ranges. Although
the proposed strategy has been discussed by means of
a 2D experimental setup, our results can be seamlessly
extended to the dynamic of SAWs traveling in a homoge-
neous half-space, provided that: (i) the plate dilatational
velocity is substituted by the medium bulk dilatational
velocity [30] and (ii) the one-dimensional (1D) array of
beads is extended to a 2D surface array. In this regard,
one should employ a number of surface resonators per unit
area nA = A/(s × t), to ensure analogous results, i.e., band-
gap width and shift, to those of a plate with thickness t (y
direction) and resonator spacing s (x direction), for surface
waves propagating in the x direction. Minor changes are
introduced along the other directions due to the different
unit-cell periodicity. In addition, we believe that a similar
tuning paradigm could be implemented at the microscale
and nanoscale, where contact-based metamaterials made
of micro- and nanobeads deposited on a silica substrate
have already been utilized to filter SAWs in the rf regime
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[12–14]. Within this context, resonance tuning via a
magnetic field could be achieved by employing, for exam-
ple, magnetic microbeads, similar to those already com-
mercialized for magnetic separation techniques [42], and
modulating their contact resonances via an external mag-
netic field.
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APPENDIX A: ADDITIONAL EXPERIMENTAL
DATA

1. Tuning of the bead horizontal resonance

We calculate and experimentally measure the horizon-
tal resonance frequency fRH(d) of a bead in contact with a
permanent magnet m1 and modulated by a second magnet
m2 placed at a distance d from the bead surface. We utilize
Eqs. (2), (5), and (6), to predict a variation of the resonance
frequency between fRH(d) = 10.8–16 kHz for a distance
d = 0.2–5.0 mm [blue line in Fig. 6(b)]. To measure the
horizontal resonance frequency, we utilize the experimen-
tal setup illustrated in Fig. 6(a). We provide an excitation
orthogonal to the normal contact at the base of the bead-
magnet assembly using a longitudinal piezoelectric trans-
ducer (Panametrics V1011). Again, a second magnet m2
is positioned at selected distances from the bead’s surface
to replicate the conditions assumed in the analytical model.
We excite the bead using a Ricker pulse centered at 10 kHz.
We record its lateral response with our LDV and perform
three measurements to evaluate its average resonance fre-
quency fRH(d). The experimental resonances, marked with
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FIG. 6. Characterization of the bead’s horizontal resonance.
(a) Schematic of the experimental setup. (b) Experimental and
numerical results.
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FIG. 7. Examples of LDV velocity measurements for a Ricker
pulse traveling in (a) a pristine plate and (b) a plate equipped
with magnet-bead resonators (and no modulating force, i.e., d =
∞). (c) Time histories of the measured velocity responses at a
position x = 30 cm.

error bars in Fig. 6(b), are in good agreement with the ana-
lytical predictions for small and large tuning distances. We
observe some discrepancy at distances between 1 and 2
mm, possibly related to additional frictional effects or to
some lateral confinement induced by the magnets and not
accounted for in the model.

2. Time-history records

Example of time-history records, used to obtain the dis-
perive properties of the pristine plate and of the plate
equipped with magnet-bead resonators [Figs. 5(a) and
5(c)], are displayed in Fig. 7. These time histories con-
firm that the Ricker wavelet generated by the acoustic
coil propagates as a compact, i.e., nondispersive, edge
mode in the pristine plate [see signal (R) in Fig. 7(a)].
This feature is followed by lower-amplitude reflected sig-
nals (Rl, Rr), generated at the plate’s left (l) and right (r)
boundaries. Conversely, the presence of the resonant beads
spreads the arrival of the wave packet at different times,
highlighting the dispersive features introduced by the res-
onances [Fig. 7(b)]. The signal dispersion can be further
appreciated by comparing the velocity traces extracted at
a distance x = 30 cm for the pristine plate and plate with
resonant beads [Fig. 7(c)].
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